NATIONAL BUREAU OF STANDARDS REPORT nas project

July 17, 1962

Theory of Resonance Frequency Shift
Due to the Radiation Field*

by

M. Mizushima \dagger

Department of Physics University of Colorado Boulder, Colorado
*Supported by the U.S. Army Signal Research Laboratory and
National Bureau of Standards, Boulder Laboratories
\dagger Consul tant to Division 91
NBS
U. S. DEPARTMENT OF COMMERCE

NATIONAL BUREAU OF STANDARDS
BOULDER LABORATORIES
Boulder, Colorado

IMPORTANT NOTICE

NATIONAL BUREAU OF STANDARDS REPORTS ere usually prediminery or progress acceunting documents intended for use within the Government. Before meferial in the reports is formally published it is subjected to additional evaluation and review. For this reeson, the publicetion, reprinting, repreduction, or open-literefure listing of this Report, sither in whole or in part, is not authorized unless permission is obroined in writing from the Office of the Director, Notional Bureau of Stondards, Washington 25, D. C. Such permission is not needed, however, by the Government egency for which the lepert has been specifically prepered if thet egency wishes to reproduce edditional cegies for ifs own use.

THEORY OF RESONANCE FREQUENCY SHIFT DUE TO THE RADIATION FIELD

by
M. Mizushima
Department of Physic: University of Colorado Boulder, Colorado

TABLE OF CONTENTS

Page
ABSTRACT i
HAMILTONIAN 1
EIGEN VALUES AND TRANSITION PROBABIIITY 3
FREQUENCY SHIFT 5
APPLICATION TO Cs 9 kMc LINE 9
(COMPARISON WITH EXPERIMENT 12
NOTES 14
TABLE I. 15
TABLE II. 17
TABLE III. 18

THEORY OF RESONANCE FREQUENCY SHIFT DUE TO THE RADIATION FIELD

by
M. Mizushima
Department of Physics University of Colorado
Boulder, Colorado

ABSTRACT
A new formalism is developed to calculate radiative transition processes, and applied to calculate the shift of resonance frequency due to the radiation field itself. The zeroth approximation gives the Bohr resonance condition, but a shift proportional to the photon density is obtained in the next approximation.

The first order shift is made of two terms: electric and magmetic. Both of them can be interpreted as the second order Stark efffeet and Leman effect due to the oscillating field respectively.

A comparison with experimental data on C s is made. A good agreement is obtained by choosing the value of parameters suitably. These values of parameters can be checked by a future experiment.

HAMIITONLAN

The Hamiltomian of our system is made of three parts, namely, that of the radiation field, that of an atom in a vacuum, and the interaction between them. The eigen value of the radiation field is well known to be $\sum_{k} \ngtr a_{k} n_{k}$, where α_{k} is the frequency and n_{k} is the quentum number of the k-th photon. The oigen value for the atom in vacuum is actualiy very difficult to calculate, but cen be measured by spectroscopic experiments. The interaction between the radiation field snd the atom is

$$
\begin{equation*}
\left.H_{\text {int }}=-\sum_{i}\left[\frac{e_{1}}{r_{1}}\right) \stackrel{\rightharpoonup}{P}_{1} \cdot \vec{A}-\left(\frac{e_{1}}{2 \mu_{1}}\right)_{A^{2}}\right]=\sum_{i}\left(e_{1} / \mu_{i}\right) \vec{e}_{1}(\vec{\nabla} \times \vec{A}) \tag{1}
\end{equation*}
$$

(.. in the non-relativistic approximation. In this formula c_{i}, μ_{i}, s_{i} and P_{i} are the change, mass apin, and momentum of the i-th particle of the atom, and A is the vector potentiel at the position of the $1-t h$ particle.

Thus we write

$$
\begin{equation*}
H=H_{\text {rad. }}+H_{a_{\bullet}}+H_{\text {int }} \tag{2}
\end{equation*}
$$

This expression seems simple, but actualiy needs a long comment of renormalization of charge and maes ${ }^{l}$. By $H_{\text {a. we mean the Hamiltonian of }}$ the atom with renormalized quantities. In the case some parts of the interaction Hamiltonian is already incluced in the other pert.

The atom is in a cavity which provides the boundary conditicns for the field variable \vec{A}. Since $H_{\text {rad. }}$ is quadratic in \vec{A}, one can always find normal coordinates to satisfy such boundary condit ion and express B $_{\text {rad. }}$ as the aum of components due to each normal coordinate without interaction between them. Alhough some of these normal vibrations have a wave length comparable to the atomic timenaion, oniy normal vibrations with longer
wave length are excited in ow r case. We thus consider only normal vibration with a wave length very much larger that the atomic dimension. In that case we can expend \vec{A} in (1) and take the first few terms only. Thus

$$
\begin{align*}
H_{\text {int }} \quad & \quad \sum_{K}(e / \mu) \vec{P} \cdot \vec{A}_{o n}-\sum_{k}\left(2 e^{2} / 2 \mu\right) A_{o k}^{2} \\
& -\sum_{K}(e / 2 \mu)(\vec{I}+2 \vec{S}) \cdot\left(\vec{A}_{o k} \times \vec{K}\right) \tag{3}
\end{align*}
$$

where \vec{F} is the total linear momentum of electrons, \vec{A}_{0} is tine amplitude of the K th normal coordinate, 2 is the total number of electrons in this atom, \vec{I} and \vec{S} are total orbital and spin n Euler momenta, respectively, and K is the propagation vector of the K -th normal coordinate. The normal coordinate is not necessarily a plane wave, but inside the atomic voluse it can be approximated ns a place wave. The propogation vector $\overrightarrow{\mathrm{K}}$ should be interpreted in such an approximation.

It is convenient co take a representation in which $\mathrm{H}_{\text {rad. }}$ and H_{a}. are both diagonal. Neglecting the zero-point vibration of the field the diagonal terms of our Hamiltonians in such a representation are

$$
\begin{align*}
& \left(n_{r^{a}}\left|H_{r a d}\right| n_{r^{a}}\right)=n_{r^{\prime}} n_{0} \\
& \left(n_{r^{a}}\left|H_{a .}\right| n_{k}{ }^{a}\right) w_{a} \tag{4}
\end{align*}
$$

In tiles formula n_{k} is the quantum number of the $R-t h$ mode, and W_{a} is the energy of the atom in its a-th state.

Using the matrix element formula

$$
\begin{equation*}
\left(n_{k}\left|A_{0 k}\right| n_{k}+1\right)=\left(n_{k}+1\left|A_{0}^{*}\right| n_{k}\right)=\left[x\left(n_{k}+1\right) / n_{0} \in_{0} \nabla\right]^{1 / 2} \tag{5}
\end{equation*}
$$

We have, for non-diagonal matrix elements,

$$
\begin{gather*}
\left(n_{k} a\left|H_{\text {int }}\right| n_{k}+1 b\right)=-1(e / 2 k)(\vec{e} x \vec{K}) \cdot(a|I+\overrightarrow{2}| b) \\
x\left[\forall\left(n_{k}+1\right) / 20_{k} \in G_{0} \nabla\right]^{1 / 2} G_{k}^{\prime} \tag{6}\\
\left(n_{x} a\left|H_{\text {int }}\right| n_{k}+10\right)=1 / \omega_{n c}\left(a\left|\vec{a} \cdot \vec{M}_{e}\right| c\right) \\
x\left[x\left(n_{k}+1\right) / 2 \omega_{k} \in_{0} \nabla\right]^{1 / 2} G_{k} \tag{7}
\end{gather*}
$$

$$
\begin{gather*}
\left(n_{k} n_{\lambda}+1 a\left|H_{i n t}\right| n_{k}+1 n_{\lambda} a\right)=-\left(2 e^{2} / 2 \mu\right)\left(k / 2\left(G_{0} \nabla\right) G_{k} G_{\lambda}\right. \\
x\left[\left(n_{k}+1\right)\left(n_{\lambda}+1\right) / \omega_{k} \omega_{\lambda}\right] 1 / 2 \tag{8}
\end{gather*}
$$

where

$$
\begin{align*}
& \omega_{a c}=\left(W_{a}-W_{c}\right) / h \tag{9}\\
& \vec{H}_{c}=\sum_{i} \vec{r}_{i} \tag{10}
\end{align*}
$$

G and G^{\prime} are electric and magnetic field amplitude, and \vec{e} is the unit vector parallel to \vec{A}_{0}, or the polarization vector. Atanic state c is different from a and b but a and b can be the same. Note that A^{2} term has diagonel matrix elements, as iell as non-diagonal matrix elements (8).

EIGEN VALUES AND TRASITICN PRCBABILITY

It is very difficult to obtain eigen velues of the hamiltonian matrix we obtained above, but sodroximate results can be obtained by using the perturbation method. We are particularly interested in a derenerate case where

$$
\begin{equation*}
\omega_{r}+\omega_{\beta a}=2 \Delta / K \tag{11}
\end{equation*}
$$

is very small compared to co itself. In such a case we take

$$
\begin{equation*}
\xi(n \alpha)+\eta(n+1 \beta) \tag{12}
\end{equation*}
$$

as the zeroth approdmetion for the eicen function. In this formana ξ and η are the numerical coefficients and n is the quantum number for the K-th mode, or n is the abreviation for our previous n. Solving 2×2 sub metrix formed by $\mid n a)$ and $\mid n+1$ b) states given by (4) and (6) we have

$$
\begin{align*}
& E_{n, a, \beta, \pm} E(n+1 / 2) k+1 / 2\left(W_{\alpha}+W_{\beta}\right) \\
& \pm\left[\Delta^{2}+\left|\left(n \alpha\left|H_{i n t}\right| n+1 \beta\right)\right|^{2}\right]^{1 / 2} \tag{13}
\end{align*}
$$

where ($n a\left|E_{\text {int. }}\right| n+1 \beta$) can be either (6) σ (7). We obtain

$$
\begin{align*}
& \xi_{ \pm}=\left(n a\left|H_{i n t}\right| n+1 \beta\right) / X Y_{ \pm} \sqrt{2} \tag{14}\\
& \eta_{+}=\left|\xi-\left|\eta_{-}=-\left|\xi_{+}\right|\right.\right. \tag{15}
\end{align*}
$$

where

$$
\begin{align*}
& X=\left[\Delta^{2}+\left|\left(n a\left|H_{i n t}\right| n+1 \beta\right)\right| a\right]^{1 / 4} \tag{16}\\
& Y_{ \pm}=\left[X^{2} \mp \Delta\right]^{1 / 2} \tag{17}
\end{align*}
$$

From (6) and (7) we see $\xi_{\text {, }}^{+}$and $\hat{y}_{\text {_ }}$ ate both pure imaginary.
If we set the above two approximate eifon functions as

$$
\begin{align*}
& \left.\left.\psi_{+}=\xi_{+} \ln a\right)+\eta_{+} \ln +1 \beta\right) \tag{18}\\
& \left.\left.\psi_{-}=\xi_{-} \ln a\right)+\eta_{-} \ln +1 \beta\right) \tag{19}
\end{align*}
$$

we see

$$
\begin{align*}
& \ln a)=\xi_{+} \psi_{+}+\eta_{+} \psi_{-} \tag{20}\\
& \ln +1 \beta)=i \eta_{+} \psi_{+}-\xi_{+} \psi_{-} \tag{21}
\end{align*}
$$

Singe the wave function which is $\ln a)$ at $t=0$ is

$$
\begin{equation*}
\left|\xi_{+}\right| \psi_{+} \exp \left(-1 B_{+} t / X\right)+\eta_{+} \psi_{-} \exp \left(-1 E_{-} t / K\right) \tag{22}
\end{equation*}
$$

the probability of finding state $\mid n+2 \beta$) at time t starting from state $\ln a)$ at $t=0$ is

Since

$$
\begin{equation*}
\frac{1}{\pi} \lim _{t \rightarrow \infty} \frac{1-\cos x t}{x^{2} t}=\delta(x) \tag{24}
\end{equation*}
$$

we see

$$
\begin{align*}
\lim _{t \rightarrow \infty} & S(n a \rightarrow n+1 \beta, t)= \\
= & \left(2 \pi / \beta^{a}\right)\left|\left(n a\left|H_{i n t .}\right| n+1 \beta\right)\right| a \quad \delta\left(2 x^{2} / N\right) t \tag{25}
\end{align*}
$$

If we put (16) in we have

$$
\begin{equation*}
\delta\left(2 x^{2} / K\right) \geqslant \delta(2 \Delta / K)=\delta\left(\omega_{K}+\omega_{\beta \alpha}\right) \tag{26}
\end{equation*}
$$

The ($n \alpha\left|H_{i n t}\right| n+1 \beta$) part of A will produce the natural line width if not nerlected. Since we are not interested in the meturel line width now we just neglected the matrix element of $H_{i n t .}$ in (26).

Equation (25) gives the familiar trensition probability formula and (26) gives the Bahr's expression of the resonence frequency

$$
\begin{equation*}
\omega=\omega_{\alpha \beta} \tag{27}
\end{equation*}
$$

F:EOUENGY SHIFT
The conventional results obtrined in the previous section con be improved by talding higher order approximation to cur eigen value over (13). d'he ordinary second order perturbation method cen be used for that Furpose. According to (6), (7), and (8) our state

$$
\begin{equation*}
\xi\left(n n^{\prime} \alpha\right)+\eta\left(n+1 n^{\prime} \beta\right) \tag{28}
\end{equation*}
$$

interscts with the states listed in Eable I. Calculating matrix elements we have

$$
\begin{aligned}
& E_{n, \alpha_{0} \beta, \pm}=n^{\prime} h^{\prime}+(n+1 / 2) N+1 / 2\left(W_{\alpha}+W_{\beta}\right) \pm x^{2} \\
& +\sum_{\substack{n=n_{n} n \\
\omega-\infty, \infty^{\prime}}}\left\{| \xi _ { \pm } | ^ { 2 } \sum _ { \gamma } | (\alpha | D | \gamma) | ^ { \beta } (\omega \epsilon _ { 0 } \nabla) ^ { - 1 } \left[n\left(30+\infty 0_{\alpha \gamma}+\infty_{\beta \gamma}\right)^{-1}+\right.\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.+(n+1)\left(-\omega \omega_{\alpha \gamma}+\omega_{\beta \gamma}\right)^{-1}\right]\left.\left._{+}\right|_{\xi_{ \pm}}\right|^{2} \quad\left(2 e^{2} / 2 \mu\right)\left(\lambda / 2 \epsilon_{0} \nabla \omega\right)(2 n+1) . \\
& +\left|q_{ \pm}\right|^{2} \sum_{\gamma}\left|\left(\beta|D|_{\gamma}\right)\right|^{-2}\left(\omega \in 0^{\nabla}\right)^{-1} \Gamma(n+1)\left(\omega+\omega_{a \delta}+\omega_{\beta \gamma}\right)^{-1}+ \\
& \left.\left.+(n+2)\left(-2 \omega+\omega_{a \gamma}+\omega_{\beta \gamma}\right)^{-1}\right]+\left.R_{ \pm}\right|^{2}\left(2 e^{2} / 2 \mu\right)\left(x / 2 \epsilon_{0} \nabla \omega\right)(2 n+3)\right\} \\
& -\left[\left|\xi_{ \pm}\right|^{2}|(\alpha|D| \alpha)|^{2}+\left|\eta_{ \pm}\right|^{2} \mid\left(\left.\left.\left.\beta\right|_{D}\right|_{\beta}\right|^{2}\right]\left(20^{2} \epsilon_{0} \sigma\right)^{-1}\right. \\
& -\left[2\left|\xi_{ \pm}\right|^{2}\left|\eta_{ \pm}\right|^{2}-\xi_{ \pm}\left|\xi_{ \pm}\right| \eta_{ \pm}^{*^{2}}-\xi_{ \pm}\left|\xi_{ \pm}\right| \eta_{ \pm}^{a}\right](n+1)(a|D| a)(\beta \mid d \beta)\left(\omega^{2} \epsilon_{0} \nabla\right)^{-1} \\
& \left.+\left[n+2 \mid \eta_{ \pm}\right]^{2}\right]|(\alpha|D| \beta)|^{2}\left(2 \alpha 0^{2} \epsilon_{0} \nabla\right)^{-1} \\
& \begin{array}{c}
-\left|\xi_{ \pm}\right|^{2}\left\{\left[\left(\xi_{ \pm} \eta_{ \pm}-\left|\xi_{ \pm}\right| \eta_{ \pm}\right)(\beta|D| \alpha)+\left(\xi_{ \pm} \eta_{ \pm}-\left|\xi_{ \pm}\right| \eta_{ \pm}\right)\right.\right. \\
\left(\left.\alpha D\right|_{\beta)}\right] n(n-1)^{1 / 2}
\end{array} \\
& \left.-\left[\xi_{ \pm} \eta_{ \pm}^{*}+\mid \xi_{ \pm}\right] \eta_{ \pm}\right)\left(\beta|D|_{\alpha}\right)+\left(\xi_{ \pm}^{*} \eta_{ \pm}+\left|\eta_{ \pm}\right| \eta_{ \pm}\right)(\alpha|D| \beta)(n+2) \\
& \left.(n+1)^{1 / 2}\right\} \quad\left(2 e^{2} / 2 \mu\right) \beta^{1 / 2}(20)^{-5 / 2}\left(\epsilon_{0}\right)^{-3 / 2} \\
& -\left\{\left[\dot{\xi}_{ \pm} \eta_{ \pm}^{*}(\beta|D| \alpha)+\xi_{ \pm} \eta_{ \pm}(\alpha|D| \beta)\right] n(n+1)^{1 / 2}\right. \\
& \left.+\left(\left|\xi_{ \pm}^{\prime}\right|^{2}-\mid \eta_{\underline{6}}^{2}\right)\left[\xi_{ \pm} \eta_{ \pm}^{*}(\beta|D| \alpha)-\xi_{ \pm}^{\prime} \eta_{ \pm}(\alpha|D| \beta)\right](n+2)(n+3)^{1 / 2}\right\} \\
& \left(z e^{2} / 2 \mu\right) h^{2 / 2}(2 \omega)^{-5 / 2}\left(\epsilon_{0} \nabla^{-\xi^{3 / 2}}\right.
\end{aligned}
$$

$$
\begin{align*}
& \left.\left\{(n+2)(n+1)^{1 / 2}(n+3)^{1 / 2}-n\left(n^{2}-1\right)^{1 / 2}\right\}\right] x \\
& x\left(2 e^{2} / 2 \mu\right)^{2}\left(k / 2 \omega^{2} \epsilon_{0}^{2} \nabla^{2}\right) \\
& +\left|\xi_{ \pm}\right|^{2}\left(2 e^{2} / 2 \mu\right)^{2}\left(x / 2 \omega \omega^{1} \in_{0}^{2} \nabla^{2}\right)\left[(n+1) n^{1}\left(-\omega+200^{1+\omega_{\beta a}}\right)^{-1}\right. \\
& \left.+n\left(n^{\prime}+1\right)\left(30-20^{\prime}+\alpha_{\beta a}^{\prime \prime}\right)^{-1}\right] \\
& +\mid \eta \pm]^{2}\left(2 e^{2} / 2 \mu\right)^{2}\left(\alpha / 2000 \epsilon_{0}^{a}\right)\left[(n+2) n^{\prime}\left(-300+2001-\sigma_{\beta a}\right)^{-1}\right. \\
& \left.+\left(n^{+1}\right)\left(n^{\prime}+1\right)\left(\omega-2 \omega^{\prime}-\omega_{\beta C}\right)^{-1}\right] \tag{29}
\end{align*}
$$

where

$$
\begin{equation*}
D=i(e / 2 \mu)\left[-(\vec{e} \times \vec{K}) \cdot(\vec{I}+\overrightarrow{2 S}) G_{m}+2\left(H_{a} \cdot \vec{e} \cdot \vec{M}_{e}-\vec{e} \cdot \vec{H}_{e} H_{a_{0}}\right) R^{-I_{G}}\right] \tag{30}
\end{equation*}
$$

According to the discussion in the previous section $E_{n, a, b,+}-E_{n, a, b,-}$ gives the resonance frequency. In calculating this quantity from (29) the following formula is useful.

$$
\begin{equation*}
\left|\xi_{+}\right|^{2}-\left|\xi_{-}\right|^{2}-\Delta x^{2}-M_{-}\left|2-M_{+}\right|= \tag{37}
\end{equation*}
$$

We see from (29) and (31)

$$
\begin{equation*}
E_{n, \alpha, \beta,+}-E_{n, \alpha, \beta,-}=2 x^{2}-2 \Omega\left(\Delta / x^{2}\right) \tag{32}
\end{equation*}
$$

where

$$
\begin{align*}
& \Omega=\sum_{n=n, n^{n}}\left\{-\sum_{\gamma}|(\alpha|D| \gamma)|^{2}\left(2 \omega \in_{0} \nabla\right)^{-1}\left[n\left(3 \omega+\omega_{\alpha \gamma}+\omega_{\beta \gamma}\right)^{-1}+\right.\right. \\
& \left.+(n+1)\left(-\omega^{+} \omega_{\alpha \gamma}+\omega_{\beta \gamma}\right)^{-1}\right] \\
& +\left.\sum_{\gamma} k(\beta|D| \gamma)\right|^{2}\left(2 \omega \epsilon_{0} \nabla\right)^{-1}\left[(n+1)\left(\omega+\omega_{\alpha \gamma}+\omega_{\beta \gamma}\right)^{-1}+\right. \\
& \left.\left.(n+2)\left(-3 \omega+\omega_{a \gamma}+\omega_{\beta \gamma}\right)^{-I}\right]+\left(z e^{2} / 2 \mu\right)\left(W / 2 \in_{0} \nabla \omega\right)\right\} \\
& +\left[|(\alpha|D| \alpha)|^{2}-|(\beta|D| \beta)|^{2}+|(\alpha|D| \beta)|^{2}\right]\left(1 \alpha_{0}^{2} \epsilon_{0} \nabla\right)^{-1} \\
& \begin{array}{l}
-\left|\left(\alpha|D|_{\beta}\right)\right|^{2}\left[(n+2)(n+1)^{1 / 2}-n(n-1)^{1 / 2}\right] x^{-2}\left(2 e^{2} / \beta \mu\right) x^{1 / 2} \\
x(2 \omega)^{-5 / 2}\left(\epsilon_{0} \nabla\right)^{-3 / 2}
\end{array} \\
& \text { - }\left(20^{2} / 2 \mu\right)^{a}\left(k / 20^{3} \epsilon_{0}^{2} \nabla^{2}\right) \\
& -\left(2 e^{2} / 2 \mu\right)^{2}\left(k / 2 \omega \omega^{\prime} \in \in_{0}^{2} V^{2}\right)\left[(n+1) n^{\prime}\left(-\omega+20^{1}+\omega_{\beta a}\right)^{-1}\right. \\
& +n\left(n^{\prime}+1\right)\left(300-20{ }^{\prime}+\infty_{\beta a}\right)^{-1}-(n+2) n^{\prime}\left(-300+200^{\prime}-\omega_{\beta a}\right)^{-1} \\
& \left.-(n+1)\left(n^{\prime}+1\right)\left(\omega-201-\omega_{\beta \alpha}\right)^{-1}\right] \tag{33}
\end{align*}
$$

Since from (32)

$$
\begin{align*}
E_{n, \alpha, \beta,+}-E_{n, \alpha, \beta,-} & =2\left(x^{4}-\Omega \Delta\right) x^{-2} \\
& =2(\Delta+\Omega / 2)^{2} / \Delta \tag{34}
\end{align*}
$$

if (na $\left|H_{\text {int. }}\right| n+1 \beta$) and Ω^{2} are both negligible. The resonance condition is thus

$$
\begin{equation*}
\omega=\omega_{a \beta}+\Omega N \tag{35}
\end{equation*}
$$

that means Ω / A is the first order correction to the resonance frequency.
Since n and n^{\prime} are large numbers we can neglect 1 or 2 compared to them. We see in (33) that Ω contains terms with different powers in n and n^{\prime}. Neglecting small terms we can write

$$
\begin{aligned}
& \Omega \equiv+n\left\{-\sum_{\gamma}(\alpha|D| \gamma) \mid=\left(2 \omega \mathcal{f}_{0} \nabla\right)^{-1}\left[\left(3 \omega+\omega_{\alpha \gamma}+\omega_{\beta \gamma}\right)^{-1}+\left(-\alpha_{0}+\omega_{\alpha \gamma}+\omega_{\beta \gamma}\right)^{-1}\right]\right. \\
& \left.\left.+\sum_{\gamma}|\beta| D \mid \gamma\right) \mid\left(2 \omega \epsilon_{0} \nabla\right)^{-1}\left[\left(\omega+\omega_{\alpha \gamma}+\omega_{\beta \gamma}\right)^{-1}+\left(-3 \omega+\omega_{\alpha \gamma}+\omega_{\beta \gamma}\right)^{-1}\right]\right\} \\
& +n^{\prime}\left\{-\left.\sum j(a|D| \gamma)\right|^{a}\left(2 \omega^{\prime} \in_{0} \nabla\right)^{-1}\left[\left(3 \omega^{1}+\omega_{a \gamma}+\omega_{\beta \gamma}\right)^{-1}+\left(-\infty^{\prime}+\omega_{\alpha \gamma}+\omega_{\beta \gamma}\right)^{-1}\right]\right. \\
& \left.\left.+\sum_{f}|(\beta|D| \gamma)|^{2}\left(2 \omega^{\prime} \epsilon_{0} \nabla\right)^{-1}\left[\omega^{\prime}+\omega_{a \gamma}+\omega_{\beta \gamma}\right)^{-1}+\left(-3 \omega^{1}+\omega_{a \gamma}+\omega_{\beta \gamma}\right)^{-1}\right]\right\}
\end{aligned}
$$

Operator D can be either electric dipole term given in (7) ur magnetic dipole fiven in (6). Matrix elements of the electric dipole term is about 10^{6} times those of the magnetic dipole term. The selection rule, however, is such that the memetic dipole can combine almost degenerate states, but that is impossible for the electric dipole. The denominators in (35) thus can make the magnetic dipole term as important as the electric dipole term.

First examine the electric dipole term (7). Using (27) we see that the part of Ω due to the electric dipole and proportional to n is

$$
\begin{align*}
& \left.+\sum_{\gamma}\left|\left(\beta\left|\stackrel{\rightharpoonup}{\bullet} \cdot \stackrel{M}{e}_{e}\right| \gamma\right)\right|^{a} \omega_{\beta \gamma}\left[\left(\omega_{\beta}+\omega_{\beta \gamma}\right)^{-1}+\left(-\omega_{\beta} \omega_{\beta}\right)^{-1}\right]\right\} \\
& =\operatorname{nan} a_{e}^{a}\left(4 \mathcal{C}_{0} \nabla\right)^{-1}\left\{-\sum_{\gamma}\left|\left(\dot{\alpha}\left|\hat{e}^{-1} \hat{M}_{e}\right| \gamma\right)\right|^{0}\left[\left(\infty+\infty_{a \gamma}\right)^{-1}+\left(+\infty+\infty_{\alpha \gamma}\right)^{-1}\right]\right. \\
& \left.+\sum_{\gamma}\left|\left(\beta\left|+\hat{M}_{e}\right| \gamma\right)\right|^{2}\left[\left(\omega+\omega_{\beta \gamma}\right)^{-1}+\left(-\cot \omega_{\beta \gamma}\right)^{-1}\right]\right\} \\
& =\left(p_{\rho} / H \in \epsilon_{0}\right)\left[-\alpha_{e \alpha}(\infty)+a_{e \beta}(\infty)\right] \tag{36}
\end{align*}
$$

where the dispersion relation ${ }^{1}$ is used by acding zero term

$$
\begin{equation*}
+\left(2 e^{2} G_{e}^{2} / 2 \mu\right)\left(X / \in_{0} \nabla \omega\right)(n-n) \tag{37}
\end{equation*}
$$

to the first expression. In the last expression of (36) we deflned the electric theld energy density

$$
\begin{equation*}
\rho_{e}=n \nvdash \omega G_{e}^{2} \sigma \tag{38}
\end{equation*}
$$

and the polarirability of the atom $a_{e \alpha}$ and $a_{o \beta}$ in the initial and the final states, respectively. Note that for a standing wave G^{2} and ρ depend on the position. Hnce the energy density is

$$
\begin{equation*}
p_{0}=\epsilon_{0} \varepsilon^{2} / 2 \tag{39}
\end{equation*}
$$

where \mathcal{C} is the average electric field intensity of the radiation field at the position where the atom is, we see the dipole term (36) is

$$
\begin{equation*}
\Omega_{e}=a_{e \beta}(\omega) E^{2} / 2-a_{e \alpha}(\omega) E^{2} / 2 \tag{40}
\end{equation*}
$$

or the resonence frequency shift is piven by the difference of the average Stark shift of the initial and the final stete due to the radiation field itself.

The shift due to the mannetic dipole term is

$$
\begin{align*}
& \Omega_{m}=n G_{m}^{a}\left(L+\infty \epsilon_{0} \nabla\right)^{-1}\left\{\left.\frac{\sum_{\gamma}}{\gamma}(a|(\vec{e} x \vec{K}) \cdot \vec{M}| \gamma)\right|^{2}\left[\left(\omega+\omega_{\alpha \gamma}\right)^{-1}+\left(-\alpha \omega \omega_{\alpha \gamma}\right)^{-1}\right]\right. \\
& \left.\left.+\sum_{\gamma}|\beta|(\vec{e} \times \vec{K}) \cdot \vec{M}_{y} \mid \gamma\right)\left.\right|^{2}\left[\left(\cot _{\beta} \gamma\right)^{-1}+\left(-\omega_{0} \omega_{\beta \gamma}\right)^{-1}\right]\right\} \\
& \left.\Rightarrow B^{2}\left(2|X|^{2}\right)^{-1}\left\{-\sum_{\gamma} K_{\alpha}\left|(\vec{e} \times \vec{K}) \cdot \vec{M}_{m}\right| \gamma\right)\right|^{2}\left[\left(\omega+\omega_{a}\right)^{-1}+\left(-\omega+\omega_{a}\right)^{-1}\right] \\
& \left.\left.+\sum_{\gamma}|\beta|(\stackrel{\rightharpoonup}{e} x \vec{X}) \vec{X}_{m} \mid \gamma\right) \mid=\left[\left(\operatorname{cote}_{\beta \gamma}\right)^{-1}+\left(-\operatorname{cote}_{\beta \gamma}\right)^{-1}\right]\right\} \tag{41}
\end{align*}
$$

where

$$
\begin{equation*}
\vec{H}_{m}=(e / 2 \mu)(\vec{I}+\vec{w}) \tag{42}
\end{equation*}
$$

ar the magnotic dipole moment, and B is the average magnetic flux density of the radiation fleld itself. Formula (Li) can again be interpreted in turms of the ordinary second order zeaman effect.

APPIICATION TO Cs 9 kMo LINR

The eround state of the $C s$ atom is ${ }^{2} S_{1 / 2}$ and the muclear apin of $7 / 2$ split it into $F=4$ and 3 states. Fm state is higher in energy than F=3
state by about 9 kMc . Beehler, Snider and Nockler ${ }^{2}$ observed the dhange of the resonance frequency due to the field intensity. In his experiment atcmic degeneracy is removed by the static manetic field $B_{0} s 0$ that our theory is applicable. The transition $F=4 \leftrightarrow 3$ is the magnetic dipole transition.

There are two cases, namely, if the mapnetic component of the microwave is parallel or perpendicular to the externpl stotic manetic field. $l_{\text {hey }}$ are called σ and $\%$ cases, respectively. The selection rule for the mepnetic dipole transition is

$$
\begin{align*}
& \Delta M=0 \text { for } 0 \text { case } \\
& \Delta M= \pm 1 \text { for case } \tag{42}
\end{align*}
$$

Let us consider the electric dirole shift first. Since the microwave frequency is very low the polarizability to be used in formula (40) is elmost equal to that with a static field.

In Beehiar, Snider, ind Kociler's experiment the electric component of the microwave is alwfys perpendicular to the static mannetic field. Haun and Zacharias ${ }^{3}$ observod the Stark effect of ($\left.F=3, M=0\right) \leftrightarrow(F=4, M=0)$ transition presumably in the sime situation and obtained

$$
\begin{equation*}
\Delta B / h=-2.9 \times 10^{-2} \varepsilon^{2} \mathrm{cpe} \tag{43}
\end{equation*}
$$

where \mathcal{E} is the electric fleld in volts $/ \mathrm{m}$. We thus expect for $M=040$ transition

$$
\begin{align*}
\Omega_{0}(0 \leftrightarrow 0) / \mathrm{h} & =-2.9 \times 10^{-2} p_{0} / \epsilon_{0} \mathrm{cps} \\
& =-3.3 \times 10^{9} p_{0} \quad \mathrm{cps} \tag{44}
\end{align*}
$$

where p_{0} is the electric enerty denaity of the merowave fleld in joul/ x^{3}.
The theory of the Stark effect (43) is proposed by the present author ${ }^{4}$. According to that theory we expect the energy of both F=3 and Fol states to change as $\left(\Delta E_{0}+\Delta E_{2} Y^{2}\right) \mathcal{E}^{2}$ with different constants due to the external electric fleld. 'has the electric onift of the π - tram-
(: sitions is expected to be piven by

$$
\begin{equation*}
\Omega_{e}(M+M) / \mathrm{h}=\left(-3.3 \times 10^{9}+D_{i}^{\prime \cdot} i^{2}\right) p_{e} c p s \tag{45}
\end{equation*}
$$

and that of the σ-transition must be

$$
\begin{equation*}
\Omega_{e}(F=3, M \leftrightarrow F+4, M+1) / h=\left(-3.3 \times 10^{9}+C+2 C M+D M^{2}\right) p_{e} \operatorname{cps} \tag{46}
\end{equation*}
$$

where C and D are constants.
As for the manetic dipole shift we see that it is negligible in the σ transitions, since in the experiment such a transition is induced with microwaves whose B component is completely parallel to the external static magnetic field.

$$
\begin{equation*}
\Omega_{m}(M \nleftarrow M)=0 \tag{47}
\end{equation*}
$$

In the r-type transition, on the other band, we have the selection rule $\Delta M= \pm 1$, which makes the marnetic dipole term impcrant in the frequency shift $\Omega 2$. If the microwave is linearly polarized, as in the present cases, the transition $(F=3 M) \leftrightarrow(F=4, M+1)$, for examnle, is perturbed by $(F=3, M) \leftrightarrow(F=4 . M-1)$ very strongly since $\left|-w^{+} \omega_{a}\right|$ is equal to the separation of $(F=4, K+1)$ level and ($F=4, M-1$) level which is very small compared to ω. Cther transitions $(F=3, M) \nVdash(F=3, M+1)$, $(F=4, M+1) N(F=4, M)$, and $(F=4, M+1) H(F=4, M+2)$ also contribute to Ω to some, but to a much smaller extent. If the static magnetic field is \mathbf{B}_{0} the additional energ of $F=4$ and 3 states is

$$
\begin{equation*}
-B_{0}(e x / \mu) M / 8 \quad \text { for } F=3 \tag{48}
\end{equation*}
$$

$$
\begin{equation*}
B_{0}(0 K / K) M / 8 \quad \text { for } F=4 \tag{49}
\end{equation*}
$$

First consider $(\mathbf{I}=3, \mathrm{M}) \leftrightarrow(\mathrm{P}=\mathrm{L}, \mathrm{M}+\mathrm{H})$ transition. The frequency of thr transition is
$\omega_{0}+B_{0}(e / / 8 / \mu)(2 N+1)$ in the zeroth approximation.

The Shift due to $(F=3, M) \leftrightarrow(F=4, M-1)$ is, from (4)

Fig. 1. Transitions Perturbing on ($\mathrm{F}=3, \mathrm{M}=\mathrm{F}=$) ($\mathrm{F}=4, \mathrm{M}_{0}-\mathrm{I}$) Prequency.

$$
\begin{equation*}
\left(G_{m}^{2} n \omega \mu_{0} / 256 \nabla\right)(4-M)(5-N)(e M / \mu)^{2}\left[\left(4 \mu / B_{0} e\right)-\left(20_{0}\right)^{-1}\right] \tag{50}
\end{equation*}
$$

while that due to $(\mathrm{F}=3, \mathrm{~N}+2) \mathrm{A} \boldsymbol{\lambda}(\mathrm{F}=4, \mathrm{M}+\mathrm{I})$ is

$$
\begin{equation*}
\left.-\left(G_{m}^{2} n \omega \beta_{0} / 256 \nabla\right)(2-11)(3-M)(e) / / \mu\right)^{2}\left[\left(2 \omega_{0}\right)^{-1}+\left(4 \mu / B_{0} e\right)\right] \tag{51}
\end{equation*}
$$

Neglecting $\left(2 \omega_{0}\right)^{-1}$ terms we have

$$
\begin{align*}
\Omega_{m} h & \left.=G_{m}^{n} n\right)\left(\omega \mu_{0}(0) / 64 \nabla h B_{0} \mu\right)[(4-M)(5-M)-(2-N)(3-N)] \\
& =1100\left(p_{m} / B_{0}\right)(7-2 M) \mathrm{cps} \tag{52}
\end{align*}
$$

where ρ_{m} is the mapnetic field enerey density, and ρ_{m} and B_{0} are in the mks unit.

The same consideration gives the following form la for the mernetic shift of $(F=3, M) \leftrightarrow(F=4, M-1)$ transition.

$$
\begin{equation*}
\Omega_{m} / h=-1100\left(\rho / B_{0}\right)\left(7+2 \alpha_{i}\right) \tag{53}
\end{equation*}
$$

COMPAIISCN .ITH EXPRIIUERT
In Beehler, Snider, and liockler's experiment input power was measured, but the enerey densities ρ_{e} and ρ_{m} in the cavity were not. We believe, however, that the input power is proportional to ρ_{e} and ρ_{m}. Since the cavity has Q of about 5000, we estimate that input power of 1 mere responds to ρ of about 10^{-9} joules $/ \mathrm{m}^{3}$. This estimation. however, can be wrong by a fretor of 100.

Transitions 80 far observed are listed in Table II. Since thag did not observe any shift in $M=0 \leftrightarrow 0$ transition it means $-1.64 \times 10^{9} p_{e}$ cps is negligible in the observed range of input power up to about 10 me.

I'heoretical curves are compared with experimentol data with the following choice of paramaters

$$
\begin{array}{lll}
\text { Dp }_{\mathrm{e}} / \text { inp. } & =+1.9 & \mathrm{cps} / \mathrm{mm} \\
\text { Cpolinp. } & =-3.2 \tag{55}
\end{array}
$$

$$
\begin{equation*}
4 \times 10^{8} \rho_{\mathrm{m}} / \text { inp }=4.7 \quad \mathrm{cps} / \mathrm{ma} \tag{56}
\end{equation*}
$$

where inp. is the input power in wiw. Equation (56) shows that

$$
\begin{equation*}
\rho_{m}=1.2 \times 10^{-8} \text { joules } / \mathrm{m}^{3} \tag{57}
\end{equation*}
$$

at 1 msinput, while from $M=0 \leftrightarrow 0$ transition we see

$$
\begin{equation*}
p_{e}<10^{-10} \text { joules } / \mathrm{m}^{3} \tag{58}
\end{equation*}
$$

at 1 miv input. These values are reasonable. A rensonable agreement is shown in the medium power range lucant in one case. In the lowest power region the experimentil inaccuracy is supposed to be large. In the higher input region the experiment shows large deviation from linear behavior. The reason is not known yet.

A complete disapreement is scen in $\mathrm{F}=4, \mathrm{Ij}=-2 \longleftrightarrow \mathrm{~F}=3$, $\mathrm{H}=-3$ case.

NOTES

1. For example, A. I. Akhiezer and V. B. Berestetsky, "Quantum Electrodynamics, AEC-tr.-2876, p. 360
2. Beehler, Snider, and $\mathrm{H}_{\mathrm{c}} \mathrm{ck}$ ler, private commanication
3. R. D. Hrun, Jr. and J. R. Zacharias, Fhys, Rev. 107, 107 (1957).
4. M. Mizushima, to be published.

T:SLE I.
STRMES JMTENCTT:G EITH

$\xi\left(n n^{\prime} \alpha\right)+\eta\left(n+2 n^{\prime} \beta\right)$			
STATES	ENMEGY DITHTRETMCE	Haitrii CIEIETHS CTVE: BI	
$\begin{aligned} & \ln -1 \gamma) \\ & \ln \gamma) \end{aligned}$	$(M / 2)\left(3 \omega+\omega_{\alpha} \gamma+\omega_{\beta} \gamma\right)$ $(X / 2)\left(\omega+\omega_{\alpha}{ }^{+}+\omega_{\beta} \gamma\right)$	$\begin{aligned} & 8_{j}^{*}\left(n a\left\|H_{1 n t}\right\| n-1 J\right) \\ & \eta^{*}\left(n+1 \beta\left\|H_{1 n t}\right\|^{n}\right) \end{aligned}$	
$\begin{aligned} & (n+1 \gamma) \\ & (n+2 \gamma) \end{aligned}$	$(1 / 2)\left(-\omega^{+\omega_{\alpha}} \chi^{+\omega_{\beta} \gamma}\right)$ $(\alpha / 2)\left(-3 \omega^{+} \omega_{\alpha \gamma}{ }^{+\omega_{\beta} \gamma}\right)$	$\xi^{*}\left(n \alpha\left\|H_{1 n t}\right\| n+1 \gamma\right)$ $h^{*}\left(n+1 \beta\left\|H_{1 n t}\right\| n+2 \gamma\right)$	
		$\xi \cdot\left(n a\left\|H_{i n t}\right\|^{n-1 \beta}\right)$	
今 $\mid n-2 \alpha)+1(n-1 \beta)$		$\begin{aligned} & +\left.\right\|^{2}\left(n \alpha\left\|H_{i n t}\right\|^{n-2 \alpha}\right) \\ & +F^{2}\left(n+1 \beta\left\|H_{i n t} .\right\|^{n-1 \beta}\right) \end{aligned}$	
	2) 0	$-\xi\|\hat{\beta}\|\left(n \alpha\left\|H_{i, 0 t}\right\| n-1 \beta\right)$	
$\eta \mid n-2 \alpha)-(\xi \mid n-1 \beta)$		$\begin{aligned} & +\xi^{*} \eta_{n \alpha}\left\|H_{i \alpha t}\right\|^{n-2 \alpha)} \\ & \left.-\left.Y^{\circ}\left\|\xi K_{n+1 \beta}\right\| H_{i n t}\right\|^{n-1 \beta}\right) \end{aligned}$	
$y(n-1 a)+\eta(n \beta)$		$\begin{aligned} & F_{j}=\left(n \alpha\left\|H_{i n t}\right\| n-1 \alpha\right) \\ & +\mid \\|^{2}\left(n+1 \beta\left\|H_{i n t}\right\| n \beta\right) \end{aligned}$	
$\eta(n-1 \alpha)-13(n \beta)$	\%	$\begin{aligned} & \xi=\left(n \alpha \mid H_{i n t}!n-1 \alpha\right) \\ & -H_{j} \mid M^{*}\left(n+2 \beta \mid H_{i n t} \backslash n \beta\right) \end{aligned}$	
$F(n+1 \alpha)+\eta(n+2 \beta)$		$\begin{aligned} & \|\xi\| N\left(\left.n a\right\|_{1 \alpha+} \mid n+1 \alpha\right) \\ & +\mid \\|^{2}\left(n+1 \beta\left\|H_{1 n t}\right\| n+2 \beta\right) \end{aligned}$	
$\eta \mid n+2 a)-\|j\|(n+2 \beta)$	-		
		$-\|\xi\| h^{\circ}\left(n+1 \beta\left\|H_{1 n t}\right\| n+2 \beta\right)$	
		$\text { In }\left(n+1 \beta A_{1 n t} \cdot(n+2 \alpha)\right.$	
$\xi(x+2 \alpha)+(p+38)$	-240	$\left.+1 \$ h_{\left(n a\left\|H_{i n t}\right\|\right.} \mid n+2 a\right)$	
	-		

T:BEE I. CCMIINED

TIEMETICAL SHIFTS IN cps. (p, end B_{0} are in bis unit)

T:BIE IIT.

$M(F=3)$	$M(F=4)$	B_{0}	frequency shift/ imput over(cps/ms)
0	0	-	$(\langle 1 / 50)$
1	1	-	+1.9
0	1	2.5×10^{-5}	+1.5
1	0	2.5×10^{-5}	-1.0
0	1	0.95×10^{-5}	+8.5
-2	-3	0.71×10^{-5}	-14
3	4	0.73×10^{-5}	-3.0

(

