Projection of Points and Lines

1. Projections - Information
2.
3. Projections of a Point - in 1st quadrant.

6: \quad Sinposle Cabieftife ianesypes.
8. Lines inclined to one plane.
9. Lines inclined to both planes.
10. Imp. Observations for solution
11. Important Diagram \& Tips.
12. Group A problems 1 to 5
13. Traces of Line (HT \& VT)
14. To locate Traces.
15. Group B problems: No. 6 to 8
16. HT-VT additional information.
17. Group B1 problems: No. 9 to 11
18. Group B1 problems: No. 9 to 1
19. Lines in profile plane
20. Group C problems: No. 12 \& 13
21. Applications of Lines:: Information
22. Group D: Application Problems: 14 to 23

72

ORTHOGRAPHIC PROJECTIONS

 OF POINTS, LINES, PLANES, AND SOLIDS.
TO DRAW PROJECTIONS OF ANY OBJECT, ONE MUST HAVE FOLLOWING INFORMATION
 A) OBJECT
 \{ WITH IT'S DESCRIPTION, WELL DEFINED.\}
 B) OBSERVER
 \{ ALWAYS OBSERVING PERPENDICULAR TO RESP. REF.PLANE\}.
 C) LOCATION OF OBJECT, \{ MEANS IT'S POSITION WITH REFFERENCE TO H.P. \& V.P.\}

TERMS ‘ABOVE’ \& ‘BELOW’ WITH RESPECTIVE TO H.P. AND TERMS 'INFRONT’ \& 'BEHIND’ WITH RESPECTIVE TO V.P
 FORM 4 QUADRANTS. OBJECTS CAN BE PLACED IN ANY ONE OF THESE 4 QUADRANTS.

IT IS INTERESTING TO LEARN THE EFFECT ON THE POSITIONS OF VIEWS (FV, TV) OF THE OBJECT WITH RESP. TO X-Y LINE, WHEN PLACED IN DIFFERENT QUADRANTS.

STUDY ILLUSTRATIONS GIVEN ON HEXT PAGES AND NOTE THE RESULTS.TO MAKE IT EASY HERE A POINT (A) IS TAKEN AS AN OBJECT. BECAUSE IT'S ALL VIEWS ARE JUST POINTS.

NOTATIONS

FOLLOWING NOTATIONS SHOULD BE FOLLOWED WHILE NAMEING DIFFERENT VIEWS IN ORTHOGRAPHIC PROJECTIONS.

OBJECT	POINT A	LINE AB
IT'S TOP VIEW	\mathbf{a}	$\mathbf{a b}$
IT'S FRONT VIEW	a'	a' b'
IT'S SIDE VIEW	a"	a" b"

THIS QUADRANT PATTERN,
IF OBSERVED ALONG X-Y LINE (IN RED ARROW DIRECTION) WILL EXACTLY APPEAR AS SHOWN ON RIGHT SIDE AND HENCE, IT IS FURTHER USED TO UNDERSTAND ILLUSTRATION PROPERLLY.

Point A is Placed In different quadrants and it's Fv \& Tv are brought in same plane for Observer to see clearly.
Fv is visible as it is a view on VP. But as Tv is is a view on Hp , it is rotated downward 90°, In clockwise direction. The In front part of Hp comes below xy line and the part behind Vp comes above.

Observe and note the process.

POINT A IN

PROJECTIONS OF A POINT IN FIRST QUADRANT.

POINT A ABOVE HP \& INFRONT OF VP

POINT A IN HP \& INFRONT OF VP

PROJECTIONS OF STRAIGHT LINES.

INFORMATION REGARDING A LINE means IT'S LENGTH, POSITION OF IT'S ENDS WITH HP \& VP IT'S INCLINATIONS WITH HP \& VP WILL BE GIVEN. AIM:- TO DRAW IT'S PROJECTIONS - MEANS FV \& TV.

SIMPLE CASES OF THE LINE

1. A VERTICAL LINE (LINE PERPENDICULAR TO HP \& // TO VP)
2. LINE PARALLEL TO BOTH HP \& VP.
3. LINE INCLINED TO HP \& PARALLEL TO VP.
4. LINE INCLINED TO VP \& PARALLEL TO HP.
5. LINE INCLINED TO BOTH HP \& VP.

STUDY ILLUSTRATIONS GIVEN ON NEXT PAGE SHOWING CLEARLY THE NATURE OF FV \& TV OF LINES LISTED ABOVE AND NOTE RESULTS.

图|lব|||l|

Orthographic Projections Means Fv \& Tv of Line AB are shown below, with their apparent Inclinations $\alpha \& \beta$

Here TV (ab) is not // to XY line Hence it's corresponding FV a' b' is not showing True Length \&
True Inclination with Hp.

Note the procedure
When Fv \& Tv known,
How to find True Length. (Views are rotated to determine True Length \& it's inclinations with Hp \& Vp).

In this sketch, TV is rotated and made // to XY line.
Hence it's corresponding FV a'b ${ }_{1}$ 'ls showing True Length \&
True Inclination with Hp.

Note the procedure
When True Length is known, How to locate Fv \& Tv. (Component a-1 of TL is drawn which is further rotated to determine Fv)

Here $a-1$ is component of TL $a b_{1}$ gives length of Fv. Hence it is brought Up to Locus of a' and further rotated to get point b'. a' b' will be Fv.
Similarly drawing component of other TL($\left.a^{\prime} b_{1}{ }^{\prime}\right)$ Tv can be drawn.

The most important diagram showing graphical relations among all important parameters of this topic.
Study and memorize it as a CIRCUIT DIAGRAM And use in solving various problems.

1) True Length (TL) - $a^{\prime} b_{1}^{\prime} \& a b$
2) Angle of $T L$ with $\mathrm{Hp}-\theta$
3) Angle of $T L$ with $V p-\varnothing$
4) Angle of FV with $x y-\alpha$
5) Angle of TV with $x y-\beta$

6) LTV (length of FV) - Component (a-1)
7) LFV (length of TV) - Component ($a^{\prime}-1^{\prime}$)
8) Position of A- Distances of a \& a' from $x y$
9) Position of B- Distances of b \& b' from $x y$
10) Distance between End Projectors

is drawn \& it is further rotated to locate view.
Views are always rotated, made horizontal \& further extended to locate TL, $\theta \& \emptyset$

GENERAL CASES OF THE LINE INCLINED TO BOTH HP \& VP

PROBLEM 1)

Line $A B$ is 75 mm long and it is 30° \& 40° Inclined to Hp \& Vp respectively. End A is 12 mm above Hp and 10 mm in front of Vp.
Draw projections. Line is in $1^{\text {st }}$ quadrant.

SOLUTION STEPS:

1) Draw $x y$ line and one projector.
2) Locate a' 12 mm above $x y$ line \& a 10 mm below xy line.
3) Take 30° angle from a' \& 40° from a and mark TL I.e. 75 mm on both lines. Name those points b_{1} ' and b_{1} respectively.
4) Join both points with a' and a resp.
5) Draw horizontal lines (Locus) from both points.
6) Draw horizontal component of TL $a b_{1}$ from point b_{1} and name it 1 . (the length a-1 gives length of Fv as we have seen already.)
7) Extend it up to locus of a' and rotating a' as center locate b' as shown. Join a' b' as Fv.
8) From b' drop a projector down ward \& get point b. Join a \& b
 l.e. Tv.

PROBLEM 2:

Line AB 75 mm long makes 45° inclination with Vp while it's Fv makes 55°.
End A is 10 mm above Hp and 15 mm in front of Vp .f line is in $1^{\text {st }}$ quadrant draw it's projections and find it's inclination with Hp.

PROBLEM 3:

Fv of line $A B$ is 50° inclined to $x y$ and measures 55 mm long while it's Tv is 60° inclined to xy line. If end A is 10 mm above Hp and 15 mm in front of $V p$, draw it's projections, find TL, inclinations of line with Hp \& Vp.

SOLUTION STEPS:

1.Draw xy line and one projector.
2.Locate a' 10 mm above xy and a 15 mm below xy line.
3.Draw locus from these points. 4.Draw Fv 50° to $x y$ from a' and mark b' Cutting 55 mm on it. 5.Similarly draw Tv 60° to xy from a \& drawing projector from b' Locate point b and join ab .
6.Then rotating views as shown, locate True Lengths ab_{1} \& $\mathrm{a}^{\prime} \mathrm{b}_{1}{ }^{\prime}$ and their angles with Hp and Vp .

PROBLEM 4 :-

Line $A B$ is 75 mm long . It 's Fv and Tv measure $50 \mathrm{~mm} \& 60 \mathrm{~mm}$ long respectively. End A is 10 mm above Hp and 15 mm in front of Vp . Draw projections of line $A B$ if end B is in first quadrant.Find angle with Hp and Vp.

SOLUTION STEPS:

1.Draw xy line and one projector.
2.Locate a' 10 mm above xy and a 15 mm below $x y$ line.
3.Draw locus from these points.
4.Cut 60 mm distance on locus of a' \& mark 1' on it as it is LTV.
5.Similarly Similarly cut 50 mm on locus of a and mark point 1 as it is LFV.
6.From 1' draw a vertical line upward and from a' taking TL (75 mm) in compass, mark b' ${ }_{1}$ point on it.
Join a' b' ${ }_{1}$ points.
7. Draw locus from b_{1}
8. With same steps below get b_{1} point and draw also locus from it.
9. Now rotating one of the components I.e. a-1 locate b' and join a' with it to get Fv.
10. Locate tv similarly and measure Angles θ \& Φ

PROBLEM 5 :-

T.V. of a 75 mm long Line CD, measures 50 mm .

End C is in Hp and 50 mm in front of Vp .
End D is 15 mm in front of Vp and it is above Hp .
Draw projections of CD and find angles with Hp and Vp.

SOLUTION STEPS:

1.Draw xy line and one projector.
2.Locate c' on xy and
c 50mm below xy line.
3.Draw locus from these points.
4.Draw locus of d 15 mm below $x y$
5.Cut 50 mm \& 75 mm distances on locus of d from c and mark points $d \& d_{1}$ as these are Tv and line CD lengths resp.\& join both with c.
6.From d_{1} draw a vertical line upward up to xy l.e. up to locus of c' and draw an arc as shown.
7 Then draw one projector from d to meet this arc in d' point \& join c' d'
8. Draw locus of d' and cut 75 mm on it from c' as TL 9.Measure Angles θ \& Φ

GROUP (B)

PROBLEMS INVOLVING TRACES OF THE LINE.

TRACES OF THE LINE:-

THESE ARE THE POINTS OF INTERSECTIONS OF A LINE (OR IT'S EXTENSION) WITH RESPECTIVE REFFERENCE PLANES.

A LINE ITSELF OR IT'S EXTENSION, WHERE EVER TOUCHES H.P., THAT POINT IS CALLED TRACE OF THE LINE ON H.P.(IT IS CALLED H.T.)

SIMILARLY, A LINE ITSELF OR IT'S EXTENSION, WHERE EVER TOUCHES V.P., THAT POINT IS CALLED TRACE OF THE LINE ON V.P.(IT IS CALLED V.T.)
V.T.:- It is a point on $\mathbf{V p}$.

Hence it is called Fv of a point in Vp.
Hence it's Tv comes on XY line.(Here onward named as V)
H.T.:- It is a point on Hp.

Hence it is called $\boldsymbol{T v}$ of a point in Hp .
Hence it's $F v$ comes on XY line. (Here onward named as 'h')
STEPS TO LOCATE HT. (WHEN PROJECTIONS ARE GIVEN.)

1. Begin with FV. Extend FV up to XY line.
2. Name this point h^{\prime}
(as it is a $\mathbf{F v}$ of a point in $\mathbf{H p}$)
3. Draw one projector from h '.
4. Now extend Tv to meet this projector. This point is HT
STEPS TO LOCATE VT. (WHEN PROJECTIONS ARE GIVEN.)
5. Begin with TV. Extend TV up to XY line. |
6. Name this point \mathbf{V} (as it is a Tv of a point in $\mathbf{V p}$)
7. Draw one projector from \mathbf{v}.
8. Now extend Fv to meet this projector. This point is VT

9. VT' \& v always on one projector.
10. HT \& h' always on one projector.
11. FV - h'- VT always co-linear.
12. TV-v-HT always co-linear.

These points are used to solve next three problems.

PROBLEM 6 :- Fv of line AB makes 45° angle with XY line and measures 60 mm.
Line's Tv makes 30^{0} with XY line. End A is 15 mm above Hp and it's VT is 10 mm below Hp. Draw projections of line AB,determine inclinations with Hp \& Vp and locate HT, VT.

SOLUTION STEPS:-
Draw xy line, one projector and locate fv a' 15 mm above xy. Take 45° angle from a' and marking 60 mm on it locate point b'. Draw locus of VT, 10 mm below xy \& extending Fv to this locus locate VT. as fv-h'-vt' lie on one st.line.
Draw projector from vt, locate v on xy .
From v take 30° angle downward as
Tv and it's inclination can begin with v.

Draw projector from b' and locate b l.e.Tv point.
Now rotating views as usual TL and it's inclinations can be found.
Name extension of Fv, touching xy as h' and below it, on extension of Tv, locate HT.

PROBLEM 7:

One end of line $A B$ is 10 mm above Hp and other end is 100 mm in-front of Vp .
It's Fv is 45° inclined to $x y$ while it's HT \& VT are 45 mm and 30 mm below xy respectively.
Draw projections and find TL with it's inclinations with Hp \& VP.

SOLUTION STEPS:-

Draw xy line, one projector and locate a' 10 mm above xy .
Draw locus 100 mm below xy for points b \& b_{1} Draw loci for VT and HT, 30 mm \& 45 mm below xy respectively.
Take 45° angle from a' and extend that line backward to locate h' and VT, \& Locate v on xy above VT.
Locate HT below h' as shown.
Then join $v-H T$ - and extend to get top view end b.
Draw projector upward and locate b' Make a b \& a'b' dark.

Now as usual rotating views find TL and it's inclinations.

PROBLEM 8 :- Projectors drawn from HT and VT of a line AB are 80 mm apart and those drawn from it's ends are 50 mm apart.
End A is 10 mm above Hp , VT is 35 mm below Hp while it's HT is 45 mm in front of Vp . Draw projections, locate traces and find TL of line \& inclinations with Hp and Vp.

SOLUTION STEPS:-

1.Draw xy line and two projectors, 80 mm apart and locate HT \& VT, 35 mm below xy and 55 mm above xy respectively on these projectors. 2.Locate h' and von xy as usual.
3.Now just like previous two problems, Extending certain lines complete Fv \& Tv And as usual find TL and it's inclinations.

Instead of considering a \& a' as projections of first point,

 if v \& VT' are considered as first point, then true inclinations of line with Hp \& Vp i.e, angles θ \& Φ can be constructed with points $V T^{\prime}$ \& V respectively.

PROBLEM 9 :-

Line AB 100 mm long is 30^{0} and 45^{0} inclined to $\mathrm{Hp} \& \mathrm{Vp}$ respectively.
End A is 10 mm above Hp and it's VT is 20 mm below Hp
.Draw projections of the line and it's HT.

SOLUTION STEPS:-

Draw $x y$, one projector and locate on it VT and V. Draw locus of a' 10 mm above xy . Take 30° from VT and draw a line. Where it intersects with locus of a' name it a_{1} as it is TL of that part.
From $\mathrm{a}_{1}{ }^{\prime}$ cut $100 \mathrm{~mm}(\mathrm{TL})$ on it and locate point $\mathrm{b}_{1}{ }^{\prime}$ Now from v take 45° and draw a line downwards \& Mark on it distance VT-a ${ }_{1}$ 'I.e.TL of extension \& name it a_{1} Extend this line by 100 mm and mark point b_{1}. Draw it's component on locus of VT ' \& further rotate to get other end of Fv i.e.b' Join it with VT' and mark intersection point (with locus of $a_{1}{ }^{\prime}$) and name it a' Now as usual locate points a and b and h' and HT.

PROBLEM 10 :-

A line $A B$ is 75 mm long. It's $F v \& T v$ make 45° and 60° inclinations with X-Y line resp
End A is 15 mm above Hp and VT is 20 mm below Xy line. Line is in first quadrant.
Draw projections, find inclinations with Hp \& Vp. Also locate HT.

SOLUTION STEPS:-

Similar to the previous only change is instead of line's inclinations, views inclinations are given. So first take those angles from VT \& v Properly, construct Fv \& Tv of extension, then determine it's TL($\left.V-\mathrm{a}_{1}\right)$ and on it's extension mark TL of line and proceed and complete it.

PROBLEM 11 :- The projectors drawn from VT \& end A of line AB are 40 mm apart.
End A is 15 mm above Hp and 25 mm in front of Vp . VT of line is 20 mm below Hp .
If line is 75 mm long, draw it's projections, find inclinations with HP \& Vp

Draw two projectors for VT \& end A Locate these points and then

YOU CAN COMPLETE IT.

CASES OF THE LINES IN A.V.P., A.I.P. \& PROFILE PLANE.

LINE IN A PROFILE PLANE (MEANS IN A PLANE PERPENDICULAR TO BOTH HP \& VP)

For T.V.

Results:-

1. TV \& FV both are vertical, hence arrive on one single projector.
2. It's Side View shows True Length (TL)
3. Sum of it's inclinations with HP \& VP equals to $90^{\circ}\left(\theta+\Phi=90^{\circ}\right)$
4. It's HT \& VT arrive on same projector and can be easily located From Side View.

PROBLEM 12 :- Line AB 80 mm long, makes 30° angle with Hp
and lies in an Aux.Vertical Plane 45^{0} inclined to Vp .
End A is 15 mm above Hp and VT is 10 mm below X-y line. Draw projections, fine angle with Vp and Ht .

X

Simply consider inclination of AVP as inclination of TV of our line, well then?
You sure can complete it as previous problems!

Go ahead!!

PROBLEM 13 :- A line $\mathrm{AB}, 75 \mathrm{~mm}$ long, has one end A in Vp. Other end B is 15 mm above Hp and 50 mm in front of Vp.Draw the projections of the line when sum of it's Inclinations with HP \& Vp is 90°, means it is lying in a profile plane.
Find true angles with ref.planes and it's traces.

SOLUTION STEPS:-

After drawing xy line and one projector Locate top view of A I.e point a on $x y$ as It is in Vp,
Locate Fv of B i.e.b'15 mm above xy as it is above Hp.and Tv of B i.e. b, 50 mm below xy asit is 50 mm in front of Vp Draw side view structure of Vp and Hp and locate S.V. of point B i.e. b" From this point cut 75 mm distance on Vp and Mark a" as A is in Vp. (This is also VT of line.) From this point draw locus to left \& get a' Extend SV up to Hp. It will be HT. As it is a Tv
 Rotate it and bring it on projector of b. Now as discussed earlier SV gives TL of line and at the same time on extension up to Hp \& Vp gives inclinations with those panes.

APPLICATIONS OF PRINCIPLES OF PROJECTIONS OF LINES IN SOLVING CASES OF DIFFERENT PRACTICAL SITUATIONS.

In these types of problems some situation in the field
or
some object will be described. It's relation with Ground (HP)

And
a Wall or some vertical object (VP) will be given.
Indirectly information regarding Fv \& Tv of some line or lines, inclined to both reference Planes will be given
and
you are supposed to draw it's projections and
further to determine it's true Length and it's inclinations with ground.

Here various problems along with actual pictures of those situations are given for you to understand those clearly. Now looking for views in given ARROW directions, YOU are supposed to draw projections \& find answers, Off course you must visualize the situation properly.

PROBLEM 14:-Two objects, a flower (A) and an orange (B) are within a rectangular compound wall, whose P \& Q are walls meeting at 90°. Flower A is 1 M \& 5.5 M from walls P \& Q respectively. Orange B is $4 \mathrm{M} \& 1.5 \mathrm{M}$ from walls $P \& Q$ respectively. Drawing projection, find distance between them If flower is 1.5 M and orange is 3.5 M above the ground. Consider suitable scale..

PROBLEM 15 :- Two mangos on a tree $A \& B$ are 1.5 m and 3.00 m above ground and those are $1.2 \mathrm{~m} \& 1.5 \mathrm{~m}$ from a 0.3 m thick wall but on opposite sides of it. If the distance measured between them along the ground and parallel to wall is 2.6 m , Then find real distance between them by drawing their projections.

PROBLEM 16 :- oa, ob \& oc are three lines, $25 \mathrm{~mm}, 45 \mathrm{~mm}$ and 65 mm long respectively.All equally inclined and the shortest is vertical.This fig. is TV of three rods OA, OB and OC whose ends $\mathrm{A}, \mathrm{B} \& \mathrm{C}$ are on ground and end O is 100 mm above ground. Draw their projections and find length of each along with their angles with ground.

PROBLEM 17:- A pipe line from point A has a downward gradient 1:5 and it runs due East-South. Another Point B is 12 M from \mathbf{A} and due East of \mathbf{A} and in same level of \mathbf{A}. Pipe line from \mathbf{B} runs 20° Due East of South and meets pipe line from \mathbf{A} at point \mathbf{C}.
Draw projections and find length of pipe line from B and it's inclination with ground.

PROBLEM 18: A person observes two objects, A \& B, on the ground, from a tower, 15 M high, At the angles of depression $30^{\circ} \& 45^{\circ}$. Object A is is due North-West direction of observer and object B is due West direction. Draw projections of situation and find distance of objects from observer and from tower also.

PROBLEM 19:-Guy ropes of two poles fixed at 4.5 m and 7.5 m above ground, are attached to a corner of a building 15 M high, make 300 and 450 inclinations with ground respectively.The poles are 10 M apart. Determine by drawing their projections,Length of each rope and distance of poles from building.

PROBLEM 20:- A tank of 4 M height is to be strengthened by four stay rods from each corner by fixing their other ends to the flooring, at a point 1.2 M and 0.7 M from two adjacent walls respectively, as shown. Determine graphically length and angle of each rod with flooring.

PROBLEM 21:- A horizontal wooden platform 2 M long and 1.5 M wide is supported by four chains from it's corners and chains are attached to a hook 5 M above the center of the platform.
Draw projections of the objects and determine length of each chain along with it's inclination with ground.

PROBLEM 22.

A room is of size $6.5 \mathrm{~mL}, 5 \mathrm{~m} \mathrm{D}, 3.5 \mathrm{~m}$ high.
An electric bulb hangs 1 m below the center of ceiling.
A switch is placed in one of the corners of the room, 1.5 m above the flooring. Draw the projections an determine real distance between the bulb and switch.

PROBLEM 23:-

A PICTURE FRAME 2 M WIDE AND 1 M TALL IS RESTING ON HORIZONTAL WALL RAILING
MAKES 35° INCLINATION WITH WALL. IT IS ATTAACHED TO A HOOK IN THE WALL BY TWO STRINGS.
THE HOOK IS 1.5 M ABOVE WALL RAILING. DETERMINE LENGTH OF EACH CHAIN AND TRUE ANGLE BETWEEN THEM

PROBLEM NO. 24

SOME CASES OF THE LINE

 IN DIFFERENT QUADRANTS.
REMEMBER:

BELOW HP- Means- Fv below xy BEHIND V p- Means- Tv above xy.
T.V. of a 75 mm long Line CD, measures 50 mm .

End C is 15 mm below Hp and 50 mm in front of Vp .
End D is 15 mm in front of Vp and it is above Hp.
Draw projections of CD and find angles with Hp and Vp .

PROBLEM NO. 25

End A of line AB is in Hp and 25 mm behind Vp .
End B in Vp.and 50mm above Hp.
Distance between projectors is 70 mm .
Draw projections and find it's inclinations with Ht , Vt .

PROBLEM NO. 26

End A of a line AB is 25 mm below Hp and 35 mm behind Vp .
Line is 300 inclined to Hp .
There is a point P on AB contained by both HP \& VP.
Draw projections, find inclination with Vp and traces.

PROBLEM NO. 27

End A of a line AB is 25 mm above Hp and end B is 55 mm behind Vp .
The distance between end projectors is 75 mm .
If both it's HT \& VT coincide on xy in a point,
35 mm from projector of A and within two projectors,
Draw projections, find TL and angles and HT, VT.

PROBLEM 14:-Two objects, a flower (A) and an orange (B) are within a rectangular compound wall, whose P \& Q are walls meeting at 90°. Flower A is $1.5 \mathrm{M} \& 1 \mathrm{M}$ from walls P \& Q respectively. Orange B is 3.5 M \& 5.5M from walls $P \& Q$ respectively. Drawing projection, find distance between them If flower is 1.5 M and orange is 3.5 M above the ground. Consider suitable scale..

PROBLEM 15 :- Two mangos on a tree A \& B are 1.5 m and 3.00 m above ground and those are $1.2 \mathrm{~m} \& 1.5 \mathrm{~m}$ from a 0.3 m thick wall but on opposite sides of it. If the distance measured between them along the ground and parallel to wall is $\mathbf{2 . 6 ~ \mathbf { ~ m }}$, Then find real distance between them by drawing their projections.

REAL DISTANCE BETWEEN
MANGOS A \& B IS $=\mathbf{a}^{\boldsymbol{\prime}} \mathbf{b}_{1}{ }^{\prime}$

PROBLEM 16 :-

oa, ob \& oc are three lines, $25 \mathrm{~mm}, 45 \mathrm{~mm}$ and 65 mm
long respectively.All equally inclined and the shortest
is vertical.This fig. is TV of three rods OA, OB and OC whose ends $A, B \& C$ are on ground and end O is 100 mm above ground. Draw their projections and find length o each along with their angles with ground.

Answers:
$\mathrm{TL}_{1} \mathrm{TL}_{2} \& \mathrm{TL}_{3}$

PROBLEM 17:- A pipe line from point A has a downward gradient $1: 5$ and it runs due South - East. Another Point B is $12 \mathbf{M}$ from A and due East of A and in same level of A. Pipe line from B runs 15^{0} Due East of South and meets pipe line from A at point C.

Draw projections and find length of pipe line from B and it's inclination with ground.

PROBLEM 18: A person observes two objects, A \& B, on the ground, from a tower, 15 M high, At the angles of depression $30^{\circ} \& 45^{\circ}$. Object A is is due North-West direction of observer and object B is due West direction. Draw projections of situation and find distance of objects from observer and from tower also.

PROBLEM 19:-Guy ropes of two poles fixed at 4.5 m and 7.5 m above ground, are attached to a corner of a building 15 M high, make 30° and 45° inclinations with ground respectively.The poles are 10 M apart. Determine by drawing their projections,Length of each rope and distance of poles from building.

Answers:
Length of Rope $\mathrm{BC}=\mathrm{b}^{\prime} \mathrm{C}^{\prime}{ }_{2}$
Length of Rope $A C=a^{\prime} c_{1}$

Distances of poles from building $=\mathrm{ca} \& \mathrm{cb}$

PROBLEM 20:- A tank of 4 M height is to be strengthened by four stay rods from each corner by fixing their other ends to the flooring, at a point 1.2 M and 0.7 M from two adjacent walls respectively, as shown. Determine graphically length and angle of each rod with flooring.

PROBLEM 21:- A horizontal wooden platform 2 M long and 1.5 M wide is supported by four chains from it's corners and chains are attached to a hook 5 M above the center of the platform.
Draw projections of the objects and determine length of each chain along with it's inclination with ground.

Angle with Hp.
$=Q$

PROBLEM 22.

A room is of size $6.5 \mathrm{~m} L, 5 \mathrm{~m} \mathrm{D}, 3.5 \mathrm{~m}$ high.
An electric bulb hangs 1 m below the center of ceiling.
A switch is placed in one of the corners of the room, 1.5 m above the flooring.
Draw the projections an determine real distance between the bulb and switch.

PROBLEM 23:-

A PICTURE FRAME 2 M WIDE AND 1 M TALL IS RESTING ON HORIZONTAL WALL RAILING
MAKES 35° INCLINATION WITH WALL. IT IS ATTAACHED TO A HOOK IN THE WALL BY TWO STRINGS.
THE HOOK IS 1.5 M ABOVE WALL RAILING. DETERMINE LENGTH OF EACH CHAIN AND TRUE ANGLE BETWEEN THEM

