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Lecture Outline 
•  Instrumentation 

–  X-ray tube configuration  
–  Filtration and restriction of x-ray photons 
–  Compensation and Scatter control 
–  Film screen detector 

•  Image formation 
–  Geometric effect 
–  Extended source 
–  Detector/film response 

•  Image quality 
–  Contrast and SNR 
–  Effect of noise and Compton scattering 
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Overview 
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Radiographic System 
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X-ray Tube 
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X-Ray Tube Components 
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Exposure Control 

"  Itube = 1-1000mA 
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X-Ray Spectra 
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Bremsstrahlung 
•  Continuous spectrum of EM radiation is 

produced by abrupt deceleration of charged 
particles (“Bremsstrahlung” is German for 
“braking radiation”). 

•  Deceleration is caused by deflection of 
electrons in the Coulomb field of the nuclei 

•  Most of the energy is converted into heat, 
~0.5 % is x-ray 

•  The energy of the generated x-ray photon is 
given by energy conservation: 
 

•  The maximum energy for the produced 
photon is given by: 

'e eh K Kν = −

,maxp e tubeE h K eVν= = =

K 

K’ 

hν	


Nucleus 

[From Graber, Lecture Note for BMI1-FS05] 
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Bremsstrahlung intensity 
•  Overall Bremsstrahlung intensity I: 

 
 
 
   

•  The produced x-ray power Px  (in[W]) is given by: 
 
 
 
 
 
–  Material constant k = 1.1×10-9 for Tungsten (Z=74). 
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Electrical power consumption of tube: Ptube = Itube × Vtube [W]  

[From Graber, Lecture Note for BMI1-FS05] 
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Bremsstrahlung spectrum 
•  Theoretically, bremsstrahlung from 

a thick target creates a continuous 
spectrum from E = 0 to Emax with 
intensity Ib : 

  
 Ib(E) ∼ Z(Emax - E) 

•  Actual spectrum deviates from ideal 
form due to  

–  Absorption in window / gas envelope 
material and absorption in anode 

–  Multienergetic electron beam 

Ep = hν 

I  

Ep,max,layer 1 

[From Graber, Lecture Note for BMI1-FS05] 
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Characteristic radiation 
•  Narrow lines of intense x-ray at characteristic energies are superimposed on the 

continuous bremsstrahlung spectrum. 
•  Caused by removal of inner shell electrons and subsequent filling of hole with 

electrons from higher shell. The shell-energy difference determines the energy of 
characteristic rays 

•  Lines are named after the lower shell involved in the process; the upper shell involved 
is denoted by Greek letters:  
Δn = 1 → α-transitions, Δn = 2 → β-transitions, ... 

- 

- 
- 

- 
- - 

- - 

- - 

- 

hν 	


K L M 

- 

Continuum 
0 

K 

L 

M 
N 

E [keV] 

K-lines 

L-lines 

α	
 β	
 γ	


α	
 β	


Kα	


Kβ	


Kγ	


0.5 
3 

11 

70 

[From Graber, Lecture Note for BMI1-FS05] 
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Different types of characteristics rays 

From  http://hyperphysics.phy-astr.gsu.edu/Hbase/quantum/xterm.html#c1 
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X-ray spectra 

•  X-ray for general 
diagnostic radiology 
produced at 40 – 150 kVp 

•  Maximum photon energy:  
Ep[keV] = hνmax = e × kVp 

•  Characteristic radiation 
occurs only for anode 
voltages  

  e × kVp > IK,L,M,… 

 

74W 

[From Graber, Lecture Note for BMI1-FS05] 



EL5823 Projection Radiography Yao Wang, NYU-Poly 15 

X-ray tube design 
•  Cathode w/ focusing cup, 2 filaments (different spot sizes) 
•  Anode  

–  Tungsten, Zw = 74, Tmelt = 2250 ºC  
–  Embedded in copper for heat dissipation 
–  Angled (see next slide) 
–  Rotating to divert heat 

[From Graber, Lecture Note for BMI1-FS05] 
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Filtration 
•  Low energy x-ray will be absorbed by the body, without 

providing diagnostic information 
•  Filtration: Process of absorbing low-energy x-ray photons 

before they enter the patient 
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Restriction 
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Compensation Filters 
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Contrast Agents 

iodine 

barium 

When the x-ray energy exceeds the Kedge (binding energy of K-shell), the mu coefficient is much 
higher, providing high contrast 
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•  Iodine:  
–  Can be synthesized into soluble compounds that are safely introduced 

through intravascular injection or ingestion 
–  Used for imaging of  

•  Blood vessels, heart chambers, tumors, infections 
•  Kidneys, bladder 

–  Naturally exist in thyroid, and hence X-ray is very good for thyroid 
imaging 

•  Barium 
–  Administered as a “chalky milkshake” 
–  Used in the gastrointestinal tract, 

•  Stomach, bowel 
•  Air 

–  Does not absorb x-ray 
–  “opposite” type of contrast 
–  By Inflating the lungs, air provides contrast for lung tissues 
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Scatter Control 
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Grids 
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Problem with Grids 
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Film-Screen Detector 

Intensifying screen: 

Phosphor:  
convert x-ray 
photons to light 
 
Reflective layer:  
Reflect light back 
to film 
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Radiographic Cassette 
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Digital Radiology 
•  Replace the intensifying screen/X-ray film by  

–  flat panel detectors (FPD) using thin-film transistor (TFT) arrays 
–  A scintillator 

•  Consisting of many thin, rod-shaped cesium iodide (CsI) crystals 

•  When an X-ray is absorbed in a CsI rod, the CsI scintillates and 
produces light 

•  The light is converted into an electrical signal by a photodiode in the 
TFT array 

•  The electrical signal is amplified and converted to a digital value 
using an A/D converter 

•  A typical commercial DR system has flat panel dimensions of 41x41 
cm, with an TFT array of 2048x2048 elements 

•  Ref: Webb, Introduction to biomedical imaging, Sec. 1.5.5 
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Biological effects of ionizing radiation 
•  Damage depends on deposited (= absorbed) energy (intensity × time) per 

tissue volume 
•  Threshold: No minimum level is known, above which damage occurs 
•  Exposure time: Because of recovery, a given dose is less harmful if divided 
•  Exposed area: The larger the exposed area the greater the damage 

(collimators, shields!) 
•  Variation in Species / Individuals: LD 50/30 (lethal for 50% of a population 

over 30 days, humans ~450 rads / whole body irradiation) 
•  Variation in cell sensitivity: Most sensitive are nonspecialized, rapidly 

dividing cells (Most sensitive: White blood cells, red blood cells, epithelial 
cells. Less sensitive: Muscle, nerve cells) 

•  Short/long term effects: Short term effects for unusually large (> 100 rad) 
doses (nausea, vomiting, fever, shock, death); long term effects 
(carcinogenic/genetic effects) even for diagnostic levels ⇒ maximum 
allowable dose 5 R/yr and 0.2 R/working day [Nat. Counc. on Rad. Prot. 
and Meas.] 

[From Graber, Lecture Note for BMI1-FS05] 
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Image Formation 
•  Basic imaging equation 
•  Geometric effects 
•  Extended source 
•  Film blurring 
•  Impact of noise and scattering 
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Basic Imaging Equations 
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Example 
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Geometric Effects 
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Inverse Square Law 

I_0 is the detected flux at the origin of the detector plane 
I_r is the detected flux at an arbitrary point of the detector plane 
with angle θ w/o considering the oblique effect discussed in the 
next page 
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Obliquity 

I0 should be replaced by Ir 
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Overall Effect of Beam Divergence 

-> θ is small 
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Anode Heel Effect 
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Imaging of a Uniform Slab 
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I_i = I_s/ (4 \pi d^2) 

Illustrate the received intensity as function of y or x or \theta 



Received Signal as a Function of Theta 
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•  How does it vary as a function of Y when x=0 (vertical 
axis of the detector plain)? 

•  cos(q) = d/r=d/sqrt(d^2+y^2)/ 
•  Assuming d=5m, y= -10cm to 10cm (q from 0 to 1.14 

degree) 
•  Vary small relative change in the range of y 
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Example: Image of a prism due to a point 
source 

Consider the x-ray imaging of a cube.  Determine the intensity of detected photons along 
the y axis on the detector plane. Express your solution in terms of the angle q. 
Sketch this function. You should consider the inverse square law and the oblique 
effect. Assume the x-ray source is an ideal point source with intensity I0, and the 
object has a constant linear attenuation coefficient m. (Example 5.4 in textbook) 



Solution 
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Sketch over in class. Also see textbook 
Must consider different regions separately 
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Objects Magnification 

Magnification 
factor: 
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Imaging of a Thin Non-Uniform Slab 
•  Assume a very thin slab at z 

–  the linear absorption coefficient at (x’,y’) is µ(x’,y’) 
–  Detector position (x,y) -> slab position (x’,y’) 

x 

y 

x’ 

y’ 

x/d=x’/z -> x’=x z/d = x /M(z) 
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I0=Is / (4 pi d^2)  
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Blurring Due to Extended Source 

First study the image through a pinhole 
 - Impulse response 

Image through an arbitrary objects 
 - Impulse response * object attenuation profile 
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Image of source through a pinhole 

Reversed image 

D’/(d-z)=-D/z -> D’=-D (d-z)/z =Dm 

Pinhole: a infinitesimal 
hole (area=0) that passes 
the X-ray source w/o 
attenuation. Everywhere 
else the X-ray is 
completely absorbed 
  

Loss of source intensity due to inverse square law 

Scale factor due to pinhole 
(See textbook) 

Call the following h(x,y) (response due to a pinhole at (0,0) 
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Image of an Arbitrary Slice 
•  An arbitrary slab at  z can be thought of as many 

pinholes at different locations (x’,y’), each with 
transmittivity tz(x’,y’) 
–  The received signal due to transmitivity at (x’,y’) can be written 

as h(x-x’,y-y’) tz(x’,y’) assuming the system is translation 
invariant  

•  The image of the slab is a sum of individual images of 
the source through all the pinholes multiplied by the 
respective transmittivity 
–  I_d(x,y)= \int_{x’,y’}  h(x-x’,y-y’) tz(x’,y’) dx’ dy’ 

•  The overall effect can be captured through linear 
convolution 

Note: m depends on z, distance of slab to the source 
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Example 
•  Source is a circular disk with diameter D 
•  Object is square plane with dimension W at distance z 
•  Detector plane at distance d from source 
•  How does the detected image look for d=2Z and d=3Z 
•  Note that the blurring of the edge depends on z 

•  What is t_z(x,y) and s(x,y)? 
•  What is I_d(x,y)? 
•  How is I_d(x,y) related with t_z(x,y)? 
•  How does the image of I_d(x,y) look?   



Example: solution 
Tz(x,y): a square with width W 
S(x,y): a disk with diameter D. Assuming D << W,  

•  For d=2z,  M=d/z=2, m=1-M=-1 
Tz(x/M,y/M): a square with width 2W 
S(x/m,y/m): a disk with diameter D 
The resulting detector image is a square with width 2W but with a 
blurred edge with blurring width D 

•  For d=3z, M=d/Z=3, m=1-M=-2 
Tz(x/M,y/M): a square with width 3W 
S(x/m,y/m): a disk with diameter 2D 
The resulting detector image is a square with width 3W but with a 
blurred edge with blurring width 2D 
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For the previous example, L is very small, but the source has diameter 
D, blurring is due to the source diameter being non-zero 
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Film Screen Blurring 

A single x-ray photon 
causes a blurry spot on 
the film which is effectively 
the “impulse response” to 
the x-ray impulse h(x,y) 

Typical MTF for a film-
screen detector  



EL5823 Projection Radiography Yao Wang, NYU-Poly 52 

Overall Imaging Equation 
•  Including all effects (geometric, extended source, film-screen 

blurring), the image corresponding to a slab at z with transmittivity 
function tz(x,y) is 

•  For an object with a certain thickness, the transmittivity function 
must be modified to reflect the overall attenuation along the z-axis 

•  When the source is polyenergetic, integration over photon energy is 
additionally needed 



EL5823 Projection Radiography Yao Wang, NYU-Poly 53 

Example 
•  In the previous example, how would the image look if the 

film blurring is a box function of width h? 
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Film Characteristics 
•  Film darkening (after development) depends on incident 

light (which depends on the incident x-ray) 
•  Optical density 
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Optical Density vs. Exposure 
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The H&D Curve 
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Effect of Noise 
•  Source of noise: 

–  Detector does not faithfully reproduce the incident intensity 
–  X-rays arrive in discrete packets of energy. This discrete nature 

can lead to fluctuations in the image 
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How is noise related to signal? 
•  Assuming the number of photons  in each burst follows the Poisson 

distribution 
–  P(N=k)= (a^k / k!) e^{-a} 
–  Variance = mean = a 

•  Let Nb denotes the average number of photons per burst per area 
•  Let hv denotes the effective energy for the X-ray source 
•  The average background intensity is 

•  The variance of photon intensity is   

•  The SNR is 

•  SNR can be improved by 
–  Increasing incident photon count 
–  Improving contrast  
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Detective Quantum Efficiency 

When a x-ray source has mean intensity m=N_b, and variance s^2=N_b, 
SNR =m/s=\sqrt(N_b) 
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Example 
•  Suppose an X-ray tube is set up to fire bursts of photons each with 

N=10000 photons and the detector’s output (# of detected photons 
per burst) x has a mean =8000, variance=40000. What is its DQE? 

•  Solution: 

correctly detected are photons of 16%about only  that means This
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Effect of Compton Scattering 
•  Compton scattering causes the incident photons to be deflected 

from their straight line path 
–  Add a constant intensity Is in both target and  background intensity 

(“fog”) 
–  Decrease in image contrast 
–  Decrease in SNR 
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Medical Applications 
•  Orthopedic 
•  Chest 
•  Abdomen 
•  Mammography 
•  Angiography 

[From Graber, Lecture Note for BMI1-FS05] 
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Mammography 
•  Detection and diagnosis (symptomatic and screening) of breast cancer 
•  Pre-surgical localization of suspicious areas 
•  Guidance of needle biopsies.  

•  Breast cancer is detected on the basis of  
four types of signs on the mammogram: 
 

–  Characteristic morphology of a tumor mass 
–  Presentation of mineral deposits called  

microcalcifications 
–  Architectural distortions of normal tissue patterns 
–  Asymmetry between corresponding regions of  

images on the left and right breast 
 

•  ⇒ Need for good image contrast of various tissue types. 
•  Simple x-ray shadowgram from a quasi-point source.  

[From Graber, Lecture Note for BMI1-FS05] 
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Mammography contrast 
•  Image contrast is due to varying linear attenuation coefficient of 

different types of tissue in the breast (adipose tissue (fat), 
fibroglandular, tumor). 

•  Ideal energy distribution of X-ray should be below 20 for average 
size breast, slightly higher for denser breast  

•  Contrast decreases toward higher energies ⇒ the recommended 
optimum for mammography is in the region 18 - 23 keV depending 
on tissue thickness and composition.  

[From Graber, Lecture Note for BMI1-FS05] 
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Mammography source 
•  Voltage ~ 25-30 kVp  
•  Anode material Mo (Molybdenum), Rh (Rhodium) (characteristic 

peaks at 17.9 and 19 for Mo, and slightly higher for Rh ) 
•  Filtering: use Mo or Rh to absorb energy above 20 or 25Kev 

Target Mo, Filter Mo Target Rh, Filter Rh 

[From Graber, Lecture Note for BMI1-FS05] 
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Anti-scatter grid 
•  Significant Compton interaction for low Ep (37-50% of all photons).  
•  Linear grid: Lead septa + interspace material. Septa focused toward source. 

Grid ratio ~ 3.5-5:1. Only scatter correction in one dimension. Scatter-to-
primary (SPR) reduction factor ~5 

•  Recently crossed grid introduced 
•  Grids are moved during exposure 
•  Longer exposure 

detector 

breast 
lead 
septa 

[From Graber, Lecture Note for BMI1-FS05] 
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X-ray projection angiography 
•  Imaging the circulatory system. Contrast agent: Iodine (Z=53) compound; 

maximum iodine concentration ~ 350 mg/cm3 
•  Monitoring of therapeutic manipulations (angioplasty, atherectomy, 

intraluminal stents, catheter placement). 
•  Short intense x-ray pulses to produce clear images of moving vessels. 

Pulse duration: 5-10 ms for cardiac studies …100-200 ms for cerebral 
studies  

[From Graber, Lecture Note for BMI1-FS05] 



EL5823 Projection Radiography Yao Wang, NYU-Poly 68 

Summary 
•  Projection radiography system consists of an x-ray tube, devices for 

beam filtration and restriction, compensation filters, grids, and a film-
screen detector (or digital detector, filmless) 

•  The detector reading (or image gray level) is proportional to the 
number of unabsorbed x-ray photons arriving at the detector, which 
depends on the overall attenuation in the path from the source to the 
detector 

•  The above relation must be modified to take into account of inverse 
square law, obliquity, anode heel effect, extended source and 
detector impulse response 

•  The degree of film darkening is nonlinearly related to the film 
exposure (detected x-ray) by the H&D curve 

•  Both detector noise and Compton scattering reduce contrast and 
SNR of the formed image 
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Reference 
•  Prince and Links, Medical Imaging Signals and Systems, 

Chap 5. 
•  Webb, Introduction to biomedical imaging, Chap 1. 
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Homework  
•  Reading:  

–  Prince and Links, Medical Imaging Signals and Systems, Chap 5. 
•  Note down all the corrections for Ch. 5 on your copy of the textbook 

based on the provided errata. 
•  Problems for Chap 5 of the text book: 

–  P5.2 
–  P5.4 
–  P5.5 
–  P5.8 
–  P5.18 
–  P5.19  
–  correction: the sentence “Suppose a 5 cm …” in Part (a) should be 

moved to the beginning of part (b). Also, intrinsic contrast in part (b)= 
(µt-µb)/(µt+µb), contrast in part (c)= (Ιmax-Imin)/(Ιmax+Imin). 

–  P5.22 
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Homework (added problem) 
1.  Consider the x-ray imaging of a two-layer slab, illustrated below.  Determine the 

intensity of detected photons along the y axis on the detector plane. Express your 
solution in terms of the y-coordinate  Sketch this function. You should consider the 
inverse square law and the oblique effect. Assume the x-ray source is an ideal point 
source with intensity I0. For simplicity, assume the slab is infinitely long in the y 
direction. 
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Two layer
Slab
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