
AVACS – Automatic Verification and Analysis of
Complex Systems

REPORTS
of SFB/TR 14 AVACS

Editors: Board of SFB/TR 14 AVACS

Proof Tree Preserving Interpolation

by
Jürgen Christ Jochen Hoenicke

Alexander Nutz

AVACS Technical Report No. 89
February 2013

ISSN: 1860-9821

Publisher: Sonderforschungsbereich/Transregio 14 AVACS
(Automatic Verification and Analysis of Complex Systems)

Editors: Bernd Becker, Werner Damm, Bernd Finkbeiner, Martin Fränzle,
Ernst-Rüdiger Olderog, Andreas Podelski

ATRs (AVACS Technical Reports) are freely downloadable from www.avacs.org

Copyright c© February 2013 by the author(s)

Author(s) contact: Jürgen Christ (christj@informatik.uni-freiburg.de).

Proof Tree Preserving Interpolation ?

Jürgen Christ, Jochen Hoenicke, and Alexander Nutz

Chair of Software Engineering, University of Freiburg

Abstract. Craig interpolation in SMT is difficult because, e. g., the-
ory combination and integer cuts introduce mixed literals, i. e., literals
containing local symbols from both input formulae. In this paper, we
present a scheme to compute Craig interpolants in the presence of mixed
literals. Contrary to existing approaches, this scheme neither limits the
inferences done by the SMT solver, nor does it transform the proof tree
before extracting interpolants. Our scheme works for the combination of
uninterpreted functions and linear arithmetic but is extendable to other
theories. The scheme is implemented in the interpolating SMT solver
SMTInterpol.

1 Introduction

A Craig interpolant for a pair of formulae A and B whose conjunction is un-
satisfiable is a formula I that follows from A and whose conjunction with B is
unsatisfiable. Furthermore, I only contains symbols common to A and B. Model
checking and state space abstraction [17,22] make intensive use of interpolation
to achieve a higher degree of automation. This increase in automation stems from
the ability to fully automatically generate interpolants from proofs produced by
modern theorem provers.

For propositional logic, a SAT solver typically produces resolution-based
proofs that show the unsatisfiability of an error path. Extracting Craig inter-
polants from such proofs is a well understood and easy task that can be accom-
plished, e. g., using the algorithms of Pudlák [26] or McMillan [21]. An essential
property of the proofs generated by SAT solvers is that every proof step only
involves literals that occur in the input.

This property does not hold for proofs produced by SMT solvers for formu-
lae in a combination of first order theories. Such solvers produce new literals for
different reasons. First, to combine two theory solvers, SMT solvers exchange
(dis-)equalities between the symbols common to these two theories in a Nelson-
Oppen-style theory combination. Second, various techniques dynamically gener-
ate new literals to simplify proof generation. Third, new literals are introduced
in the context of a branch-and-bound or branch-and-cut search for non-convex
theories. The theory of linear integer arithmetic for example is typically solved by

? This work is supported by the German Research Council (DFG) as part of the
Transregional Collaborative Research Center “Automatic Verification and Analysis
of Complex Systems” (SFB/TR14 AVACS)

2 Jürgen Christ, Jochen Hoenicke, and Alexander Nutz

searching a model for the relaxation of the formula to linear rational arithmetic
and then using branch-and-cut with Gomory cuts or extended branches [9] to
remove the current non-integer solution from the solution space of the relaxation.

The literals produced by either of these techniques only contain symbols that
are already present in the input. However, a literal produced by one of these tech-
niques may be mixed1 in the sense that it may contain symbols occurring only
in A and symbols occurring only in B. These literals pose the major difficulty
when extracting interpolants from proofs produced by SMT solvers.

In this paper, we present a scheme to compute Craig interpolants in the
presence of mixed literals. Our interpolation scheme is based on syntactical re-
strictions of partial interpolants and specialised rules to interpolate resolution
steps on mixed literals. This enables us to compute interpolants in the context of
a state-of-the-art SMT solver without manipulating the proof tree or restricting
the solver in any way. We base our presentation on the quantifier-free fragment
of the combined theory of uninterpreted functions and linear arithmetic over the
rationals or the integers. The interpolation scheme is used in the interpolating
SMT solver SMTInterpol [4].

Related Work. Craig [7] shows in his seminal work on interpolation that for
every inconsistent pair of first order formulae an interpolant can be derived. In
the proof of the corresponding theorem he shows how to construct interpolants
without proofs by introducing quantifiers in the interpolant. For Boolean circuits,
Pudlák [26] shows how to construct quantifier-free interpolants from resolution
proofs of unsatisfiability.

A different proof-based interpolation system is given by McMillan [21] in his
seminal paper on interpolation for SMT. The presented method combines the
theory of equality and uninterpreted functions with the theory of linear rational
arithmetic. Interpolants are computed from partial interpolants by annotating
every proof step. The partial interpolants have a specific form that carries in-
formation needed to combine the theories. The proof system is incomplete for
linear integer arithmetic as it cannot deal with arbitrary cuts and mixed literals
introduced by these cuts.

Brillout et al. [2] present an interpolating sequent calculus that can compute
interpolants for the combination of uninterpreted functions and linear integer
arithmetic. The interpolants computed using their method might contain quan-
tifiers since they do not use divisibility predicates. Furthermore their method lim-
its the generation of Gomory cuts in the integer solver to prevent some mixed
cuts. The method presented in this paper combines the two theories without
quantifiers and, furthermore, does not restrict any component of the solver.

Yorsh and Musuvathi [27] show how to combine interpolants generated by
an SMT solver based on Nelson-Oppen combination. They define the concept
of equality-interpolating theories. These are theories that can provide a shared
term t for a mixed literal a = b that is derivable from an interpolation problem.
A troublesome mixed interface equality a = b is rewritten into the conjunction

1 Mixed literals sometimes are called uncolourable.

Proof Tree Preserving Interpolation 3

a = t ∧ t = b. They show that both, the theory of uninterpreted functions and
the theory of linear rational arithmetic are equality-interpolating. We do not
explicitly split the proof. Additionally, our method can handle the theory of
linear integer arithmetic without any restriction on the solver. The method of
Yorsh and Musuvathi, however, cannot deal with cuts used by most modern
SMT solvers to decide linear integer arithmetic.

Cimatti et al. [6] present a method to compute interpolants for linear rational
arithmetic and difference logic. The method presented in this paper builds upon
their interpolation technique for linear rational arithmetic. For theories com-
bined via delayed theory combination, they show how to compute interpolants
by transforming a proof into a so-called ie-local proof. In these proofs, mixed
equalities are close to the leaves of the proof tree and splitting them is cheap
since the proof trees that have to be duplicated are small. A variant of this
restricted search strategy is used by MathSAT [14] and CSIsat [1].

Goel et al. [13] present a generalisation of equality-interpolating theories.
They define the class of almost-colourable proofs and an algorithm to generate
interpolants from such proofs. Furthermore they describe a restricted DPLL
system to generate almost-colourable proofs. This system does not restrict the
search if convex theories are used. Their procedure is incomplete for non-convex
theories like linear arithmetic over integers since it prohibits the generation of
mixed branches and cuts.

Recently, techniques to transform proofs gained a lot of attention. Brut-
tomesso et al. [3] present a framework to lift resolution steps on mixed literals
into the leaves of the resolution tree. Once a subproof only resolves on mixed
literals, they replace this subproof with the conclusion removing the mixed infer-
ences. The newly generated lemmas however are mixed between different theories
and require special interpolation procedures. Even though these procedures only
have to deal with conjunctions of literals in the combined theories it is not obvi-
ous how to compute interpolants in this setting. Similar to our algorithm, they
do not restrict or interact with the SMT solver but take the proof as produced by
the solver. In contrast to our approach, they manipulate the proof in a way that
is worst-case exponential and rely on an interpolant generator for the conjunctive
fragment of the combined theories.

McMillan [23] presents a technique to compute interpolants from Z3 proofs.
Whenever a sub-proof contains mixed literals, he extracts lemmas from the proof
tree and delegates them to a second (possibly slower) interpolating solver.

For the theory of linear integer arithmetic LA (Z) a lot of different techniques
were proposed. Lynch et al. [20] present a method that produces interpolants
as long as no mixed cuts were introduced. In the presence of such cuts, their
interpolants might contain symbols that violate the symbol condition of Craig
interpolants.

For linear Diophantine equations and linear modular equations, Jain et al. [18]
present a method to compute linear modular equations as interpolants. Their
method however is limited to equations and, thus, not suitable for the whole
theory LA (Z).

4 Jürgen Christ, Jochen Hoenicke, and Alexander Nutz

Griggio [15] shows how to compute interpolants for LA (Z) based on the
LA (Z)-solver from MathSAT [14]. This solver uses branch-and-bound and the
cuts from proofs [9] technique. Similar to the technique presented by Kroening
et al. [19] the algorithm prevents generating mixed cuts and, hence, restricts the
inferences done by the solver.

2 Preliminaries

In this section, we give an overview of what is needed to understand the pro-
cedure we will propose in the later sections. We will briefly introduce the logic
and the theories used in this paper. Furthermore, we define key terms like Craig
interpolants and symbol sets.

Logic, Theories, and SMT. We assume standard first-order logic. We operate
within the quantifier-free fragments of the theory of equality with uninterpreted
functions EUF and the theories of linear arithmetic over rationals LA (Q) and
integers LA (Z). The quantifier-free fragment of LA (Z) is not closed under in-
terpolation. Therefore, we augment the signature with division by constant func-
tions

⌊ ·
k

⌋
for all integers k ≥ 1.

We use the standard notations |=T ,⊥,> to denote entailment in the theory
T , contradiction, and tautology. In the following, we drop the subscript T as it
always corresponds to the combined theory of EUF , LA (Q), and LA (Z).

The literals in LA (Z) are of the form s ≤ c, where c is an integer constant
and s a linear combination of variables. For LA (Q) we use constants c ∈ Qε,
Qε := Q ∪ {q − ε|q ∈ Q} where the meaning of s ≤ q − ε is s < q. For better
readability we use, e. g., x ≤ y resp. x > y to denote x− y ≤ 0 resp. y− x ≤ −ε.
In the integer case we use x > y to denote y − x ≤ −1.

Our algorithm operates on a proof of unsatisfiability generated by an SMT
solver based on DPLL(T) [25]. Such a proof is a resolution tree with the ⊥-clause
at its root. The leaves of the tree are either clauses from the input formulae2 or
theory lemmas that are produced by one of the theory solvers. The negation of
a theory lemma is called a conflict.

The theory solvers for EUF , LA (Q), and LA (Z) are working independently
and exchange (dis-)equality literals through the DPLL engine in a Nelson-Oppen
style [24]. Internally, the solver for linear arithmetic uses only inequalities in
theory conflicts. In the proof tree, the (dis-)equalities are related to inequalities
by the (valid) clauses x = y ∨ x < y ∨ x > y, and x 6= y ∨ x ≤ y. We call these
leaves of the proof tree theory combination clauses.

Interpolants and Symbol Sets. For a formula F , we use symb(F) to denote the set
of non-theory symbols occurring in F . An interpolation problem is given by two
formulae A and B such that A∧B |= ⊥. An interpolant of A and B is a formula
I such that (i) A |= I, (ii) B ∧ I |= ⊥, and (iii) symb(I) ⊆ symb(A) ∩ symb(B).

2 W. l. o. g. we assume input formulae are in conjunctive normal form.

Proof Tree Preserving Interpolation 5

We call a symbol s ∈ symb(A)∪symb(B) shared if s ∈ symb(A)∩symb(B), A-
local if s ∈ symb(A)\ symb(B), and B-local if s ∈ symb(B)\ symb(A). Similarly,
we call a term A-local (B-local) if it contains at least one A-local (B-local) and no
B-local (A-local) symbols. We call a term (AB-)shared if it contains only shared
symbols and (AB-)mixed if it contains A-local as well as B-local symbols. The
same terminology applies to formulae.

Substitution in Formulae and Monotonicity. By F [G1] . . . [Gn] we denote a for-
mula in negation normal form with sub-formulae G1, . . . , Gn that occur posi-
tively in the formula. Substituting these sub-formulae by formula G′1, . . . , G

′
n is

denoted by F [G′1] . . . [G′n]. By F (t) we denote a formula with a sub-term t that
can appear anywhere in F . The substitution of t with a term t′ is denoted by
F (t′).

The following lemma is important for the correctness proofs in the remainder
of this technical report. It also represents a concept that is important for the
understanding of the proposed procedure.

Lemma 1 (Monotonicity). Given a formula F [G1] . . . [Gn] in negation nor-
mal form with sub-formulae G1, . . . , Gn occurring only positively in the formula
and formulae G′1, . . . , G

′
n, it holds that ∧

i∈{1,...,n}

(Gi → G′i)

→ (F [G1] . . . [Gn]→ F [G′1] . . . [G′n])

Proof. We prove the claim by induction over the number of ∧ and ∨ connec-
tives in F [·] . . . [·]. If F [G1] . . . [Gn] is a literal different from G1, . . . , Gn the
implication holds trivially. Also for the other base case F [G1] . . . [Gn] ≡ Gi for
some i ∈ {1, . . . , n} the property holds. For the induction step observe that if
F1[G1] . . . [Gn]→ F1[G′1] . . . [G′n] and F2[G1] . . . [Gn]→ F2[G′1] . . . [G′n], then

F1[G1] . . . [Gn] ∧ F2[G1] . . . [Gn]→ F1[G′1] . . . [G′n] ∧ F2[G′1] . . . [G′n] and

F1[G1] . . . [Gn] ∨ F2[G1] . . . [Gn]→ F1[G′1] . . . [G′n] ∨ F2[G′1] . . . [G′n]. ut

3 Proof Tree-Based Interpolation

Interpolants can be computed from proofs of unsatisfiability as Pudlák and
McMillan have already shown. In this section we will introduce their algorithms.
Then, we will discuss the changes necessary to handle mixed literals introduced,
e. g., by theory combination.

3.1 Pudlák’s and McMillan’s Interpolation Algorithms

Pudlák’s and McMillan’s algorithms assume that the pivot literals are not mixed.
We will remove this restriction later. We define a common framework that is more
general and can be instantiated to obtain Pudlák’s or McMillan’s algorithm to

6 Jürgen Christ, Jochen Hoenicke, and Alexander Nutz

compute interpolants. For this, we use two projection functions on literals · � A
and · � B as defined below. They have the properties (i) symb(` � A) ⊆ symb(A),
(ii) symb(` � B) ⊆ symb(B), and (iii) ` ⇐⇒ (` � A ∧ ` � B). Other projection
functions are possible and this allows for varying the strength of the resulting
interpolant as shown in [10]. We extend the projection function to conjunctions
of literals component-wise.

Pudlák McMillan

` � A ` � B ` � A ` � B
` is A-local ` > ` >
` is B-local > ` > `

` is shared ` ` > `

Given an interpolation problem A and B, a partial interpolant of a clause
C is an interpolant of the formulae A ∧ (¬C � A) and B ∧ (¬C � B)3. Partial
interpolants can be computed inductively over the structure of the proof tree. A
partial interpolant of a theory lemma C can be computed by a theory-specific
interpolation routine as an interpolant of ¬C � A and ¬C � B. Note that the
conjunction is equivalent to ¬C and therefore unsatisfiable. For an input clause
C from the formula A (resp. B), a partial interpolant is ¬(¬C \A) (resp. ¬C \B)
where ¬C \ A is the conjunction of all literals of ¬C that are not in ¬C � A
and analogously for ¬C \ B. For a resolution step, a partial interpolant can
be computed using (rule-res), which is given below. For this rule, it is easy to
show that I3 is a partial interpolant of C1 ∨ C2 given that I1 and I2 are partial
interpolants of C1 ∨ ` and C2 ∨ ¬`, respectively. Note that the “otherwise” case
never triggers in McMillan’s algorithm.

C1 ∨ ` : I1 C2 ∨ ¬` : I2

C1 ∨ C2 : I3
where I3 =


I1 ∨ I2 if ` � B = >
I1 ∧ I2 if ` � A = >
(I1 ∨ `) ∧
(I2 ∨ ¬`)

otherwise

(rule-res)

As the partial interpolant of the root of the proof tree (which is labelled with
the clause ⊥) is an interpolant of the input formulae A and B, this algorithm
can be used to compute interpolants.

Theorem 1. The above-given partial interpolants are correct, i.e., if I1 is a
partial interpolant of C1 ∨ ` and I2 is a partial interpolant of C2 ∨ ¬` then I3 is
a partial interpolant of the clause C1 ∨ C2.

Proof. The third property, i.e., symb(I3) ⊆ symb(A) ∩ symb(B), clearly holds if
we assume it holds for I1 and I2. Note that in the “otherwise” case, ` is shared.
We prove the other two partial interpolant properties separately.

3 Note that ¬C is a conjunction of literals. Thus, ¬C � A is well defined.

Proof Tree Preserving Interpolation 7

Inductivity. We have to show

A ∧ ¬C1 � A ∧ ¬C2 � A |= I3.

For this we use the inductivity of I1 and I2:

A ∧ ¬C1 � A ∧ ¬` � A |= I1 (ind1)

A ∧ ¬C2 � A ∧ ` � A |= I2 (ind2)

Assume A, ¬C1 � A, and ¬C2 � A. Then, (ind1) simplifies to ¬` � A→ I1 and
(ind2) simplifies to ` � A→ I2. We show that I3 holds under these assumptions.

Case ` � B = >. Then by the definition of the projection function, ` � A = `
and ¬` � A = ¬` hold. If ` holds, (ind2) gives us I2, otherwise (ind1) gives us
I1, thus I3 = I1 ∨ I2 holds in both cases.

Case ` � A = >. Then (ind1) gives us I1 because ¬` � A = > (the negation of `
is still not in A), and (ind2) gives us I2. So I3 = I1 ∧ I2 holds.

Case “otherwise”. By the definition of the projection function ` � A = ` � B = `
and ¬` � A = ¬` � B = ¬`. If ` holds, the left conjunct (I1 ∨ `) of I3 holds and
the right conjunct (I2 ∨ ¬`) of I3 is fulfilled because (ind2) gives us I2. If ¬`
holds, (ind1) gives us I1 and both conjuncts of I3 hold.

Contradiction. We have to show:

B ∧ ¬C1 � B ∧ ¬C2 � B ∧ I3 |= ⊥
We use the contradiction properties of I1 and I2:

B ∧ ¬C1 � B ∧ ¬` � B ∧ I1 |= ⊥ (cont1)

B ∧ ¬C2 � B ∧ ` � B ∧ I2 |= ⊥ (cont2)

If we assume B, ¬C1 � B, and ¬C2 � B, (cont1) simplifies to ¬` � B∧I1 → ⊥
and (cont2) simplifies to ` � B ∧ I2 → ⊥. We show I3 → ⊥.

Case ` � B = >. Then (cont1) and ¬` � B = > give us I1 → ⊥, and (cont2) and
` � B = > give us I2 → ⊥. Thus I3 ≡ I1 ∨ I2 is contradictory.

Case ` � A = >. Then ` � B = ` and ¬` � B = ¬`. Then, if ` holds, (cont2)
gives us I2 → ⊥. If ¬` holds, (cont1) gives us I1 → ⊥ analogously. In both cases,
I3 ≡ I1 ∧ I2 is contradictory.

Case “otherwise”. By the definition of the projection function ` � A = ` � B = `
and ¬` � A = ¬` � B = ¬` hold. Assuming I3 ≡ (I1 ∨ `) ∧ (I2 ∨ ¬`) holds,
we prove a contradiction. If ` holds, the second conjunct of I3 implies I2. Then,
(cont2) gives us a contradiction. If ¬` holds, the first conjunct of I3 implies I1
and (cont1) gives us a contradiction. ut

8 Jürgen Christ, Jochen Hoenicke, and Alexander Nutz

3.2 Purification of Mixed Literals

The proofs generated by state-of-the-art SMT solvers may contain mixed literals.
We tackle them by extending the projection functions to these literals. The
problem here is that there is no projection function that satisfies the conditions
stated in the previous section. Therefore, we relax the conditions by allowing
fresh auxiliary variables to occur in the projections.

We consider two different kinds of mixed literals: First, (dis-)equalities of the
form a = b or a 6= b for an A-local variable a and a B-local variable b are intro-
duced, e. g., by theory combination or Ackermannization. Second, inequalities
of the form a + b ≤ c are introduced, e. g., by extended branches [9] or bound
propagation. Here, a is a linear combination of A-local variables, b is a linear
combination of B-local and shared variables, and c is a constant. Adding the
shared variable to the B-part is an arbitrary choice. One gets interpolants of
different strengths by assigning some shared variables to the A-part. It is only
important to keep the projection of each literal consistent throughout the proof.

We split mixed literals using auxiliary variables, which we denote by x, xa,
or xb in the following. One or two fresh variables are introduced for each mixed
literal. We count these variables as shared between A and B. The purpose of the
auxiliary variables is to capture the shared value that needs to be propagated
between A and B. When splitting a literal ` into A- and B-part, we require that
` ⇔ ∃x, xa, xb.(` � A) ∧ (` � B). We need two variables xa and xb to split the
literal a 6= b into two symmetric parts. For symmetry we split the literal a = b
in the same fashion instead of introducing only a single auxiliary variable. This
is achieved by the definitions below.

(a = b) � A := (a = xa ∧ xa = xb) (a = b) � B := (xa = xb ∧ xb = b)

(a 6= b) � A := (a = xa ∧ xa 6= xb) (a 6= b) � B := (xa 6= xb ∧ xb = b)

(a + b ≤ c) � A := (a + x ≤ 0) (a + b ≤ c) � B := (−x + b ≤ c)

Since the mixed variables are considered to be shared, we allow them to occur
in the partial interpolant of a clause C. However, a variable may only occur if C
contains the corresponding literal. This is achieved by a special interpolation rule
for resolution steps where the pivot literal is mixed. The rules for the different
mixed literals are the core of our proposed algorithm and will be introduced in
the following sections.

Instead of with a single partial interpolant, we label each clause with a pat-
tern from which we can derive two partial interpolants, a strong and a weak
one. The strong interpolant of a clause C implies the weak interpolant under the
assumption that ¬C � A or ¬C � B holds. Having two interpolants enables us to
complete the inductive proof. We show that the strong interpolant follows from
the A-part of the resolvent if the strong interpolants of the premises follow from
their respective A-part. On the other hand, the weak interpolant is in contradic-
tion to the B-part in the resolvent if this is the case for the premises. Since the
weak interpolant follows from the strong interpolant this shows that both are
partial interpolants. The models for the strong and the weak interpolants only

Proof Tree Preserving Interpolation 9

differ in the values of the auxiliary variable. The interpolants are needed because
the “right” value for the auxiliary variable is not known when interpolating the
leaves of the proof tree. The strong and the weak interpolant are identical if the
clause does not contain mixed literals. Therefore, we derive only one interpolant
for the bottom clause.

To concretise our setting we label a clause C of the proof tree with an interpo-
lation pattern I from which we derive two interpolants IS and IW . The condition
that the strong interpolant implies the weak interpolant can be expressed as

¬C � A ∨ ¬C � B |= IS → IW . (s-w)

We will ensure this property when we define how the weak and strong inter-
polants are derived from an interpolant pattern.

Lemma 2 (Strong-Weak-Interpolation). Given a mixed literal ` with aux-
iliary variable(s) x and clauses C1 ∨ ` and C2 ∨ ¬` with corresponding partial
interpolant patterns I1 resp. I2, i. e., IS1 and IW1 (resp. IS2 and IW2) are partial
interpolants of C1 ∨ ` (resp. C2 ∨ ¬`). Let C3 = C1 ∨ C2 be the result of a res-
olution step on C1 ∨ ` and C2 ∨ ¬` with pivot `. If a partial interpolant pattern
I3 satisfies (s-w), the symbol condition, and

(∀x. (¬` � A→ IS1) ∧ (` � A→ IS2))→ IS3 (ind)

IW3 → (∃x. (¬` � B ∧ IW1) ∨ (` � B ∧ IW2)) (cont)

then IS3 and IW3 are partial interpolants of C3.

Proof. We need to show inductivity and contradiction for the partial inter-
polants.

Inductivity. For this we use inductivity of IS1 and IS2 :

A ∧ ¬C1 � A ∧ ¬` � A |= IS1

A ∧ ¬C2 � A ∧ ` � A |= IS2

Since x does not appear in C1 � A, C2 � A nor A, we can conclude

A ∧ ¬C1 � A |= ∀x. ¬` � A→ IS1

A ∧ ¬C2 � A |= ∀x. ` � A→ IS2

Combining these and pulling the quantifier over the conjunction gives

A ∧ ¬C1 � A ∧ ¬C2 � A |= ∀x. (¬` � A→ IS1) ∧ (` � A→ IS2)

Using (ind), this shows that inductivity for IS3 holds:

A ∧ ¬C1 � A ∧ ¬C2 � A |= IS3 .

Using (s-w) we immediately get inductivity for IW3 :

A ∧ ¬C1 � A ∧ ¬C2 � A |= IW3 .

10 Jürgen Christ, Jochen Hoenicke, and Alexander Nutz

Contradiction. First, we show the contradiction property for IW3 :

B ∧ ¬C1 � B ∧ ¬C2 � B ∧ IW3 |= ⊥.

Assume the formulae on the left-hand side hold. From (cond) we can conclude
that there is some x such that

(¬` � B ∧ IW1) ∨ (` � B ∧ IW2)

If the first disjunct is true we can derive the contradiction using the contradiction
property of IW1 :

B ∧ ¬C1 � B ∧ ¬` � B ∧ IW1 |= ⊥

Otherwise, the second disjunct holds and we can use the contradiction property
of IW2

B ∧ ¬C2 � B ∧ ` � B ∧ IW2 |= ⊥

This shows the contradiction property for IW3 . Using (s-w) we immediately get
the contradiction property for IS3 :

B ∧ ¬C1 � B ∧ ¬C2 � B ∧ IS3 |= ⊥. ut

It is important to state here that the given purification of a literal into two
new literals is not a modification of the proof tree or any of its nodes. The
proof tree would no longer be well-formed if we replaced a mixed literal by the
disjunction or conjunction of the purified parts. The purification is only used to
define partial interpolants of clauses. In fact, it is only used in the correctness
proof of our method and is not even done explicitly in the implementation.

3.3 Lemma Used in the Correctness Proof

The following lemma will help us prove the correctness of our proposed new
interpolation rules.

Lemma 3 (Deep Substitution). Let F1[G11] . . . [G1n] and F2[G21] . . . [G2m]
be two formulae with sub-formulae G1i for 1 ≤ i ≤ n and G2j for 1 ≤ j ≤ m
occurring positively in F1 and F2.

If
∧

i∈{1,...,n}
∧

j∈{1,...,m}G1i ∧G2j → G3ij holds, then

F1[G11] . . . [G1n] ∧ F2[G21] . . . [G2m]→
F1[F2[G311] . . . [G31m]] . . . [F2[G3n1] . . . [G3nm]].

Proof Tree Preserving Interpolation 11

Proof. ∧
i∈{1,...,n}

∧
j∈{1,...,m}

((G1i ∧G2j)→ G3ij)

⇔
∧

i∈{1,...,n}

∧
j∈{1,...,m}

(G1i → (G2j → G3ij))

⇔
∧

i∈{1,...,n}

(G1i →
∧

j∈{1,...,m}

(G2j → G3ij))

{monotonicity} ⇒
∧

i∈{1,...,n}

(G1i → (F2[G21] . . . [G2m]→ F2[G3i1] . . . [G3im]))

⇔
∧

i∈{1,...,n}

(F2[G21] . . . [G2m]→ (G1i → F2[G3i1] . . . [G3im]))

⇔ (F2[G21] . . . [G2m]→
∧

i∈{1,...,n}

(G1i → F2[G3i1] . . . [G3im]))

{monotonicity} ⇒ (F2[G21] . . . [G2m]→ (F1[G11] . . . [G1n]→
F1[F2[G311] . . . [G31m]] . . . [F2[G3n1] . . . [G3nm]]))

⇔ (F1[G11] . . . [G1n] ∧ F2[G21] . . . [G2m])→
F1[F2[G311] . . . [G31m]] . . . [F2[G3n1] . . . [G3nm]]))

ut

4 Uninterpreted Functions

In this section we will present the part of our algorithm that is specific to the
theory EUF . The only mixed atom that is considered by this theory is a = b
where a is A-local and b is B-local.

4.1 Leaf Interpolation

The EUF solver is based on the congruence closure algorithm [8]. The theory
lemmas are generated from conflicts involving a single disequality that is in
contradiction to a path of equalities. Thus, the clause generated from such a
conflict consists of a single equality literal and several disequality literals.

When computing the partial interpolants of the theory lemmas, we internally
split the mixed literals according to Section 3.2. Then we use an algorithm similar
to [12] to compute an interpolant. This algorithm basically summarises the A-
equalities that are adjacent on the path of equalities.

If the theory lemma contains a mixed equality a = b (without negation),
it corresponds to the single disequality in the conflict. This disequality is split
into a = xa, xa 6= xb and xb = b and the resulting interpolant depends on
whether we consider the disequality to belong to the A-part or to the B-part.
If we consider it to belong to the B-part, then xa is the end of an equality
path summing up the equalities from A. Thus, the computed interpolant has

12 Jürgen Christ, Jochen Hoenicke, and Alexander Nutz

the form I[xa = s]. If we consider xa 6= xb to belong to the A-part, the resulting
interpolant is I[xb 6= s]. Note that in both cases the literal xa = s resp. xb 6= s
occurs positively in the interpolant and is the only literal containing xa resp. xb.
To summarise, the partial interpolant computed for a theory clause C ∨ a = b
where a = b has the auxiliary variables xa, xb has the form I[xa = s] or I[xb 6= s]
and xa, xb do not appear at any other place in I. Both interpolants I[xa = s] and
I[xb 6= s] are partial interpolants of the clause. From xa 6= xb we can derive the
weak interpolant I[xb 6= s] from the strong interpolant I[xa = s] using Lemma 1
(monotonicity). We define

EQS(x, s) := (xa = s), EQW (x, s) := (xb 6= s)

and label a clause in the proof tree with I[EQ(x, s)] to denote that the formulae
I[EQS(x, s)] and I[EQW (x, s)] are the strong and weak partial interpolants.

For theory lemmas containing the literal a 6= b, the corresponding auxiliary
variables xa, xb may appear anywhere in the partial interpolant, even under a
function symbol. A simple example is the theory conflict s 6= f(a) ∧ a = (xa =
xb =)b ∧ f(b) = s, which has the partial interpolants s 6= f(xa) and s 6= f(xb)
(depending on whether xa = xb is considered as A- or as B-literal). We simply
label the corresponding theory lemma with the interpolant s 6= f(x). In general
the label of such a clause has the form I(x). The formulae I(xa) and I(xb)
are the strong and weak partial interpolants of that clause. Of course, here the
interpolants are equivalent given xa = xb.

When two partial interpolants for clauses containing a = b are combined
using (rule-res), i. e., the pivot literal is a non-mixed literal but the mixed lit-
eral a = b occurs in C1 and C2, the resulting partial interpolant may contain
EQ(x, s1) and EQ(x, s2) for different shared terms s1, s2. In general, we allow
the partial interpolants to have the form I[EQ(x, s1)] . . . [EQ(x, sn)].

4.2 Pivoting of Mixed Equalities

We require that every clause C containing a = b with auxiliary variables xa, xb

is always labelled with a formula of the form I[EQ(x, s1)] . . . [EQ(x, sn)]. From
this pattern we get the strong resp. weak interpolant by substituting EQS(x, si)
resp. EQW (x, si) (i ∈ {1, . . . , n}) in I. To show (s-w), assume ¬C � A∨¬C � B.
Since ¬C contains a 6= b we can derive xa 6= xb. Then, EQS(x, si)→ EQW (x, si)
holds and by monotonicity we get

I[EQS(x, s1)] . . . [EQS(x, sn)]→ I[EQW (x, s1)] . . . [EQW (x, sn)].

As discussed above, the partial interpolants computed for conflicts in the congru-
ence closure algorithm are of the form I[EQ(x, s1)] . . . [EQ(x, sn)]. This prop-
erty is also preserved by (rule-res), and by Theorem 1 this rule also preserves
the property of being a strong or weak partial interpolant.

On the other hand, a clause containing the literal a 6= b is labelled with a
formula of the form I(x), i. e., the auxiliary variable x can occur at arbitrary
positions. The strong resp. weak interpolants are derived from this pattern as

Proof Tree Preserving Interpolation 13

I(xa) resp. I(xb). To show (s-w), assume again ¬C � A ∨ ¬C � B. In this case
¬C contains a = b, so we can derive xa = xb. Then, I(xa)→ I(xb) holds. Again,
the form I(x) and the property of being a partial interpolant is also preserved
by (rule-res).

We use the following rule to interpolate the resolution step on the mixed
literal a = b.

C1 ∨ a = b : I1[EQ(x, s1)] . . . [EQ(x, sn)] C2 ∨ a 6= b : I2(x)

C1 ∨ C2 : I1[I2(s1)] . . . [I2(sn)]
(rule-eq)

The rule replaces every literal EQ(x, si) in I1 with the formula I2(si), in which
every x is substituted by si. Therefore, the auxiliary variable introduced for the
mixed literal a = b is removed.

Theorem 2 (Soundness of (rule-eq)). Let a = b be a mixed literal with
auxiliary variable x. If I1[EQ(x, s1)] . . . [EQ(x, sn)] yields two (strong and weak)
partial interpolants of C1∨a = b and I2(x) two partial interpolants of C2∨a 6= b
then I1[I2(s1)] . . . [I2(sn)] yields two partial interpolants of the clause C1 ∨ C2.

Proof. The symbol condition for I1[I2(s1)] . . . [I2(sn)] clearly holds if we assume
that it holds for I1[EQ(x, s1)] . . . [EQ(x, sn)] and I2(x). By construction of weak
and strong interpolants (s-w) holds. Hence, after we show (ind) and (cont), we
can apply Lemma 2.

Inductivity. We have to show

∀xa, xb. (a 6= b � A→ IS1 [xa = s1] . . . [xa = sn]) ∧ (a = b � A→ IS2 (xa))

→ IS1 [IS2 (s1)] . . . [IS2 (sn)]

Here IS1 and IS2 indicates that there may be other patterns unrelated to the
literal a = b that are replaced in the strong interpolant.

Substituting a = b � A ≡ a = xa ∧ xa = xb and instantiating xa = xb = si
for all i ∈ {1, . . . , n} in the second conjunct gives

∧
i∈{1,...,n}(a = si → IS2 (si))

Substituting a 6= b � A ≡ a = xa ∧ xa 6= xb and instantiating xa = a and xb by
some value v different4 from a in the first conjunct gives IS1 [a = s1] . . . [a = sn].
With monotonicity we get IS1 [IS2 (s1)] . . . [IS2 (sn)] as desired.

Contradiction. We have to show

IW1 [IW2 (s1)] . . . [IW2 (sn)]→
∃xa, xb. ((a 6= b � B ∧ IW1 [xb 6= s1] . . . [xb 6= sn]) ∨ (a = b � B ∧ IW2 (xb)))

If IW2 (b) holds, instantiate xa and xb with b. Then IW2 (xb) and a = b � B
hold. Hence the implication above holds as desired.

4 We assume we always have at least two elements in the universe.

14 Jürgen Christ, Jochen Hoenicke, and Alexander Nutz

Otherwise, instantiate xb with b and xa with some value v different from b.
Then, a 6= b � B holds. Since IW2 (xb) does not hold, we have∧

i∈{1,...,n}

(IW2 (si)→ xb 6= si)

With monotonicity we get IW1 [xb 6= s1] . . . [xb 6= sn], so the first disjunct holds.
ut

4.3 Example

We demonstrate our algorithm on the following example:

A ≡(¬p ∨ a = s1) ∧ (p ∨ a = s2) ∧ f(a) = t

B ≡(¬p ∨ b = s1) ∧ (p ∨ b = s2) ∧ f(b) 6= t

The conjunction A∧B is unsatisfiable. In this example, a is A-local, b is B-local
and the remaining symbols are shared.

Assume the theory solver for EUF introduces the mixed literal a = b and
provides the lemmas (i) f(a) 6= t ∨ a 6= b ∨ f(b) = t, (ii) a 6= s1 ∨ b 6= s1 ∨ a = b,
and (iii) a 6= s2 ∨ b 6= s2 ∨ a = b. Let the variable x be associated with the
equality a = b. Then, we label the lemmas with (i) f(x) = t, (ii) EQ(x, s1), and
(iii) EQ(x, s2).

We compute an interpolant for A and B using Pudlák’s algorithm. Since the
input is already in conjunctive normal form, we can directly apply resolution.
Note that for Pudlák’s algorithm every input clause has the partial interpolant ⊥
(>) if it is part of A (B). In the following derivation trees we apply the following
simplifications without explicitely stating them:

F ∧ > ≡ F

F ∨ ⊥ ≡ F

From lemma (ii) and the input clauses ¬p ∨ a = s1 and ¬p ∨ b = s1 we can
derive the clause ¬p∨ a = b. The partial interpolant of the derived clause is still
EQ(x, s1).

¬p ∨ a = s1 : ⊥ a 6= s1 ∨ b 6= s1 ∨ a = b : EQ(x, s1)

b 6= s1 ∨ ¬p ∨ a = b : EQ(x, s1) b = s1 ∨ ¬p : >
¬p ∨ a = b : EQ(x, s1)

Similarly, from lemma (iii) and the input clauses p ∨ a = s2 and p ∨ b = s2 we
can derive the clause p ∨ a = b with partial interpolant EQ(x, s2).

p ∨ a = s2 : ⊥ a 6= s2 ∨ b 6= s2 ∨ a = b : EQ(x, s2)

b 6= s2 ∨ p ∨ a = b : EQ(x, s2) b = s2 ∨ p : >
p ∨ a = b : EQ(x, s2)

Proof Tree Preserving Interpolation 15

A resolution step on these two clauses with p as pivot yields the clause a = b.
Since p is a shared literal, Pudlák’s algorithm introduces the case distinction.
Hence, we get the partial interpolant (EQ(x, s2)∨p)∧(EQ(x, s1)∨¬p). Note that
this interpolant has the form I1[EQ(x, s1)][EQ(x, s2)] and, therefore, satisfies the
syntactical restrictions.

p ∨ a = b : EQ(x, s2) ¬p ∨ a = b : EQ(x, s1)

a = b : (EQ(x, s2) ∨ p) ∧ (EQ(x, s1) ∨ ¬p)

From the EUF-lemma (i) and the input clauses f(a) = t and f(b) 6= t, we can
derive the clause a 6= b with partial interpolant f(x) = t. Note that this inter-
polant has the form I2(x) which also corresponds to the syntactical restrictions
needed for our method.

f(a) = t : ⊥ f(a) 6= t ∨ a 6= b ∨ f(b) = t : f(x) = t

f(b) = t ∨ a 6= b : f(x) = t f(b) 6= t : >
a 6= b : f(x) = t

If we apply the final resolution step on the mixed literal a = b using (rule-eq),
we get the interpolant I1[I2(s1)][I2(s2)] which corresponds to the interpolant
(f(s2) = t ∨ p) ∧ (f(s1) = t ∨ ¬p).

a = b : (EQ(x, s2) ∨ p) ∧ (EQ(x, s1) ∨ ¬p) a 6= b : f(x) = t

⊥ : (f(s2) = t ∨ p) ∧ (f(s1) = t ∨ ¬p)

When resolving on p in the derivations above, the mixed literal a = b occurs
in both antecedents. This leads to the form I[EQ(x, s1)][EQ(x, s2)]. We can
prevent this by resolving in a different order. We could first resolve the clause
p ∨ a = b with the clause a 6= b and obtain the partial interpolant f(s2) = t
using (rule-eq).

a = b ∨ p : EQ(x, s2) a 6= b : f(x) = t

p : f(s2) = t

Then we could resolve the clause ¬p ∨ a = b with the clause a 6= b and obtain
the partial interpolant f(s1) = t again using (rule-eq).

a = b ∨ ¬p : EQ(x, s1) a 6= b : f(x) = t

¬p : f(s1) = t

The final resolution step on p will then introduce the case distinction according
to Pudlák’s algorithm. This results in the same interpolant.

p : f(s2) = t ¬p : f(s1) = t

⊥ : (f(s2) = t ∨ p) ∧ (f(s1) = t ∨ ¬p)

16 Jürgen Christ, Jochen Hoenicke, and Alexander Nutz

5 Linear Real and Integer Arithmetic

Our solver for linear arithmetic is based on a variant of the Simplex approach [11].
A theory conflict is a conjunction of literals `j of the form

∑
i aijxi ≤ bj . The

proof of unsatisfiability is given by Farkas coefficients kj ≥ 0 for each inequality
`j . These coefficients have the properties

∑
j kjaij = 0 and

∑
j kjbj < 0. In the

following we use the notation of adding inequalities (provided the coefficients
are positive). Thus, we write

∑
j kj`j for

∑
i(
∑

j kjaij)xi ≤
∑

j kjbj . With the
property of the Farkas coefficients we get a contradiction (0 < 0) and this shows
that the theory conflict is unsatisfiable.

A conjunction of literals may have rational but no integer solutions. In this
case, there are no Farkas coefficients that can prove the unsatisfiability. So for
the integer case, our solver may introduce extended branches [9], which are just
branches of the DPLL engine on newly introduced literals. In the proof tree this
results in resolution steps with these literals as pivots.

Example 1. The formula t ≤ 2a ≤ r ≤ 2b + 1 ≤ t has no integer solution but
a rational solution. Introducing the branch a ≤ b ∨ b < a leads to the theory
conflicts t ≤ 2a ≤ 2b ≤ t − 1 and r ≤ 2b + 1 ≤ 2a − 1 ≤ r − 1 (note that b < a
is equivalent to b + 1 ≤ a). The corresponding proof tree is given below. The
Farkas coefficients in the theory lemmas are given in parenthesis. Note that the
proof tree shows the clauses, i. e., the negated conflicts. A node with more than
two parents denotes that multiple applications of the resolution rule are taken
one after another.
¬(r ≤ 2b + 1) (·1)
¬(b + 1 ≤ a) (·2)
¬(2a ≤ r) (·1)

¬(t ≤ 2a) (·1)
¬(a ≤ b) (·2)

¬(2b + 1 ≤ t) (·1)

r ≤ 2b + 1

2a ≤ r

t ≤ 2a

2b + 1 ≤ t

a ≤ b ¬(a ≤ b)

⊥

Now consider the problem of deriving an interpolant between A ≡ t ≤ 2a ≤ r
and B ≡ r ≤ 2b + 1 ≤ t. We can obtain an interpolant by annotating the above
resolution tree with partial interpolants. To compute a partial interpolant for
the theory lemma ¬(r ≤ 2b+1)∨¬(b+1 ≤ a)∨¬(2a ≤ r), we purify the negated
clause according to the definition in Section 3.2, which gives

r ≤ 2b + 1 ∧ x1 ≤ a ∧ −x1 + b + 1 ≤ 0 ∧ 2a ≤ r.

Then, we sum up the A-part of the conflict (the second and fourth literal) multi-
plied by their corresponding Farkas coefficients. This yields the interpolant 2x1 ≤
r. Similarly, the negation of the theory lemma ¬(t ≤ 2a)∨¬(a ≤ b)∨¬(2b+1 ≤ t)
is purified to

t ≤ 2a ∧ x2 + a ≤ 0 ∧ −x2 ≤ b ∧ 2b + 1 ≤ t,

which yields the partial interpolant 2x2 + t ≤ 0. Note, that we have to introduce
different variables for each literal. Intuitively, the variable x1 stands for a and

Proof Tree Preserving Interpolation 17

x2 for −a. Using Pudlák’s algorithm we can derive the same interpolants for the
clause a ≤ b resp. ¬(a ≤ b).

For the final resolution step, the two partial interpolants 2x1 ≤ r and 2x2 +
t ≤ 0 are combined into the final interpolant of the problem. Summing up these
inequalities with x1 = −x2 we get t ≤ r. While this follows from A, it is not
inconsistent with B. We need an additional argument that, given r = t, r has to
be an even integer. This also follows from the partial interpolants when setting
x1 = −x2: t ≤ −2x2 = 2x1 ≤ r. The final interpolant computed by our algorithm
is t ≤ r ∧ (t ≥ r → t ≤ 2br/2c).

In general, we can derive additional constraints on the variables if the con-
straint resulting from summing up the two partial interpolants holds very tightly.
We know implicitly that x1 = −x2 is an integer value between t/2 and r/2. If
t equals r or almost equals r there are only a few possible values which we can
explicitly express using the division function as in the example above. This leads
to the general form t− r ≤ 0∧ (t− r ≥ −k → F). In our example we have k = 0
and F specifies that r = t is even.

To mechanise the reasoning used in the example above, our resolution rule
for mixed inequality literals requires that the interpolant patterns that label the
clauses have a certain shape. An auxiliary variable of a mixed inequality literal
may only occur in the interpolant pattern if the negated literal appears in the
clause. Let x denote the set of auxiliary variables that occur in the pattern. We
additionally require that these variables only occur inside a special sub-formula
of the form LA(s(x), k, F (x)). The first parameter s is a linear term over the
variables in x and arbitrary other terms not involving x. The coefficients of the
variables x in s must all be positive. The second parameter k ∈ Qε is a constant
value. In the real case we only allow the values 0 and −ε, in the integer case we
allow k ∈ Z, k ≥ −1. The third parameter F (x) is a formula that contains the
variables from x at arbitrary positions. To simplify the presentation, we treat −ε
as −1 in the integer case. Again we have a strong and a weak partial interpolant
that are obtained by using different definitions for LA. These definitions are

LAS (s(x), k, F (x)) :≡ ∀x′ ≤ x. LA∗(s(x′), k, F (x′))

LAW (s(x), k, F (x)) :≡ ∃x′ ≥ x. LA∗(s(x′), k, F (x′))

where LA∗(s(x′), k, F (x′)) :≡ s(x′) ≤ 0 ∧ (s(x′) ≥ −k → F (x′))

The intuition behind the formula LA∗(s(x), k, F (x)) is that s(x) ≤ 0 sum-
marises the inequality chain that follows from the A-part of the formula. On
this chain there may be some constraints on intermediate values. In the example
above the A-part contains the chain t ≤ 2a ≤ r, which is summarised to t ≤ r.
Furthermore the A-part implies that there is an even integer value between t
and r. If t and r are distinct, this is no problem. However, if t ≥ r we need that
t is even. Using the above pattern we can choose k = 0 and F as the formula
that states that t is even.

To see that the strong interpolant LAS(s, k, F) implies the weak interpolant
LAW (s, k, F), instantiate x′ with x in both formulae. Having quantifiers in the

18 Jürgen Christ, Jochen Hoenicke, and Alexander Nutz

interpolant is no problem; once all mixed literals are resolved, all auxiliary vari-
ables are removed. Then, the strong and weak interpolant are identical and have
no quantifiers.

Lemma 4. For all s(x), F (x), the strong interpolant implies the weak one:

LAS(s(x), k, F (x))→ LAW (s(x), k, F (x))

Proof. Instantiate the vector x′ in LAS and LAW with x. ut

In the remainder of the section, we will give the interpolants for the leaves
produced by the linear arithmetic solver and for the resolvent of the resolution
step where the pivot is a mixed linear inequality.

5.1 Leaf Interpolation

As mentioned above, our solver produces for a clause C ≡ ¬`1 ∨ · · · ∨ ¬`m some
Farkas coefficients k1, . . . , km ≥ 0 such that

∑
j kj`j yields a contradiction 0 < 0.

A partial interpolant for a theory lemma can be computed by summing up the
A-part of the conflict: I is defined as

∑
j kj(`j � A) (if `j � A = > we regard it

as 0 ≤ 0, i. e., it is not added to the sum). It is a valid interpolant as it clearly
follows from ¬C � A ⇐⇒ `1 � A ∧ · · · ∧ `m � A. Moreover, we have that
I +

∑
j kj(`j � B) yields 0 < 0, since for every literal, even for mixed literals,

`j � A + `j � B = `j holds5. This shows that I ∧ ¬C � B is unsatisfiable.
The linear constraint

∑
j kj(`j � A) can easily be expressed as s(x) ≤ 0. Thus,

we can equivalently write this interpolant in our pattern as LA(s(x),−ε,⊥).
Since the Farkas coefficients are all positive and the auxiliary variables intro-
duced to define ` � A for mixed literals contain x positively, the resulting term
s(x) will also always contain x with a positive coefficient.

Theory combination lemmas. As mentioned in the preliminaries, we use theory
combination clauses to propagate equalities from and to the Simplex core of
the linear arithmetic solver. These clauses must also be labelled with partial
interpolants. In the following we give interpolants for those theory combination
lemmas. We will start with the case where no mixed literals occur, and treat
lemmas containing mixed literals afterwards.

Interpolation of Non-Mixed Theory Combination Lemmas. If a theory combina-
tion lemma t = u∨t < u∨t > u or t 6= u∨t ≤ u contains no mixed literal, we can
compute partial interpolants as follows. If all literals in the clause are A-local,
the formula ⊥ is a partial interpolant. If all literals are B-local, the formula > is
a partial interpolant. These are the same interpolants Pudlák’s algorithm would
give for input clauses from A resp. B.

5 Strictly speaking this does not hold for shared literals, where ` � A = ` � B = `. In
that case use kj = 0 in I+

∑
j kj(`j � B) to see that I is indeed a partial interpolant.

Proof Tree Preserving Interpolation 19

Clause C: a 6= b ∨ a ≤ b
¬C � A: a = xa ∧ xa = xb ∧ −a + x1 ≤ 0
¬C � B: xa = xb ∧ xb = b ∧ −x1 + b < 0
Interpolant I: LA(−x + x1,−ε,⊥)

Clause C: a 6= b ∨ a ≥ b
¬C � A: a = xa ∧ xa = xb ∧ a + x2 ≤ 0
¬C � B: xa = xb ∧ xb = b ∧ −x2 − b < 0
Interpolant I: LA(x + x2,−ε,⊥)

Clause C: a = b ∨ a < b ∨ a > b
¬C � A: a = xa ∧ xa 6= xb ∧ −a + x1 ≤ 0 ∧ a + x2 ≤ 0
¬C � B: xa 6= xb ∧ xb = b ∧ −x1 + b ≤ 0 ∧ −x2 − b ≤ 0
Interpolant I: LA(x1 + x2, 0, EQ(x, x1))

Table 1. Interpolation of mixed theory combination clauses. We assume a is
A-local, b is B-local, a − b ≤ 0 has the auxiliary variable x1, b − a ≤ 0 has the
auxiliary variable x2 and a = b the auxiliary variables xa and xb.

Otherwise, one of the literals belongs to A and one to B. The symbols t and
u have to be shared between A and B since they appear in all literals. We can
derive a partial interpolant by conjoining the negated literals projected to the A
partition.

I ≡ (t 6= u) � A ∧ (t ≥ u) � A ∧ (t ≤ u) � A. for t = u ∨ t < u ∨ t > u

I ≡ (t = u) � A ∧ (t > u) � A for t 6= u ∨ t ≤ u

Since we defined I as ¬C � A, the first property of the partial interpolant
holds trivially. Also I ∧ ¬C � B is equivalent to ¬C and therefore false. The
symbol condition is satisfied as t and u are shared symbols.

Interpolation of AB-Mixed Theory Combination Lemmas. If we are in the mixed
case, all three literals are mixed. One of the two terms must be A-local (in the
following we denote this term by a) the other term B-local (which we denote by
b). To purify the literals, we introduce a fresh auxiliary variable for each literal.
Table 1 depicts all possible mixed theory lemmas together with the projections
¬C � A and ¬C � B and a partial interpolant of the clause.

Lemma 5. The interpolants shown in Table 1 are correct partial interpolants
of their respective clauses.

Proof. First, we convince ourselves that these interpolants are of the right form:
The variables x1 and x2 appear in the first parameter of LA with positive coef-
ficients. For the first two clauses that contain the literal a 6= b, the interpolant
is allowed to contain x at arbitrary positions. In the third clause the variable
x appears only in an EQ-term which occurs positively in the expanded form of
the partial interpolant. Next we show

¬C � A |= IS (Inductivity)

¬C � B ∧ IW |= ⊥ (Contradiction)

20 Jürgen Christ, Jochen Hoenicke, and Alexander Nutz

Inductivity. For the clauses a 6= b ∨ a ≤ b and a 6= b ∨ a ≥ b the argument is
symmetric. We show only the case C ≡ a 6= b∨ a ≤ b. Assume ¬C � A and show
LAS(−xa + x1,−ε,⊥):

∀x′1 ≤ x1. − xa + x′1 ≤ 0 ∧ (−xa + x′1 ≥ ε→ ⊥)

Let x′1 ≤ x1. From ¬C � A we have −a+x1 ≤ 0 and a = xa. Hence, −xa+x′1 ≤ 0
as desired, which also shows that the implication in the second conjunct holds
vacuously.

Now consider the clause a = b ∨ a < b ∨ b < a. We assume ¬C � A and show
LAS(x1 + x2, 0, xa = x1):

∀x′1 ≤ x1, x
′
2 ≤ x2. x

′
1 + x′2 ≤ 0 ∧ (x′1 + x′2 ≥ 0→ xa = x′1).

Let x′1 ≤ x1 and x′2 ≤ x2. From ¬C � A we have x1 ≤ a and a + x2 ≤ 0. Thus,
x′1 + x′2 ≤ x1 + x2 ≤ a + (−a) = 0. Moreover, if x′1 + x′2 ≥ 0 then

a ≤ −x2 ≤ −x′2 ≤ x′1 ≤ x1 ≤ a,

hence a = x1. With a = xa (also a part of ¬C � A), this yields xa = x1. This
shows that LAS(x1 + x2, 0, xa = x1) holds.

Contradiction. Again we only show the first and third case. For the clause
C ≡ a 6= b ∨ a ≤ b, assume ¬C � B and LAW (−xb + x1,−ε,⊥) hold:

∃x′1 ≥ x1. − xb + x′1 ≤ 0 ∧ (−xb + x′1 ≥ ε→ ⊥)

Choose x′1 for which the above formula holds. From ¬C � B we have −x1 +b < 0
and xb = b. Hence, −xb + x′1 ≥ −b + x1 > 0. This contradicts −xb + x′1 ≤ 0.

Now consider the clause C ≡ a = b ∨ a < b ∨ b < a. We assume ¬C � B and
LAW (x1 + x2, 0, xb 6= x1)

∃x′1 ≥ x1, x
′
2 ≥ x2. x

′
1 + x′2 ≤ 0 ∧ (x′1 + x′2 ≥ 0→ xb 6= x′1)

and show a contradiction. Choose x′1 and x′2 such that the formula holds. From
¬C � B we have b ≤ x1 and −x2 ≤ b. Thus

0 ≤ b− b ≤ x1 + x2 ≤ x′1 + x′2 ≤ 0,

which gives x′1 +x′2 = 0. Also b ≤ x1 ≤ x′1 = −x′2 ≤ −x2 ≤ b, hence xb = b. This
contradicts x′1 + x′2 ≥ 0→ xb 6= b. ut

5.2 Pivoting of Mixed Literals

In this section we give the resolution rule for a step involving a mixed inequality
a + b ≤ c as pivot element. In the following we denote the auxiliary variable of
the negated literal ¬(a + b ≤ c) with x1 and the auxiliary variable of a + b ≤ c
with x2. The intuition here is that x1 and −x2 correspond to the same value

Proof Tree Preserving Interpolation 21

between a and c− b. The resolution rule for pivot element a+ b ≤ c is as follows
where the values for s3, k3 and F3 are given later.

C1 ∨ a + b ≤ c : I1[LA(c1x1 + s1(x), k1, F1(x1,x))]
C2 ∨ ¬(a + b ≤ c) : I2[LA(c2x2 + s2(x), k2, F2(x2,x))]

C1 ∨ C2 : I1[I2[LA(s3(x), k3, F3(x))]]
(rule-la)

The formula LA(s3(x), k3, F3(x)) should hold if and only if there is some x1 =
−x2 such that LA(c1x1+s1(x), k1, F1(x1,x)) and LA(c2x2+s2(x), k2, F2(x2,x))
hold. From c1x1 + s1(x) ≤ 0 and c2x2 + s2(x) ≤ 0 and x1 = −x2 we get
c2s1(x) + c1s2(x) ≤ 0, hence we choose

s3(x) = c2s1(x) + c1s2(x).

For the inverse direction we need to guarantee the existence of x1 = −x2 between
s2(x)
c2

and −s1(x)c1
such that the following formulae hold6:

LA∗1(x1) :≡ s1(x) + c1x1 ≤ 0 ∧ (s1(x) + c1x1 ≥ −k1 → F1(x1,x)),

LA∗2(x2) :≡ s2(x) + c2x2 ≤ 0 ∧ (s2(x) + c2x2 ≥ −k2 → F2(x2,x)).

The first conjuncts of LA∗1 and LA∗2 yield s2(x)
c2
≤ −x2, x1 ≤ −s1(x)c1

. Hence
x1 = −x2 should be a value between these bounds. The second conjunct holds

vacuously if there is an integer value with s2(x)+k2

c2
< −x2 = x1 < −s1(x)−k1

c1
.

This holds if the gap is bigger than one: c2s1(x)+c1s2(x) < −c2k1−c1k2−c1c2.

Otherwise there are only finitely many candidates for x1 = −x2 between s2(x)
c2

and −s1(x)c1
. For these we can do a finite case distinction in F3. This suggests the

definitions

k3 := c2k1 + c1k2 + c1c2

F3(x) :≡

⌈
k1+1
c1

⌉∨
i=0

LA∗1

(⌊
−s1(x)

c1

⌋
− i

)
∧ LA∗2

(
i−
⌊
−s1(x)

c1

⌋) (int case)

In the real case, we require that k1 and k2 are either −ε or 0. Then, the only

candidate for x1 is −s1(x)c1
. We define

k3 :=

{
−ε if k1 = k2 = −ε
0 if k1 = 0 ∨ k2 = 0

F3(x) :≡ LA∗1

(
−s1(x)

c1

)
∧ LA∗2

(
−−s1(x)c1

) (real case)

Note that the formula of the integer case is asymmetric. If
⌈
k2+1
c2

⌉
<
⌈
k1+1
c1

⌉
we can replace −s1 by s2, k1 by k2, and c1 by c2 and change ceiling to flooring.
This leads to a fewer number of disjuncts in F3.

With these definitions we can state the following lemma.

6 Unfortunately, the version published in TACAS 2013 [5] had this definition wrong.

22 Jürgen Christ, Jochen Hoenicke, and Alexander Nutz

Lemma 6. Let s1(x), s2(x) be linear terms over x, c1, c2 ≥ 0, k1, k2 ∈ Z≥−1
(integer case) or k1, k2 ∈ {0,−ε} (real case), F1(x1,x), F2(x2,x) arbitrary for-
mulae and s3, k3, F3 as defined above. Then

(∃x1.LA
S(c1x1 + s1(x), k1, F1(x1,x)) ∧ LAS(−c2x1 + s2(x), k2, F2(−x1,x)))

→ LAS(s3(x), k3, F3(x))

and

LAW (s3(x), k3, F3(x))→
(∃x1.LA

W (c1x1 + s1(x), k1, F1(x1,x)) ∧ LAW (−c2x1 + s2(x), k2, F2(−x1,x)))

Proof. We define the following shorthands for the formulae and their parts:

LAS
1 (x1) := ∀x′1 ≤ x1,x

′ ≤ x.

c1x
′
1 + s1(x′) ≤ 0︸ ︷︷ ︸

(1.1)

∧(c1x
′
1 + s1(x′) ≥ −k1︸ ︷︷ ︸

(1.2)

→ F1(x′1,x
′)︸ ︷︷ ︸

(1.3)

)

LAS
2 (−x1) := ∀x′2 ≤ −x1,x

′ ≤ x.

c2x
′
2 + s2(x′) ≤ 0︸ ︷︷ ︸

(2.1)

∧(c2x
′
2 + s2(x′) ≥ −k2︸ ︷︷ ︸

(2.2)

→ F2(x′2,x
′)︸ ︷︷ ︸

(2.3)

)

LAS
3 := ∀x′ ≤ x.

c2s1(x′) + c1s2(x′) ≤ 0︸ ︷︷ ︸
(3.1)

∧(c2s1(x′) + c1s2(x′) ≥ −k3︸ ︷︷ ︸
(3.2)

→ F3(x′)︸ ︷︷ ︸
(3.3)

)

Implication on Strong Interpolant for LA (Z). Choose x1 such that LAS
1 (x1) ∧

LAS
2 (−x1) holds. We need to show that LAS

3 holds for all x′ ≤ x. Instantiate x′

in LAS
1 and LAS

2 with the same values.
First we show (3.1). We choose x′1 = x1 in LAS

1 and x′2 = −x1 in LAS
2 . From

(1.1) and (2.1) it follows that

s2(x′)

c2
≤ x1 ≤ −

s1(x′)

c1
. (∗)

By transitivity and some simple transformations we get (3.1).
Now we show the implication (3.2)→ (3.3) by showing F3. As another short-

hand, we define y :=
⌊
−s1(x′)

c1

⌋
−
⌈
k1+1
c1

⌉
. This implies y ≤ −s1(x′)−k1−1

c1
. We

show F3 by a case split on x1 < y.

Case x1 < y. We instantiate x′2 in LAS
2 (−x1) with −y (which fulfils x′2 ≤ −x1)

and obtain LA∗2(−y). Next we show LA∗1(y). From the choice of y we get

c1y + s1(x′) ≤ −s1(x′)− k1 − 1 + s1(x′) ≤ −k1 − 1

Since k1 ≥ −1 the first conjunct of LA∗1(y) holds. Also the second conjunct of
LA∗1(y) holds vacuously.

Since, for i =
⌈
k1+1
c1

⌉
, F3 contains LA∗1(y)∧LA∗2(−y) in the big disjunction,

F3 holds.

Proof Tree Preserving Interpolation 23

Case y ≤ x1: Then, we instantiate x′1 with x1 in LAS
1 (x1) and x′2 with −x1 in

LAS
2 (−x1). It remains to be shown that LA∗1(x1)∧LA∗2(−x1) is contained in the

disjunction F3, namely for i :=
⌊
−s1
c1

⌋
−x1. Since x1 is integral, i is also integral.

Formula (∗) implies i ≥ 0 and y ≤ x1 implies i ≤
⌈
k1+1
c1

⌉
.

Implication on Strong Interpolant for LA (Q). Like in the integer case, we choose
x1 such that LAS

1 (x1) ∧ LAS
2 (−x1) holds. We need to show that LAS

3 holds for
all x′ ≤ x and instantiate x′ in LAS

1 and LAS
2 with the same values. We also

instantiate x′1 with x1 and x′2 with −x1. From (1.1) and (2.1) we get (3.1)

s2(x′)

c2
≤ x1 ≤ −

s1(x′)

c1
(∗)

If (3.2) ≡ c2s1(x′) + c1s2(x′) ≥ −k3 holds, we can extend this to

s2(x′)

c2
≤ x1 ≤ −

s1(x′)

c1
≤ s2(x′)

c2
+

k3
c1c2

.

Then, k3 cannot be −ε, so it must be 0 and equality holds in the above inequality
chain. Thus, F3 is equivalent to LA∗1(x1) ∧ LA∗2(−x1), so (3.3) holds.

Implication on Weak Interpolant for LA (Z). For LAW we use similar short-
hands:

LAW
1 (x1) := ∃x′1 ≥ x1,x

′ ≥ x.

c1x
′
1 + s1(x′) ≤ 0︸ ︷︷ ︸

(1.1)

∧(c1x
′
1 + s1(x′) ≥ −k1︸ ︷︷ ︸

(1.2)

→ F1(x′1,x
′)︸ ︷︷ ︸

(1.3)

)

LAW
2 (−x1) := ∃x′2 ≥ −x1,x

′ ≥ x.

c2x
′
2 + s2(x′) ≤ 0︸ ︷︷ ︸

(2.1)

∧(c2x
′
2 + s2(x′) ≥ −k2︸ ︷︷ ︸

(2.2)

→ F2(x′2,x
′)︸ ︷︷ ︸

(2.3)

)

LAW
3 := ∃x′ ≥ x.

c2s1(x′) + c1s2(x′) ≤ 0︸ ︷︷ ︸
(3.1)

∧(c2s1(x′) + c1s2(x′) ≥ −k3︸ ︷︷ ︸
(3.2)

→ F3(x′)︸ ︷︷ ︸
(3.3)

)

We want to prove LAW
3 → ∃x1. LA

W
1 (x1) ∧ LAW

2 (−x1). Thus, we have to
find a common value for x1 for both LAW

1 and LAW
2 . Assume LAW

3 holds for
some x′ ≥ x. We will instantiate x′ in LAW

1 and LAW
2 by the same value and

instantiate x′1 by x1, and x′2 by −x1, after we determined the value for x1. Thus
we have to show that LA∗1(x1) ∧ LA∗2(−x1) holds. Now, we do a case split on
(3.2).

If (3.2) holds, (3.3), that is F3(x′), has to hold. This immediately implies
that there is one i fulfilling

LA∗1

(⌊
−s1(x′)

c1

⌋
− i

)
∧ LA∗2

(
i−
⌊
−s1(x′)

c1

⌋)
.

24 Jürgen Christ, Jochen Hoenicke, and Alexander Nutz

Thus, with x1 =
⌊
−s1(x′)

c1

⌋
− i, LA∗1(x1) ∧ LA∗2(−x1) holds.

If (3.2) does not hold, we choose x1 =
⌊
−s1(x′)−k1−1

c1

⌋
≤ −s1(x

′)−k1−1
c1

. Then,

c1x1 + s1(x′) ≤ −k1 − 1

which fulfils (1.1) (since k1 ≥ −1) and refutes (1.2). Thus, LA∗1(x1) holds. Since
−s1(x′)− k1 is integral we have

x1 =

⌊
−s1(x′)− k1 − 1

c1

⌋
=

⌈
−s1(x′)− k1

c1

⌉
− 1 ≥ −s1(x′)− k1

c1
− 1.

⇒ c2(−x1) + s2(x′) ≤ c2s1(x′) + c1s2(x′) + c2k1 + c2c1
c1

Since (3.2) does not hold, we get

c2(−x1) + s2(x′) <
−k3 + c2k1 + c2c1

c1
= −k2,

which fulfils (2.1) and refutes (2.2). Thus, LA∗2(−x1) holds.

Implication on Weak Interpolant for LA (Q). As in the integer case we have to
find a common value for x1 for both LAW

1 and LAW
2 . Assume LAW

3 holds for
some x′ ≥ x. Again we will instantiate x′ in LAW

1 and LAW
2 by the same value

and instantiate x′1 by x1, and x′2 by −x1, after we determined the value for x1.
Again, we do a case split on (3.2).

If (3.2) holds, then F3 holds, i. e., LA∗1(x1)∧LA∗2(−x1) holds for x1 = −s1(x′)
c1

.
Otherwise, we choose

x1 :=

s2(x
′)

c2
+ −s1(x′)

c1

2
.

From (3.1) we know s2(x
′)

c2
≤ −s1(x

′)
c1

. Hence,

s2(x′)

c2
≤ x1 ≤

−s1(x′)

c1
.

This implies (1.1) and (2.1). If k3 = −ε then k1 = −ε and k2 = −ε, so also (1.2)
and (2.2) are refuted. In this case LA∗1(x1) ∧ LA∗2(−x1) holds. If k3 = 0, the
negation of (3.2) implies

s2(x′)

c2
< x1 <

−s1(x′)

c1
.

Thus, (1.2) and (2.2) are refuted and LA∗1(x1) ∧ LA∗2(−x1) holds. ut

This lemma can be used to show that (rule-la) is correct.

Proof Tree Preserving Interpolation 25

Theorem 3 (Soundness of (rule-la)). Let a + b ≤ c be a mixed literal with
the auxiliary variable x2, and x1 be the auxiliary variable of the negated literal.
If I1[LA(c1x1 + s1, k1, F1)] yields two partial interpolants (strong and weak) of
C1 ∨ a + b ≤ c and I2[LA(c2x2 + s2, k2, F2)] yields two partial interpolants of
C2∨¬(a+ b ≤ c) then I1[I2[LA(s3, k3, F3)]] yields two partial interpolants of the
clause C1 ∨ C2.

To ease the presentation, we gave the rule (rule-la) with only one LA term
per partial interpolant. The generalised rule requires the partial interpolants of
the premises to have the shapes I1[LA11] . . . [LA1n] and I2[LA21] . . . [LA2m]. The
resulting interpolant is

I1[I2[LA311] . . . [LA31m]] . . . [I2[LA3n1] . . . [LA3nm]]

where LA3ij is computed from LA1i and LA2j as explained above.

Proof. We already showed that the strong interpolant implies the weak inter-
polant for the interpolation pattern used. The symbol condition holds for I3 if it
holds for I1 and I2, which can be seen as follows. The only symbol that is allowed
to occur in I1 resp. I2 but not in I3 is the auxiliary variable introduced by the
literal, i.e., x1 resp. x2. This variable may only occur inside the LA1 resp. LA2

terms as indicated and, by construction, x1 and x2 do not occur in LA3. Further-
more, the remaining variables from x occur in s3(x) with a positive coefficient
as required by our pattern and occur only inside the LA pattern in s3 and F3.
Thus I3 has the required form. We will use Lemma 2 to show that I3 is a partial
interpolant. For this we need to show inductivity (ind) and contradiction (cont).

In this proof we will use I1[LA1i(x1)] to denote the first interpolant

I1[LA(s11 + c11x1, k11, F11)] . . . [LA(s1n + c1nx1, k1n, F1n)]

and similarly I2[LA2j(x2)] and I1[I2[LA3ij]], the latter standing for

I1[I2[LA311] . . . [LA31m]] . . . [I2[LA3n1] . . . [LA3nm]]

where
LA3ij = LA(c2js1i + c1is2j , k3ij , F3ij).

Inductivity. We apply the first part of Lemma 6 on x1 = a, which gives us∧
ij

LAS
1i(a) ∧ LAS

2j(−a)→ LAS
3ij

Using the deep substitution lemma, we obtain

IS1
[
LAS

1i(a)
]
∧ IS2

[
LAS

2j(−a)
]
→ IS1

[
IS2
[
LAS

3ij

]]
. (∗)

Now assume the left-hand-side of (ind), which in this case is

∀x1, x2. (−a + x1 ≤ 0→ IS1 [LAS
1i(x1)]) ∧ (a + x2 ≤ 0→ IS2 [LAS

2j(x2)]).

Instantiating x1 with a and x2 with −a gives us IS1 [LAS
1i(a)] and IS2 [LAS

2j(−a)].

Thus by (∗), IS3 ≡ IS1 [IS2 [LAS
3ij]] holds as desired.

26 Jürgen Christ, Jochen Hoenicke, and Alexander Nutz

Contradiction. We assume IW1 [IW2 [LAW
3ij]] and show

∃x1, x2. (−x1 − b < −c ∧ IW1 [LAW
1i (x1)]) ∨ (−x2 + b ≤ c ∧ IW2 [LAW

2j (x2)]) (∗)

We do a case distinction on∧
i

(IW2 [LAW
3ij]→ ∃x1. x1 > c− b ∧ LAW

1i (x1))

If it holds, then we may get a different value for x1 for every i. However, if
LAW

1i (x1) holds for some value, it also holds for any smaller value of x1. Take
x as the minimum of these values (or x = c − b + 1 if the implication holds
vacuously for every i). Then, −x−b < −c and

∧
i(I

W
2 [LAW

3ij]→ LAW
1i (x)). With

monotonicity we get from IW1 [IW2 [LAW
3ij]] that IW1 [LAW

1i (x)] holds. Hence, the
left disjunct of formula (∗) holds.

In the other case there is some i with

IW2 [LAW
3ij] ∧ (∀x1. x1 > c− b→ ¬LAW

1i (x1)). (∗∗)

The second part of Lemma 6 gives us∧
j

(LAW
3ij → ∃x1. LA

W
1i (x1) ∧ LAW

2j (−x1))

Then, x1 ≤ c− b by (∗∗). But if LAW
2j (−x1) holds, then LAW

2j also holds for the
smaller value b− c. This gives us∧

j

(LAW
3ij → LAW

2j (b− c))

We obtain IW2 [LAW
2j (b − c)] by applying monotonicity on the left conjunct of

formula (∗∗). Thus the right disjunct of formula (∗) holds for x2 = b− c. ut

6 An Example for the Combined Theory

The previous examples showed how to use our technique to compute an inter-
polant in the theory of uninterpreted functions, or the theory of linear arithmetic.
We will now present an example in the combination of these theories by applying
our scheme to a proof of unsatisfiability of the interpolation problem

A ≡ t ≤ 2a ∧ 2a ≤ s ∧ f(a) = q

B ≡ s ≤ 2b ∧ 2b ≤ t + 1 ∧ ¬(f(b) = q)

where a, b, s, and t are integer constants, q is a constant of the uninterpreted
sort U , and f is a function from integer to U .

We derive the interpolant using Pudlák’s algorithm and the rules shown in
this paper. Note that the formula is already in conjunctive normal form. Since

Proof Tree Preserving Interpolation 27

we use Pudlák’s algorithm, every input clause is labelled with ⊥ if it is an input
clause from A, and > if it is an input clause from B. We will simplify the
interpolants by removing neutral elements of Boolean connectives.

Since the variables a and b are shared between the theory of uninterpreted
functions and the theory of linear arithmetic, we get some theory combination
clauses for a and b. The only theory combination clause needed to prove unsatis-
fiability of A∧B is a = b∨¬(b ≤ a)∨¬(a ≤ b) which has the partial interpolant
LA(x1 + x2, 0, EQ(x, x1)). Here, x1 is used to purify7 b ≤ a and x2 is used to
purify a ≤ b.

We get two lemmas from LA (Z): The first one, ¬(2a ≤ s)∨¬(s ≤ 2b)∨a ≤ b,
states that we can derive a ≤ b from 2a ≤ s and s ≤ 2b. Let x3 be the variable
used to purify ¬(a ≤ b). Note that we purify the literals in the conflict, i. e.,
the negation of the lemma. Then, this lemma can be annotated with the partial
interpolant LA(2x3− s,−1,⊥). We can resolve this lemma with the unit clauses
from the input to get a ≤ b.

¬(2a ≤ s) ∨ ¬(s ≤ 2b) ∨ a ≤ b : LA(2x3 − s,−1,⊥) 2a ≤ s : ⊥
¬(s ≤ 2b) ∨ a ≤ b : LA(2x3 − s,−1,⊥) s ≤ 2b : >

a ≤ b : LA(2x3 − s,−1,⊥)

The second LA (Z)-lemma, ¬(t ≤ 2a) ∨ ¬(2b ≤ t + 1) ∨ b ≤ a, states that
we can derive b ≤ a from t ≤ 2a and 2b ≤ t + 1. Let x4 be the variable used to
purify ¬(b ≤ a). Then, we can annotate the lemma with the partial interpolant
LA(2x4+t,−1,⊥) and propagate this partial interpolant to the unit clause b ≤ a
by resolution with input clauses.

¬(t ≤ 2a) ∨ ¬(2b ≤ t + 1) ∨ b ≤ a : LA(2x4 + t,−1,⊥) t ≤ 2a : ⊥
¬(2b ≤ t + 1) ∨ b ≤ a : LA(2x4 + t,−1,⊥) 2b ≤ t + 1 : >

b ≤ a : LA(2x4 + t,−1,⊥)

Additionally, we get one lemma from EUF , f(b) = q∨¬(f(a) = q)∨¬(a = b),
that states that, given f(a) = q and a = b, by congruence, f(b) = q has to hold.
Let x be the variable used to purify a = b. Then, we can label this lemma with
the partial interpolant f(x) = q. Note that this interpolant has the form I(x) as
required by our interpolation scheme. We propagate this partial interpolant to
the unit clause ¬(a = b) by resolving the lemma with the input clauses.

f(b) = q ∨ ¬(f(a) = q) ∨ ¬(a = b) : f(x) = q f(b) = q : >
¬(f(a) = q) ∨ ¬(a = b) : f(x) = q f(a) = q : ⊥

¬(a = b) : f(x) = q

From the theory combination clause a = b ∨ ¬(b ≤ a) ∨ ¬(a ≤ b) and the
three unit clauses derived above, we show a contradiction. We start by resolving

7 Note that we purify the conflict, i. e., the negated clause

28 Jürgen Christ, Jochen Hoenicke, and Alexander Nutz

with the unit clause a = b using (rule-eq) and produce the partial interpolant
LA(x1 + x2, 0, f(x1) = q).

a = b ∨ ¬(b ≤ a) ∨ ¬(a ≤ b) : LA(x1 + x2, 0, EQ(x, x1))
¬(a = b) : f(x) = q

¬(b ≤ a) ∨ ¬(a ≤ b) : LA(x1 + x2, 0, f(x1) = q)

The next step resolves on b ≤ a using (rule-la). Note that we used x1 to
purify b ≤ a and x4 to purify ¬(b ≤ a). Hence, these variables will be removed
from the resulting partial interpolant. From the partial interpolants of the an-
tecedents, LA(2x4+t,−1,⊥) and LA(x1+x2, 0, f(x1) = q), we get the following
components:

c1 = 2 s1 = t k1 = −1 F1(x4) ≡ ⊥
c2 = 1 s2 = x2 k2 = 0 F2(x1) ≡ f(x1) = q

These components yield k3 = 1·(−1)+2·0+2·1 = 1. Furthermore,
⌈
k1+1
c1

⌉
= 0

leads to one disjunct in F3. The corresponding values are
⌊−t

2

⌋
, resp. −

⌊−t
2

⌋
.

The resulting formula G(x2) := F3(x) is

G(x2) ≡ t + 2

⌊
−t
2

⌋
≤ 0 ∧

(
t + 2

⌊
−t
2

⌋
≥ 1→ ⊥

)
∧

x2 −
⌊
−t
2

⌋
≤ 0 ∧

(
x2 −

⌊
−t
2

⌋
≥ 0→ f

(
−
⌊
−t
2

⌋)
= q

)
≡ x2 −

⌊
−t
2

⌋
≤ 0 ∧

(
x2 −

⌊
−t
2

⌋
≥ 0→ f

(
−
⌊
−t
2

⌋)
= q

)
.

Note that the first two conjuncts simplify to > and we remove them. The partial
interpolant for the clause ¬(a ≤ b) is LA(t + 2x2, 1, G(x2)).

b ≤ a : LA(2x4 + t,−1,⊥) ¬(b ≤ a) ∨ ¬(a ≤ b) : LA(x1 + x2, 0, f(x1) = q)

¬(a ≤ b) : LA(t + 2x2, 1, G(x2))

In the final resolution step, we resolve a ≤ b labelled with partial interpolant
LA(2x3 − s,−1,⊥) against ¬(a ≤ b) labelled with LA(t + 2x2, 1, G(x2)). Note
that the literals have been purified with x3 and x2, respectively. We get the
components

c1 = 2 s1 = −s k1 = −1 F1(x3) ≡ ⊥
c2 = 2 s2 = t k2 = 1 F2(x2) ≡ G(x2).

Proof Tree Preserving Interpolation 29

We get k3 = 2 · (−1) + 2 · 1 + 2 · 2 = 4. Again,
⌈
k1+1
c1

⌉
= 0 yields one disjunct

in F3 with the values
⌊
s
2

⌋
, and −

⌊
s
2

⌋
, respectively. The resulting formula is

H ≡ −s + 2

⌊
s

2

⌋
≤ 0 ∧

(
−s + 2

⌊
s

2

⌋
≥ 1→ ⊥

)
∧

t− 2

⌊
s

2

⌋
≤ 0 ∧

(
t− 2

⌊
s

2

⌋
≥ −1→ G

(
−
⌊
s

2

⌋))
≡ t− 2

⌊
s

2

⌋
≤ 0 ∧

(
t− 2

⌊
s

2

⌋
≥ −1→ −

⌊
s

2

⌋
−
⌊
−t
2

⌋
≤ 0 ∧(

−
⌊
s

2

⌋
−
⌊
−t
2

⌋
≥ 0→ f

(
−
⌊
−t
2

⌋)
= q

))
.

Again, the first two conjuncts trivially simplify to > and can be removed.
The final resolution step yields an interpolant for this problem.

a ≤ b : LA(2x3 − s,−1,⊥) ¬(a ≤ b) : LA(t + 2x2, 1, G(x2))

⊥ : LA(−2s + 2t, 4, H)

We obtain the final interpolant by unfolding the LA-form and some simpli-
fications:

t ≤ s∧
(
t ≥ s− 2→

(
t ≤ 2

⌊
s

2

⌋
∧
(
−
⌊
−t
2

⌋
≥
⌊
s

2

⌋
→ f

(
−
⌊
−t
2

⌋)
= q

)))
,

Now we argue validity of this interpolant.

Interpolant follows from the A-part. The interpolant expresses that t ≤ s holds,
which can be deduced from the A-part. Moreover from 2a ≤ s, we get a ≤

⌊
s
2

⌋
.

With t ≤ 2a we get t ≤ 2
⌊
s
2

⌋
. Finally, we show −

⌊−t
2

⌋
≥
⌊
s
2

⌋
→ f(−

⌊−t
2

⌋
) = q.

Using −2a ≤ −t, we get −a ≤
⌊−t

2

⌋
. Hence, a ≤

⌊
s
2

⌋
≤ −

⌊−t
2

⌋
≤ a implies

a = −
⌊−t

2

⌋
, so with the A-part f(−

⌊−t
2

⌋
) = q follows.

Interpolant is inconsistent with the B-part. The B-part implies s ≤ 2b ≤ t + 1.
Hence, we have

⌊
s
2

⌋
≤ b ≤

⌊
t+1
2

⌋
. A case distinction on whether t is even

or odd yields
⌊
t+1
2

⌋
= −

⌊−t
2

⌋
. Therefore,

⌊
s
2

⌋
≤ b ≤ −

⌊−t
2

⌋
holds. Hence,

the interpolant guarantees f(−
⌊−t

2

⌋
) = q and t ≤ 2

⌊
s
2

⌋
. The latter implies

−
⌊−t

2

⌋
≤
⌊
s
2

⌋
. Hence, b = −

⌊−t
2

⌋
and with f(b) 6= q from the B-part we get a

contradiction.

Symbol condition is satisfied. The symbol condition is trivially satisfied since
symb(A) = {a, t, s, f, q} and symb(B) = {b, t, s, f, q}. The shared symbols are t,
s, f , and q which are exactly the symbols occurring in the interpolant.

A close inspection of the last proof reveals that H is already a valid inter-
polant of A and B. This shows that in a certain sense the produced interpolants
are not minimal. It may be useful to investigate more closely which parts can be
safely omitted.

30 Jürgen Christ, Jochen Hoenicke, and Alexander Nutz

7 Conclusion and Future Work

We presented a novel interpolation scheme to extract Craig interpolants from
resolution proofs produced by SMT solvers without restricting the solver or
reordering the proofs. The key ingredients of our method are virtual purifications
of troublesome mixed literals, syntactical restrictions of partial interpolants, and
specialised interpolation rules for pivoting steps on mixed literals.

In contrast to previous work, our interpolation scheme does not need spe-
cialised rules to deal with extended branches as commonly used in state-of-the-
art SMT solvers to solve LA (Z)-formulae. Furthermore, our scheme can deal
with resolution steps where a mixed literal occurs in both antecedents, which
are forbidden by other schemes [6,13].

Our scheme works for resolution based proofs in the DPLL(T) context pro-
vided there is a procedure that generates partial interpolants with our syntactic
restrictions for the theory lemmas. We sketched these procedures for the theory
lemmas generated by either congruence closure or linear arithmetic solvers pro-
ducing Farkas proofs. In this paper, we limited the presentation to the combina-
tion of the theory of uninterpreted functions, and the theory of linear arithmetic
over the integers or the reals. Nevertheless, the scheme could be extended to
support other theories. This requires defining the projection functions for mixed
literals in the theory, defining a pattern for weak and strong partial interpolants,
and proving a corresponding resolution rule.

We plan to produce interpolants of different strengths using the technique
from D’Silva et al. [10]. This is orthogonal to our interpolation scheme (particu-
larly to the weak and strong interpolants used for mixed literals). Furthermore,
we want to extend the correctness proof to show that our scheme works with
inductive sequences of interpolants [22] and tree interpolants [16]. We also plan
to extend this scheme to other theories including arrays and quantifiers.

References

1. Dirk Beyer, Damien Zufferey, and Rupak Majumdar. CSIsat: Interpolation for
LA+EUF. In CAV, pages 304–308. Springer, 2008.

2. Angelo Brillout, Daniel Kroening, Philipp Rümmer, and Thomas Wahl. Beyond
quantifier-free interpolation in extensions of Presburger arithmetic. In VMCAI,
pages 88–102. Springer, 2011.

3. Roberto Bruttomesso, Simone Rollini, Natasha Sharygina, and Aliaksei Tsitovich.
Flexible interpolation with local proof transformations. In ICCAD, pages 770–777.
IEEE, 2010.

4. Jürgen Christ, Jochen Hoenicke, and Alexander Nutz. SMTInterpol: An interpo-
lating SMT solver. In SPIN, pages 248–254. Springer, 2012.

5. Jürgen Christ, Jochen Hoenicke, and Alexander Nutz. Proof tree preserving inter-
polation. In TACAS. Springer, 2013. to appear.

6. Alessandro Cimatti, Alberto Griggio, and Roberto Sebastiani. Efficient interpolant
generation in satisfiability modulo theories. In TACAS, pages 397–412. Springer,
2008.

Proof Tree Preserving Interpolation 31

7. William Craig. Three uses of the Herbrand-Gentzen theorem in relating model
theory and proof theory. J. Symb. Log., 22(3):269–285, 1957.

8. David Detlefs, Greg Nelson, and James B. Saxe. Simplify: A theorem prover for
program checking. J. ACM, 52(3):365–473, 2005.

9. Isil Dillig, Thomas Dillig, and Alex Aiken. Cuts from proofs: A complete and
practical technique for solving linear inequalities over integers. In CAV, pages
233–247. Springer, 2009.

10. Vijay D’Silva, Daniel Kroening, Mitra Purandare, and Georg Weissenbacher. In-
terpolant strength. In VMCAI, pages 129–145. Springer, 2010.

11. Bruno Dutertre and Leonardo de Moura. A fast linear-arithmetic solver for
DPLL(T). In CAV, pages 81–94. Springer, 2006.

12. Alexander Fuchs, Amit Goel, Jim Grundy, Sava Krstic, and Cesare Tinelli. Ground
interpolation for the theory of equality. In TACAS, pages 413–427. Springer, 2009.

13. Amit Goel, Sava Krstic, and Cesare Tinelli. Ground interpolation for combined
theories. In CADE, pages 183–198. Springer, 2009.

14. Alberto Griggio. A practical approach to satisability modulo linear integer arith-
metic. JSAT, 8(1/2):1–27, 2012.

15. Alberto Griggio, Thi Thieu Hoa Le, and Roberto Sebastiani. Efficient interpolant
generation in satisfiability modulo linear integer arithmetic. In TACAS, pages
143–157. Springer, 2011.

16. Matthias Heizmann, Jochen Hoenicke, and Andreas Podelski. Nested interpolants.
In POPL, pages 471–482. ACM, 2010.

17. Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Kenneth L. McMillan.
Abstractions from proofs. In POPL’04, pages 232–244. ACM, 2004.

18. Himanshu Jain, Edmund M. Clarke, and Orna Grumberg. Efficient craig interpo-
lation for linear diophantine (dis)equations and linear modular equations. Formal
Methods in System Design, 35(1):6–39, 2009.

19. Daniel Kroening, Jérôme Leroux, and Philipp Rümmer. Interpolating quantifier-
free Presburger arithmetic. In LPAR, pages 489–503. Springer, 2010.

20. Christopher Lynch and Yuefeng Tang. Interpolants for linear arithmetic in SMT.
In ATVA, pages 156–170. Springer, 2008.

21. Kenneth L. McMillan. An interpolating theorem prover. In TACAS, pages 16–30.
Springer, 2004.

22. Kenneth L. McMillan. Lazy abstraction with interpolants. In CAV, pages 123–136.
Springer, 2006.

23. Kenneth L. McMillan. Interpolants from Z3 proofs. In FMCAD, pages 19–27.
FMCAD Inc., 2011.

24. Greg Nelson and Derek C. Oppen. Simplification by cooperating decision proce-
dures. ACM Trans. Program. Lang. Syst., 1(2):245–257, 1979.

25. Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Abstract DPLL and
abstract DPLL modulo theories. In LPAR, pages 36–50. Springer, 2004.

26. Pavel Pudlák. Lower bounds for resolution and cutting plane proofs and monotone
computations. J. Symb. Log., 62(3):981–998, 1997.

27. Greta Yorsh and Madanlal Musuvathi. A combination method for generating
interpolants. In CADE, pages 353–368. Springer, 2005.

	Proof Tree Preserving Interpolation
	Jürgen Christ cl@@auth, Jochen Hoenicke cl@@auth, Alexander Nutz
	Introduction
	Preliminaries
	Proof Tree-Based Interpolation
	Pudlák's and McMillan's Interpolation Algorithms
	Purification of Mixed Literals
	Lemma Used in the Correctness Proof

	Uninterpreted Functions
	Leaf Interpolation
	Pivoting of Mixed Equalities
	Example

	Linear Real and Integer Arithmetic
	Leaf Interpolation
	Pivoting of Mixed Literals

	An Example for the Combined Theory
	Conclusion and Future Work

