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Math 4320

HW2 Solutions

Problem 1: 2.22

Find the sign and inverse of the permutation shown in the book (and below).

Proof. Its disjoint cycle decomposition is:

(19)(28)(37)(46)

which immediately makes it an even permutation because it is a product of an even number of

transpositions. One can easily verify that since it is a product of disjoint transpositions, it has order

2, so the above permutation is its own inverse. �

Problem 2: 2.26

Show that an r-cycle is even if and only if r is odd.

Proof. Let α ∈ Sn with:

α = (a1, . . . , ar)

Then observe that α is:

α = (a1, ar) . . . (a1a3)(a1a2)

a product of r − 1 transpositions. Naturally, r, r − 1 have opposite parity, so α is even if and only if

r is odd. �

Problem 3: 2.29i

Let α ∈ Sn. Show that α is regular (α is the identity or has no fixed point and is a product of

disjoint cycles of the same length) if and only if α is a power of an n−cycle.

Proof. First observe that if α is regular, then:

α = (a11, . . . , a1t)(a21, . . . , a2t) . . . (am1, . . . , amt)

and each of 1,2, . . . , n is among the aij because if k does not appear in any of the cycles it is fixed.

Observe then that:

(a11, a21, . . . , am1, a12, a22, . . . , am2, . . . , a1t, . . . , amt)
m
= α

Since every number 1,2, . . . , n appears among the aij , the above cycle must be an n cycle. To

understand the motivation behind the above formula, try taking a t cycle to the s power and see

what happens (perhaps use actual numbers for t,s and try cases where t∣s and where t, s are relatively

prime).
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Suppose on the other hand that α is a power of an n-cycle. Write α = (r1, . . . , rn)
m. Without

loss of generality, we may assume that 0 ≤m < n because αn = (1). Define r` for all ` ∈ Z so that for

1 ≤ i ≤ n, r` = ri if and only if r` ≡ ri(mod n). Observe that αk(r`) = r`+km, since α moves elements

m slots down the cycle (r1, . . . , rn). Hence we see that αk(ri) = ri if and only if n∣km. The smallest

n for which n∣km is

km = lcm(m,n) =
mn

gcd(m,n)
⇒ k =

n

gcd(m,n)

Therefore, for all i, αk(ri) = ri whenever k = n
gcd(m,n) and this is the smallest such k. Set k′ =

n
gcd(m,n) . Thus by applying α repeatedly to ri, we generate outputs

ri ↦ ri+m ↦ ri+2m ↦ . . .↦ ri+(k′−1)m ↦ ri

so we see that the orbits of ri, rj are distinct whenever i /≡ j(mod n). Since permutations are by def-

inition bijections on {1, . . . , n}, then {1,2, . . . , n} can be partitioned into disjoint orbits1 O1, . . . ,Or

each containing exactly k′ elements. Hence α is a product of r disjoint k′−cycles where each cycle

consists of the k′ elements in Oi. If α has a fixed point, then k′ = 1, so α fixes every element of

{1,2, . . . , n} in which case α is the identity. Therefore, α is regular, as claimed. �

Problem 4:

How many elements of S6 have the same cycle structure as (135)(246).

Solution: Any permutation in S6 with 2 disjoint 3-cycles can be constructed as follows: We may

insist that the first cycle contains 1. There are (5
2
) = 10 ways to choose the remaining entries of the

cycle. Observe that given any 3 numbers, there are exactly 2 ways to make a 3 cycle out of them.2

Hence there are 20 possible arrangements for the 3 cycle which contains 1. The other 3-cycle’s

entries are determined by the first, so given the first cycle, there are two possible arrangements for

the second. Hence there are 40 such permutations in S6.

Problem 5:

Show that given a permutation σ ∈ S`, the minimal number of simple transpositions needed to

express σ as a product thereof is equal to the number of inversions of σ.

Lemma 0.1. Let σ be a permutation and τ ≡ (i, i+1) a simple transposition. If σ has n inversions,

then στ has n − 1 inversions if (i, i + 1) is an inversion of σ and n + 1 inversions otherwise.

1The orbit of x under α is defined to be {y ∶ y = αk
(x), k ∈ Z}. In other words, the orbit of x is the set of all

points that can be reached from x by applying α to x. Note that orbits are indeed disjoint because if x = αk
(y), then

α−k(x) = y so x is in the orbit of y if and only if y is in the orbit of x. In fact, you can check for yourself that x ∼ y

if and only if x and y are in the same orbit is an equivalence relation.
2By convention, we can make the smallest number appear first in the cycle, there are two choices for the second

entry and the final entry is fixed.
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Proof. First we claim if (j, k) is an inversion of σ, τ with j < k and j, k ≠ i, i + 1, then (j, k) is an

inversion of τ . Since τ fixes j, k, we see that στ(k) = σ(k) and στ(j) = σ(j), so στ(j) = σ(j) >

σ(k) = στ(k) since (j, k) is an inversion of σ. Hence (j, k) remains an inversion of στ .

Next we claim that if (i, j), j ≠ i + 1, is an inversion of σ, then (i + 1, j) is an inversion of στ .

Suppose first that i < j. Then i + 1 < j since i < j and j ≠ i + 1. We have that στ(i + 1) = σ(i) >

σ(j) = στ(j). So we have an inversion. On the other hand if i > j, we still have i + 1 > j, so

στ(i + 1) = σ(i) > σ(j) = στ(j), and (i + 1, j) is an inversion.

By essentially the same argument, if (i + 1, j) is an inversion of σ, then (i, j) is an inversion of

στ .

Now, if (i, i+1) is an inversion, then στ(i+1) = σ(i) > σ(i+1) = στ(i), so (i, i+1) is no longer an

inversion. On the other hand, if (i, i + 1) is not an inversion of σ, then στ(i + 1) = σ(i) > σ(i + 1) =

στ(i), so that (i, i + 1) now becomes an inversion.

If we observe that σττ = σ, applying the above twice, we see that the only inversion that στ can

possibly have which is not in 1 − 1 correspondence with an inversion of σ is (i, i + 1). Similarly, στ

can have exactly 1 inversion which is not in 1 − 1 correspondence. Furthermore, the result shows

that στ has an extra inversion when (i, i + 1) is not an inversion of σ and στ has 1 fewer inversion

((i, i + 1) is removed). �

and now the main problem:

Proof. Proof proceeds by induction on n where n is the number of inversions of σ. Suppose σ has

no consecutive (i, i + 1) such that (i, j) is an inversion of σ. Then σ(i + 1) > σ(i) for all i so that

in general,3 σ(i) > σ(j) whenever i > j. Suppose σ(i) > i for some i. Then we see that σ(i) ≥ i + 1,

so σ(i + 2) ≥ i + 2 and by repeating this process n − i times, σ(n) ≥ n + 1 which is impossible. Thus

σ(i) ≤ i, so σ(1) = 1 which means that σ(2) = 2 and so on so that σ(i) = i for all i. Consequently, σ

is the identity and hence has no inversions.

If σ has 0 inversions, then by the above, σ is the identity and the statement holds trivially. Now

suppose the result holds for n − 1, that is any permutation which has n − 1 or fewer inversions, can

be expressed as a product of n − 1 simple transpositions and this is the minimal number of simple

transpositions needed. Given a permutation σ ∈ S` with n inversions with n ≥ 1, then σ has at

least one consecutive pair (i, i + 1) which is an inversion of σ (or else the argument for the base

case shows that σ is the identity). Let τ = (i, i + 1) ∈ S`. By the preceding lemma, στ has exactly

n − 1 inversions, so στ is a product of n − 1 simple transpositions. Thus we have that (στ)τ = σ is

a product of n simple transpositions.

Now we need to prove minimality. Suppose toward a contradiction that σ = τk . . . τ2τ1 where k < n

and the τi are simple transpositions. Let τ1 = (ab). If (a, b) is an inversion of σ, then στ1 has n − 1

inversions by the above lemma, but στ1 = τk . . . τ2, a product of k − 1 < n − 1 simple transpositions

3Apply a simple induction argument.
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which contradicts the inductive hypothesis. On the other hand, if (a, b) is not an inversion of σ,

then στ1 has n + 1 inversions. Since the preceding lemma shows that multiplying on the right by

a simple transposition changes the number of inversions by at most 1 in any direction, we see that

στ1τ2 . . . τk must have at least n + 1 − (k − 1) = (n − k) + 2 > 0 inversions. However, στ1τ2 . . . τk =

τk . . . τ2τ1τ1τ2 . . . τk = (1) which has zero inversions, so we have a contradiction. Therefore, it follows

by induction that σ can be expressed as a product of n simple transpositions and cannot be expressed

as a product of fewer than n simple transpositions. �

Postscript: (How to actually come up with the solution)

Inversions can be visualized nicely as follows. Arrange two rows of n vertices labelling them 1

through n from left to right in order. If σ maps 1 to k, draw an edge from 1 in the top row to k in

the bottom row. Continue similarly for all elements in the top row i.e. if i↦ j, draw an edge from i

in the top row to j in the bottom row. Convince yourself that the number of crossings corresponds

to the number of inversions of σ. Observe that multiplying by a simple transposition (i, i + 1) on

the right corresponds to switching the vertices i, i + 1 in the top row (i.e. the edges connected to

i and i + 1 in the top row are swapped). This will either induce or undo a crossing between the

edges crossing i, i+1 while the fact that they are consecutive will lead to these edges swapping their

crossings as well. This is the fundamental idea behind the lemma which leads to the solution.

Problem 6: 2.39i

How many elements of order 2 are there in S5, S6.

Solution: By proposition 2.55, the order of any permutation is the least common multiple of the

cycles in a disjoint cycle decomposition. In order for the least common multiple of a collection of

positive integers to be 2, the only choices are 1,2. Since a 1−cycle is the identity, every permutation

of order 2 can be written as a product of disjoint 2 cycles.

Count as follows:

Permutations which move 1: There are 4 choices for elements to be paired with 1 in the transpo-

sition. Thus leaving (3
2
) = 3 choices for a second transposition plus 1 for the possiblity that we just

have a transposition, yielding 16 choices.

Permutations fixing 1 but moving 2. There are 3 choices for elements to be paired with 2 in a

transposition. Thus leaving (2
2
) = 1 choices for a second transposition plus 1 for the possiblity that

we just have a transposition, yielding 6 choices.

Permutations fixing 1,2 but moving 3. Easily this is just {(34), (35)}. Finally, we have (45).

Thus we have a total of 25 such permutations.

Now for S6: permutations moving 1: There are 5 choices to pair with 1. For a product of 3 disjoint

transpositions, we have (4
2
) choices for one transposition and then the other is fixed; however, this

method generates duplicates, so we need to divide by 2 to get 5 ⋅ 1
2
⋅(

4
2
) = 15 possiblities. Additionally,
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there are 5 ⋅ ((4
2
) + 1) = 35 choices for products of two transpositions and single transpositions which

move 1. This makes a total of 50 such permutations which move 1.

Now count permutations fixing 1 but moving 2. These must be products of 1 or 2 transpositions.

There are 4 items which can be paired with 2 and (3
2
) + 1 possibilities for the second transposition

plus 1 for the identity. Hence we get 16 possiblities of this type.

For permutations fixing 1,2 but moving 3, we have 3 possible pairings for 3, a fixed choice of

second transposition or the identity, giving 6 total possibilities.

The remaining ones are easy to count: we only have (45), (46), (56). Giving an additional 3 total.

Adding up all the cases, we obtain 75.

Problem 7: 2.42

Let G = GL(2,Q) and let

A =

⎡
⎢
⎢
⎢
⎢
⎣

0 −1

1 0

⎤
⎥
⎥
⎥
⎥
⎦

B =

⎡
⎢
⎢
⎢
⎢
⎣

0 1

−1 1

⎤
⎥
⎥
⎥
⎥
⎦

Show that while A,B have finite order 4,6 respectively, their product does not. In particular, if G is

not a finite group, a subgroup generated by elements of finite order may in fact have infinite order.

Proof. It is straightforward to check that A4 = B6 = I2. Observe that:

AB =

⎡
⎢
⎢
⎢
⎢
⎣

1 −1

0 1

⎤
⎥
⎥
⎥
⎥
⎦

A standard induction argument (which you should have produced) shows that:

(AB)n = AB =

⎡
⎢
⎢
⎢
⎢
⎣

1 −n

0 1

⎤
⎥
⎥
⎥
⎥
⎦

so that ⟨A,B⟩ ≤ G does not have finite order. �

Problem 8:

Let G be a group. Assume that G is generated by x, y, z such that x4 = y4 = z4 = e, xy = z, yz =

x, zx = y and x2 = y2 = z2.

Proof. We first claim that every element ofG can be represented in the form xmyn where 0 ≤m,n ≤ 3.

Given a word α in x, y, z, we can immediately eliminate z by applying the relation z = xy. Let β

be the word α with the substitution z = xy applied Now observe that since z = xy and yz = x,

substituting the first equation into the second, we obtain yxy = x so that yx = xy−1 = xy3. If β is

not of the form xmyn with m,n ∈ Z, then β has the form xmy . . ., and there are k instances of x

following the first y. By applying the relation yx = xy3 the first x following the first y can be moved

left of the first y in finitely many steps yielding a word with k−1 instances of x following the first y.

Applying the above process inductively yields a word γ of the form xm, yn with m,n ∈ Z. We may
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further assume that 0 ≤ m,n ≤ 3 because if rm, rn are the remainders4 mod 4 for m,n respectively,

then

xm = xrm yn = yrn

because x4 = y4 = e. Thus every element of G can be represented as xmyn where 0 ≤m,n ≤ 3 (note

these may not and in fact, cannot be distinct).

Hence G is finite with at most 16 distinct elements. By using the fact x2 = y2 however, we see

that the following elements are the same:

x2 = y2 x2y2 = e x3y = xy3 xy2 = x3 y3 = x2y

x = x−3 = x−1y−2 = x3y2 x2y3 = x4y = y x3y3 = xx2y2y = xy

We have 8 relations linking distinct elements, so there can be at most 8 elements in G.

This is an admittedly ugly (but elementary) solution. A cleaner solution can be derived as follows.

Let H = ⟨x⟩ and K = ⟨y⟩. Since every element of G has the form xmyn, then we see that HK = G.

The following formula is well known (and not that hard to derive):

∣G∣ = ∣HK ∣ =
∣H ∣∣K ∣

∣H ∩K ∣

Since ∣H ∣∣K ∣ ≤ 4 ⋅ 4 and we know that ∣H ∩K ∣ ≥ 2, since e, x2 = y2 ∈ H ∩K, then the above formula

shows that ∣G∣ ≤ 8. �

4i.e. m = 4q + rm where q ∈ Z and 0 ≤ rm ≤ 3.


