MATH 113 HOMEWORK 4 SOLUTIONS

Solutions by Guanyang Wang, with edits by Tom Church.
Exercises from the book.
Exercise 3.E.13 Suppose U is a subspace of V and v1 + U, ..., v, + U is a basis

of V/U and uy,...,u, is a basis of U. Prove that vy, ..., 0m, u1,...,u, is a basis of
V.

Proof. First we prove that vy, ..., Uy, U1, ..., Up is a linearly independent list in V.
Suppose that aq, ..., @y, b1, ..., b, € F are scalars such that

aivl + ... + apUym + byur + ... + bpu, =0
Thus a1v1 + ... + @y, = —(b1us + ... + byuy,) € U, which implies that

a1 +U)+ .+ am(vm +U) =0+ U
Because vy + U, ...,v,,, + U is a basis of V/U, this implies a1 = ... = a,, = 0.
Therefore we have

biuy + ... + bpu, =0
Since uy,...,u, is a basis of V, this implies by = ... = b, = 0. Thus a; =
.. = Qm = by = ... = b, = 0, which implies that vy, ..., v, uq, ..., u, is a linearly
independent list in V.
Then we prove that vy, ..., Vm, U1, ..., U, is a basis of V. Now suppose v € V.
Because the list v1 + U, ..., v, + U spans V/U, there exist ¢y, ..., ¢;, € F such that

v+U=ci(v+U)+ ...+ cm(vm + U)
Thus
V—ClU1 — ... —CpUm €U
Because the list uq, ..., u, spans V/U, there exist d, ...,d,, € F such that
V— ClU1 — oo — CpUp, = di1 + ... + dpty,.
Hence
vV =0CU1 + ... + CpUm +diur + ... + dpty,.

Then the list vy, ..., v, u1, ..., 4, spans V and hence is a basis of V', as desired.
O

Exercise 3.F.7 Suppose m is a positive integer. Show that the dual basis of
) .
the basis 1,z,...,2™ of P, (R) is @o, @1, ..., om, Where ¢;(p) = %. Here p@)

denotes the j* derivative of p, with the understanding that the 0" derivative of p
is p.

Proof. From Proposition 3.98 we know that the dual basis is a basis of dual space.
By definition of dual basis (3.96), we just need to check if

1(j=k
(0.1) mx‘f)—{og. 7&5

Note that ¢;(z¥) = %7 hence if j = k, @;(z*) =1, if j # k, p;(2F) = 0.

Therefore we know that g, ..., ¢, is the dual basis of P, (R).
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Exercise 3.F.8 Suppose m is a positive integer.
(a) Show that 1,z —5,..., (z — 5)™ is a basis of P,,(R).
(b) What is the dual basis of the basis in part(a)?

Proof. (a) Define @, 1, ..., om € (Pm(R))" by

_p(j)(5)
="

So suppose ag, ..., ., € F and
ap+ai(z—5)+ ... +an(z—5"=0.
Then for 7 =0,1,...,m, we have

a; = pjlag+ar1(z—5)+ ... Fan(x—5)") =¢;(0)=0

Thus ap = a; = ... = a, = 0. Hence 1,2—5, ..., (x—5)" is a linearly independent
list in P,,(R) of length m + 1, which equals the dimension of P,,(R). Thus 1,2 —
5,...,(x —5)™ is a basis of P,,(R) (by 2.39).

(b) Let ©o, @1, sy m € (Pm(R))’ be defined as in part (a). Then we have

1(j=k)
(0.2) pi((z—5)) = :
! 0(j # k)
From Proposition 3.98 we know that ¢q, ¢1, ...., m is the dual basis of the basis
in part (a). O

Exercise 3.F.15 Suppose W is finite-dimensional and 7' € L(V, W). Prove that
T’ =0 if and only if T = 0.

Proof. First suppose T = 0. For any ¢ € W/, then T'(¢) = ¢ o T = 0, and thus
T =0.
To prove the other direction, now suppose 7/ = 0. Thus

0=T'(p)=¢oT

for every ¢ € W'.

If T'# 0, we can find some v € V such that Tv = w # 0. We can extend T'v to
a basis Tv, wa, ..., w, of W. Now Proposition 3.5 implies that there exists a ¢ such
that ¢(Tv) =1 (and ¢(v;) equals whatever we want for j = 2,3,...,n). Therefore
(T'(¢))(v) = ¢(Tv) = 1. Which contradicts the fact that 0 = T'(¢) = ¢ o T for
every ¢ € W'. So we must have T = 0, as desired. d

Exercise 5.A.12 Define T € L(P4(R)) by
(Tp)(x) = ap/(x)

for all x € R. Find all eigenvalues and eigenvectors of 7T'.



Answer. A typical element p of P4(R) is given by expression

p(z) = ag + a1x + asx? + aza® + asx?,

where aqg, ...,a4 € R.
With that expression, the eigenvalue-eigenvector equation Tp = Ap, which in
this case is zp’(z) = Ap(x), becomes
a1 + 2a22% 4 3asx® + dagzt = Mag + a1z + asx? + aza® + a4z4)

Comparing coefficients in the equation above, we see that the eigenvalue-eigenvector
equation is equivalent to the system of equations

0= Aag
a1 = \ap
2a9 = Aao
3az = Aag
4day = Magy.

From the equations above, we can see that if j € {0,1,2,3,4} and a; # 0, then
we have A = j and a; = 0 for any k # j. Thus the eigenvalue of T are 0,1,2,3,4
and the corresponding eigenvectors are of the form c, cz, cx?, cz®, cx*, where ¢ € R
and ¢ # 0. ]

Exercise 5.A.15 Suppose T € L(V). Suppose S € L(V) is invertible

(a) Prove that T' and S~!'T'S have the same eigenvalues.

(b) What is the relationship between the eigenvectors of T' and the eigenvectors
of STITS ?

Answer. Suppose v € V and A € F. Then we have
Tv=X < (S7'TS)(S ') =AS"1v

This is because if Tv = v, then (S71TS)(S~*v) = S~'Tv = A\S~1v, on the
other hand, if (S~1T.9)(S71v) = AS~1v, then v = AS(S~1v) = S((STS)(S71v)) =
To.

Thus we see that T and S~!T'S have the same eigenvalues, and furthermore, v
is an eigenvector of 7T if and only if S~'v is an eigenvector of S~!T'S. (]

Exercise 5.A.18 Show that the operator T € L(C*) defined by
T(Zl,ZQ,...) = (0,21722,...)

has no eigenvalues.

Answer. The eigenvalue-eigenvector equation Tz = Az for this operator is
(0, 21522y« - - ) = ()\2517 )\ZQ, /\23, )
which is equivalent to
0= )\zl,zl = )\2’2,22 = )\2137

The first equation implies z; = 0 or A = 0. If A = 0, then the rest of the equations
implies 0 = z; = 23 = ..., which eliminates 0 as the possible eigenvalue. If A # 0,
then z; = 0, then the rest of the equations also implies zo = 23 = ... = 0 = 2,



which eliminates all nonzero complex numbers A as possible eigenvalues. Thus we
conclude that 7" has no eigenvalues. ([

Exercise 5.A.20 Find all eigenvalues and eigenvectors of the backward shift
operator T' € L(F*°) defined by

T(Zl,ZQ,Zg,...) = (2’2,2’37...)

Answer. We will show that all A € T are eigenvalues of T, and the set of eigenvectors
of T with eigenvalue X is the set Vy = {(z,Az,A%z,...) | z € F}.

First we show that if v is an eigenvector of T, then v € V) for some A. That is, we
show that v = (2, Az, A%z,...) for some z and some \. Suppose v = (z1, 22, 23, .. . )
is an eigenvector for T' with eigenvalue A. Then the eigenvalue equation T'(v) = Av
takes the form

(/\2’1,)\Z2,/\Z3, .- ) = (22,23,2:4, . )

Since two vectors in F> are equal if and only if their terms are all equal, this yields
an infinite sequence of equations:

22:>\Z1, 232)\22,..., zn:)\zn,l,...

From this, we can repeatedly substitute z, = Azp—1 = A22,_2 = ..., so in fact (by
a simple induction)
Zn = A" 1z

So every eigenvector v with eigenvalue X is of the form v = (21, Az1, A\%21,...).
Furthermore, for any z € F, if we set z1 = 2z, 20 = Az, ..., z, = A"z, the vector

v=(z,\z,\%2,...)

satisfies the equations above and is an eigenvector of T with eigenvalue A Therefore,
the eigenspace V) of T with eigenvalue A is the set of vectors

V)\:{(Z,)\Z,)\2Z,...)|Z€F}.

Finally, we show that every single A € F occurs as an eigenvalue of T. Given
A € F, consider the vector v = (1,\,A2,...). Applying T to v, we get

Tw) = (1,A02,.) = (AL A2 N3
=A1,0 0% .00)

Thus T'(v) = Av for this vector. We have thus shown that all A € F are eigenvalues
for T, and the eigenspace for X is Vy = {(z, Az, \?2,...) |z € F}. O

Exercise 5.A.22 Suppose T' € L(V) and there exist nonzero vectors v and w
in V such that
Tv = 3w and Tw = 3v.

Prove that 3 or —3 is an eigenvalue of T'.
Proof. The equations above imply that
Tv+w)=3w+w)and T(v—w) =—-3(v—w).

The vectors v + w and v — w cannot both be 0 (because otherwise we would have
v = w = 0). Thus the equations above imply that 3 or —3 is an eigenvalue of T. O
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Exercise 5.A.30 Suppose T € L£(R3) and 4, —5 and /7 are the eigenvalues of
T. Prove that there exists 2 € R3 such that Tx — 9z = (4, —5,/7)

Proof. Since T has at most 3 distinct eigenvalues (by 5.13), the hypothesis imply
that 9 is not an eigenvalue of 7. Thus T — 91 is surjective. In particular, there
exists € R? such that (T'— 9I)z = Tz — 9x = (4,—5,4/7). (The entries of this
particular vector are a red herring: we could just as easily find a y € R? such that
Ty — 9y = (86, 75,309) by the same argument.) O

Exercise 5.A.32 Suppose Aq,...,\, is a list of distinct real numbers. Prove
that the list eM?, ..., e*? is linearly independent in the vector space of real-valued
functions on R.

Proof. Let V = span(e*1?,....e*%), and define T € L(V) by Tf = f’. This linear
map does map V into V' because

T (M%) = \jeM®.
This equation above also shows that for each j = 1, ..., n, the vector e*? is an eigen-

vector of T' with eigenvalue A;. Thus Proposition 5.10 implies that eMT L eM? s
linearly independent. O

Exercise 5.B.1 Suppose T' € L(V) and there exists a positive integer n such
that 7" = 0.
(a) Prove that I — T is invertible and that

(I-T)'=I+T+.+1""
(b) Explain how you would guess the formula above.
Proof. We have
(I-T)IT+T+..+T"h
=I+T+.. +T" ' —T-T>— . —T" ' —T"
=I1-T"=1

since T" = 0.
Similarly, we have

(I+T+..+T"H(I-T)
=I+T+ .. +1T" T -T?>— Tl _Tm
=1-T"=1

Therefore (I —T) is invertible and (I — T)" ' =T+T + ...+ T" %
(b) If r € C and |r| < 1, then we might be familiar with the usual formula for
the sum of a geometric series:
A=ryt=147r+r2 4.+ 4T

If we guess that in the formula above, we can replace 1 with I and r with T,
then we would have
(I-T) '=I+T+..+7""
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where the sum becomes finite because 0 = 7" =771 = ... . O

Exercise 5.B.2 Suppose T € L(V) and (T —2I)(T —3I)(T —4I) = 0. Suppose
A is an eigenvalue of T'. Prove that A =2 or A =3 or A =4.

Proof. Let v € V be a eigenvector of T' corresponding to the eigenvalue A\. Then
0=(T-20)(T-30N(T —4Hv=A—=2)(A=3)(A —4)v.
Since v # 0, the equation above implies that
A=2)(A=3)(A—4)=0
Thus A =2 or A =3 or A =4, as desired. [l

Question 1. Suppose U is a subspace of V such that dimV/U = 1. Prove that
there exists a linear functional f € V' such that

nullf =U

Proof. Since V/U is a 1-dimensional linear space, we can construct an arbitrary
nonzero linear map g € (V/U)'. Definition 3.88 says we have a quotient map
w:V — V/U which sends v € V tov+ U € V/U. Now let f = gonw. We claim
that nullf = U

On the one hand, for any u € U, w(u) = 0+ U = 0 in V/U, so we have
f(u) = g(w(u)) = g(0) = 0, therefore nullf D U.

On the other hand, since g # 0, we can find v+ U € V/U such that g(v+U) # 0,
so f(v) = g(m(v)) = glv +U) # 0. Since dimV/U = 1, v + U is the basis of
V/U. Therefore for any w ¢ U, we can find a non-zero A € F and such that
m(w)=w+U=ANv+U) =X v+ U. So we have

f(w) =g(m(w))
=g(w+7U)
=g(A(v+0))
=Xg(v+U)#0

because A # 0 and g(v + U) # 0. So nullf C U.
Hence we have proved that nullf = U, as desired. O

Question 2. Let C*°(R) denote the vector space (over R) of infinitely-differentiable
real-valued functions f : R — R.

a) Let U denote the subspace of C*°(R) consisting of functions which vanish at 42
and at 7

U={feC™R)| f(42) =0, f(m) = 0}

Prove that the quotient vector space C*°(R)/U is finite dimensional. What is
its dimension?
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b) Let W denote the subspace of C*°(R) consisting of functions which “vanish to
second order at 0”:
W ={f € C*(R) | f(0) =0, f(0) =0, f(0) = 0}
Prove that the quotient vector space C*°(R)/W is finite dimensional, and find
a basis for C*°(R)/W.

Proof. a) Define the linear transformation 7': C*(R) — R? by T(f) = (f(42), f(m)).!
The kernel of T is
kerT ={f € C*R)|T(f) =
={f € C*R)|f(2) =0, f(7) = 0}
=U.
The Quotient Isomorphism Theorem (Thm 3.91(d)) thus tells us that T: C>°(R)/U —
Image T is an isomorphism, so we need to understand Image T'.

Choose two functions f, g € C°°(R) that satisfy T'(f) = (1,0) and T'(g) = (0,1),
such as:?

fa) = 5
42 —
g(z) = Yo i

Since

f42) =1 f(m) =0

9(42) =0 g(r) =1
we have T'(f) = (1,0) and T'(g) = (0,1). This shows that (1,0) € Image T and
(0,1) € Image T'. Since these are the standard basis vectors e; = (1,0) and ey =
(0,1), they span R?, and so Image T' = R2.

Since ImageT = R?, the Quotient Isomorphism Theorem (Thm 3.91(d)) states
that T: C>*°(R)/U — R? is an isomorphism. Since C*°(R)/U and R? are isomor-
phic, they have the same dimension: therefore C*°(R)/U has dimension 2.

b) Define the linear transformation S: C*(R) — R? by *

The kernel of S is
ker S ={f € C*(R)|S(f) =0}

={f € C*®R)[f(0) =0,f'(0) =0, f7(0) = 0}
=W

The Quotient Isomorphism Theorem (Thm 3.91(d)) thus tells us that S: C>(R)/W —
Image S is an isomorphism, so we need to understand Image S. Consider the fol-
lowing functions in C*°(R):
i=1
f2 =z—1

IFor example, if f(z) = z then T(f) = (42,7); if g(z) = e then T(g) = (e*2,e™), if h(z) =
sinz then T'(h) = (sin42,sinw), etc.

2Mamy other choices are possible.

3For example, if f(z) = 22 then S(f) = (0,0,2); if g(x) = € then S(g) = (1,1,1); if h(z) =
sinz then S(h) = (0, 1,0), etc.



fa=a*—-2x+1
These three functions are infinitely differentiable, so they are in C°°(R). Their only
important properties are that

[1(0)=1 f1(0)=0 [f(0)=0

LO)=0 f0)=1 f0)=0

fs(0)=0 f3(0)=0 f5(0)=1
This implies that

S(fi) =e1, S(f2) =ea, S(fs)=es.

Therefore e;, ez, and es are all in ImageS. Since ey, ez, e3 is a basis for R3, this
shows that ImageS = R3.

Since ImageS = R3, the Quotient Isomorphism Theorem (Thm 3.91(d)) states
that S: C*°(R)/W — R? is an isomorphism. Since C*°(R)/W and R? are isomor-
phic, they have the same dimension: therefore C*°(R)/W has dimension 3.

Consider the elements v1 = f1 + W, vo = fo + W, and v3 = f3 + W in the
quotient space C°°(R)/W. We will show they are linearly independent. Assume
that avy 4+ bvg + cvz = 0 in C*°(R)/W. The above formula shows that

S(w)=S(fr+W)=e1, S(wa)=S(fa+W)=ez, S(vs)=S(fs+W)=es.

Since S is linear, S(avy + bvg + cv3) = aey + bea + cez. But ey, e, e3 are linearly
independent, so we conclude that a = b = ¢ = 0. This shows that vy, vs,v3 are
linearly independent in the quotient space C*°(R)/W. Since this vector space has
dimension 3, this implies that vy, ve,v3 is a basis for C*°(R)/W. O

Question 3. Let C*°(R,C) be the vector space (over C) of complex-valued func-
tions f : R — C that are infinitely differentiable. Let V' be the space of functions
f € C=(R,C) satisfying the equation f” = —f :

V={feC*RC)|f"=~f}

e Assume without proof that dim V' < 2. Prove that the functions sinz and
cosx both lie in V', and moreover that (sinx,cosz) form a basis for V.

e Let D be the operator on C°(R, C) defined by D(f) = f'. Prove that V is
an invariant subspace for D.

e Now consider D € £(V') as an operator on V. Find a basis for V' consisting
of eigenvectors for D. What are their eigenvalues?

Proof. e Consider the functions sinx and cosz. Then sin”(z) = (cos/(z)) =
—sin(x) and cos”(z) = (—sin(z))’ = — cos(x). Thus sin(x),cos(z) € V.

To show that (sinz, cosx) form a basis for V, first we show that they are
linearly independent. So suppose there are numbers a,b € C s.t. asin(x) +
bcos(x) = 0. Then, plugging in @ = 0, we get b = 0 since sin(0) = 0 and
cos(0) = 1. Plugging in = = 7/2, we get a = 0 since sin(7/2) = 1 and
cos(m/2) = 0. Thus sin(z) and cos(x) are linearly independent.

Since sin(x) and cos(x) are linearly independent, the dimension of V'
must be at least 2. Since we were given that dimV is at most 2, we
conclude that dim V' = 2. Thus sin(z) and cos(x) form a basis for V.

e Let D be the operator on C(R, C) defined by D(f) = f’. To show that V/
is invariant under D, we must show that if f € V then Df € V. So suppose
that f € V, and set g = D(f). Then f” = —f. Differentiating both sides



of this equation, we get that f"”/ = —f’, or in other words ¢ = —g. Thus
g = D(f) lies in V. Therefore, V is invariant under D.
Now consider D € L£(V') as an operator on V. Find a basis for V' consisting
of eigenvectors for D. What are their eigenvalues?

The properties (sinz)’ = cosz and (cosx)’ = —sinx mean that

D(asin(z) + beos(z)) = —bsin(x) + acos(z).
We have seen a similar linear transformation in class, namely
T:R?> - R? T(z,y) = (—y,x).

However that operator has mo eigenvalues because it is on a real vector
space, and its minimal polynomial p(x) = 22 + 1 has no real roots. In con-
trast, here we are working over the complex numbers, so we might imagine
that the eigenvalues would be the complex roots of p(z) = 2% + 1, namely
i and —1.

The eigenvalue equation D (asin(z) 4 bcos(z)) = i(asin(z) + beos(z))
can be solved to find

f = cos(x) + isin(x)
and similarly D (asin(z)+bcos(z)) = —i(asin(z) + bcos(z)) can be solved
to find
g = cos(z) — isin(zx).
Then we can check that
D(f) = —sin(x) 4+ icos(x) = if
and
D(g) = —sin(x) — icos(z) = —ig.
Thus f and g are eigenvectors for D with eigenvalues ¢ and —i. Since they
have distinct eigenvalues, Theorem 5.6 in the book implies that they are
linearly independent. Since dim V' < 2, any spanning list of length 2 forms
a basis for V.
Remark by TC: you have probably learned what the eigenvectors of
D as an operator on C*°(R,C) are in a previous class. For the eigenvalue
a, the eigenvalue equation D(f) = af becomes the differential equation

/' = af, and you may already know that the solutions to this equation are
(constant multiples of)

flz) = e,

since the chain rule implies that
(eaw)l =q- 6&(1?

But the functions f and g you found above are eigenvectors with eigenvalues
a = i and a = —i, so they must be of the form Ce’ and Ce™ ™! We
can find the constants by plugging in 0, since Ce?? = C. By plugging in
£(0) = cos(0)+isin0 =144¢-0 =1 and g(0) = cos(0) —isin0=1—:-0=1
we see that the constants are 1 for both f and g. Therefore you have proved
the famous formula of Euler:

e =cosx+1i-sinx e " =cosz —1-sinz.



10

In particular, if we evaluate the first eigenfunction at = we get
e =cosm+i-sinm=—141i-0,
or in other words
e = —1.



