Solutions by Guanyang Wang, with edits by Tom Church. Exercises from the book.

**Exercise 3.E.13** Suppose U is a subspace of V and  $v_1 + U, ..., v_m + U$  is a basis of V/U and  $u_1, ..., u_n$  is a basis of U. Prove that  $v_1, ..., v_m, u_1, ..., u_n$  is a basis of V.

*Proof.* First we prove that  $v_1, ..., v_m, u_1, ..., u_n$  is a linearly independent list in V. Suppose that  $a_1, ..., a_m, b_1, ..., b_n \in \mathbb{F}$  are scalars such that

$$a_1v_1 + \dots + a_mv_m + b_1u_1 + \dots + b_nu_n = 0$$

Thus  $a_1v_1 + ... + a_mv_m = -(b_1u_1 + ... + b_nu_n) \in U$ , which implies that

$$a_1(v_1 + U) + \dots + a_m(v_m + U) = 0 + U$$

Because  $v_1 + U, ..., v_m + U$  is a basis of V/U, this implies  $a_1 = ... = a_m = 0$ . Therefore we have

$$b_1 u_1 + \dots + b_n u_n = 0$$

Since  $u_1, ..., u_n$  is a basis of V, this implies  $b_1 = ... = b_n = 0$ . Thus  $a_1 = ... = a_m = b_1 = ... = b_n = 0$ , which implies that  $v_1, ..., v_m, u_1, ..., u_n$  is a linearly independent list in V.

Then we prove that  $v_1, ..., v_m, u_1, ..., u_n$  is a basis of V. Now suppose  $v \in V$ . Because the list  $v_1 + U, ..., v_m + U$  spans V/U, there exist  $c_1, ..., c_m \in \mathbb{F}$  such that

$$v + U = c_1(v_1 + U) + \dots + c_m(v_m + U)$$

Thus

$$v - c_1 v_1 - \dots - c_m v_m \in U$$

Because the list  $u_1, ..., u_n$  spans V/U, there exist  $d_1, ..., d_n \in \mathbb{F}$  such that

$$v - c_1 v_1 - \dots - c_m v_m = d_1 u_1 + \dots + d_n u_n$$

Hence

$$v = c_1 v_1 + \dots + c_m v_m + d_1 u_1 + \dots + d_n u_n.$$

Then the list  $v_1, ..., v_m, u_1, ..., u_n$  spans V and hence is a basis of V, as desired.

**Exercise 3.F.7** Suppose m is a positive integer. Show that the dual basis of the basis  $1, x, ..., x^m$  of  $\mathcal{P}_m(\mathbb{R})$  is  $\varphi_0, \varphi_1, ..., \varphi_m$ , where  $\varphi_j(p) = \frac{p^{(j)}(0)}{j!}$ . Here  $p^{(j)}$  denotes the  $j^{\text{th}}$  derivative of p, with the understanding that the  $0^{\text{th}}$  derivative of p is p.

*Proof.* From Proposition 3.98 we know that the dual basis is a basis of dual space. By definition of dual basis (3.96), we just need to check if

(0.1) 
$$\varphi_j(x^k) = \begin{cases} 1 & (j=k) \\ 0 & (j \neq k) \end{cases}$$

Note that  $\varphi_j(x^k) = \frac{(x^k)^{(j)}(0)}{j!}$ , hence if j = k,  $\varphi_j(x^k) = 1$ , if  $j \neq k$ ,  $\varphi_j(x^k) = 0$ . Therefore we know that  $\varphi_0, ..., \varphi_m$  is the dual basis of  $\mathcal{P}_m(\mathbb{R})$ .

**Exercise 3.F.8** Suppose m is a positive integer.

- (a) Show that  $1, x 5, ..., (x 5)^m$  is a basis of  $\mathcal{P}_m(\mathbb{R})$ .
- (b) What is the dual basis of the basis in part(a)?

*Proof.* (a) Define  $\varphi_0, \varphi_1, ..., \varphi_m \in (\mathcal{P}_m(\mathbb{R}))'$  by

$$\varphi_j(p) = \frac{p^{(j)}(5)}{j!}.$$

So suppose  $a_0, ..., a_m \in \mathbb{F}$  and

$$a_0 + a_1(x-5) + \dots + a_m(x-5)^m = 0.$$

Then for j = 0, 1, ..., m, we have

$$a_i = \varphi_i(a_0 + a_1(x - 5) + \dots + a_m(x - 5)^m) = \varphi_i(0) = 0$$

Thus  $a_0 = a_1 = ... = a_m = 0$ . Hence  $1, x-5, ..., (x-5)^m$  is a linearly independent list in  $\mathcal{P}_m(\mathbb{R})$  of length m+1, which equals the dimension of  $\mathcal{P}_m(\mathbb{R})$ . Thus  $1, x-5, ..., (x-5)^m$  is a basis of  $\mathcal{P}_m(\mathbb{R})$  (by 2.39).

(b) Let  $\varphi_0, \varphi_1, ..., \varphi_m \in (\mathcal{P}_m(\mathbb{R}))'$  be defined as in part (a). Then we have

(0.2) 
$$\varphi_j((x-5)^k) = \begin{cases} 1 \ (j=k) \\ 0 \ (j \neq k) \end{cases}$$

From Proposition 3.98 we know that  $\varphi_0, \varphi_1, ...., \varphi_m$  is the dual basis of the basis in part (a).

**Exercise 3.F.15** Suppose W is finite-dimensional and  $T \in \mathcal{L}(V, W)$ . Prove that T' = 0 if and only if T = 0.

*Proof.* First suppose T=0. For any  $\varphi \in W'$ , then  $T'(\varphi)=\varphi \circ T=0$ , and thus T'=0.

To prove the other direction, now suppose T'=0. Thus

$$0 = T'(\varphi) = \varphi \circ T$$

for every  $\varphi \in W'$ .

If  $T \neq 0$ , we can find some  $v \in V$  such that  $Tv = w \neq 0$ . We can extend Tv to a basis  $Tv, w_2, ..., w_n$  of W. Now Proposition 3.5 implies that there exists a  $\tilde{\varphi}$  such that  $\tilde{\varphi}(Tv) = 1$  (and  $\tilde{\varphi}(v_j)$  equals whatever we want for j = 2, 3, ..., n). Therefore  $(T'(\tilde{\varphi}))(v) = \tilde{\varphi}(Tv) = 1$ . Which contradicts the fact that  $0 = T'(\varphi) = \varphi \circ T$  for every  $\varphi \in W'$ . So we must have T = 0, as desired.

**Exercise 5.A.12** Define  $T \in \mathcal{L}(\mathcal{P}_4(\mathbb{R}))$  by

$$(Tp)(x) = xp'(x)$$

for all  $x \in \mathbb{R}$ . Find all eigenvalues and eigenvectors of T.

Answer. A typical element p of  $\mathcal{P}_4(\mathbb{R})$  is given by expression

$$p(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4,$$

where  $a_0, ..., a_4 \in \mathbb{R}$ .

With that expression, the eigenvalue-eigenvector equation  $Tp = \lambda p$ , which in this case is  $xp'(x) = \lambda p(x)$ , becomes

$$a_1x + 2a_2x^2 + 3a_3x^3 + 4a_4x^4 = \lambda(a_0 + a_1x + a_2x^2 + a_3x^3 + a_4x^4)$$

Comparing coefficients in the equation above, we see that the eigenvalue-eigenvector equation is equivalent to the system of equations

$$0 = \lambda a_0$$

$$a_1 = \lambda a_1$$

$$2a_2 = \lambda a_2$$

$$3a_3 = \lambda a_3$$

$$4a_4 = \lambda a_4$$
.

From the equations above, we can see that if  $j \in \{0, 1, 2, 3, 4\}$  and  $a_j \neq 0$ , then we have  $\lambda = j$  and  $a_k = 0$  for any  $k \neq j$ . Thus the eigenvalue of T are 0, 1, 2, 3, 4 and the corresponding eigenvectors are of the form  $c, cx, cx^2, cx^3, cx^4$ , where  $c \in \mathbb{R}$  and  $c \neq 0$ .

**Exercise 5.A.15** Suppose  $T \in \mathcal{L}(V)$ . Suppose  $S \in \mathcal{L}(V)$  is invertible

- (a) Prove that T and  $S^{-1}TS$  have the same eigenvalues.
- (b) What is the relationship between the eigenvectors of T and the eigenvectors of  $S^{-1}TS$  ?

Answer. Suppose  $v \in V$  and  $\lambda \in \mathbb{F}$ . Then we have

$$Tv = \lambda v \iff (S^{-1}TS)(S^{-1}v) = \lambda S^{-1}v$$

This is because if  $Tv = \lambda v$ , then  $(S^{-1}TS)(S^{-1}v) = S^{-1}Tv = \lambda S^{-1}v$ , on the other hand, if  $(S^{-1}TS)(S^{-1}v) = \lambda S^{-1}v$ , then  $\lambda v = \lambda S(S^{-1}v) = S((S^{-1}TS)(S^{-1}v)) = Tv$ .

Thus we see that T and  $S^{-1}TS$  have the same eigenvalues, and furthermore, v is an eigenvector of T if and only if  $S^{-1}v$  is an eigenvector of  $S^{-1}TS$ .

**Exercise 5.A.18** Show that the operator  $T \in \mathcal{L}(\mathbb{C}^{\infty})$  defined by

$$T(z_1, z_2, \dots) = (0, z_1, z_2, \dots)$$

has no eigenvalues.

Answer. The eigenvalue-eigenvector equation  $Tz = \lambda z$  for this operator is

$$(0, z_1, z_2, \dots) = (\lambda z_1, \lambda z_2, \lambda z_3, \dots)$$

which is equivalent to

$$0 = \lambda z_1, z_1 = \lambda z_2, z_2 = \lambda z_3, \dots$$

The first equation implies  $z_1=0$  or  $\lambda=0$ . If  $\lambda=0$ , then the rest of the equations implies  $0=z_1=z_2=...$ , which eliminates 0 as the possible eigenvalue. If  $\lambda\neq 0$ , then  $z_1=0$ , then the rest of the equations also implies  $z_2=z_3=...=0=z_1$ ,

which eliminates all nonzero complex numbers  $\lambda$  as possible eigenvalues. Thus we conclude that T has no eigenvalues.

**Exercise 5.A.20** Find all eigenvalues and eigenvectors of the backward shift operator  $T \in \mathcal{L}(\mathbb{F}^{\infty})$  defined by

$$T(z_1, z_2, z_3, \dots) = (z_2, z_3, \dots)$$

Answer. We will show that all  $\lambda \in \mathbb{F}$  are eigenvalues of T, and the set of eigenvectors of T with eigenvalue  $\lambda$  is the set  $V_{\lambda} = \{(z, \lambda z, \lambda^2 z, \dots) \mid z \in \mathbb{F}\}.$ 

First we show that if v is an eigenvector of T, then  $v \in V_{\lambda}$  for some  $\lambda$ . That is, we show that  $v = (z, \lambda z, \lambda^2 z, \ldots)$  for some z and some  $\lambda$ . Suppose  $v = (z_1, z_2, z_3, \ldots)$  is an eigenvector for T with eigenvalue  $\lambda$ . Then the eigenvalue equation  $T(v) = \lambda v$  takes the form

$$(\lambda z_1, \lambda z_2, \lambda z_3, \dots) = (z_2, z_3, z_4, \dots)$$

Since two vectors in  $\mathbb{F}^{\infty}$  are equal if and only if their terms are all equal, this yields an infinite sequence of equations:

$$z_2 = \lambda z_1, \quad z_3 = \lambda z_2, \dots, \quad z_n = \lambda z_{n-1}, \dots$$

From this, we can repeatedly substitute  $z_n = \lambda z_{n-1} = \lambda^2 z_{n-2} = \dots$ , so in fact (by a simple induction)

$$z_n = \lambda^{n-1} z_1$$

So every eigenvector v with eigenvalue  $\lambda$  is of the form  $v=(z_1,\lambda z_1,\lambda^2 z_1,\ldots)$ . Furthermore, for any  $z\in\mathbb{F}$ , if we set  $z_1=z,\,z_2=\lambda z,\,\ldots,\,z_n=\lambda^n z$ , the vector

$$v = (z, \lambda z, \lambda^2 z, \ldots)$$

satisfies the equations above and is an eigenvector of T with eigenvalue  $\lambda$  Therefore, the eigenspace  $V_{\lambda}$  of T with eigenvalue  $\lambda$  is the set of vectors

$$V_{\lambda} = \{(z, \lambda z, \lambda^2 z, \dots) \mid z \in \mathbb{F}\}.$$

Finally, we show that every single  $\lambda \in \mathbb{F}$  occurs as an eigenvalue of T. Given  $\lambda \in \mathbb{F}$ , consider the vector  $v = (1, \lambda, \lambda^2, \dots)$ . Applying T to v, we get

$$T(v) = (1, \lambda, \lambda^2, \dots) = (\lambda, \lambda^2, \lambda^3, \dots)$$
$$= \lambda(1, \lambda, \lambda^2, \dots)$$

Thus  $T(v) = \lambda v$  for this vector. We have thus shown that all  $\lambda \in \mathbb{F}$  are eigenvalues for T, and the eigenspace for  $\lambda$  is  $V_{\lambda} = \{(z, \lambda z, \lambda^2 z, \dots) \mid z \in \mathbb{F}\}$ .

**Exercise 5.A.22** Suppose  $T \in \mathcal{L}(V)$  and there exist nonzero vectors v and w in V such that

$$Tv = 3w$$
 and  $Tw = 3v$ .

Prove that 3 or -3 is an eigenvalue of T.

*Proof.* The equations above imply that

$$T(v+w) = 3(v+w)$$
 and  $T(v-w) = -3(v-w)$ .

The vectors v+w and v-w cannot both be 0 (because otherwise we would have v=w=0). Thus the equations above imply that 3 or -3 is an eigenvalue of T.  $\square$ 

**Exercise 5.A.30** Suppose  $T \in \mathcal{L}(\mathbb{R}^3)$  and 4, -5 and  $\sqrt{7}$  are the eigenvalues of T. Prove that there exists  $x \in \mathbb{R}^3$  such that  $Tx - 9x = (4, -5, \sqrt{7})$ 

*Proof.* Since T has at most 3 distinct eigenvalues (by 5.13), the hypothesis imply that 9 is not an eigenvalue of T. Thus T-9I is surjective. In particular, there exists  $x \in \mathbb{R}^3$  such that  $(T-9I)x = Tx - 9x = (4, -5, \sqrt{7})$ . (The entries of this particular vector are a red herring: we could just as easily find a  $y \in \mathbb{R}^3$  such that Ty - 9y = (86, 75, 309) by the same argument.)

**Exercise 5.A.32** Suppose  $\lambda_1, ..., \lambda_n$  is a list of distinct real numbers. Prove that the list  $e^{\lambda_1 x}, ..., e^{\lambda_n x}$  is linearly independent in the vector space of real-valued functions on  $\mathbb{R}$ .

*Proof.* Let  $V = \text{span}(e^{\lambda_1 x}, ..., e^{\lambda_n x})$ , and define  $T \in \mathcal{L}(V)$  by Tf = f'. This linear map does map V into V because

$$T(e^{\lambda_j x}) = \lambda_j e^{\lambda_j x}.$$

This equation above also shows that for each j=1,...,n, the vector  $e^{\lambda_j x}$  is an eigenvector of T with eigenvalue  $\lambda_j$ . Thus Proposition 5.10 implies that  $e^{\lambda_1 x},...,e^{\lambda_n x}$  is linearly independent.

**Exercise 5.B.1** Suppose  $T \in \mathcal{L}(V)$  and there exists a positive integer n such that  $T^n = 0$ .

(a) Prove that I - T is invertible and that

$$(I-T)^{-1} = I + T + \dots + T^{n-1}$$

(b) Explain how you would guess the formula above.

*Proof.* We have

$$(I-T)(I+T+...+T^{n-1})$$
  
=  $I+T+...+T^{n-1}-T-T^2-...-T^{n-1}-T^n$   
=  $I-T^n=I$ 

since  $T^n = 0$ .

Similarly, we have

$$\begin{split} (I+T+\ldots+T^{n-1})(I-T) \\ &= I+T+\ldots+T^{n-1}-T-T^2-\ldots-T^{n-1}-T^n \\ &= I-T^n=I \end{split}$$

Therefore (I-T) is invertible and  $(I-T)^{-1} = I + T + ... + T^{n-1}$ .

(b) If  $r \in \mathbb{C}$  and |r| < 1, then we might be familiar with the usual formula for the sum of a geometric series:

$$(1-r)^{-1} = 1 + r + r^2 + \dots + r^n + r^{n+1} + \dots$$

If we guess that in the formula above, we can replace 1 with I and r with T, then we would have

$$(I-T)^{-1} = I + T + \dots + T^{n-1}$$

where the sum becomes finite because  $0 = T^n = T^{n+1} = \cdots$ .

**Exercise 5.B.2** Suppose  $T \in \mathcal{L}(V)$  and (T-2I)(T-3I)(T-4I) = 0. Suppose  $\lambda$  is an eigenvalue of T. Prove that  $\lambda = 2$  or  $\lambda = 3$  or  $\lambda = 4$ .

*Proof.* Let  $v \in V$  be a eigenvector of T corresponding to the eigenvalue  $\lambda$ . Then

$$0 = (T - 2I)(T - 3I)(T - 4I)v = (\lambda - 2)(\lambda - 3)(\lambda - 4)v.$$

Since  $v \neq 0$ , the equation above implies that

$$(\lambda - 2)(\lambda - 3)(\lambda - 4) = 0$$

Thus  $\lambda = 2$  or  $\lambda = 3$  or  $\lambda = 4$ , as desired.

**Question 1.** Suppose U is a subspace of V such that  $\dim V/U=1$ . Prove that there exists a linear functional  $f\in V'$  such that

$$\operatorname{null} f = U$$

*Proof.* Since V/U is a 1-dimensional linear space, we can construct an arbitrary nonzero linear map  $g \in (V/U)'$ . Definition 3.88 says we have a quotient map  $\pi \colon V \to V/U$  which sends  $v \in V$  to  $v + U \in V/U$ . Now let  $f = g \circ \pi$ . We claim that  $\operatorname{null} f = U$ 

On the one hand, for any  $u \in U$ ,  $\pi(u) = 0 + U = 0$  in V/U, so we have  $f(u) = g(\pi(u)) = g(0) = 0$ , therefore null  $f \supset U$ .

On the other hand, since  $g \neq 0$ , we can find  $v+U \in V/U$  such that  $g(v+U) \neq 0$ , so  $f(v) = g(\pi(v)) = g(v+U) \neq 0$ . Since  $\dim V/U = 1$ , v+U is the basis of V/U. Therefore for any  $w \notin U$ , we can find a non-zero  $\lambda \in \mathbb{F}$  and such that  $\pi(w) = w + U = \lambda(v+U) = \lambda v + U$ . So we have

$$f(w) = g(\pi(w))$$

$$= g(w + U)$$

$$= g(\lambda(v + U))$$

$$= \lambda g(v + U) \neq 0$$

because  $\lambda \neq 0$  and  $g(v+U) \neq 0$ . So null  $f \subset U$ .

Hence we have proved that null f = U, as desired.

**Question 2.** Let  $C^{\infty}(\mathbb{R})$  denote the vector space (over  $\mathbb{R}$ ) of infinitely-differentiable real-valued functions  $f: \mathbb{R} \to \mathbb{R}$ .

a) Let U denote the subspace of  $C^{\infty}(\mathbb{R})$  consisting of functions which vanish at 42 and at  $\pi$ :

$$U = \{ f \in C^{\infty}(\mathbb{R}) \mid f(42) = 0, f(\pi) = 0 \}$$

Prove that the quotient vector space  $C^{\infty}(\mathbb{R})/U$  is finite dimensional. What is its dimension?

b) Let W denote the subspace of  $C^{\infty}(\mathbb{R})$  consisting of functions which "vanish to second order at 0":

$$W = \{ f \in C^{\infty}(\mathbb{R}) \mid f(0) = 0, f'(0) = 0, f''(0) = 0 \}$$

Prove that the quotient vector space  $C^{\infty}(\mathbb{R})/W$  is finite dimensional, and find a basis for  $C^{\infty}(\mathbb{R})/W$ .

*Proof.* a) Define the linear transformation  $T: C^{\infty}(\mathbb{R}) \to \mathbb{R}^2$  by  $T(f) = (f(42), f(\pi))^{1}$ . The kernel of T is

$$\ker T = \{ f \in C^{\infty}(\mathbb{R}) \mid T(f) = 0 \}$$

$$= \{ f \in C^{\infty}(\mathbb{R}) \mid f(2) = 0, f(7) = 0 \}$$

$$= U.$$

The Quotient Isomorphism Theorem (Thm 3.91(d)) thus tells us that  $\overline{T}: C^{\infty}(\mathbb{R})/U \to \text{Image } T$  is an isomorphism, so we need to understand Image T.

Choose two functions  $f,g\in C^\infty(\mathbb{R})$  that satisfy T(f)=(1,0) and T(g)=(0,1), such as:<sup>2</sup>

$$f(x) = \frac{x - \pi}{42 - \pi}$$
$$g(x) = \frac{42 - x}{42 - \pi}$$

Since

$$f(42) = 1$$
  $f(\pi) = 0$   
 $g(42) = 0$   $g(\pi) = 1$ 

we have T(f) = (1,0) and T(g) = (0,1). This shows that  $(1,0) \in \text{Image } T$  and  $(0,1) \in \text{Image } T$ . Since these are the standard basis vectors  $e_1 = (1,0)$  and  $e_2 = (0,1)$ , they span  $\mathbb{R}^2$ , and so Image  $T = \mathbb{R}^2$ .

Since Image  $T = \mathbb{R}^2$ , the Quotient Isomorphism Theorem (Thm 3.91(d)) states that  $\overline{T}: C^{\infty}(\mathbb{R})/U \to \mathbb{R}^2$  is an isomorphism. Since  $C^{\infty}(\mathbb{R})/U$  and  $\mathbb{R}^2$  are isomorphic, they have the same dimension: therefore  $C^{\infty}(\mathbb{R})/U$  has dimension 2.

b) Define the linear transformation  $S: C^{\infty}(\mathbb{R}) \to \mathbb{R}^3$  by <sup>3</sup>

$$S(f) = (f(0), f'(0), f''(0)).$$

The kernel of S is

$$\ker S = \{ f \in C^{\infty}(\mathbb{R}) \mid S(f) = 0 \}$$

$$= \{ f \in C^{\infty}(\mathbb{R}) \mid f(0) = 0, f'(0) = 0, f''(0) = 0 \}$$

$$- W$$

The Quotient Isomorphism Theorem (Thm 3.91(d)) thus tells us that  $\overline{S}: C^{\infty}(\mathbb{R})/W \to$  Image S is an isomorphism, so we need to understand Image S. Consider the following functions in  $C^{\infty}(\mathbb{R})$ :

$$f_1 = 1$$
$$f_2 = x - 1$$

<sup>&</sup>lt;sup>1</sup>For example, if f(x) = x then  $T(f) = (42, \pi)$ ; if  $g(x) = e^x$  then  $T(g) = (e^{42}, e^{\pi})$ , if  $h(x) = \sin x$  then  $T(h) = (\sin 42, \sin \pi)$ , etc.

<sup>&</sup>lt;sup>2</sup>Many other choices are possible.

<sup>&</sup>lt;sup>3</sup>For example, if  $f(x) = x^2$  then S(f) = (0,0,2); if  $g(x) = e^x$  then S(g) = (1,1,1); if  $h(x) = \sin x$  then S(h) = (0,1,0), etc.

$$f_3 = x^2 - 2x + 1$$

These three functions are infinitely differentiable, so they are in  $C^{\infty}(\mathbb{R})$ . Their only important properties are that

$$f_1(0) = 1$$
  $f'_1(0) = 0$   $f''_1(0) = 0$   
 $f_2(0) = 0$   $f'_2(0) = 1$   $f''_2(0) = 0$   
 $f_3(0) = 0$   $f'_3(0) = 0$   $f''_3(0) = 1$ 

This implies that

$$S(f_1) = e_1, \quad S(f_2) = e_2, \quad S(f_3) = e_3.$$

Therefore  $e_1$ ,  $e_2$ , and  $e_3$  are all in ImageS. Since  $e_1$ ,  $e_2$ ,  $e_3$  is a basis for  $\mathbb{R}^3$ , this shows that ImageS =  $\mathbb{R}^3$ .

Since Image  $S=\mathbb{R}^3$ , the Quotient Isomorphism Theorem (Thm 3.91(d)) states that  $\overline{S}: C^{\infty}(\mathbb{R})/W \to \mathbb{R}^3$  is an isomorphism. Since  $C^{\infty}(\mathbb{R})/W$  and  $\mathbb{R}^3$  are isomorphic, they have the same dimension: therefore  $C^{\infty}(\mathbb{R})/W$  has dimension 3.

Consider the elements  $v_1 = f_1 + W$ ,  $v_2 = f_2 + W$ , and  $v_3 = f_3 + W$  in the quotient space  $C^{\infty}(\mathbb{R})/W$ . We will show they are linearly independent. Assume that  $av_1 + bv_2 + cv_3 = 0$  in  $C^{\infty}(\mathbb{R})/W$ . The above formula shows that

$$\overline{S}(v_1) = \overline{S}(f_1 + W) = e_1, \quad \overline{S}(v_2) = \overline{S}(f_2 + W) = e_2, \quad \overline{S}(v_3) = \overline{S}(f_3 + W) = e_3.$$

Since  $\overline{S}$  is linear,  $\overline{S}(av_1 + bv_2 + cv_3) = ae_1 + be_2 + ce_3$ . But  $e_1, e_2, e_3$  are linearly independent, so we conclude that a = b = c = 0. This shows that  $v_1, v_2, v_3$  are linearly independent in the quotient space  $C^{\infty}(\mathbb{R})/W$ . Since this vector space has dimension 3, this implies that  $v_1, v_2, v_3$  is a basis for  $C^{\infty}(\mathbb{R})/W$ .

Question 3. Let  $C^{\infty}(\mathbb{R}, \mathbb{C})$  be the vector space (over  $\mathbb{C}$ ) of complex-valued functions  $f: \mathbb{R} \to \mathbb{C}$  that are infinitely differentiable. Let V be the space of functions  $f \in C^{\infty}(\mathbb{R}, \mathbb{C})$  satisfying the equation f'' = -f:

$$V = \{ f \in C^{\infty}(\mathbb{R}, \mathbb{C}) \mid f'' = -f \}$$

- Assume without proof that dim  $V \leq 2$ . Prove that the functions  $\sin x$  and  $\cos x$  both lie in V, and moreover that  $(\sin x, \cos x)$  form a basis for V.
- Let D be the operator on  $\mathbb{C}^{\infty}(\mathbb{R},\mathbb{C})$  defined by D(f)=f'. Prove that V is an invariant subspace for D.
- Now consider  $D \in \mathcal{L}(V)$  as an operator on V. Find a basis for V consisting of eigenvectors for D. What are their eigenvalues?

*Proof.* • Consider the functions  $\sin x$  and  $\cos x$ . Then  $\sin''(x) = (\cos'(x)) = -\sin(x)$  and  $\cos''(x) = (-\sin(x))' = -\cos(x)$ . Thus  $\sin(x), \cos(x) \in V$ .

To show that  $(\sin x, \cos x)$  form a basis for V, first we show that they are linearly independent. So suppose there are numbers  $a, b \in \mathbb{C}$  s.t.  $a\sin(x) + b\cos(x) = 0$ . Then, plugging in x = 0, we get b = 0 since  $\sin(0) = 0$  and  $\cos(0) = 1$ . Plugging in  $x = \pi/2$ , we get a = 0 since  $\sin(\pi/2) = 1$  and  $\cos(\pi/2) = 0$ . Thus  $\sin(x)$  and  $\cos(x)$  are linearly independent.

Since  $\sin(x)$  and  $\cos(x)$  are linearly independent, the dimension of V must be at least 2. Since we were given that  $\dim V$  is at most 2, we conclude that  $\dim V = 2$ . Thus  $\sin(x)$  and  $\cos(x)$  form a basis for V.

• Let D be the operator on  $\mathbb{C}^{\infty}(\mathbb{R},\mathbb{C})$  defined by D(f) = f'. To show that V is invariant under D, we must show that if  $f \in V$  then  $Df \in V$ . So suppose that  $f \in V$ , and set g = D(f). Then f'' = -f. Differentiating both sides

of this equation, we get that f''' = -f', or in other words g'' = -g. Thus g = D(f) lies in V. Therefore, V is invariant under D.

• Now consider  $D \in \mathcal{L}(V)$  as an operator on V. Find a basis for V consisting of eigenvectors for D. What are their eigenvalues?

The properties  $(\sin x)' = \cos x$  and  $(\cos x)' = -\sin x$  mean that

$$D(a\sin(x) + b\cos(x)) = -b\sin(x) + a\cos(x).$$

We have seen a similar linear transformation in class, namely

$$T \colon \mathbb{R}^2 \to \mathbb{R}^2$$
  $T(x,y) = (-y,x).$ 

However that operator has no eigenvalues because it is on a real vector space, and its minimal polynomial  $p(x) = x^2 + 1$  has no real roots. In contrast, here we are working over the *complex numbers*, so we might imagine that the eigenvalues would be the complex roots of  $p(x) = x^2 + 1$ , namely i and -i.

The eigenvalue equation  $D(a\sin(x) + b\cos(x)) = i(a\sin(x) + b\cos(x))$  can be solved to find

$$f = \cos(x) + i\sin(x)$$

and similarly  $D(a\sin(x) + b\cos(x)) = -i(a\sin(x) + b\cos(x))$  can be solved to find

$$q = \cos(x) - i\sin(x)$$
.

Then we can check that

$$D(f) = -\sin(x) + i\cos(x) = if$$

and

$$D(g) = -\sin(x) - i\cos(x) = -ig.$$

Thus f and g are eigenvectors for D with eigenvalues i and -i. Since they have distinct eigenvalues, Theorem 5.6 in the book implies that they are linearly independent. Since dim  $V \leq 2$ , any spanning list of length 2 forms a basis for V.

**Remark by TC:** you have probably learned what the eigenvectors of D as an operator on  $\mathbb{C}^{\infty}(\mathbb{R},\mathbb{C})$  are in a previous class. For the eigenvalue a, the eigenvalue equation D(f)=af becomes the differential equation f'=af, and you may already know that the solutions to this equation are (constant multiples of)

$$f(x) = e^{ax},$$

since the chain rule implies that

$$(e^{ax})' = a \cdot e^{ax}$$
.

But the functions f and g you found above are eigenvectors with eigenvalues a=i and a=-i, so they must be of the form  $Ce^{ix}$  and  $Ce^{-ix}$ ! We can find the constants by plugging in 0, since  $Ce^{i\cdot 0}=C$ . By plugging in  $f(0)=\cos(0)+i\sin 0=1+i\cdot 0=1$  and  $g(0)=\cos(0)-i\sin 0=1-i\cdot 0=1$  we see that the constants are 1 for both f and g. Therefore you have proved the famous formula of Euler:

$$e^{ix} = \cos x + i \cdot \sin x$$
  $e^{-ix} = \cos x - i \cdot \sin x$ .

In particular, if we evaluate the first eigenfunction at  $\pi$  we get

$$e^{i\pi} = \cos \pi + i \cdot \sin \pi = -1 + i \cdot 0,$$

or in other words

$$e^{i\pi} = -1.$$