
1/16/2010

1

Prolog Programming

Chapter 4

Using Structures: Example Programs

2

Chapter 4
Using Structures: Example Programs

 Retrieving structured information from a database

 Doing data abstraction

 Simulating a non-deterministic automation

 Travel agent

 The eight queens problem

3

4.1 Retrieving structured information from a database

 A database can be naturally represented in Prolog as a

set of facts

 Prolog is a very suitable language for retrieving the

desired information from such a database

 In Prolog, we can refer to objects without actually

specifying all the components of these objects

4

Family database structure

5

Structure information for family database

family(

person(tom,fox,date(7,may,1960),work(bbc,15200)),

person(ann,fox,date(9,may,1961),unemployed),

[person(pat,fox,date(5,may,1983),unemployed),

person(jim,fox,date(5,may,1983),unemployed)]).

6

Utility procedures for family database

husband(X) :-

family (X, _, _). % X is a husband

wife(X) :-

family (_, X, _). % X is a wife

child(X) :- % X is a child

family (_, _, Children),

member (X, Children). % X in list Children

7

More procedures for family database

exits (Person) :-

husband(Person); wife (Person); child(Person).

dateofbirth (person (_, _, Date, _), Date) .

salary (person (_, _, _, works (_, S)), S).

salary (person (_, _, _, unemployed), 0).

8

Using utilities to query the database

 To find the names of all the people in the database:

?- exits (person (Name, Surname, _, _)) .

 To find all children born in 2000:

?- child(X),

dateofbirth(X,date(_, _, 2000)).

 To find the names of unemployed people who were born

before 1973:

?- exits(person(Name,Surname,date(_,_,Year),unemployed)),

Year < 1973.

9

Using more utilities to query the database

 To find people born before 1960 whose salary is less

than 8000:

?- exits(Person),

dateofbirth(Person, date(_, _, Year)) ,

Year < 1960 ,

salary (Person, Salary),

Salary < 8000 .

10

A program to calculate total income

total ([] , 0).

total ([Person | List] , Sum) : -

salary (Person, S),

total (List, Rest),

Sum is S + Rest .

11

Questions :

 To find income of families can then be found by

the question:

?- family (Husband, Wife, Children) ,

total ([Husband, Wife | Children] , Income) .

12

Questions continued :

 All families that have income per family member of less than

2000 by:

?- family (Husband, Wife, Children),

total ([Husband, Wife | Children] , Income),

length ([Husband, Wife | Children] , N), % N size of family

Income / N < 2000.

13

Chapter 4
Using Structures: Example Programs

 Retrieving structured information from a database

 Doing data abstraction

 Simulating a non-deterministic automation

 Travel agent

 The eight queens problem

14

4.2 Doing Data Abstraction

 A process of organizing various pieces of information

into natural units (possibly hierarchically)

 Structuring the information into some conceptually

meaningful form

 Making the use of complex data structures easier,

and contributes to the clarity of programs

15

Example

 In family structure, each family is a collection of

pieces of information

 These pieces are all clustered into natural units such

as a person or a family, so they can be treated as

single objects

 A family is represented as structured object

FoxFamily = family (person (tom, fox, _, _),_,_)

16

Selectors for relations

 Selector_relation (Object, Component_selected)

husband (family (Husband, _, _), Husband).

wife (family (_, Wife, _) , Wife).

children (family (_, _, ChildList), ChildList).

 Selectors for particular children:-

firstchild(Family, First) :-

children (Family, [First | _]).

secondchild(Family, Second) :-

children (Family, [_ , Second | _]).

17

Selectors for relations continued

 To select the Nth child :

nthchild (N, Family, Child) :-

children (Family, ChildList),

nth_member(N, ChildList, Child). % Nth element of a list

 Other selectors

firstname (person (Name, _, _, _), Name).

surname (person (_, Surname, _, _), Surname).

born (person (_, _, Date, _), Date).

18

Example

 Tom Fox and Jim Fox belong to the same family and

that Jim is the second child of Tom

firstname (Person1, tom), surname (Person1, fox),

firstname (Person2, jim), surname (Person2, fox).

husband (Family, Person1),

secondchild (Family, Person2).

19

Example continued

 Person1, Person2 and Family are instantiated as

Person1 = person(tom, fox, _, _)

Person2 = person(jim, fox, _, _)

Family = family(person(tom,fox,_,_),_,[_, person(jim,fox)| _])

20

Chapter 4
Using Structures: Example Programs

 Retrieving structured information from a database

 Doing data abstraction

 Simulating a non-deterministic automation

 Travel agent

 The eight queens problem

21

4.3 Simulating a non-deterministic automation

A non-deterministic finite automation

 an abstract machine that reads as input a string of

symbols and decides whether to accept or to reject

 has a number of states and it is always in one of the

states

 can change from current state to another state

22

Example of a non-deterministic finite machine

23

In the previous example

 S1, S2, S3, and S4 are the states of the automation

 starts at initial state S1 and ends at final state S3

 moves from state to state while reading the input string

 null denoting the null symbol that means ‘silent moves’

without reading of any input

24

Accept the input string if a transition path

 starts with the initial state

 ends with a final state

 the arc labels along the path correspond to the

complete input string

 accepts strings such as ab and aabaab

 rejects strings such as abb and abba

25

In Prolog,

 A unary relation final to define the final state

 A three-argument relation trans to define the state

transition such as trans(S1,X,S2)

 a binary relation silent(S1,S2)

26

For the example automation

final(s3).

trans(s1,a,s1).

trans(s1,a,s2).

trans(s1,b,s1).

trans(s2,b,s3).

trans(s3,b,s4).

silent(s2,s4).

silent(s3,s1).

27

Define the acceptance of a string

 Accepts a given string if (starting from an initial state)

after having read the whole input string, the automation

can (possibly) be in its final state

 Define a binary relation accepts(State, String)

 Initial state State and input string String

28

There are three cases:

 empty string [] is accepted if State is a final state

 a non-empty is accepted from State if reading the first

symbol in the string can bring the automation into some

state State1 and the rest of the string is accepted from

State1

 a string is accepted from State if the automation can

make a silent move from State to State1 and then

accepted the whole input string from State1

29

Rules in Prolog Programming

accepts(State,[]) :-

final(State). % case 1

accepts(State,[X|Rest]) :-

trans(State,X,State1),

accepts(State1,Rest). % case 2

accepts(State,String) :-

silent(State,State1),

accepts(State1,String). % case 3

30

Questions:

?- accepts (s1, [a,a,a,b]).

yes

?- accepts (S, [a,b]).

S = s1;

S = s3

31

Questions continued:

?- accepts (s1, [X1, X2, X3]).

X1 = a

X2 = a

X3 = b;

X1 = b

X2 = a

X3 = b;

no

32

More Questions:

?- String = [_, _, _], accepts(s1, String).

String = [a,a,b];

String = [b,a,b];

no

33

Chapter 4
Using Structures: Example Programs

 Retrieving structured information from a database

 Doing data abstraction

 Simulating a non-deterministic automation

 Travel agent

 The eight queens problem

34

4.4 Travel agent

 What days of the week is there a direct evening flight from

Ljubljana to London ?

 How can I get from Ljubljana to Edinburgh on Thursday?

 I have to visit Milan, Ljubljana and Zurich, starting from

London on Tuesday and returning on Friday. In what

sequence should I visit these cities so that I have no more

than one flight each day of the tour?

35

Flight Data Base

timetable(Place1, Place2, ListOfFlights)

ListOfFlight is a list of structured items of the form

DepartureTime / ArrivalTime / FlightNumber / ListOfDays

Example,

timetable(london,zurich,

[9:10/11:45/ba614/alldays,

14:45/17:20/sr805/ [mo,tu,we,th,fr,su]).

36

route(Place1,Place2,Day,Route)

start point Place1

end point Place2

all the flight are on the same day of the week, Day

all the flights in Route are in the timetable relation

there is enough time for transfer between flights

 the route is represented as a list of structured objects of

the form

From / To / FlightNumber / Departure_time

37

Auxiliary predicates

flight(Place1,Place2,Day,FlightNum,DepTime,ArrTime)

 flight is a flight route planner

 there is a flight between Place1 and Place2 on the day

of the week Day with the specified departure time

DepTime and arrival time ArrTime

38

Auxiliary predicates continued

deptime(Route,Time)

Departure time of Route is Time

transfer(Time1, Time2)

There is at least 40 minutes between Time1 and Time2

to transfer between flights

39

Similarities to non-deterministic automation

 The states of the automation correspond to the cities

 A transition between two states corresponds to a flight

between two cities

 The transition relation of the automation corresponds to

the timetable relation

 The automation simulator finds a path in the transition

graph between the initial state and a final state; a travel

planner finds a route between the start city and the end

city of the tour

40

Travel Agent Program

:- op(50,xfy,:).

route(P1,P2,Day,[P1/P2/Fnum/Deptime]) :- % direct flight

flight(P1,P2,Day,Fnum,Deptime,_).

route(P1,P2,Day,[(P1/P3/Fnum1/Dep1)|RestRoute]):- % indirect flight

flight(P1,P3,Day,Fnum1,Dep1,Arr1),

route(P3,P2,Day,RestRoute),

deptime(RestRoute,Dep2),

transfer(Arr1,Dep2).

flight(Place1,Place2,Day,Fnum,Deptime,Arrtime) :-

timetable(Place1,Place2,Flightlist),

member(Deptime/Arrtime/Fnum/Daylist,Flightlist),

flyday(Day,Daylist).

41

Travel Agent Program continued :

flyday(Day,Daylist) :- member(Day,Daylist).

flyday(Day,alldays) :- member(Day,[mo,tu,we,th,fr,sa,su]).

deptime([P1/P2/Fnum/Dep|_],Dep).

transfer(Hours1:Mins1,Hours2:Mins2) :-

(60 * (Hours2 - Hours1) + Mins2- Mins1) >= 40.

member(X,[X|_]).

member(X,[_|L]) :- member(X,L).

conc([],L,L).

conc([X|L1],L2,[X|L3]) :- conc(L1,L2,L3).

42

Travel Agent Program continued :

% A FLIGHT DATABASE

timetable(edinburgh,london,

[9:40/10:50/ba4733/alldays,

13:40/14:50/ba4773/alldays,

19:40/20:50/ba4833/[mo,tu,we,th,fr,su]]).

timetable(london,edinburgh,

[9:40/10:50/ba4732/alldays,

11:40/12:50/ba4752/alldays,

18:40/19:50/ba4822/[mo,tu,we,th,fr]]).

timetable(london,ljubljana,

[13:20/16:20/jp212/[mo,tu,we,fr,su],

16:30/19:30/ba471/[mo,we,th,sa]]).

43

Travel Agent Program continued :

timetable(london,zurich,

[9:10/11:45/ba614/alldays,

14:45/17:20/sr805/alldays]).

timetable(london,milan,

[8:30/11:20/ba510/alldays,

11:00/13:50/az459/alldays]).

timetable(ljubljana,zurich,

[11:30/12:40/jp322/[tu,th]]).

timetable(ljubljana,london,

[11:10/12:20/jp211/[mo,tu,we,fr,su],

20:30/21:30/ba472/[mo,we,th,sa]]).

44

Travel Agent Program continued :

timetable(milan,london,

[9:10/10:00/az458/alldays,

12:20/13:10/ba511/alldays]).

timetable(milan,zurich,

[9:25/10:15/sr621/alldays,

12:45/13:35/sr623/alldays]).

timetable(zurich,ljubljana,

[13:30/14:40/jp323/[tu,th]]).

timetable(zurich,london,

[9:00/ 9:40/ba613/[mo,tu,we,th,fr,sa],

16:10/16:55/sr806/[mo,tu,we,th,fr,su]]).

timetable(zurich,milan,

[7:55/ 8:45/sr620/alldays]).

45

Questions

?- flight(ljubljana,london,Day,_,DeptHour:_,_), DeptHour >= 18.

Day = mo;

Day = we;

…

?- route(ljubljana,edinburgh,th,R).

R = [ljubljana / zurich / jp322 / 11:30, zurich / london / sr806 /

16:10, london / edinburgh / ba4822 / 18:40]

46

Questions continued

?- permutation ([milan, ljubljana, zurich], City1, City2, City3]),

flight (london, City1, tu, FN1, _, _),

flight (City1, City2, we, FN2, _, _),

flight (City2, City3, th, FN3, _, _),

flight (City3, london, fr, FN4, _, _).

City1 = milan

City2 = zurich

City3 = ljubljana

FN1 = ba510

FN2 = sr621

FN3 = jp323

FN4 = jp211

47

Questions continued

?- conc(R,_,[_, _, _, _]), route(zurich,edinburgh,mo,R).

Limit the list R to length 4 and force the search to

consider shortest routes first

48

Chapter 4
Using Structures: Example Programs

 Retrieving structured information from a database

 Doing data abstraction

 Simulating a non-deterministic automation

 Travel agent

 The eight queens problem

49

4.5 The eight queens problem

 To place eight queens on the empty chessboard in

such a way that no queen attacks any other queen

 This problem can be approached in different ways by

varying the representation of the problem

 the solution will be programmed as a unary predicate

solution(Pos) which is true if and only if Pos

represents a position with eight queens that do not

attack each other

50

Chess Board 8 X 8

51

Program 1

 to find solution Pos is a list of the form

[X1/Y1, X2/Y2, X3/Y3, X4/Y4, X5/Y5, X6/Y6, X7/Y7, X8/Y8]

 all the queens will have to be in different column to prevent

vertical attacks

 fix the X-coordinates so that the solution list will fit the

following more specific template

[1/Y1, 2/Y2, 3/Y3, 4/Y4, 5/Y5, 6/Y6, 7/Y7, 8/Y8]

 find Y values such that X/Y does not attack others in the list

52

The solution

Two cases:

 The list of queens is empty : the empty list is certainly a

solution because there is no attack

 The list of queens is no-empty: then it looks like this :

[X/Y | Others]

 The first queen is at X/Y and the other queens are at

squares specified by the list Others

53

The following conditions must hold:

 No attack between the queens in the list Others, that is,

Others itself must also be a solution

 X and Y must be integers between 1 and 8

 A queen at square X/Y must not attack any of the

queens in the list Others

54

In Prolog

solution ([X/Y | Others]) :-

solution (Others) ,

member (Y, [1,2,3,4,5,6,7,8]),

noattack (X/Y , Others).

noattack relation is defined as noattack (Q, Qlist)

two cases:

 If Qlist is empty, it is true because there is no queens to be attacked

 If Qlist is not empty and it has the form [Q1 | Qlist1] and

 the queen at Q must not attack the queen at Q1

 the queen at Q must not attack any of the queens in Qlist1

55

template guarantees that all queens are in different columns

 Only to specify explicitly that :

 the Y coordinates of the queens are different and

 they are not in the same diagonal, either upward or

downward, that is, the distance between the squares in

the X-direction must not be equal to that in the Y-direction

56

Program 1 in Prolog for the eight queens problem

solution ([]) .

solution ([X / Y | Others]) :-

solution (Others) ,

member (Y, [1,2,3,4,5,6,7,8]) ,

noattack (X/Y , Others) .

noattack (_ , []) .

noattack (X / Y , [X1 / Y1| Others]) :-

Y =\= Y1, % not in the same row

Y1 - Y =\= X1 - X , % not in the same diagonal

Y1 - Y =\= X - X1,

noattack (X / Y, Others) .

57

Program 1 in Prolog continued:

member (Item , [Item | _]) .

member (Item , [_ | Rest]) : -

member (Item , Rest) .

template([1/Y1,2/Y2,3/Y3,4/Y4,5/Y5,6/Y6,7/Y7,8/Y8]).

Question :

?- template (S) , solution (S) .

S = [1/4, 2/2, 3/7, 4/3, 5/6, 6/8, 7/5, 8/1]

58

Program 2

 No information is lost if X coordinates were omitted

since the queens were simply placed in consecutive

columns

 More economical representation of the board position

can be used, retaining only the Y-coordinates of the

queens:

[Y1,Y2,Y3,Y4,Y5,Y6,Y7,Y8]

59

Strategy

 To prevent the horizontal attack, no two queens can be

in the same row

 Impose a constraint on the Y-coordinates such that all

queens have to occupy all the rows 1,2,3,4,5,6,7,8

 Each solution is the order of these eight numbers, that

is, a permutation of the list [1,2,3,4,5,6,7,8]

60

Strategy continued

solution (S) :-

permutation ([1,2,3,4,5,6,7,8] , S),

safe (S) .

Two cases for safe,

 S is empty

 S is non-empty list of the form [Queen | Others]. This is safe if the list

Others is safe and Queen does not attack any queen in the list Others

safe ([]).

safe ([Queen | Others]) :-

safe (Others) ,

noattack (Queen, Others) .

61

Strategy continued

 Since we do not use X-coordinates, in the goal

noattack(Queen,Others) , we need to ensure that Queen does not

attack Others when the X-distance between Queen and Others is

equal to 1.

 We add X-distance as the third argument of the noattack relation:

noattack(Queens,Others,Xdist)

 The noattack goal in safe relation has to be modified to

noattack(Queen,Others,1)

62

Program 2 in Prolog for the eight queens problem

solution (Queens) :-

permutation ([1,2,3,4,5,6,7,8] , Queens),

safe (Queens) .

permutation ([], []).

permutation ([Head | Tail] , PermList) :-

permutation (Tail, PermTail) ,

del (Head, PermList, PermTail) .

del (Item, [Item | List], List) .

del (Item, [First | List], [First | List1]) :-

del (Item, List, List1).

63

Program 2 in Prolog continued :

safe ([]).

safe ([Queen | Others]) :-

safe (Others) ,

noattack (Queen, Others, 1) .

noattack (_ , [], _) .

noattack (Y, [Y1 | Ylist], Xdist) :-

(Y1-Y) =\= Xdist, % not in the same diagonal

(Y-Y1) =\= Xdist, %

Dist1 is Xdist + 1,

noattack (Y,Ylist,Dist1) .

64

Program 3

 Each queen has to be placed on some square, that is,

into some column, some row, some upward diagonal,

and some downward diagonal

 Each queen must be placed in a different column, a

different row, a different upward and a different

downward diagonal

65

Representation

 X columns

 Y rows

 u upward diagonals

 v downward diagonals

Where u and v are determined :

 u = x - y

 v = x + y

66

Diagonals Relationship between X and Y

67

The domains for all four dimensions in 4X4 chess board

 Dx = [1,2,3,4]

 Dy = [1,2,3,4]

 Du = [-3,-2,-1,0,1,2,3]

 Dv = [2,3,4,5,6,7,8]

So the domains for all four dimensions in 8x8 chess board

 Dx = [1,2,3,4,5,6,7,8]

 Dy = [1,2,3,4,5,6,7,8]

 Du = [-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7]

 Dv = [2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]

68

Strategy

 select eight 4 - tuples (X,Y,U,V) from domains

 never use the same element twice from any of the

domains

 once X and Y are chosen, U and V are determined

The solution is that, given all four domains,

 select the position of the first queen

 delete the corresponding items from the four domains

 use the rest of the domains for placing the rest of the

queens

69

Program 3 in Prolog for the eight queens problem

solution(Ylist) :-

sol(Ylist, % Y-coordinate

[1,2,3,4,5,6,7,8], % Domain for X

[1,2,3,4,5,6,7,8], % Domain for Y

[-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7], % Up Diagonals

[2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]). % Down Diagonals

70

Program 3 in Prolog continued

sol([],[],Dy,Du,Dv).

sol([Y|Ylist],[X|Dx1],Dy,Du,Dv) :-

del(Y,Dy,Dy1), % Choose a Y-coordinate

U is X-Y, % Corresponding upward dia

del(U,Du,Du1), % Remove it

V is X+Y, % Corresponding downward

del(V,Dv,Dv1), % Remove it

sol(Ylist,Dx1,Dy1,Du1,Dv1). % Use remaining values

del(Item,[Item|List],List).

del(Item,[First|List],[First|List1]) :-

del(Item,List,List1).

