Project Jack Rabbit - Chlorine Chemical Reactions as a Loss Mechanism for Dense Plumes

Presented to: Chlorine Institute Technical Symposium Houston, TX, April 8, 2013

Shannon Fox, Ph.D. Senior Research Scientist, Project Manager Chemical Security Analysis Center

Acknowledgements

- Air Force Research Laboratory (AFRL):
 Mike Henley, John Hearn, Howard Mayfield
- AFRL Contractors:

Rich Weber, Jeff Eichler, and Bob Nichols

- U.S. Army Dugway Proving Ground, Meteorology Division: Donny Storwold, John White, John Pace and Team
- Funding:

Department of Homeland Security: Chemical Security Analysis Center, Transportation Security Administration

Defense Threat Reduction Agency

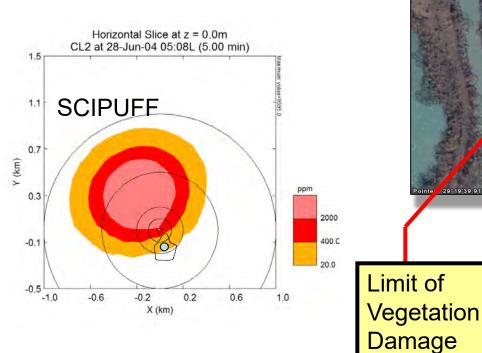
Industrial Partners:

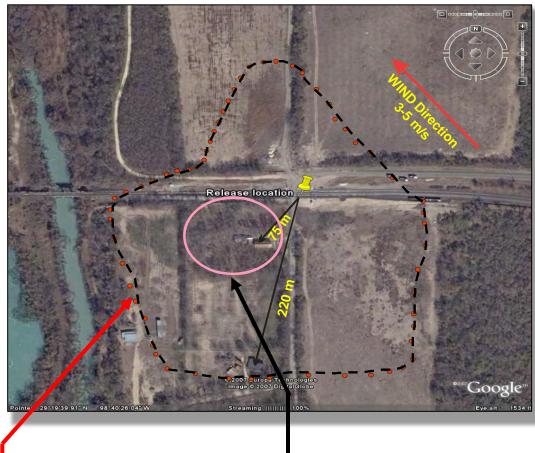
Association of American Railroads (AAR) Center for Toxicology and Environmental Health (CTEH)

- Chlorine and Ammonia are essential to modern life
- Hundreds of millions of tons are transported every year by road, water, rail
- Chemicals are heavily trafficked in bulk through High-Threat Urban Areas
- Accidents are regular occurrences (major every 5-10 years)
- A chemical in transport is an potential target for terrorism:
 - No need for acquisition

Security

- High toxicity of many industrial chemicals creates the potential for mass casualties in large-scale releases
- Built-in delivery system to the target (hijack or attack in place)
- Minimal security/countermeasures available

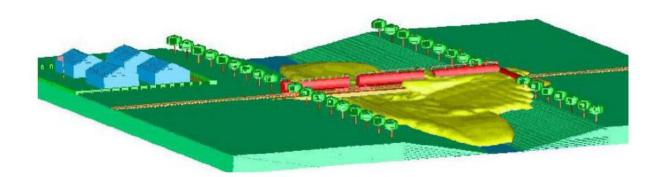

Homeland Chlorine Railcar Release – MacDona, TX


Train collision in 2004

Security

Science and Technology

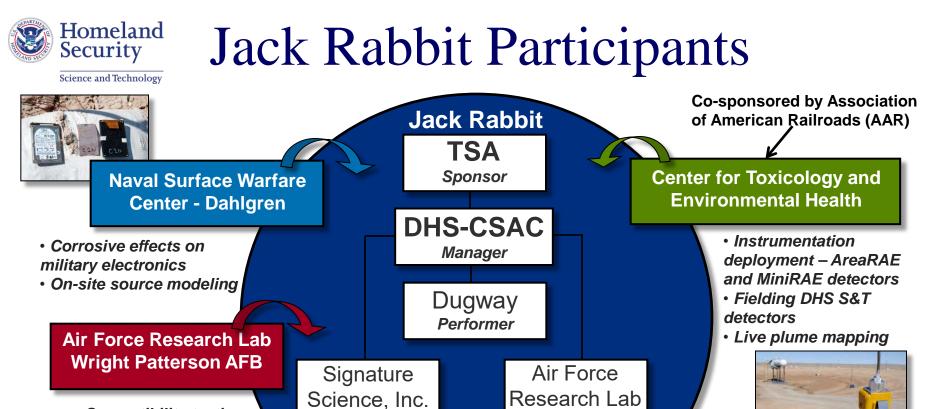
- 60 tons of chlorine released from rail car
- 3 killed, 43 hospitalized
- Models and observed impact do not match



14 Dead Animals and 3 Dead People inside of Ellipse only

Problem Statement

- <u>Problem</u>: DHS and other agencies *must better understand behavior and* consequences of large-scale toxic inhalation hazard (TIH) chemical releases
 - Improve where modeling and predictions do not align with observations
 - <u>Validated</u> data and modeling for large-scale TIH releases (Cl₂, NH₃, SO₂, etc.)
 - Need improved understanding of dense-gas behavior, <u>chemical reactivity</u>, toxicity, and source terms
 - Inform and emergency response and optimally define evacuation
- Solution:
 - Large-scale TIH field release experiments
 - Output: Knowledge products that are required for improved capabilities and efficiencies in planning, response and mitigation
 - Resiliency better planning, emergency response
 - Vulnerability and impact reduction Risk mitigation



Project Jack Rabbit - Overview

- CSAC funded to conduct field-releases of 2 tons of ammonia and chlorine in Spring 2010
- Releases configured to approximate release parameters and conditions hypothesized to exist at the large-scale

- Objectives:
 - Collect data on the source behavior of rapid, large-scale releases for the development of improved modeling source terms
 - Characterize the vapor/aerosol cloud movement
 - Evaluate chemical reactivity with soil as a loss mechanism for clouds
 - Compare ammonia and chlorine release behavior
 - Evaluate fielded instrumentation and develop and evaluate testing methodology for future additional and potentially larger-scale tests

 Compatibility testing with aircraft materials
 Long-term stress testing

Safer Systems, Inc.

• Deployed line-of-sight Infrared Boreal Laser

Detection system

Cloud Concentration

Source Analysis

Forsvarets Forskningsinstitutt (FFI) The Norwegian Defense Research Establishment

CFD Modeling

Soil Core Sampling

Reaction Analysis

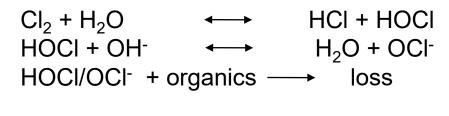
- On-site modeling support
- Source analysis

Jack Rabbit Trials

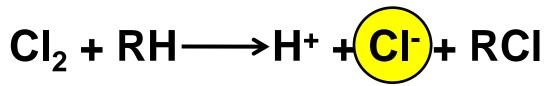
- Conducted during 4 weeks, Apr-May 2010 with Ammonia and Chlorine
- 1 ton (pilot) and 2 ton (record) releases
- Total of 10 successful trials (2 pilot, 8 record)
- Extensive array of instrumentation deployed empirically recording various aspects of the chemical releases

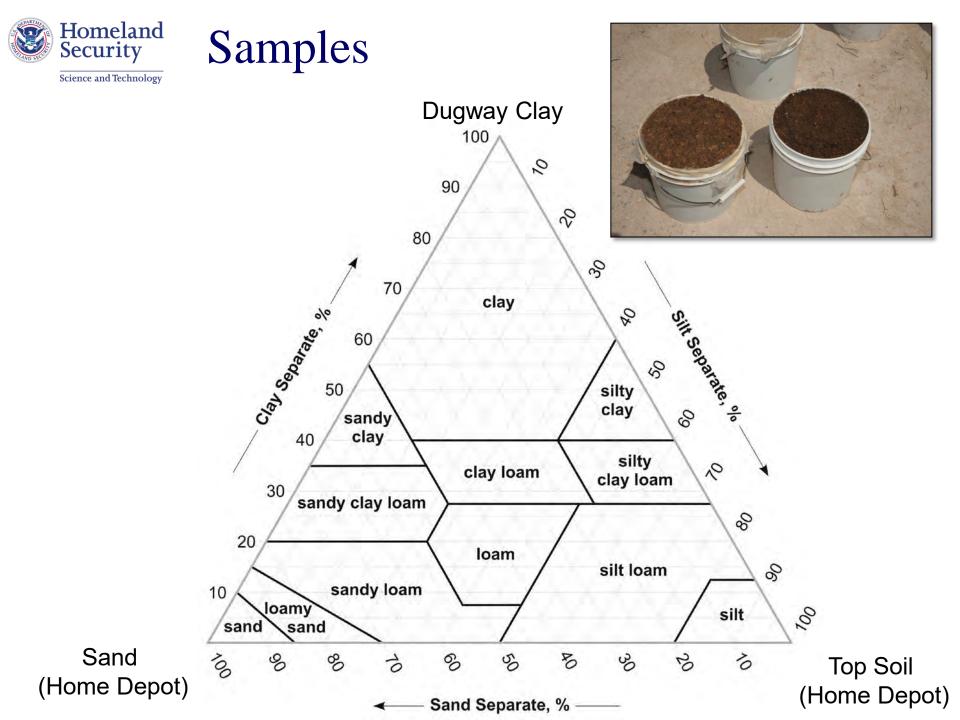
- High definition video documentation captured from multiple angles
- 3-Dimensional computerized cloud reconstructions
- Vast quantities of data generated
- Weather variation provided a range of different conditions

Jack Rabbit Release Videos

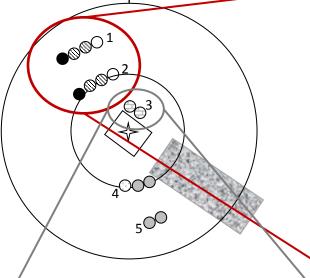

Trial	Date	Chemical	Amount
Pilot-NH ₃	07-APR-10	Ammonia	1 Ton
Pilot-Cl ₂	08-APR-10	Chlorine	1 Ton
01-RA	27-APR-10	Ammonia	2 Tons
02-RA	01-MAY-10	Ammonia	2 Tons
03-RC	03-MAY-10	Chlorine	2 Tons
04-RC	04-MAY-10	Chlorine	2 Tons
05-RC	05-MAY-10	Chlorine	2 Tons
06-RC	07-MAY-10	Chlorine	2 Tons
07-RA	20-MAY-10	Ammonia	2 Tons
08-RA	21-MAY-10	Ammonia	2 Tons

- Attenuation mechanisms
 - Dispersion (physical)
 - Gas-phase chemistry (photolysis, reaction with atmospheric oxidants)
 - Heterogeneous deposition

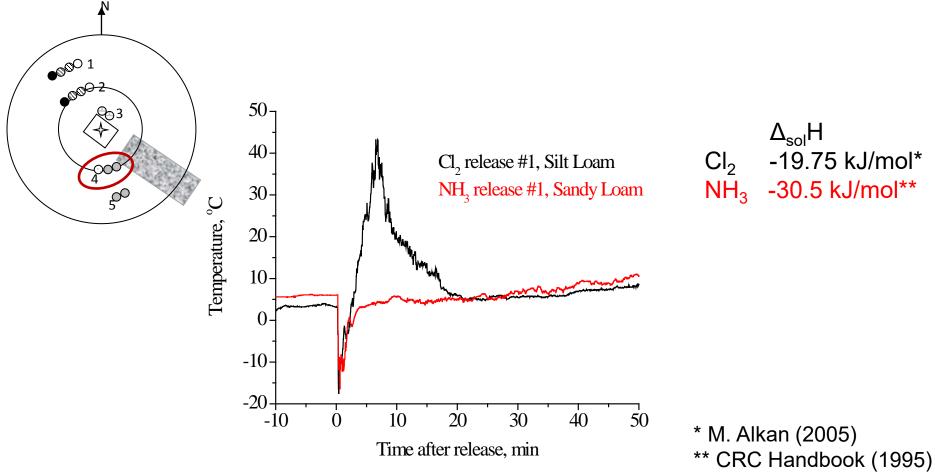

$$Cl_2 + RH \longrightarrow H^+ + Cl^- + RCl$$



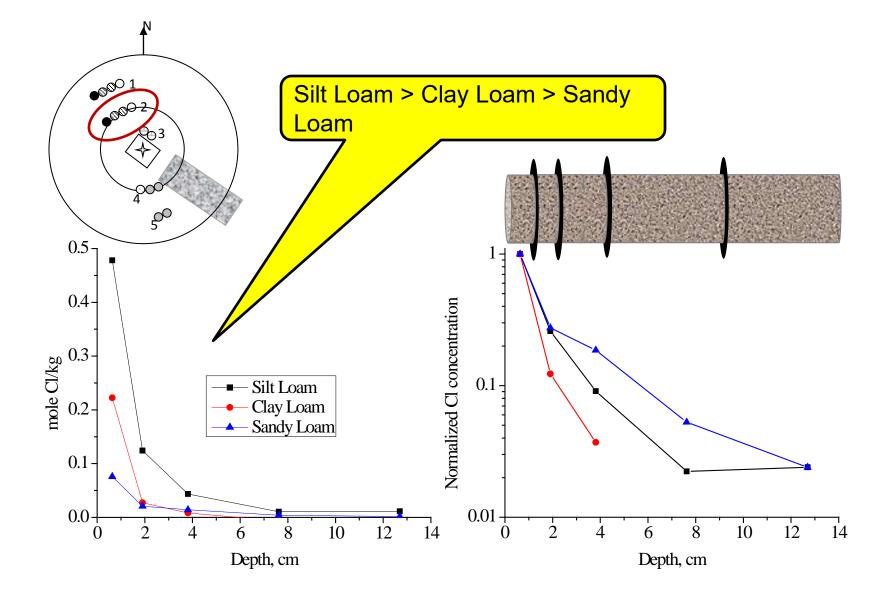
←→	
	2CI•
>	HCI + R•
	RCI + CI•


- The primary product is the chloride ion (CI–), and the molar CI– yield is equivalent to the CI₂ loss with, the following three assumptions:
- 1. The pH is high enough so that HCI(g) does not evolve
- 2. Acid-catalyzed addition of CI– to carbon–carbon double bonds is not significant
- 3. Direct addition of Cl_2 to carbon–carbon double bonds is insignificant.
- Any contribution of these processes during Cl₂ deposition will not be accounted for by the Cl– measurements
- Therefore, CI– provides <u>a conservative marker</u> for the total C_{I2} deposited.

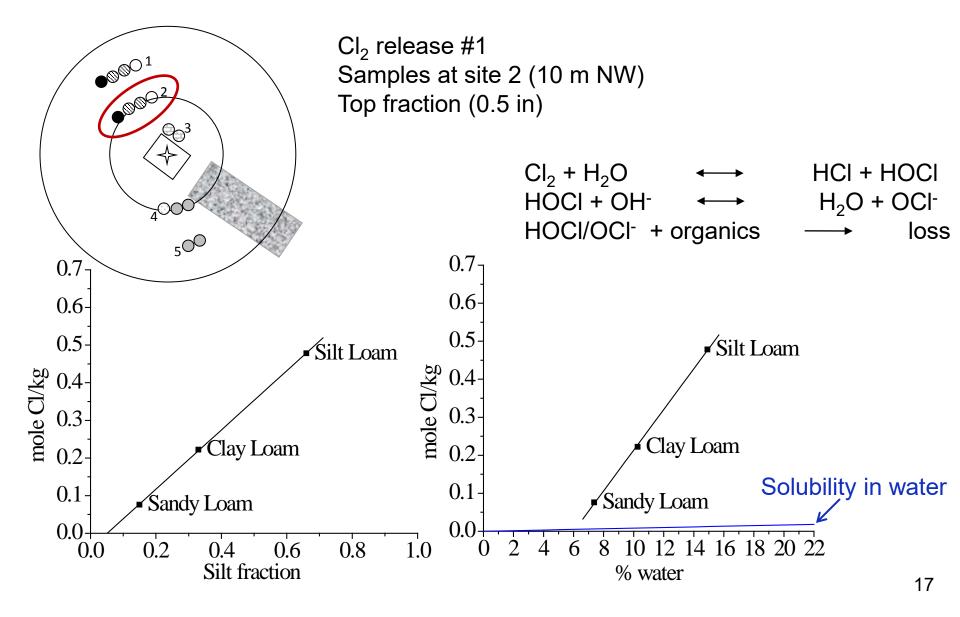
We be and the security of the					098:13:45:0	8.15		
		Re	lease site			Site #	Distance	Height
						1 & 5	15 m	1 m
	4000 ×		Gravel			2 & 4	10 m	0 m
	500		Drive			3	2 – 3 m	0 m
Soil Number	Name	% Clay	% Sand	% Silt	Water		100	
1	Sandy loam	15	70	15	Νο		90	
2	Silt loam	15	15	70	Νο		70	e la
3	Clay loam	33	33	33	Νο	l'ate	e clay	Sill Separate
4	Clay loam wet	33	33	33	Yes	Clay Separate .	50 sandy	silty of the of
5	Clay	70	15	15	Νο	40	clay clay@am	silty clay loam
6	Sand	0	100	0	Νο	20	loam	8
7	Silt	0	0	100	Νο	10 loamy	sandy loam	silt loa
8	Clay 100	100	0	0	Νο	S and sand	8 7 8 8 8	8 8 6
							 Sand Separate, % - 	-

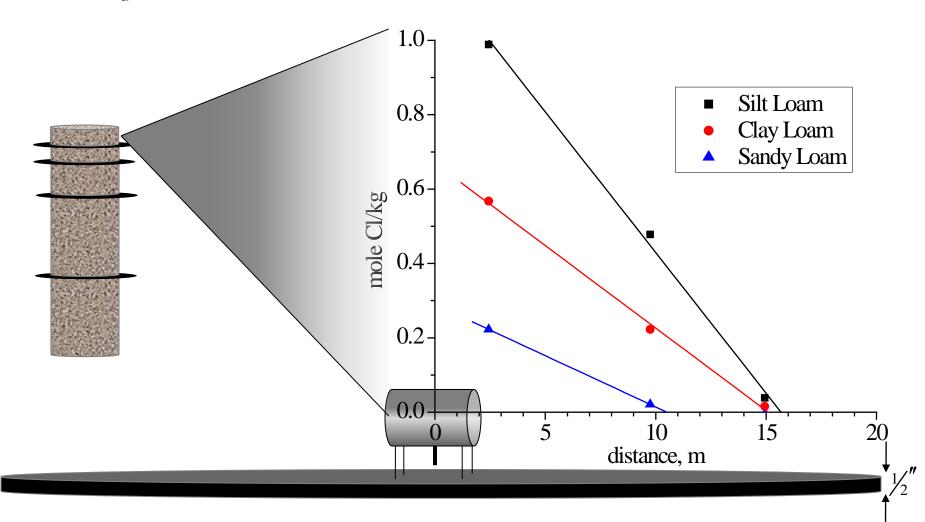


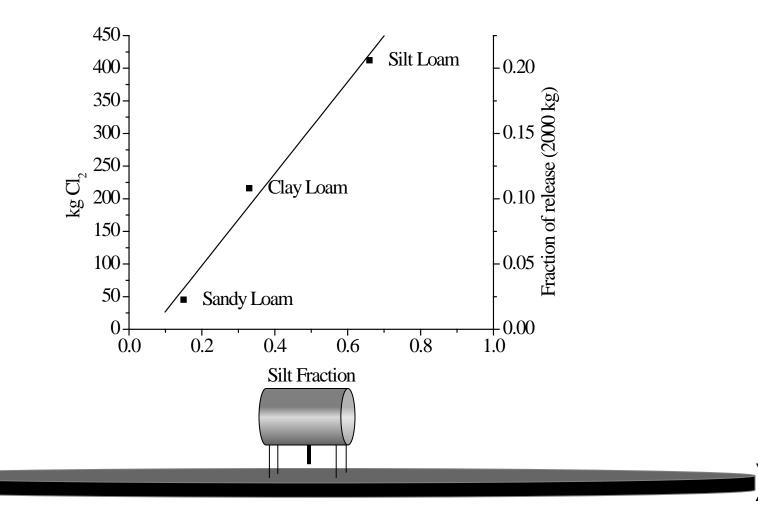
- Ion chromatography of extract
- Analyze 2. Water mass fraction (gravimetric)
 - 3. Total organic content (gravimetric)
 - 4. Headspace analysis (GC-MS)


Cores Taken From Sample Buckets

- Thermocouples at and below ground measured temperature increase
- This is an indication that large reaction enthalpy is present




Homeland Dependence on Soil Composition


Security

• For the determination of deposition with soil as a loss term for chlorine:

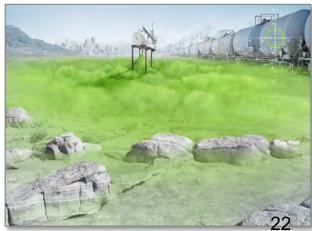
- [CI-] results from the top 1.3 cm vertical fractions were used
- Analyses involved trials with low-wind (≤1.6 m/s) conditions.
- The analysis revealed <u>up to 50% of a 1814-kg chlorine</u> <u>release could be removed</u> within 20 m from the release point for soil with high organic matter (43%) and/or water content (29%).
- Enormous implications for modeling, planning, emergency response, and mitigation
- Reaching out to network of model developers to provide data for incorporating deposition removal terms for chorine
- Additional data and findings from this study can be found in our new publication in Journal of Hazardous Materials

• This work has recently been published in the latest issue of the Journal of Hazardous Materials (JHM)

Deposition of Cl₂ on soils during outdoor releases

John D. Hearn^{a,*}, Richard Weber^{b,1}, Robert Nichols^c, Michael V. Henley^a, Shannon Fox^d

^a Air Force Research Laboratory, Airbase Technologies Division, 139 Barnes Drive, Suite 2, Tyndall Air Force Base, FL 32403-5323, United States ^b Applied Research Associates, 139 Barnes Drive, Suite 2, Tyndall Air Force Base, FL 32403-5323, United States ^c Universal Technology Corporation, 139 Barnes Drive, Suite 2, Tyndall Air Force Base, FL 32403-5323, United States ^d Chemical Security Analysis Center, Department of Homeland Security, Aberdeen Proving Ground, MD, United States


- Journal of Hazardous Materials 252–253 (2013) 107–114.
- Details and additional aspects of this study may be found in this article

Jack Rabbit II – New Program

We will conduct a new series of open-air chlorine release trials in a multiagency effort, building upon the work performed in Jack Rabbit I

- FY14 17 project approved by DHS S&T HSARPA for funding
- DHS CSAC will lead seeking multi-agency co-investment and participation
- Larger volume chlorine field releases from 5 to 20 tons
 - Continuing evolution of higher quantity releases scaling is non-linear
 - 20 tons represents 100% of tanker truck transport volume, and a large fraction of a railcar release
- Largest & most comprehensive source term study
- Longest down-wind dispersion study of its kind
- Quantitative determination of chlorine removal via reactivity with soil, atmosphere, vegetation, metals, and other surfaces
- Urban Impact Assessment–Mock Urban Test Bed

Jack Rabbit II Technical Approach

Jack Rabbit I	Identified Gaps	Jack Rabbit II Solution
1 and 2-ton releases	Larger-scale releases needed – evidence effects do not scale linearly with amount	5, 10, 20-ton releases
Flat desert and a 50 meter- wide terrain depression	Effect of terrain, obstacles, and buildings, on cloud movement and behavior	Mock urban test-bed, engineered with terrain and building features
Source term data for mass- flux and impingement	Source-term mass-balance needed for dense gases – currently <i>not experimentally validated beyond 2-tons</i>	Comprehensive source term data: two-phase flow, pooling, rainout, retention, and off-gassing
0.5-km downwind dispersion measurements (ground level)	Validation of dispersion models and ER needed beyond 0.5 km	11-km downwind dispersion data, with vertical sampling for 3-D mass- balance
Discovery of violent Rapid Phase Transition (RPT) eruptions	Previously unknown phenomenon and hazard – needs characterization for ER safety	Comprehensive experimental characterization of RPT phenomenology
Soil chemical reactivity experiments	TIHs reactions can remove a substantial portion of clouds – magnitude of effects currently not considered in any model	Laboratory and field experiments with soil, vegetation, rural/urban surfaces
Field testing of LACIS and ARFCAM detectors	Detectors, equipment, and PPE needs testing and validation with realistic exposure profiles and concentrations	Numerous devices/resources tested. Co-located deployment for real-time exposure profile
Limited electronics and materials exposure testing	Comprehensive exposure impact assessments needed for electronics, materials, buildings, and infrastructure	Total urban infrastructure impact assessment

- Seeking partnerships with key stakeholders
- Several organizations have already communicated financially support or participate in Jack Rabbit II
- Potential collaborative contributions include:
 - Direct investment of funding support
 - Contribution of key personnel

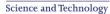
Homeland

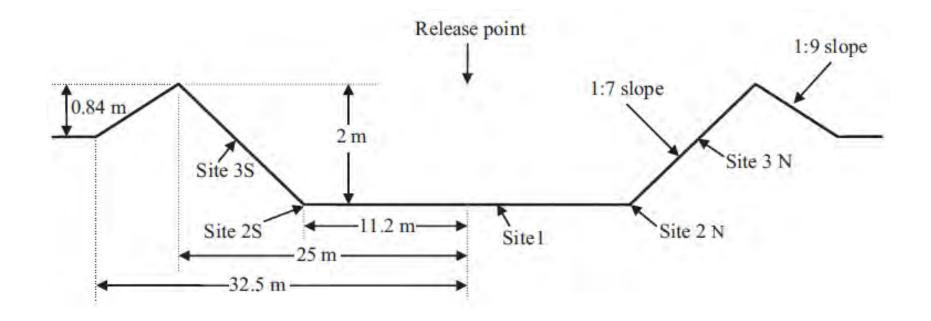
Science and Technology

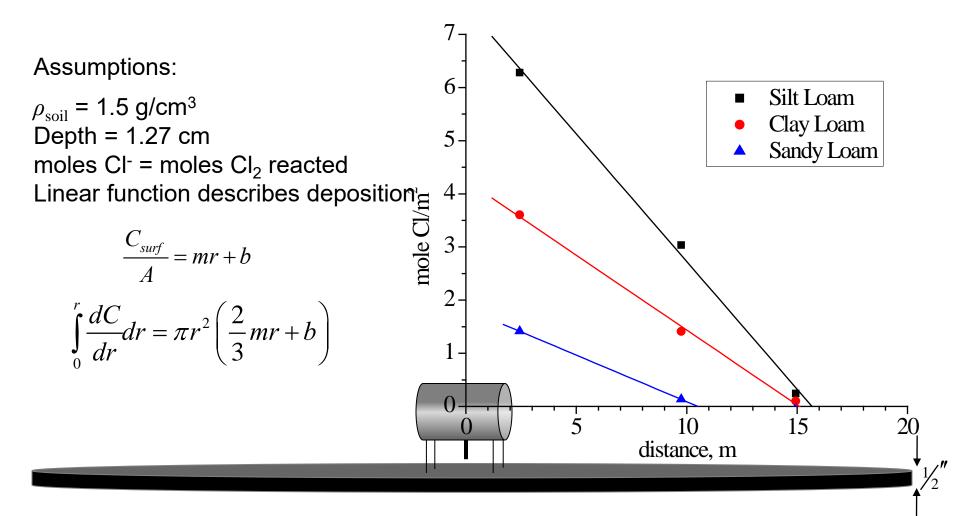
Security

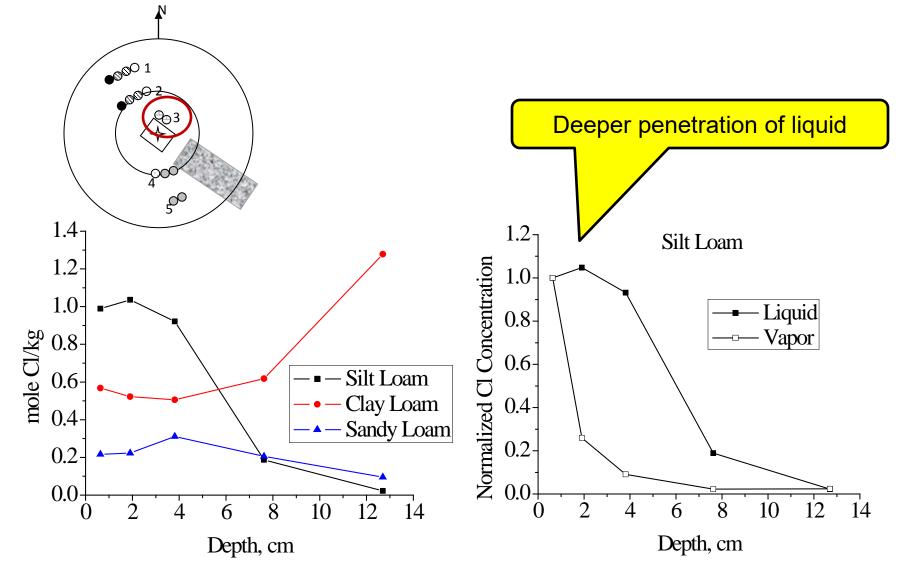
- Sponsoring of targeted experiments
- Fielding and operating instrumentation with mutual data-sharing
- Conducting or funding critical studies from the resulting data
- This approach was successfully demonstrated in Jack Rabbit I, greatly multiplying the impact and value of the test
- Partnership with the Chlor-Alkali industry will be coordinated through our new CRADA with the Chlorine Institute
- To discuss support or participation opportunities contact:

Dr. Shannon Fox, DHS CSAC Shannon.Fox@st.dhs.gov 410-417-0906

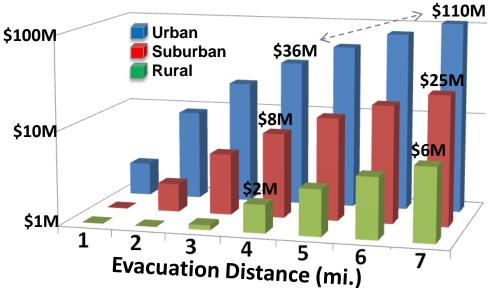





Homeland Security



Homeland Security Impact of Deposition - Assumptions



Homeland **ROI** Example – Evacuation Science and Technology

- Exponential increase in evacuation cost with longer distances
- Smaller, more accurately-determined evacuation distances result in large ROI. •
- New evacuation distance projected to be 4 miles or less.

Cost of Evacuation (per day)*

ROI for reducing the evacuation distance from 7 to 4 miles reflects the savings *per day.*

Security

Historical large-scale TIH evacuations ٠ have generally lasted 7-10 days.

	As-Is (7+ mi.)	To-Be (4 mi.)	ROI (per day)
Urban	\$ 110M	\$ 36M	\$ 74M
Suburban	\$ 25M	\$ 8M	\$ 17M
Rural	\$ 6M	\$ 2M	\$ 4M

JR II Summary

- Need:
 - Chlorine and TIHs are long-term, higher-frequency risks:
 - Large-scale accidents recurrent every 5-10 years
 - Documented and continuing threat of intentional release
 - Large-scale releases are poorly understood and characterized
 - Modeling capability is <u>must be improved</u> for large-scale Cl₂ and TIH releases
- Multi-agency Partnerships
 - Jack Rabbit I & II have broad interagency and private sector support
 - Several organizations plan co-investment into Jack Rabbit II
 - Many additional organizations have agreed to provide Letters of Support

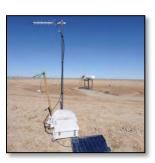
Capabilities:

- Improved and validated source terms, AT&D modeling.
- Unique and improved training capabilities informed procedures and safety for responders
- Novel mitigation measures evaluated and validated (chemical removal, trapping)
- Improved shelter-in-place from building infiltration and urban impact characterization

Efficiencies:

- More efficient, focused, and informed emergency response will save money and lives
- Improved efficiency of resource allocation (medical mitigation, response assets)
- Realistic and optimized guidance improves evacuation efficiency

- Rapid Phase Transition (RPT) eruptions present a previously unknown hazard & are more likely with impingement
- Low winds and stable atmosphere results in cloud persistence


Security

Science and Technology

Cold, dense gas is held up near release site and collects in low-lying areas

- Project Jack Rabbit was a project with limited-funding and scope which identified critical gaps requiring further experimentation and study.
- Stakeholders and partners in government, industry, and academia uniformly have communicated the need for definitive large-scale testing

Return on Investment (ROI) Areas

Modeling:

- Dramatically improved modeling input and validation.
- Source Terms: model-agnostic, and critical for accurate TIH modeling.
- Atmospheric Transport and Dispersion (AT&D).

Training:

- Unique and improved training capabilities direct impact on emergency responder safety, procedures, and efficiency.
- Jack Rabbit II products used for guidance and inclusion of TIH scenario in NLE.

Emergency Response and Mitigation:

- More efficient, focused, and informed emergency response saves money, lives
- Novel mitigation measures developed, evaluated and validated
- Improved resource allocation for medical mitigation, response assets

Equipment T&E:

- Multi-agency co-investment and participation magnifies project value and output
- Detector and equipment testing at realistic operational conditions
- Material and electronics exposure testing

Evacuation:

- Evacuation zone distances and procedures refined through improved modeling
- Current ERG guidance directs excessive distances (7+ miles) due to modeling uncertainties
- Realistic distances *dramatically* reduce unnecessary evacuation, impact, costs
- Results in a significant, quantifiable ROI for evacuation improvement alone

Science and Technology

High interest from partners and stakeholders – broad payoff to the Homeland Security Enterprise (HSE)

Capabilities: Field-validation of modeling, and emergency response and urban/environmental impact for chlorine and large-scale TIH releases.

HSE Payoff CSAC: Improved chemical risk assessments (CTRA) and hazard assessments. S&T FRG: Better responder training, guidance, response efficiency, and safety HSARPA: Field-test opportunity for detection systems Improved risk assessments (TSRA). Compliance with mandated modeling and TSA security responsibilities (1519.b of "Implementing Recommendations of the 9/11 Commission Act of 2007"). Inclusion chlorine and/or **TIH release in 2016 NLE** with field-validated urban release **FEMA** scenarios. Improved planning and consequence assessment estimation. IMAAC: Enhanced hazard predictions and response support *during* large-scale TIH OPS release incidents. NPPD-ISCD: Better chemical supply chain hazard and risk assessments, improved OIP implementation of CFATS. Improved TIH hazard analyses – more accurate and efficient allocation of medical OHA response resources and planning, worried-well reduction, USCG Improved planning and response for barge and port TIH release incidents. 34

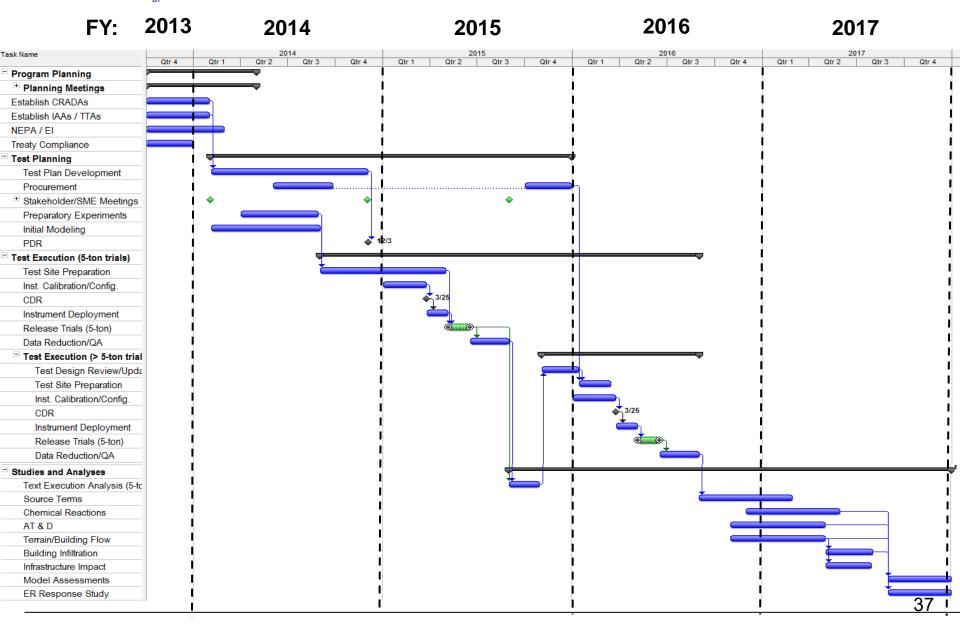
Payoff: Interagency

Science and Technology

Interagency partners have indicated intent to join effort to advance their organizational missions and mandates

Interagency	Payoff	
DOT- PHMSA	Updated ERG modeling will improve accuracy of Protective Action Distances, with <i>direct impact on 2016 ERG guidance</i> .	
DOD-DTRA	HPAC/JEM improvement using source term and dispersion data. Enhanced TIH release predictive and support capability for DTRA-Reachback operations	3
DOD-ECBC	Fulfillment of field-test requirement to validate chlorine and TIH environmental chemical reactions: FY 2014 "Degrade" project	
DOD-NGIC	Field validated data and TIH modeling for war-fighter support simulations	
DOD-NSWC	Field-validation of RAILCAR source-term engine.	
DOD-AFRL	Aircraft material exposure test results with real-time exposure profiles.	
NOAA	Improved ALOHA model capability and accuracy for Cl ₂ and TIHs	
NIST	Capability for outdoor → indoor building contaminant ingestion into CONTAM indoor model, using field-validated infiltration data	
"Other"	Unique opportunity for unmanned drone capability testing of chemical cloud identification, mapping, and tracking. Unprecedented real-time aerial footage and shared data.	35

Payoff: Industry/Organizations


Science and Technology

Industrial collaboration expanded beyond Jack Rabbit I, seeking to take advantage of this unprecedented testing opportunity

Industry	Payoff	
Association of American Railroads	Enhanced railroad security and novel mitigation strategies driven by experimental findings and analyses. Improved guidance and training to member companies.	
Chlorine Institute (CI)	Improved industry guidance for chlorine operations and safety for	
American Chemistry Council (ACC)	member companies. Updated Chlorine Institute "Pamphlet" series of publications.	
International Association of Fire Chiefs (IAFC)	Improved safety and response efficiency of emergency responder Improved evacuation/shelter-in-place guidance and implementation	
National Fire Prevention Association (NFPA)	Use of release images, footage, and findings for TIH response training programs.	
Chemical Detector Developers (RAE, Safer, Smiths, Bruker, etc.)	Unique field-test opportunity for handheld and autonomous chemical detectors – co-located instrumentation and mutual data-sharing greatly expand useful data sets.	
Model Developers	Numerous model developers intend to utilize test campaign as definitive source for improvement and validation for TIH capabilities	

Schedule and Milestones

