
Math 113 Homework 4 Solutions

Solutions by Guanyang Wang, with edits by Tom Church.
Exercises from the book.
Exercise 3.E.13 Suppose U is a subspace of V and v1 +U, ..., vm +U is a basis

of V/U and u1, ..., un is a basis of U . Prove that v1, ..., vm, u1, ..., un is a basis of
V .

Proof. First we prove that v1, ..., vm, u1, ..., un is a linearly independent list in V .
Suppose that a1, ..., am, b1, ..., bn ∈ F are scalars such that

a1v1 + ...+ amvm + b1u1 + ...+ bnun = 0

Thus a1v1 + ...+ amvm = −(b1u1 + ...+ bnun) ∈ U , which implies that

a1(v1 + U) + ...+ am(vm + U) = 0 + U

Because v1 + U, ..., vm + U is a basis of V/U , this implies a1 = ... = am = 0.
Therefore we have

b1u1 + ...+ bnun = 0

Since u1, ..., un is a basis of V , this implies b1 = ... = bn = 0. Thus a1 =
... = am = b1 = ... = bn = 0, which implies that v1, ..., vm, u1, ..., un is a linearly
independent list in V .

Then we prove that v1, ..., vm, u1, ..., un is a basis of V . Now suppose v ∈ V .
Because the list v1 + U, ..., vm + U spans V/U , there exist c1, ..., cm ∈ F such that

v + U = c1(v1 + U) + ...+ cm(vm + U)

Thus
v − c1v1 − ...− cmvm ∈ U

Because the list u1, ..., un spans V/U , there exist d1, ..., dn ∈ F such that

v − c1v1 − ...− cmvm = d1u1 + ...+ dnun.

Hence
v = c1v1 + ...+ cmvm + d1u1 + ...+ dnun.

Then the list v1, ..., vm, u1, ..., un spans V and hence is a basis of V , as desired.
�

Exercise 3.F.7 Suppose m is a positive integer. Show that the dual basis of

the basis 1, x, ..., xm of Pm(R) is ϕ0, ϕ1, ..., ϕm, where ϕj(p) = p(j)(0)
j! . Here p(j)

denotes the jth derivative of p, with the understanding that the 0th derivative of p
is p.

Proof. From Proposition 3.98 we know that the dual basis is a basis of dual space.
By definition of dual basis (3.96), we just need to check if

(0.1) ϕj(x
k) =

{
1 (j = k)

0 (j 6= k)

Note that ϕj(x
k) = (xk)(j)(0)

j! , hence if j = k, ϕj(x
k) = 1, if j 6= k, ϕj(x

k) = 0.

Therefore we know that ϕ0, ..., ϕm is the dual basis of Pm(R).
1
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Exercise 3.F.8 Suppose m is a positive integer.
(a) Show that 1, x− 5, ..., (x− 5)m is a basis of Pm(R).
(b) What is the dual basis of the basis in part(a)?

Proof. (a) Define ϕ0, ϕ1, ...., ϕm ∈ (Pm(R))′ by

ϕj(p) =
p(j)(5)

j!
.

So suppose a0, ..., am ∈ F and

a0 + a1(x− 5) + ...+ am(x− 5)m = 0.

Then for j = 0, 1, ...,m, we have

aj = ϕj(a0 + a1(x− 5) + ...+ am(x− 5)m) = ϕj(0) = 0

.
Thus a0 = a1 = ... = am = 0. Hence 1, x−5, ..., (x−5)m is a linearly independent

list in Pm(R) of length m+ 1, which equals the dimension of Pm(R). Thus 1, x−
5, ..., (x− 5)m is a basis of Pm(R) (by 2.39).

(b) Let ϕ0, ϕ1, ...., ϕm ∈ (Pm(R))′ be defined as in part (a). Then we have

(0.2) ϕj((x− 5)k) =

{
1 (j = k)

0 (j 6= k)

From Proposition 3.98 we know that ϕ0, ϕ1, ...., ϕm is the dual basis of the basis
in part (a). �

Exercise 3.F.15 Suppose W is finite-dimensional and T ∈ L(V,W ). Prove that
T ′ = 0 if and only if T = 0.

Proof. First suppose T = 0. For any ϕ ∈ W ′, then T ′(ϕ) = ϕ ◦ T = 0, and thus
T ′ = 0.

To prove the other direction, now suppose T ′ = 0. Thus

0 = T ′(ϕ) = ϕ ◦ T

for every ϕ ∈W ′.
If T 6= 0, we can find some v ∈ V such that Tv = w 6= 0. We can extend Tv to

a basis Tv,w2, ..., wn of W . Now Proposition 3.5 implies that there exists a ϕ̃ such
that ϕ̃(Tv) = 1 (and ϕ̃(vj) equals whatever we want for j = 2, 3, ..., n). Therefore
(T ′(ϕ̃))(v) = ϕ̃(Tv) = 1. Which contradicts the fact that 0 = T ′(ϕ) = ϕ ◦ T for
every ϕ ∈W ′. So we must have T = 0, as desired. �

Exercise 5.A.12 Define T ∈ L(P4(R)) by

(Tp)(x) = xp′(x)

for all x ∈ R. Find all eigenvalues and eigenvectors of T .
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Answer. A typical element p of P4(R) is given by expression

p(x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4,

where a0, ..., a4 ∈ R.
With that expression, the eigenvalue-eigenvector equation Tp = λp, which in

this case is xp′(x) = λp(x), becomes

a1x+ 2a2x
2 + 3a3x

3 + 4a4x
4 = λ(a0 + a1x+ a2x

2 + a3x
3 + a4x

4)

Comparing coefficients in the equation above, we see that the eigenvalue-eigenvector
equation is equivalent to the system of equations

0 = λa0

a1 = λa1

2a2 = λa2

3a3 = λa3

4a4 = λa4.

From the equations above, we can see that if j ∈ {0, 1, 2, 3, 4} and aj 6= 0, then
we have λ = j and ak = 0 for any k 6= j. Thus the eigenvalue of T are 0, 1, 2, 3, 4
and the corresponding eigenvectors are of the form c, cx, cx2, cx3, cx4, where c ∈ R
and c 6= 0. �

Exercise 5.A.15 Suppose T ∈ L(V ). Suppose S ∈ L(V ) is invertible
(a) Prove that T and S−1TS have the same eigenvalues.
(b) What is the relationship between the eigenvectors of T and the eigenvectors

of S−1TS ?

Answer. Suppose v ∈ V and λ ∈ F. Then we have

Tv = λv ⇐⇒ (S−1TS)(S−1v) = λS−1v

This is because if Tv = λv, then (S−1TS)(S−1v) = S−1Tv = λS−1v, on the
other hand, if (S−1TS)(S−1v) = λS−1v, then λv = λS(S−1v) = S((S−1TS)(S−1v)) =
Tv.

Thus we see that T and S−1TS have the same eigenvalues, and furthermore, v
is an eigenvector of T if and only if S−1v is an eigenvector of S−1TS. �

Exercise 5.A.18 Show that the operator T ∈ L(C∞) defined by

T (z1, z2, . . . ) = (0, z1, z2, . . . )

has no eigenvalues.

Answer. The eigenvalue-eigenvector equation Tz = λz for this operator is

(0, z1, z2, . . . ) = (λz1, λz2, λz3, ...)

which is equivalent to

0 = λz1, z1 = λz2, z2 = λz3, ...

The first equation implies z1 = 0 or λ = 0. If λ = 0, then the rest of the equations
implies 0 = z1 = z2 = ..., which eliminates 0 as the possible eigenvalue. If λ 6= 0,
then z1 = 0, then the rest of the equations also implies z2 = z3 = ... = 0 = z1,
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which eliminates all nonzero complex numbers λ as possible eigenvalues. Thus we
conclude that T has no eigenvalues. �

Exercise 5.A.20 Find all eigenvalues and eigenvectors of the backward shift
operator T ∈ L(F∞) defined by

T (z1, z2, z3, . . . ) = (z2, z3, . . . )

Answer. We will show that all λ ∈ F are eigenvalues of T , and the set of eigenvectors
of T with eigenvalue λ is the set Vλ = {(z, λz, λ2z, . . . ) | z ∈ F}.

First we show that if v is an eigenvector of T , then v ∈ Vλ for some λ. That is, we
show that v = (z, λz, λ2z, . . . ) for some z and some λ. Suppose v = (z1, z2, z3, . . . )
is an eigenvector for T with eigenvalue λ. Then the eigenvalue equation T (v) = λv
takes the form

(λz1, λz2, λz3, . . . ) = (z2, z3, z4, . . . )

Since two vectors in F∞ are equal if and only if their terms are all equal, this yields
an infinite sequence of equations:

z2 = λz1, z3 = λz2, . . . , zn = λzn−1, . . .

From this, we can repeatedly substitute zn = λzn−1 = λ2zn−2 = . . . , so in fact (by
a simple induction)

zn = λn−1z1

So every eigenvector v with eigenvalue λ is of the form v = (z1, λz1, λ
2z1, . . . ).

Furthermore, for any z ∈ F, if we set z1 = z, z2 = λz, . . . , zn = λnz, the vector

v = (z, λz, λ2z, . . .)

satisfies the equations above and is an eigenvector of T with eigenvalue λ Therefore,
the eigenspace Vλ of T with eigenvalue λ is the set of vectors

Vλ =
{

(z, λz, λ2z, . . . )
∣∣ z ∈ F

}
.

Finally, we show that every single λ ∈ F occurs as an eigenvalue of T . Given
λ ∈ F, consider the vector v = (1, λ, λ2, . . . ). Applying T to v, we get

T (v) = (1, λ, λ2, . . . ) = (λ, λ2, λ3, . . . )

= λ(1, λ, λ2, . . . )

Thus T (v) = λv for this vector. We have thus shown that all λ ∈ F are eigenvalues
for T , and the eigenspace for λ is Vλ = {(z, λz, λ2z, . . . ) | z ∈ F}. �

Exercise 5.A.22 Suppose T ∈ L(V ) and there exist nonzero vectors v and w
in V such that

Tv = 3w and Tw = 3v.

Prove that 3 or −3 is an eigenvalue of T .

Proof. The equations above imply that

T (v + w) = 3(v + w) and T (v − w) = −3(v − w).

The vectors v + w and v − w cannot both be 0 (because otherwise we would have
v = w = 0). Thus the equations above imply that 3 or −3 is an eigenvalue of T . �
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Exercise 5.A.30 Suppose T ∈ L(R3) and 4,−5 and
√

7 are the eigenvalues of

T . Prove that there exists x ∈ R3 such that Tx− 9x = (4,−5,
√

7)

Proof. Since T has at most 3 distinct eigenvalues (by 5.13), the hypothesis imply
that 9 is not an eigenvalue of T . Thus T − 9I is surjective. In particular, there
exists x ∈ R3 such that (T − 9I)x = Tx − 9x = (4,−5,

√
7). (The entries of this

particular vector are a red herring: we could just as easily find a y ∈ R3 such that
Ty − 9y = (86, 75, 309) by the same argument.) �

Exercise 5.A.32 Suppose λ1, ..., λn is a list of distinct real numbers. Prove
that the list eλ1x, ..., eλnx is linearly independent in the vector space of real-valued
functions on R.

Proof. Let V = span(eλ1x, ..., eλnx), and define T ∈ L(V ) by Tf = f ′. This linear
map does map V into V because

T (eλjx) = λje
λjx.

This equation above also shows that for each j = 1, ..., n, the vector eλjx is an eigen-
vector of T with eigenvalue λj . Thus Proposition 5.10 implies that eλ1x, ..., eλnx is
linearly independent. �

Exercise 5.B.1 Suppose T ∈ L(V ) and there exists a positive integer n such
that Tn = 0.

(a) Prove that I − T is invertible and that

(I − T )−1 = I + T + ...+ Tn−1

(b) Explain how you would guess the formula above.

Proof. We have

(I − T )(I + T + ...+ Tn−1)

= I + T + ...+ Tn−1 − T − T 2 − ...− Tn−1 − Tn

= I − Tn = I

since Tn = 0.
Similarly, we have

(I + T + ...+ Tn−1)(I − T )

= I + T + ...+ Tn−1 − T − T 2 − ...− Tn−1 − Tn

= I − Tn = I

Therefore (I − T ) is invertible and (I − T )−1 = I + T + ...+ Tn−1.

(b) If r ∈ C and |r| < 1, then we might be familiar with the usual formula for
the sum of a geometric series:

(1− r)−1 = 1 + r + r2 + ...+ rn + rn+1 + ...

If we guess that in the formula above, we can replace 1 with I and r with T ,
then we would have

(I − T )−1 = I + T + ...+ Tn−1
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where the sum becomes finite because 0 = Tn = Tn+1 = · · · . �

Exercise 5.B.2 Suppose T ∈ L(V ) and (T − 2I)(T − 3I)(T − 4I) = 0. Suppose
λ is an eigenvalue of T . Prove that λ = 2 or λ = 3 or λ = 4.

Proof. Let v ∈ V be a eigenvector of T corresponding to the eigenvalue λ. Then

0 = (T − 2I)(T − 3I)(T − 4I)v = (λ− 2)(λ− 3)(λ− 4)v.

Since v 6= 0, the equation above implies that

(λ− 2)(λ− 3)(λ− 4) = 0

Thus λ = 2 or λ = 3 or λ = 4, as desired. �

Question 1. Suppose U is a subspace of V such that dimV/U = 1. Prove that
there exists a linear functional f ∈ V ′ such that

nullf = U

Proof. Since V/U is a 1-dimensional linear space, we can construct an arbitrary
nonzero linear map g ∈ (V/U)′. Definition 3.88 says we have a quotient map
π : V → V/U which sends v ∈ V to v + U ∈ V/U . Now let f = g ◦ π. We claim
that nullf = U

On the one hand, for any u ∈ U , π(u) = 0 + U = 0 in V/U , so we have
f(u) = g(π(u)) = g(0) = 0, therefore nullf ⊃ U .

On the other hand, since g 6= 0, we can find v+U ∈ V/U such that g(v+U) 6= 0,
so f(v) = g(π(v)) = g(v + U) 6= 0. Since dimV/U = 1, v + U is the basis of
V/U . Therefore for any w 6∈ U , we can find a non-zero λ ∈ F and such that
π(w) = w + U = λ(v + U) = λv + U . So we have

f(w) =g(π(w))

=g(w + U)

=g(λ(v + U))

=λg(v + U) 6= 0

because λ 6= 0 and g(v + U) 6= 0. So nullf ⊂ U .
Hence we have proved that nullf = U , as desired. �

Question 2. Let C∞(R) denote the vector space (over R) of infinitely-differentiable
real-valued functions f : R→ R.

a) Let U denote the subspace of C∞(R) consisting of functions which vanish at 42
and at π:

U = {f ∈ C∞(R) | f(42) = 0, f(π) = 0}
Prove that the quotient vector space C∞(R)/U is finite dimensional. What is
its dimension?
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b) Let W denote the subspace of C∞(R) consisting of functions which “vanish to
second order at 0”:

W = {f ∈ C∞(R) | f(0) = 0, f ′(0) = 0, f ′′(0) = 0}
Prove that the quotient vector space C∞(R)/W is finite dimensional, and find
a basis for C∞(R)/W .

Proof. a) Define the linear transformation T : C∞(R)→ R2 by T (f) =
(
f(42), f(π)

)
.1

The kernel of T is

kerT = {f ∈ C∞(R) |T (f) = 0}
= {f ∈ C∞(R) | f(2) = 0, f(7) = 0}
= U.

The Quotient Isomorphism Theorem (Thm 3.91(d)) thus tells us that T : C∞(R)/U →
Image T is an isomorphism, so we need to understand Image T .

Choose two functions f, g ∈ C∞(R) that satisfy T (f) = (1, 0) and T (g) = (0, 1),
such as:2

f(x) =
x− π
42− π

g(x) =
42− x
42− π

Since
f(42) = 1 f(π) = 0
g(42) = 0 g(π) = 1

we have T (f) = (1, 0) and T (g) = (0, 1). This shows that (1, 0) ∈ Image T and
(0, 1) ∈ Image T . Since these are the standard basis vectors e1 = (1, 0) and e2 =
(0, 1), they span R2, and so Image T = R2.

Since ImageT = R2, the Quotient Isomorphism Theorem (Thm 3.91(d)) states
that T : C∞(R)/U → R2 is an isomorphism. Since C∞(R)/U and R2 are isomor-
phic, they have the same dimension: therefore C∞(R)/U has dimension 2.

b) Define the linear transformation S : C∞(R)→ R3 by 3

S(f) =
(
f(0), f ′(0), f ′′(0)

)
.

The kernel of S is

kerS = {f ∈ C∞(R) |S(f) = 0}
= {f ∈ C∞(R) | f(0) = 0, f ′(0) = 0, f ′′(0) = 0}
= W.

The Quotient Isomorphism Theorem (Thm 3.91(d)) thus tells us that S : C∞(R)/W →
Image S is an isomorphism, so we need to understand Image S. Consider the fol-
lowing functions in C∞(R):

f1 = 1

f2 = x− 1

1For example, if f(x) = x then T (f) = (42, π); if g(x) = ex then T (g) = (e42, eπ), if h(x) =
sinx then T (h) = (sin 42, sinπ), etc.

2Many other choices are possible.
3For example, if f(x) = x2 then S(f) = (0, 0, 2); if g(x) = ex then S(g) = (1, 1, 1); if h(x) =

sinx then S(h) = (0, 1, 0), etc.
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f3 = x2 − 2x+ 1

These three functions are infinitely differentiable, so they are in C∞(R). Their only
important properties are that

f1(0) = 1 f ′1(0) = 0 f ′′1 (0) = 0
f2(0) = 0 f ′2(0) = 1 f ′′2 (0) = 0
f3(0) = 0 f ′3(0) = 0 f ′′3 (0) = 1

This implies that

S(f1) = e1, S(f2) = e2, S(f3) = e3.

Therefore e1, e2, and e3 are all in ImageS. Since e1, e2, e3 is a basis for R3, this
shows that ImageS = R3.

Since ImageS = R3, the Quotient Isomorphism Theorem (Thm 3.91(d)) states
that S : C∞(R)/W → R3 is an isomorphism. Since C∞(R)/W and R3 are isomor-
phic, they have the same dimension: therefore C∞(R)/W has dimension 3.

Consider the elements v1 = f1 + W , v2 = f2 + W , and v3 = f3 + W in the
quotient space C∞(R)/W . We will show they are linearly independent. Assume
that av1 + bv2 + cv3 = 0 in C∞(R)/W . The above formula shows that

S(v1) = S(f1 +W ) = e1, S(v2) = S(f2 +W ) = e2, S(v3) = S(f3 +W ) = e3.

Since S is linear, S(av1 + bv2 + cv3) = ae1 + be2 + ce3. But e1, e2, e3 are linearly
independent, so we conclude that a = b = c = 0. This shows that v1, v2, v3 are
linearly independent in the quotient space C∞(R)/W . Since this vector space has
dimension 3, this implies that v1, v2, v3 is a basis for C∞(R)/W . �

Question 3. Let C∞(R,C) be the vector space (over C) of complex-valued func-
tions f : R → C that are infinitely differentiable. Let V be the space of functions
f ∈ C∞(R,C) satisfying the equation f ′′ = −f :

V = {f ∈ C∞(R,C) | f ′′ = −f}

• Assume without proof that dimV ≤ 2. Prove that the functions sinx and
cosx both lie in V , and moreover that (sinx, cosx) form a basis for V .
• Let D be the operator on C∞(R,C) defined by D(f) = f ′. Prove that V is

an invariant subspace for D.
• Now consider D ∈ L(V ) as an operator on V . Find a basis for V consisting

of eigenvectors for D. What are their eigenvalues?

Proof. • Consider the functions sinx and cosx. Then sin′′(x) = (cos′(x)) =
− sin(x) and cos′′(x) = (− sin(x))′ = − cos(x). Thus sin(x), cos(x) ∈ V .

To show that (sinx, cosx) form a basis for V , first we show that they are
linearly independent. So suppose there are numbers a, b ∈ C s.t. a sin(x) +
b cos(x) = 0. Then, plugging in x = 0, we get b = 0 since sin(0) = 0 and
cos(0) = 1. Plugging in x = π/2, we get a = 0 since sin(π/2) = 1 and
cos(π/2) = 0. Thus sin(x) and cos(x) are linearly independent.

Since sin(x) and cos(x) are linearly independent, the dimension of V
must be at least 2. Since we were given that dimV is at most 2, we
conclude that dimV = 2. Thus sin(x) and cos(x) form a basis for V .
• Let D be the operator on C∞(R,C) defined by D(f) = f ′. To show that V

is invariant under D, we must show that if f ∈ V then Df ∈ V . So suppose
that f ∈ V , and set g = D(f). Then f ′′ = −f . Differentiating both sides
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of this equation, we get that f ′′′ = −f ′, or in other words g′′ = −g. Thus
g = D(f) lies in V . Therefore, V is invariant under D.
• Now consider D ∈ L(V ) as an operator on V . Find a basis for V consisting

of eigenvectors for D. What are their eigenvalues?
The properties (sinx)′ = cosx and (cosx)′ = − sinx mean that

D
(
a sin(x) + b cos(x)

)
= −b sin(x) + a cos(x).

We have seen a similar linear transformation in class, namely

T : R2 → R2 T (x, y) = (−y, x).

However that operator has no eigenvalues because it is on a real vector
space, and its minimal polynomial p(x) = x2 + 1 has no real roots. In con-
trast, here we are working over the complex numbers, so we might imagine
that the eigenvalues would be the complex roots of p(x) = x2 + 1, namely
i and −i.

The eigenvalue equation D
(
a sin(x) + b cos(x)

)
= i
(
a sin(x) + b cos(x)

)
can be solved to find

f = cos(x) + i sin(x)

and similarly D
(
a sin(x) + b cos(x)

)
= −i

(
a sin(x) + b cos(x)

)
can be solved

to find

g = cos(x)− i sin(x).

Then we can check that

D(f) = − sin(x) + i cos(x) = if

and

D(g) = − sin(x)− i cos(x) = −ig.
Thus f and g are eigenvectors for D with eigenvalues i and −i. Since they
have distinct eigenvalues, Theorem 5.6 in the book implies that they are
linearly independent. Since dimV ≤ 2, any spanning list of length 2 forms
a basis for V .

Remark by TC: you have probably learned what the eigenvectors of
D as an operator on C∞(R,C) are in a previous class. For the eigenvalue
a, the eigenvalue equation D(f) = af becomes the differential equation
f ′ = af , and you may already know that the solutions to this equation are
(constant multiples of)

f(x) = eax,

since the chain rule implies that

(eax)′ = a · eax.

But the functions f and g you found above are eigenvectors with eigenvalues
a = i and a = −i, so they must be of the form Ceix and Ce−ix! We
can find the constants by plugging in 0, since Cei·0 = C. By plugging in
f(0) = cos(0)+ i sin 0 = 1+ i ·0 = 1 and g(0) = cos(0)− i sin 0 = 1− i ·0 = 1
we see that the constants are 1 for both f and g. Therefore you have proved
the famous formula of Euler:

eix = cosx+ i · sinx e−ix = cosx− i · sinx.
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In particular, if we evaluate the first eigenfunction at π we get

eiπ = cosπ + i · sinπ = −1 + i · 0,
or in other words

eiπ = −1. �


