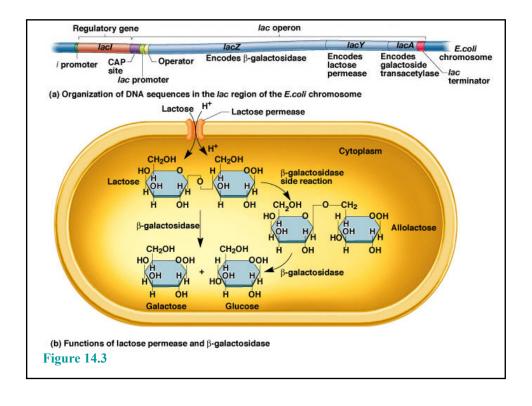


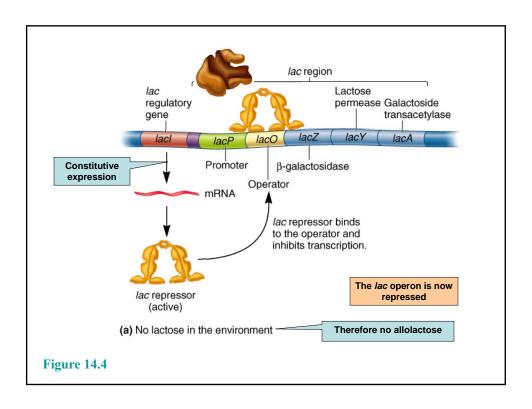
Prokaryotic Gene Regulation

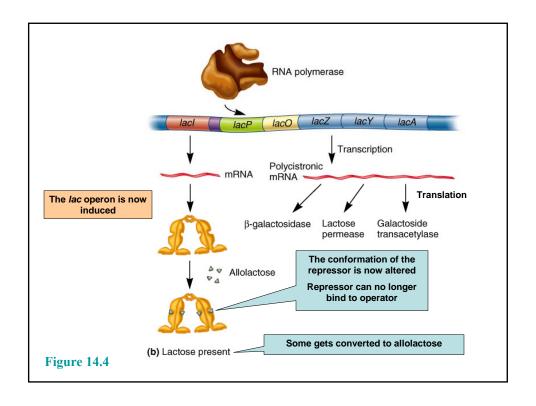
(CHAPTER 14- Brooker Text)

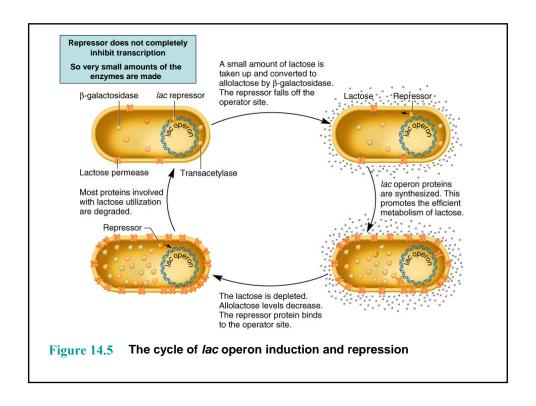

October 16 & 18, 2007 BIO 184 Dr. Tom Peavy

Gene Regulation

- Constitutive Genes = unregulated essentially constant levels of expression (often required)
- Regulation can occur at:
 - Transcription (regulatory proteins; attenuation)
 - -Translation (repressors; antisense RNA)
 - -Posttranslational (feedback inhibition)


<u>Transcriptional regulation:</u>


- Repressors → Bind to DNA and inhibit transcription (confers Negative Control)
- Activators → Bind to DNA and increase transcription (confers Positive control)
- Effector molecules bind to regulatory proteins and not to DNA directly (either increase or inhibit transcription)
 - Inducers increase transcription by either:
 - ➤ Bind activators and cause them to bind to DNA
 - ➤ Bind repressors and prevent them from binding to DNA
 - Inhibitors of transcription (2 types)
 - Corepressors bind to repressors and cause them to bind to DNA
 - ➤ Inhibitors bind to activators and prevent them from binding to DNA



The *lac* Operon Is Regulated By a Repressor Protein

- The lac operon can be transcriptionally regulated
 - 1. By a repressor protein
 - 2. By an activator protein
- The first method is an inducible, negative control mechanism
 - It involves the *lac* repressor protein
 - The inducer is allolactose
 - It binds to the lac repressor and inactivates it

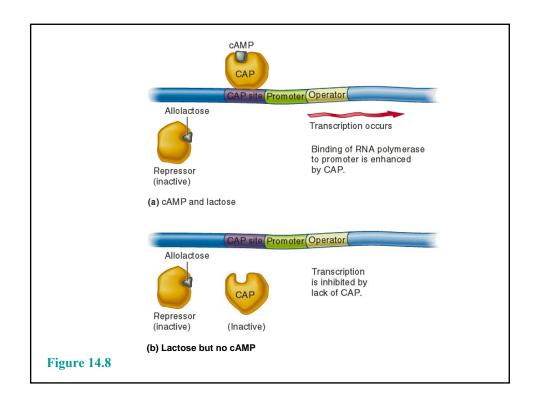
 The interaction between regulatory proteins and DNA sequences have led to two definitions

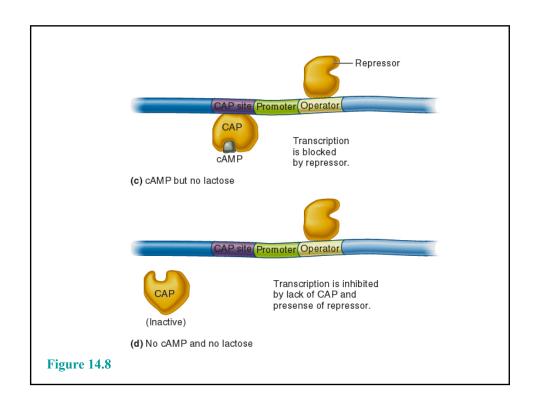
- 1. *Trans*-effect

- Genetic regulation that can occur even though DNA segments are not physically adjacent
- Mediated by genes that encode regulatory proteins

Mutants: lacl⁻ = repressor not made lacl^s= Super repressor; inducer can't bind and thus repressor remains bound to operator

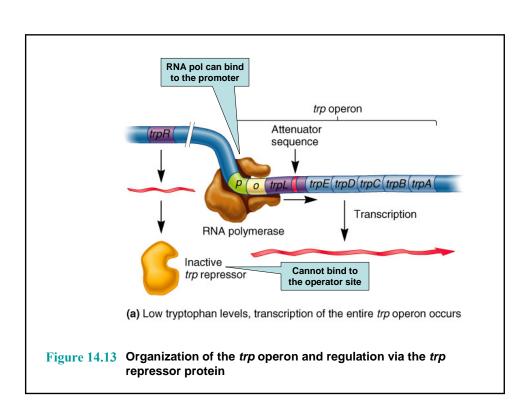
2. Cis-effect or cis-acting element

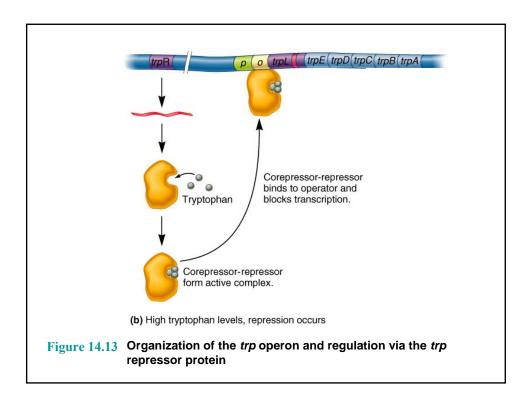

- > DNA sequence must be adjacent to regulating gene
- Mediated by sequences that bind regulatory proteins

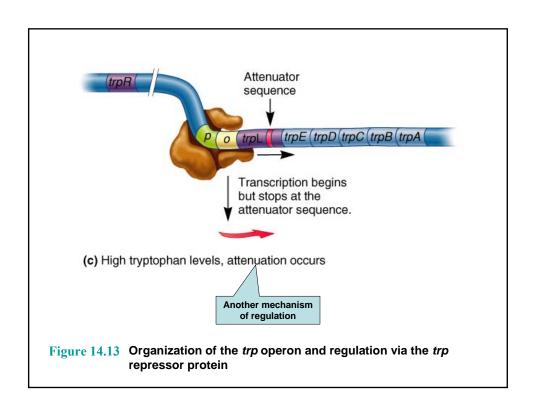

Mutants: lacOc = Repressor can't recognize and bind to mutant operator lacP- = Promoter is non-functional

The *lac* Operon Is Also Regulated By an Activator Protein

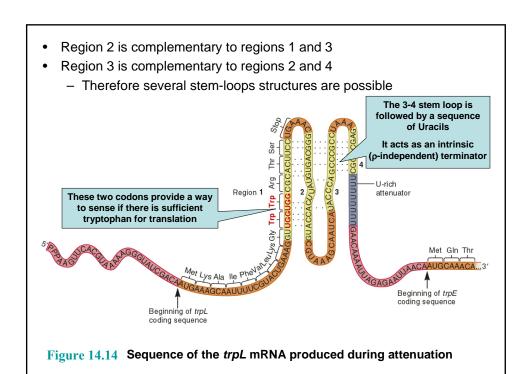
- catabolite repression
- When exposed to both lactose and glucose
 - E. coli uses glucose first, and catabolite repression prevents the use of lactose
 - When glucose is depleted, catabolite repression is alleviated, and the *lac* operon is expressed
- The sequential use of two sugars by a bacterium is termed diauxic growth

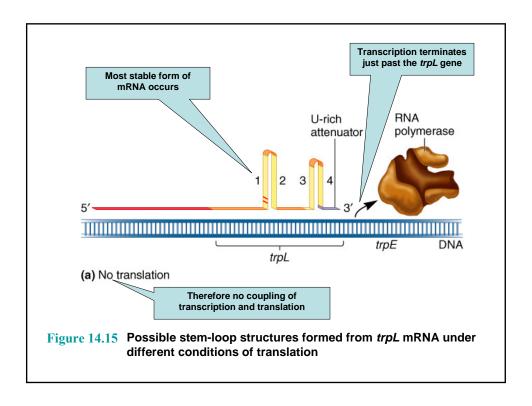

- Regulation involves a small molecule, cyclic AMP (cAMP)
 - produced from ATP via the enzyme adenylyl cyclase
 - cAMP binds an activator protein known as the <u>Catabolite Activator</u> <u>Protein (CAP)</u>
- cAMP-CAP complex is an example of genetic regulation that is inducible and under positive control
 - The cAMP-CAP complex binds to the CAP site near the lac promoter and increases transcription
- In the presence of glucose, the enzyme adenylyl cyclase is inhibited
 - This decreases the levels of cAMP in the cell
 - Therefore, cAMP is no longer available to bind CAP
 - And Transcription rate decreases

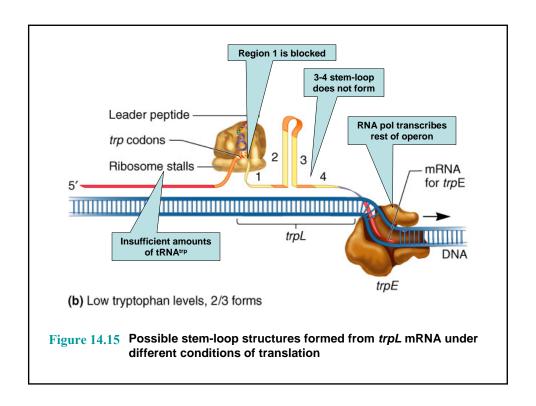


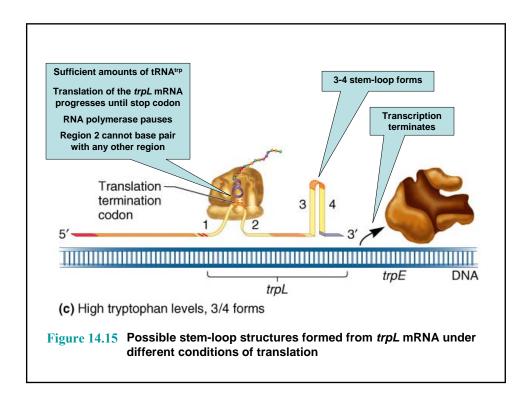


The trp Operon


- The trp operon = involved in the biosynthesis of the amino acid tryptophan
 - The genes trpE, trpD, trpC, trpB and trpA encode enzymes involved in tryptophan biosynthesis
 - The genes *trpR* and *trpL* are involved in regulation
 - *trpR* → Encodes the *trp* repressor protein
 - Functions in repression
 - trpL → Encodes a short peptide called the Leader peptide
 - Functions in attenuation






- Attenuation occurs in bacteria because of the coupling of transcription and translation
- During attenuation, transcription actually begins but it is terminated before the entire mRNA is made
 - A segment of DNA, termed the attenuator, is important in facilitating this termination
 - In the case of the *trp* operon, transcription terminates shortly past the *trpL* region (Figure 14.13*c*)
 - Thus attenuation inhibits the further production of tryptophan
- The segment of trp operon immediately downstream from the operator site plays a critical role in attenuation
 - The first gene in the trp operon is trpL
 - It encodes a short peptide termed the Leader peptide

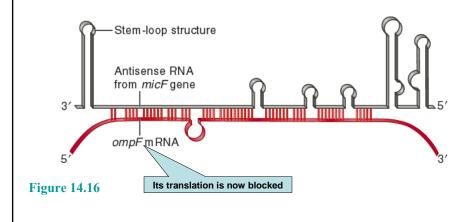
- Therefore, the formation of the 3-4 stem-loop causes RNA pol to terminate transcription at the end of the *trpL* gene
- Conditions that favor the formation of the 3-4 stem-loop rely on the translation of the trpL mRNA
- There are three possible scenarios
 - 1. No translation
 - 2. Low levels of tryptophan
 - 3. High levels of tryptophan

Inducible vs Repressible Regulation

- The study of many operons revealed a general trend concerning inducible versus repressible regulation
 - Operons involved in catabolism (ie. breakdown of a substance) are typically inducible
 - The substance to be broken down (or a related compound) acts as the inducer
 - Operons involved in anabolism (ie. biosynthesis of a substance) are typically repressible
 - The inhibitor or corepressor is the small molecule that is the product of the operon

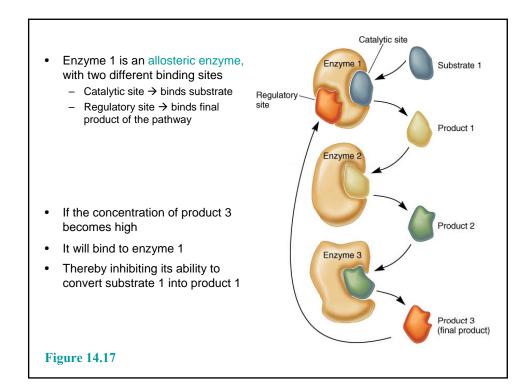
<u>Transcriptional regulation:</u>

- Repressors → Bind to DNA and inhibit transcription (confers Negative Control)
- Activators → Bind to DNA and increase transcription (confers Positive control)
- Effector molecules bind to regulatory proteins and not to DNA directly (either increase or inhibit transcription)
 - Inducers increase transcription by either:
 - ➤ Bind activators and cause them to bind to DNA
 - ➤ Bind repressors and prevent them from binding to DNA
 - Inhibitors of transcription (2 types)
 - Corepressors bind to repressors and cause them to bind to DNA
 - Inhibitors bind to activators and prevent them from binding to DNA


Translational Regulation

- For some bacterial genes, the translation of mRNA is regulated by the binding of proteins
- A translational regulatory protein recognizes sequences within the mRNA
- In most cases, these proteins act to inhibit translation
 - These are known as translational repressors

Translational Regulation


- Translational repressors inhibit translation in one of two ways
 - 1. Binding next to the Shine-Dalgarno sequence and/or the start codon
 - This will sterically hinder the ribosome from initiating translation
 - 2. Binding outside the Shine-Dalgarno/start codon region
 - They stabilize an mRNA secondary structure that prevents initiation
- Translational repression is also found in eukaryotes

- A second way to regulate translation is via the synthesis of antisense RNA
 - An RNA strand that is complementary to mRNA

Posttranslational Regulation

- A common mechanism to regulate the activity of metabolic enzymes is feedback inhibition
- The final product in a pathway often can inhibit the an enzyme that acts early in the pathway

Posttranslational Regulation

- A second strategy to control the function of proteins is by the covalent modification of their structure
- Some modifications are irreversible
 - Proteolytic processing
 - Attachment of prosthetic groups, sugars, or lipids
- Other modifications are reversible and transiently affect protein function
 - Phosphorylation (–PO₄)
 - Acetylation (–COCH₃)
 - Methylation (-CH₃)