
PROJECT PAPER - CSE223B, SPRING 2013, INSTRUCTOR: PROF. ALEX SNOEREN 1

Trusted Bridge
Hao Zhuang, Erh-Li Shen, and Jin Wang

Abstract—Nowadays, there are many online file storage
services providing convienent, accessible and giant clouds
for people’s daily usage. However, the convenience always
comes with trust issues. There are many hackers around
the world, sometimes your precious even private informa-
tion is under peeking. This kind of hackers can also be
extended to business services, e.g. data mining, machine
learning, analysis for advertisment, or internal company
employees misconducts.

In this paper, we propose a trusted interface, so-called
Trusted Bridge, which is built between user and different
clouds (backend storage servers, Dropbox). This middle
firmware creates a safe interface for storing and retrieving
files. As a bridge, it does not store file directly, but
guides the files with versatile encrypt methods to commute
different clouds (or user’s different accounts in the same
cloud) automatically. More than a bridge, it is trustable
because during this operations, the bridge partitions file
and use hash function to determine the destination and
replication strategy. The destinations are user’s existed
account within different cloud storage servers. When users
want to fetch their files, the bridge know how to provide
the tunnel with the key assigned. Because this procedures,
those untrusted third-party storage systems only have
(parts of) pieces of certain unordered files. So people can
use the such untrusted services without worrying their
privacy.

Index Terms—Untrusted Cloud File Service, Trusted
Distributed File System-Oriented Design, Utilization In-
tegration of Cloud Storages

I. INTRODUCTION

NOWADYS, there are plenty of cloud storage service
providers on the Internet, such as Dropbox, Google

Drive, Skydrive or Amazon cloud storage. Most of them
have easy-to-use user interface and support most of
desktop and mobile platforms. However, under the mask
of accessibility and reliability, we never know whether
these service providers will analyze your contents or not
even though they promised not to do so in the term of
service. Take Google Drive for example, it indexes every
file uploaded to its servers to optimize the searching

Hao Zhuang, Erh-Li Shen and Jin Wang are with the Department
of Computer Science and Engineering, University of California, San
Diego

Hao Zhuang (email: hazhuang@ucsd.edu). Erh-Li Shen (email:
eshen@ucsd.edu) Jin Wang(email: jiw112@ucsd.edu)

efficiency. Even for those image files they could do OCR
to filter out the important text content inside, and that is
how Evernote works for the image in notes.

One of the most popular method in data mining is us-
ing term frequencyinverse document frequency product
(TF-IDF)[1], which reflects the importance of a word in
a document. By computing TF-IDFs for each file, the
system could easily do data anaylsis for all the files that
belong to specific users and learn what they like, what
they working at, or anything personal.

We need a service that could take advantage from
the convenience of cloud storage without loosing our
privacy. Our approach is striping each single file into
several fragments using a hashing algorithm with user-
specified key and store those striped files in different
cloud storage. Scattering the file could dramatically
destroy the reliability of TF-IDFs since the weight in
each fragment file could not efficiently reflect the whole
content. What the cloud servers could see are encrypted
file names and re-ordered file fragments.

II. FRAMEWORK

The overall structure contains (1) client, (2) server, (3)
backend storages. The structure is shown in Fig. 1

1) Client: The system (distributed working servers)
provide users with uploading, downloading, deleting,
newing folders, moving data opeations. Especially for the
uploading operation usage, the user is required to set the
”black-box” key and specified the security level normal,
high, premium (higher level means more fragments a
file will be partitioned, and it would lead to more time
to process), which can be a figure or any combination of
string and digits.Besides, the user need give the system
access privilege to the external cloud storage servers
(Google Drive, SkyDrive, Dropbox, etc). System will
automatically maintain a table to record all the files’
names and indices of their corresponding partitioned
fragments.

2) Server: Server need be in charge of three re-
sponsibilies: determining how to partition the file based
on the key given by the user and carrying out the
work, communicating with clients and external cloud
stroage by transferring kinds of data, assembling the
fragments to the original file. In the server, it needs
update a dictionary to store which storage server the



2 PROJECT PAPER - CSE223B, SPRING 2013, INSTRUCTOR: PROF. ALEX SNOEREN

Fig. 1: Framework

fragment has been stored and maintains the encrypted
version of users’ table. The system still need perform a
”heart-beat” function to update this encrypted table by
communicating with users periodically.

3) External distributed server: External distrbuted
storage servers provide interface to working servers.
They are responsible for storing, replicating, backup
files.

III. SOFTWARE ARTIFACT

We build a system contains as follows,
(1) A web interface for user to upload, download files

and create folders, etc, like the functionality Dropbox
website provides. When initializing his/her account, the
user can choose the security level and integrate with
his/her third-party cloud storage platforms.

(2) A server-side distributed files system to handle
the file partitioning and assembling, using API from
Dropbox to utilize their services. When user uploads a
file, our server help partition (or encrypt if the security
level is premium) this file, and perform as a bridge
between the user and third-party cloud storage server.
When user want to fetch a file, it invokes our server-
side program to fetch the files fragment from different
storage hosts and assemble them into the original file.
The methodology is given in II. The blue parts of Fig.
2 and Fig 3 are built by us.

IV. IMPLEMENTMENTATION

A. System Architecture

Trusted Bridge provides users a convenient online
storage environment without losing their privacy. To
achieve this goal, we implement the system with the
following structure, please see Figure 2. We build all
the blocks with blue color and take advantage from lab3
key-value storage system. The Trusted Bridge server and
key-value storage server are built in sysnet clusters. The
front-end web server is portable. It could be served right
into sysnet clusters but it also could be run as a remote
service on any Apache and PHP environment. The fol-
lowing sections will describe the detail implementation
of each components.

B. Front-end Web Server

Trusted Bridge has an elegant web user interface
to provide the user with an intuitive click-and-go file
upload and download accessibility. The front-end web
service is composed of three components: HTML/CSS
for the interface template, JavaScript/jQuery for UI logic
control, and PHP for handling file upload and download
from client browsers. Figure 3 shows the architecture of
the front-end web server.

We use Twitter Bootstrap to rapidly build the web user
interface. Bootstrap contains HTML and CSS-based de-
sign templates for typography, forms, buttons, navigation
and other interface components, as well as some useful
JavaScript extensions. The HTML/CSS contents will be
automatically updated to reflect the current system status



ZHUANG, SHEN, WANG : TRUSTED BRIDGE 3

Fig. 2: Trusted Bridge architecture

Fig. 3: Front-end web server architecture.

including the error message from Trusted Bridge server,
the change of file list, upload and download progress,
and etc.

With the help of jQuery, we could easily modify the
HTML/CSS DOM objects dynamically. The UI event
will trigger callback functions written in jQuery and do
the related action. All the requests will be forwarded to a
PHP program, which could arbitrarily access files on web
server with appropriate permissions. The PHP program
will talk to Trusted Bridge server through Apache Thrift
protocol.

For example, when the user click on ”Add File” but-
ton, a file selector will pop out. After the file selection by
the user, the file upload event in jQuery will be triggered
and send the selected file from user’s local storage to web
server temporary folder. The PHP program will handle
the upload request and send the file location to Trusted
Bridge server. After the file partitioning and uploading
to external cloud storage, Trusted Bridge server will
response a OK message. The PHP program will just

pass this response to front-end JavaScript with JSON
format. When the front-end get the response, it will call
GetFileList to get the latest file list in the system.

For downloading files, when the user click on the
download button right next to the file name, jQuery
will send a HTTP request to PHP server to ask for
download action. The PHP program then forward the
request to Trusted Bridge server through Thrift. After
the file assembling task is finished, a downloadable intact
will be saved in web server temporary folder. The front-
end jQuery will check whether the file is ready or not
every five seconds with the help of PHP server. Once
the file is ready, the requested file will be automatically
downloaded into user’s local disk.

C. File Partition and Assembling

File Partitioning is the key point of this system and it
inclues two main problems: first one is how to partition
the file and the other one is how fine-grained the file
need to be partitioned. For the first one, when a file



4 PROJECT PAPER - CSE223B, SPRING 2013, INSTRUCTOR: PROF. ALEX SNOEREN

is uploaded to our server, we need to dispatch the file
to different cloud storages. Our strategy is to read the
file and truncate content on the fly, so that the large
files do not occupy the large chunk of memory. For
implementation, we also use JSON in Boost to control
hierachical key value format, e.g. the order of segments
for a file, the mapping from file to segments and different
cloud services. First, the process get the parameter vector
to specify how many segments for this file, and what the
sizes are respectively. During the processs of spliting, it
also invokes GetSegmentName() to get a encrypted name
for such segement, which appear in the cloud storage.
Others cannot judge the file by name. The method of
GetSegmentName() is demonstrated in Sec. IV-D. The
pseudo code is shown in Fig. 4.

For the merge of segments from different clouds, we
fetch them from their repositories at first, Following
the records from our key value storage, assemble them
together accordingly.

D. Segment Naming, and Ordering

As each file can be partitioned into 32 segments or
more, to make segment name unique comes to be a
problem. Because we do not want any file to be over-
written. The other question is to maintain the generating
ordering of segments, which is used to assemble the
file. Any small mistake here will results in failing in
recovering the original file. For the first question, two
conditions shall meet: first one is segment name shall
be unique, sencond is that the name shall be random.
SHA2-256 provide sufficient functionality that different
input always gives out different hash value, which can
satisfy our first condition. For the second one, we at the
beginning adopt the method to give a random number
among a pretty large range. After several experiments on
random number generating, due to the bad distributuion
of random number, some number will be generated the
same in the second time. Then we change the strategy to
take the system CPU counter as the input that always is
unique as the seed of hash function. In this way, we first
get the system CPU counter and get the corresponding
unique hash value, later this will act as the name of
segment.

Segment Ordering provides the mapping structure
when assembling the file. This requires a stable data
structure or some other kinds of format maintaing the
segment generating order. Each time we get a new
segment, a new item as talked above is enqueued to the
uploading task queue with counter for this queue. As
soon as the item successfully gets into it, a key−value
pair <segment name, counter> (segment with counter i

means it is the i-th part of the file). Till finish partitioning
file into segments, we collect all of these pairs as json
array into the json object whose key is the name of the
file. When trusted bridege server want resemble file, it
is straigtforwatd to get the order of segment by parsing
the json object by given the file name.

E. Key-Value strucutures

To provide more convenient service for trusted bridge
server, we design the following key value pairs. The
first kind <username clouds, token array for the cloud
storage> is used to record user’s tokens for different
cloud storage access. The second kind <username files
, filename lists> record the list of filenames the user
has uploaded. The key for the third one is username
plus filename, the value corresponding to it is the list
of segment name. The fifth pair’s key is username plus
segment name, the value is the place of the cloud who
has this segment. The last kind is the pair username and
the key it specified when registraing a new user.

V. EVALUATIONS

A. Measurement Method

To get more accurate performance measurement re-
sult, we design the experiment very carefully. First, we
assume that Dropbox API will compare user data with
what the already had in the cloud before the API actually
upload the file. It is reasonable for them to do so to avoid
massive redundant uploading bandwidth. However, for
our measurement, this is not a good property because
the upload speed will be much faster than it should
be after the first upload action. To avoid this kind of
situation, we generate a new random file with a random
file name from system random source /dev/urandom
each time before we upload it. Since each time both
the file name and the content is different, the Dropbox
API has no chance to compare the data before upload.
Then we can measure the actual time consuming during
upload/download progress.

Second, as the suggestion from Professor Alex C.
Snoeren, we also scramble the order of uploading and
downloading tasks. Sequential uploading or downloading
files with the same file size could not ignore the fact that
the network between sysnet clusters and Dropbox is not
always stable. The file-transfer-speed statistics collected
could be affected by the current network condition. We
generate a random test order for different file size to
avoid this problem. In the following evaluation, we run
each test at least 100 times and get the average data from
the results.



ZHUANG, SHEN, WANG : TRUSTED BRIDGE 5

fp = fopen(file, "rb"):
for (int it = 0 ; it < chunk_size_array.size ; it++){
buffer = malloc(chunk_size_array[it]);
file_name = GetSegmentName(user_key)
// treating every file as binary
segment_file = fopen(file_name, "wb")
fwrite(buffer,1,current , segment_file);
fclose(segment_file);
free(buffer);
// use hierachical Key Value pair by JSON
// It provide a file contains what segments,
// their order, and position.
// Simplify the process by register_to_key_value() as follows
register_to_key_value(user, cloudID, file , segment_order , segment_name);

}

Fig. 4: Pesudo Code of File Spliting

key Value
---------------------------------------------------
${username}_clouds (JSON) clouds
${username}_files list<filename>
${username}_${filename} list<segment_name>
${username}_${segment_name} cloud_id
${username}_key any string
---------------------------------------------------

Fig. 5: Key-Value Storage Format

early_cloud {
"clouds":[
{"id":0, "type":"dropbox", "token1":"12345", "token2":"67890" },
{"id":1, "type":"dropbox", "token1":"12345", "token2":"67890"},
{"id":2, "type":"google" , "token1":"12345", "token2":"67890"}
]
}
early_files list<"file1.avi","file2.txt","file3.jpg"...>
early_file1.avi list<"seg1.seg","seg2.seg","seg3.seg"...>
early_file2.txt list<"seg1.seg","seg2.seg","seg3.seg"...>
early_seg1.seg 0
early_seg2.seg 1
early_seg3.seg 2

Fig. 6: Example of Our Key Value Pair

Third, we run the test with different Dropbox accounts
and different sysnet cluster machines. Keep running a
script that uploads and downloads small files continu-
ously maybe will soon be noticed by Dropbox servers.
To avoid the possible limitation on file-transfer-speed by
the service providers, we switch the account randomly
and test the script on different machines with different
IP address.

B. Dropbox Overhead and Performance

We first found that the Dropbox Java API has a huge
overhead on each uploading and downloading operation.
This overhead dramatically slows down the performance
of Trusted Bridge. We do not have enough time to
implement the API by pure HTTP requests, so we decide
to test the Dropbox API overhead and assume that we
could minimize this overhead in the future with better
implementation. The method to estimate the overhead
is to generate a empty file by linux touch command.
The file will be created with 0 Byte disk occupation



6 PROJECT PAPER - CSE223B, SPRING 2013, INSTRUCTOR: PROF. ALEX SNOEREN

and online contains metadata information. The average
upload time for one single upload task with one empty
file is 3.45 seconds. The average download time for the
same file just uploaded is 3.12 second.

To test the general performance of Dropbox uploading
and downloading performance, we generate a series of
random files with size 1Byte, 1KB, ad 1MB to 128MB.
The result is shown in Figure 7. All the statistics are
in Mbps unit. Averagely the download speed is a little
faster than upload speed. The difference is about 3Mbps,
which is not so significant. The interesting fact here is the
performance is very bad when uploading or downloading
small files. The speed is converged at about file size 4M
to 8M. According to this phenomenon, we believe that
Dropbox API will do file upload and download in chunk.
The chunk size should be around 4M to 8M.

Fig. 7: Dropbox upload and download performance

C. Trusted Bridge Performance

Figure 8 shows the upload speed comparison between
Dropbox and Trusted Bridge server. The performance of
Trusted Bridge on uploading small files are significantly
worse than using pure Dropbox API. Figure 9 shows
the download speed comparison. Very similar pattern
is showed in the graph as uploading test. The best
performance lose is 9.57% with the file size 128M. The
worst performance lose for uploading, however, is 97%
with file size smaller than 4M. The best performance lose
is 8.62% with the file size 128M. The worst performance
lose for uploading, however, is 96% with file size smaller
than 4M.

The main reason of the performance degradation is
that we separate each uploaded files into 32 pieces
and upload them through Dropbox API one by one.
The Dropbox API overhead will dramatically affect on
our system performance. We believe we could find a
better way to handle external cloud storage, so here we
assume that we could remove the effect of the Dropbox

uploading and downloading overhead. Because each file
needs 32 upload or download task, we compare the
speed performance between Trusted Bridge and Dropbox
uploading or downloading the same actual file size. For
example, uploading 128M file to Trusted Bridge server
compare to uploading 4M file to Dropbox. The result is
shown in Figure 10 and Figure 11. In this comparison,
we could found that Trusted Bridge server only lose
averagely 8.2% on uploading and 9.7% on download-
ing speed. This result shows the overall partitioning
and assembling performance do not degrade the system
performance too much. With our robust file scrambling
algorithm, the user could save their files in their own
cloud storage without losing the privacy. What he or she
scarifies is just about 8 to 10 percent performance lose,
which could hardly be noticed especially when user run
our service in background like how current Dropbox or
Google Drive works.

Fig. 8: Upload speed comparison

Fig. 9: Download speed comparison

VI. DISCUSSION AND FUTURE WORK

A. Upload Task Queue
As each file would be partitioned into 32 or more

segments and then they shall be pushed to external kinds



ZHUANG, SHEN, WANG : TRUSTED BRIDGE 7

Fig. 10: Calibrated upload speed comparison. The file
size here is the size uploaded to Trusted BRidge server

Fig. 11: Calibrated download speed comparison. The
file size here is the size downloaded from Trusted

BRidge server

of cloud storage servers, we take this way to loosely
separate these two kinds of work. The main thread of
trusted bridege server still take the responsibility for
generating the segments. The reason why we just use one
thread here is to decrease the possibility of erronously
partitioning the file. Consider that several threads are
working for generating new segments, shared lock for
the file need be maintained for synchronizing reading
the file. This will lead to a high overhead. What’s worse
is when a thread crashed, the segment it’s responsible
for will be abnorammly generated or some other kinds
of errors may happen. If so, it will violates the most
imporant part for trusted bridge server, what is to store
complete information about the file and related segments.
While, the independent segments generated by trusted
bridege server can be severd with sveral threads. When
initializing the trusted bridge server, there threads are
created for dealing with the segment uploading task.

A onewriterrmorereader task uploading queue will be
created as the working pool for trusted bridge server.
This queue maintains one mutex and one condition
variiable for threads sharing. When going into ”enque”
opeartion, the thread need first acquire the mutex for this
queue, if it’s permitted, one new entry that contains the
pair ¡username, segment name, cloud id to store current
segment¿ is pushed back to the queue, meanwhile,
n̈otifytoonef̈or the condition variable is called to wake
the thread waiting for new segment. If this queue is full,
resize opeartion will be invoked. For ”deque” operation,
the mutex still need be checked firstly. Simiarly, it gets
the access if allowed and then check segment ready for
being uploaded. If there exists one, the item records the
uploading specification will be removed from the queue
and be transfereed to uploadToServer function.

B. Fault-Tolerance Scheme

Two big issues here need be more focused. One is that
we cannot lose anything about the mapping strucuture
between file and related segments. We solve this by using
a replicated key value distributed storage server. As one
trusted bridge server just talks to one key value storage
server one moment in time, the replicated storage server
will help syncrhonize writing key value pair by commu-
nicating with each other in order to prevent some storage
server crashing. This method will enormously get the risk
out. The second one is to keep data consistent during the
period of generating the segment. For example, server
may fail in trasmitting segments to the cloud. To fix this,
a thrad can be used to monitor and periodically check
whether the segment has been put on the external cloud
storage. If it has been there, the server begin to update the
item to array in the mapping structure for this segment.
If it is not, the trustd bridge server shall resend current
current segment. When learning that all the segments for
one file have been pushed to the cloud, the json object
describing one file with corresponding segments will
be put into the key value storage server. The user will
not get the information that the file has been uploaded
successfully till we get the commit acknowledgement
from the key value storage server.

C. Text Mining

Text mining methods, there is no major increased
computational complexity when analyzing many short
documents, compared to the same number of words
in fewer documents.A much more important issue is
whether individual documents are well-defined in a
meaningful way. Most text mining methods work best
on documents whose length is a paragraph to a page.



8 PROJECT PAPER - CSE223B, SPRING 2013, INSTRUCTOR: PROF. ALEX SNOEREN

Too short documents like tweets cannot be understood
well without context. Too long documents like books
lack homogeneity and need to be divided into segments.
The more segments the file is divided, the more diffculty
will put on the analyzers. Take the TF(term frequency)-
IDF(Inverted Document Frequency) algorithm to weight
the keywords for a file as an example. The partitioning
will change the term frequency for keywords, which
will definitely change each keyword’s weight. Besides,
as we distributed segments to different servers, the IDF
value would still change. Because these two values are
changing together, it will direct user the wrong way
analyzing the file, which is the target trusted bridge
server want serve.

D. Programming Language Integration

In this implementation, we totally use at least four
different programming language including HTML/CSS/-
JavaScript, PHP, C/C++, and Java. That was because we
first write our Trusted Bridge server in C/C++ as an
extension of lab3 key-value storage system. C/C++ is
powerful and efficient, but it lacks cloud storage API
support and HTTP request handler. The difference of
programing environment slows down the development
progress and the system could not take advantage from
compiler level memory and CPU optimization. If we
have the opportunity to redesign this system, we would
like to rewrite Trusted Bridge server in Java, and the
dynamic web server in JavaServer Pages (JSP). In this
case, Trusted Bridge could be integrated with Dropbox
or Google Drive API in JAVA much more closely. The
front-end server also could talk to Java Servelet directly
without the Thrift protocol overhead. The new system
could be implemented with HTML/CSS/JavaScript, JSP,
and Java, which is much more easy to maintain and much
more efficient.

VII. CONCLUSION

In this project, we derive our own idea and build
a trustful file system Trusted Bridge, which utlizes
unstrustful popular cloud storages, e.g. Dropbox.The
approach is to partition the files, encrypt, and then send
them into different cloud systems. For a single file, we do
not save it, and the cloud storages only contains a certain
part of file segments. In this project, we use C/C++
to handle the backend design and use wrap interface
to invoke Jave, Python for API from Dropbox, Google
Drive. The PHP is used to handle the HTTP requests.
Experiement shows that after removing the Dropbox API
overhead, the user could save their files in their own
cloud storage without losing the privacy. What he or

she scarifies is just about 8% to 10% performance lose,
which could hardly be noticed especially when user run
our service in background like how current Dropbox or
Google Drive works.

REFERENCES

[1] Term FrequencyInverse Document Frequency (TF-IDF). http:
//en.wikipedia.org/wiki/Tf-idf.

VIII. APPENDIX

In the appendix, we provide a snapshot of the code
to further utilize multi-thread environment and speedup
backend for handling the file uploading and download-
ing. There are Locking Queue and corresponding Pthread
programming, which are discussed in IV-D .

A. Locking Queue

The locking queue class for future usage.

template <typename Data>
class oncurrent_Queue{
private:

queue<Data> _queue;
mutable boost::mutex _mutex;
boost::condition_variable _cvariable;

public:
void enque(Data const& data){

boost::mutex::scoped_lock lock(_mutex);
_queue.push(data);
lock.unlock();
_cvariable.notify_one();

}

bool empty() const{
boost::mutex::scoped_lock lock(_mutex);
return _queue.empty();

}

bool try_deque(Data& dequed_value){
boost::mutex::scoped_lock lock(_mutex);
if (_queue.empty()){

return false;
}
dequed_value = _queue.front();
_queue.pop();
return true;

}

void wait_and_deque(Data& dequed_value){
boost::mutex::scoped_lock lock(_mutex);
while(_queue.empty()) _cvariable.wait(lock)

;
dequed_value = _queue.front();
_queue.pop();

}

};

void *checkUploadQueue(void* context){



ZHUANG, SHEN, WANG : TRUSTED BRIDGE 9

int id = *(int*)thread;
while(true){

if (!uploadQueue.empty()){
string ret;
uploadQueue.try_deque(ret);

}
}

}

B. Pthread

The pthread can be utilized to listen to the upload
queue.

TrustedBridgeHandler t(storageServer,
storageServerPort);

const int NUM_UPLOAD_THREADS = 3;
pthread_t threads[NUM_UPLOAD_THREADS];;
for (int i = 0; i < NUM_UPLOAD_THREADS; ++
i){

int rc = pthread_create(&threads[i],
NULL, &TrustedBridgeHandler::
checkUploadQueue, &t);

if (rc){
exit(-1);

}
}


