
Proper Plugin Protocols

Ciera N.C. Jaspan

October 3, 2011
CMU-ISR-10-???

Institute for Software Research
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Jonathan Aldrich (Chair)

Mary Shaw
William Scherlis

Gary Leavens (University of Central Florida)

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

c© 2011 Ciera Jaspan

This work was supported in part by

Keywords: API, object protocol, collaboration constraint, software framework, reusable com-
ponents

Abstract

Software frameworks provide great reuse benefits to the software engineering community. Plu-
gins can reuse large parts of the framework and provide a rich application with only a few lines
of code. However, frameworks frequently require plugin developers to be aware of complex pro-
tocols between objects, and improper use of these protocols causes exceptions and unexpected
behavior at run time. This dissertation introduces collaboration constraints, rules governing how
multiple objects may interact in a complex protocol. These constraints are particularly difficult to
understand and analyze because they may extend across type boundaries and even programming
language boundaries. In this dissertation, I have done an empirical study of framework help fo-
rums which showed that collaboration constraints are burdensome for developers, as they take
hours or even days to resolve. Additionally, I studied the designs of reusable components and
found that collaboration constraints are essential to the designs of software frameworks.

This dissertation introduces Fusion, an adoptable specification language and static analysis for
collaboration constraints. The specification language uses relationships to describe the abstract as-
sociations between objects and allows developers to specify collaboration constraints as logical
predicates of relationships. Since relationships are an abstraction above code, this allows develop-
ers to easily specify constraints that cross type and language boundaries. There are three variants
of the analysis: a sound variant that has false positives but no false negatives, a complete variant
that has false negatives but no false positives, and a pragmatic variant that attempts to balance this
tradeoff. In this dissertation, I successfully used Fusion to specify and analyze constraints from
examples found in the help forums of the ASP.NET and Spring frameworks. Additionally, I ran
Fusion on DaCapo, a 1.5 MLOC DaCapo benchmark for program analysis, to show that Fusion
has the necessary properties to be adoptable by industry.

This dissertation examines many tradeoffs: the tradeoffs of framework designs, the tradeoffs of
specification precision, and the tradeoffs of program analysis results are all featured. A central
theme of this work is that there is no right solution to collaboration constraints; there are only
solutions that work better for a particular instance of the problem.

dedicate stuff

Acknowledgments

Numerous people have...

vii

viii ACKNOWLEDGMENTS

Contents

1 Object Protocols 1
1.1 This Dissertation . 2
1.2 Research Contributions and Expectations . 4

2 Software Frameworks 7
2.1 An architectural definition of software frameworks 8
2.2 The essential complexity of software frameworks . 12
2.3 An added twist: declarative artifacts . 15

3 Object Collaborations 21
3.1 Why examine forums? . 22
3.2 ASP.NET Forum Study . 23
3.3 Properties of Collaboration Constraints . 30

4 Relationship Specifications 33
4.1 Specifying constraints in Fusion . 35
4.2 Analyzing Programs . 39
4.3 Other kinds of specifications . 46
4.4 Achievement of solution goals . 50

5 Aliasing and Declarative Files 53
5.1 Binding specification variables . 53
5.2 Creating effects . 56
5.3 Points-to analysis . 57
5.4 Getting relationships from declarative artifacts . 59
5.5 Impact of more labels . 63
5.6 The restrict predicate . 65

6 Case Study: Spring Framework 67
6.1 Why Spring . 67
6.2 Methodology for gathering examples . 70

ix

x CONTENTS

6.3 Quantitative Results . 71
6.4 Detailed Examples . 75
6.5 Generalizable properties of Fusion . 93

7 Adoptability 95
7.1 Reducing specification burden . 95
7.2 Scalability and Performance . 96
7.3 Precision . 99
7.4 Usable error reports . 101
7.5 Future work for adoptability . 103

8 Related Work 105
8.1 Tutorial-based framework assistance . 105
8.2 Formal specifications of frameworks . 106
8.3 Logical analyses . 107
8.4 Typestates, Tracematches, and Session types . 107

9 Conclusion 111
9.1 Frameworks and Collaboration Constraints . 111
9.2 Relationships . 112
9.3 Future work . 113
9.4 Tradeoffs, tradeoffs, tradeoffs... 114

A Extended Case Study 117
A.1 Returning a ModelAndView with the errors map . 117
A.2 Using Web Flow Actions . 118
A.3 Serializing Flow Objects . 121
A.4 The FormAction lifecycle . 126

B Formalism 131
B.1 Abstract Grammar . 131
B.2 Operations on lattices . 134
B.3 Operations on specifications . 139
B.4 Points-to Operations . 141
B.5 The Boolean Constant Propagation lattice . 143
B.6 Functions . 144
B.7 Rules . 146

C Proofs of Soundness and Completeness 157
C.1 Soundness . 157
C.2 Completeness . 170
C.3 Consistency . 184
C.4 Function Lemmas . 192
C.5 Operator Lemmas . 199

CONTENTS xi

Bibliography 203

xii CONTENTS

List of Figures

1.1 State machine of a typical File object protocol. 1
1.2 State machine of a typical Iterator object protocol. 2
1.3 State machine of a typical protocol with a Collection and an Iterator. 2
1.4 A complex multi-object protocol. 3

2.1 Graphic depiction of the extremes of usability, utility, and versatility 13
2.2 The tradeoff space of usability, utility, and versatility. 14

3.1 Corporate affiliations of the top 25 members of the forums. 22
3.2 Post counts on the Spring web forums. 23
3.3 ASP.NET ListControl Class Diagram . 26
3.4 Error with partial stack trace from ASP.NET . 27

4.1 The relationship state lattice. 40
4.2 Venn diagram of warnings reported by each variant. 44
4.3 Translating relationship effects into constraints. 47

5.1 Functions for generating the substitutions. 55

6.1 UML class diagram of the Spring Controller hierarchy. 69
6.2 Class diagram of the ApplicationContext . 76
6.3 Spring architecture diagram. 79

7.1 An inferred state machine on the Iterator protocol. 98

B.1 Abstract grammar of Fusion . 133
B.2 The sub lattices used by ρ and δ . 135
B.3 Equality join operator on E . 135
B.4 Operations on the elements of the relationship lattice, E 136
B.5 Operations on the change lattice, δ . 137
B.6 Operations on the relationship lattice, ρ . 138

xiii

xiv LIST OF FIGURES

B.7 Substitutions on specifications. 139
B.8 Generating free variables from specifications . 140
B.9 Operations on free variables . 140
B.10 Operations on the points-to lattice A . 141
B.11 Precision of γ and α . 142
B.12 Substitution on α . 142
B.13 Precision for the boolean constant propagation lattice 143
B.14 Using B to get the value of an effect N . 143
B.15 Functions to create substitutions . 144
B.16 Creating an empty update . 145
B.17 Functions to create an effect lattice δ. 145
B.18 Transfer lattice into new aliasing domain function . 145
B.19 Three value truth evaluation on M, continued on B.21. The sound and complete

variant use only the rule rel − sound − complete, the other rules are for the prag-
matic variant. 147

B.20 Inferred Relationship Discovery. 147
B.21 Three value truth evaluation onM, continued on B.22. 148
B.22 Three value truth evaluation onM, continued from B.21. 149
B.23 Instruction binding. 150
B.24 Check a single constraint on all possible alias bindings given the two alias environ-

ments. 151
B.25 Check a bound constraint. 153
B.26 Restricting substitutions based on a predicate. 154
B.27 Flow function . 155
B.28 Consistency of ρ and validity of σ against A . 156

List of Tables

2.1 Summary from archival analysis of frameworks. 16

3.1 Archival analysis of ASP.NET forum postings. 25

4.1 Predicate checking differences between variants. 43
4.2 Results from Vignette 3.1. 44

5.1 Sample transfer functions from points-to analyses. 57
5.2 Results comparing points-to analyses. 58
5.3 Results from running on Vignette 2.2. 65
5.4 All differences between the three variants. 66

6.1 Filtering properties applied to the ASP.NET example threads. 71
6.2 Breakdown of threads in Spring . 72
6.3 Analysis of collaboration constraints found in the Spring threads. 73
6.4 Complete results from the Spring case study. 74
6.5 Summary of results from the Spring case study. 74
6.6 Truth table of logically equivalent constraints. 88

7.1 DaCapo programs. 99
7.2 Results from running inferred specifications on the DaCapo programs. 101

8.1 Comparison of closely related work. 107

xv

xvi LIST OF TABLES

List of Listings

2.1 Incorrect usage of the page lifecycle . 11
2.2 ASPX with a LoginView . 17
2.3 Incorrect way of retrieving controls in a LoginView . 17
2.4 Correct way of retrieving controls in a LoginView . 18
2.5 ASPX with a LoginView and multiple RoleGroups . 18
2.6 Correct way of retrieving controls in a LoginViewwith a RoleGroup 19

3.1 Incorrect selection for a DropDownList . 26
3.2 Correctly changing the selection . 27
3.3 Original bad code for manipulating selection of a DropDownList 28
3.4 “Corrected” version . 28
3.5 Using two DropDownLists together and using the wrong one 28
3.6 Swapping the selection . 29

4.1 Defining a relation. 34
4.2 Relationship effects on List . 35
4.3 Partial ListControl API with relationship effect annotations 37
4.4 DropDownList Selection Constraints . 38
4.5 Flowing the lattice through the program. 41
4.6 Incorrectly changing the selection, with ρ in comments. 45
4.7 Correctly changing the selection, with ρ in comments. 45
4.8 A fourth constraint that improves the precision of the analyses. 46
4.9 Specifications for problem in Vignette 2.1. 48
4.10 Translated callback specifications from Listing 4.9. 48
4.11 Incorrect usage of the page lifecycle with ρ in comments. 49
4.12 Using the Infer specifications to create effects . 49

5.1 Example with may-like points-to analysis and pragmatic variant. 58
5.2 ASPX with a LoginView . 60
5.3 Incorrect way of retrieving controls in a LoginView . 60
5.4 Specifications for correct usage of LoginView.findControl(String) 61

xvii

xviii LIST OF LISTINGS

5.5 Example XQuery to retrieve relationships for Vignette 2.2. 62
5.6 A simple code snippet, with the may-like points-to analysis. 64
5.7 An ASPX file associated with code snippet from 5.6. 64
5.8 Our code snippet again, now associated with the ASPX from Listing 5.7. 64
5.9 Using the must-like analysis doesn’t do what we want either. 64
5.10 Specifications with restrict-to predicate. 66
5.11 Using restrict-to to get correct aliasing. 66

6.1 Dependency injection in Spring. 76
6.2 XQuery to retrieve relationships for example in Section 6.4.1. 79
6.3 A simple form to edit an account . 80
6.4 Configuration for an edit account form . 81
6.5 XQuery to retrieve relationships for the example in Section 6.4.2. 83
6.6 Specifications for the correct return from SimpleFormController.onSubmit 84
6.7 Incorrect resolver chain . 84
6.8 XQuery to retrieve the relationships for the example in Section 6.4.3. 85
6.9 Correct resolver chain of three resolvers . 86
6.10 Incorrect version of referenceData. 89
6.11 Correct version of referenceData. 90
6.12 Callback specifications on all the versions of referenceData. 90
6.13 XQuery to retrieve relationships for example 6.4.4. 92
6.14 Specifications to precisely describe correct usage of the Map in referenceData. 93

7.1 Automatically generated specifications for Iterator protocol. 97
7.2 Manually written specifications for the Iterator protocol. 98
7.3 Bug found by the iterator specifications in Listing 7.1. 101
7.4 Code smell found by inferred specifications . 102

8.1 The tracematch to specify the DropDownList selection protocol from Vignette 3.1. . . 109

A.1 Incorrect way of creating a new ModelAndView. 117
A.2 Correct way to create a new ModelAndViewwith errors.getModel(). 118
A.3 Another incorrect way of creating a new ModelAndView. 118
A.4 Specifications . 119
A.5 Correct way of creating a new ModelAndViewwith a single key-value pair. 119
A.6 A simple example of a flow to log in to a system. 120
A.7 Beans for the flow in Listing A.6 . 120
A.8 Code posted by “raydawg” in [87]. 122
A.9 XQuery to retrieve the Action relationship . 123
A.10 Constraint to check that all actions are actually an Action. 123
A.11 A flow with a variable, example from [113] . 124
A.12 XQuery to retrieve the FlowVariable and FlashVariable relationships 125
A.13 Constraint to check that all flow and flash variables are Serializable. 125
A.14 Using a FormAction in a single view-state . 126

LIST OF LISTINGS xix

A.15 Using a FormAction in multiple states, based on code from [96] 127
A.16 XQuery to retrieve the SetupAction, BindAction and Transition relationships 128
A.17 Specifications to infer a path between states. 129
A.18 Specifications to enforce that setup always occurs sometime before binding. 129

xx LIST OF LISTINGS

Chapter 1
Object Protocols

In object-oriented programming, developers frequently use protocols to describe how the state
of an object changes as operations are called on it. The canonical example is a File object,
which transitions between states as seen in the state machine in Figure 1.1. In this protocol, the
read operation cannot be called unless the object has been opened, and once opened, it must be
closed for open to be called again. Another canonical example is an Iterator, seen in Figure
1.2. The client of the Iterator must always check the return value of Iterator.hasNext() be-
fore calling Iterator.next(). Object protocols such as the File and Iterator protocols have
been well studied; a large body of research has been dedicated to discovering them using pro-
gram analysis [67, 69, 85], specifying and checking them statically [16, 32, 65, 79] and dynamically
[19, 20, 78, 112], and even raising them to the level of a programming abstraction [105].

While prior work has made tremendous strides, there has been a glaring problem: as said by
Beck and Cunningham, “No object is an island.” [13] Objects interact with other objects, and these
multi-object interactions are governed by protocols more complex than ones for a single object.
The canonical example here is that of the protocol between a Collection and its Iterator, as
seen in Figure 1.3. In this protocol, an Iterator cannot be used after a modifying operation is
called on the Collection (though read-only operations are fine). Prior research on specifying and
statically checking protocols either cannot handle multiple objects or can only do so in a limited
way [16, 20, 65, 78, 79].

open

close
read

start

Figure 1.1: State machine of a typical File object protocol. The closed circle represents the start
of the protocol. The open circles are states in the protocol, and the arrows represent the valid
transitions from one state to the next. The doubled circle represents a valid end state for the
protocol.

1

2 CHAPTER 1. OBJECT PROTOCOLS

hasNext() == true

next()

hasNext() == false

start

Figure 1.2: State machine of a typical Iterator object protocol. Notice that all the states are valid
end states.

i.hasNext() == true

i.next()

i.hasNext() == false

i = c.iterator()
c.read()

c.modify()

c.read()

c.modify()

start

Figure 1.3: State machine of a typical protocol with a Collection and an Iterator.

Research cannot afford to ignore these protocols. While they might not appear frequently in
small, stand-alone programs, they are common in reusable components such as software frame-
works. The designs of these components seek to maximize the reuse of the component, both in
terms of amount of functionality and in terms of the number of possible clients and the flexibility
to address the diverse needs of those clients. As we will see in later chapters, multi-object con-
straints will occur more frequently in these situations. Additionally, these multi-object constraints
are significantly more difficult to understand and fix. While we might expect a developer to follow
the state machines in Figures 1.1 and 1.2, or even Figure 1.3, the state machine that results from
more objects get very complex; Figure 1.4 provides one such example.

1.1 This Dissertation

In this dissertation, I will refine the concept of a multi-object protocol as a collaboration constraint.
A collaboration constraint is a state-based restriction on how multiple objects may interact. Multi-

1.1. THIS DISSERTATION 3

A(1,2)

B(1,3)

C(3,4)

E(4)E(4)

F(2)

start

A(1,2)

A(1,2)

A(1,2)

B(1,3)

C(3,4)D(3,4) D(3,4)

Figure 1.4: An abstraction of a complex multi-object protocol, from the example presented later
in Vignette 3.1 of the ASP.NET framework. This protocol has six relevant operations (A-F) across
four objects (1-4). The operators and the objects they are parameterized on is shown in the
transition label, thus A(1,2) is the A operator with objects 1 and 2 as parameters.

4 CHAPTER 1. OBJECT PROTOCOLS

object protocols can be thought of as a series of collaboration constraints, though as we will see
later, collaboration constraints occur at times which would not traditionally be called a protocol.

To help developers specify and analyze collaboration constraints, I have created a new ab-
straction called a relationship, which represents an abstract, named association between several
objects. Using the concepts of collaboration constraints and relationships, this dissertation has the
following thesis:

Collaboration constraints are inherent to the design of software frameworks but are burdensome
for plugin developers. These constraints can be defined by specifications that describe the rela-
tionships between objects and how relationships change, and an adoptable static analysis can
check that code conforms to the specified constraints.

More specifically, the goals of this thesis are:

1. to determine whether there is an inherent or accidental reason for why software frameworks
have collaboration constraints (Chapter 2),

2. to discover the properties that are common to collaboration constraints and must be ad-
dressed by any solution (Chapter 3),

3. to create a specification language that will allow framework developers to conscisely de-
scribe collaboration constraints (Chapters 4 and 5), and

4. to create a static program analysis that will allow a users of a framework to discover any bro-
ken collaboration constraints in their code and do so faster than current practice (Chapters 4
and 5).

As can be seen from the above goals, this work is a study of both a problem and a solution. The
first two chapters will be dedicated solely to understanding the problem of software frameworks
and collaboration constraints. These chapters will both use archival analysis and taxonomies to
thoroughly understand the problem. To solve this problem, I have created the Fusion (Framework
Usage SpecificatIONs) language and static analysis, which is described in detail in Chapters 4 and
5. This solution is meant to be adoptable by industry, and so I present two case studies to show that
Fusion can specify and detect violations of the kinds of collaboration constraints found in industry
(Chapter 6) and that there is evidence that this form of solution will be adoptable in practice, not
just by researchers (Chapter 7). Finally, there has been a significant amount of related work in the
areas of framework specifications, protocol specifications, and logical frameworks; this work will
be covered in Chapter 8.

1.2 Research Contributions and Expectations

This research will make three primary contributions to research and industry:

1. Collaboration Constraints and Frameworks. Provide a precise and useful definition of a software
framework and show that the collaboration constraints described are essential to the nature
of frameworks.

1.2. RESEARCH CONTRIBUTIONS AND EXPECTATIONS 5

(a) Present a clear and useful definition of frameworks and plugins, driven by industry
constructs and designs rather than historical accident. The definition will not be limited
to a particular design paradigm but will abstract over them in a useful manner.

(b) Present a clear analysis of the interactions between frameworks and plugins that can
be used to drive further research in the field. In particular, it will provide a taxonomy
of the types of constraints that frameworks impose on plugins based on empirical ev-
idence. This taxonomy can be used to improve error prevention techniques, including
better framework design and other analyses.

(c) Show that the collaboration constraints described are common in practice and are par-
ticularly problematic for plugin developers.

2. Relationships and Fusion. Show that relationships can be used to specify collaboration con-
straints that occur in Java and XML frameworks.

(a) Define the relationship abstraction and demonstrate its ability to specify collaboration
constraints.

(b) Present a specification language to describe collaboration constraints that occur in frame-
works based on Java and XML. While there are many languages to specify either Java or
XML, there are no known specification languages that can describe design intent which
spans across both languages.

3. Fusion Analysis. Present an adoptable static analysis of the specifications that can detect
violated collaboration constraints in plugin code.

(a) Provide a static analysis which checks plugins for conformance to collaboration con-
straint specifications and directs the developers to the cause of any errors found.

(b) Present detailed case studies on the differences between three variants of the analysis:
a sound version, a complete version, and a pragmatic version which is neither sound
nor complete, but instead balances the tradeoffs of false positives and false negatives.
The case studies detail several sources of imprecision for the static analysis, the affect of
this imprecision on the three variants, and the extent to which this imprecision occurs
in industry code.

I expect that a tool like Fusion would be primarily used by industry professionals to specify
their frameworks and assist plugin developers with finding problems. In particular, I anticipate
that framework developers would adopt this tool incrementally by adding relationship specifica-
tions on an on-demand basis; when a plugin developer asks about a constraint on the forum or
mailing list, the framework developers can answer the question and then add specifications for
that constraint in the next release. After the next release, plugin developers would be able to run
the analysis to detect violations of these constraints without any assistance from other developers.

Many large frameworks, such as Spring and ASP.NET, have generated third-party service com-
panies which sell developer tools and consulting services. I expect these companies would be
attracted to this work as a means of increasing business; these service companies could sell spec-
ification sets and tools. As the number of constraints in a particular framework increase, I would

6 CHAPTER 1. OBJECT PROTOCOLS

also expect framework vendors and service companies to build more tools that take advantage of
these specifications. For example, a tool that visually describes the constraints would be a useful
form of documentation, as would a tool that suggests operations based on the constraints which
need to be satisfied.

Chapter 2
Software Frameworks

Software frameworks are extremely popular form of reuse in a variety of domains from web ap-
plications (ASP.NET [73], Spring [111], Ruby on Rails [31]) to parallel computing (Hadoop [9],
OpenMPI [109]) to developer tools (Eclipse [106], JUnit [107]) to social networks (Facebook [35]).
The popularity of software frameworks stems from the large reuse benefits that they provide to
industry. With relatively few lines of code, software frameworks allow developers to create large
and complex applications that are customized for a specific purpose, unknown to the developers
of the framework.

While the reuse benefits that frameworks provide make them worthwhile despite high costs,
they are notoriously difficult to use, design, and document. As described in Chapter 8, a plethora
of work has been done previously to ease this burden. Unfortunately, few ideas have caught on,
and software frameworks remain an unavoidable yet beneficial obstacle for software engineering.

In this chapter, I will not be presenting a way to make software frameworks easier to use; that
topic will be reserved for later chapters. Instead, I will provide a better understanding for how it
can be that software frameworks provide both high level of reuse yet form obstacles to achieving it,
and I will also describe how this tradeoff works differently for other forms of software reuse, like
libraries and toolkits. Most importantly, I will show that some amount of unusability is actually
essential to the design of software frameworks in order to achieve the benefits we seek.

This investigation will start with an architectural understanding of software frameworks. From
this, I will identify several quality attributes that are essential to framework designs and make
software frameworks distinct from other forms of component-based reuse, such as libraries or
tookits. We will see that the tradeoffs between these quality attributes lead to unusable APIs in
software frameworks. Finally, the chapter will show how the relatively new practice of depend-
ing on declarative artifacts in framework designs has both provided further levels of reuse yet
increased the complexity of these designs further than ever before.

Throughout this chapter, I will introduce and reference vignettes where a plugin developer is
attempting to reuse a software framework. The vignettes in this chapter are from the ASP.NET web
application framework, a software framework for creating a group of web pages that link together
to form an application. These vignettes will illustrate several arguments within this chapter and
will be referenced in later chapters.

7

8 CHAPTER 2. SOFTWARE FRAMEWORKS

2.1 An architectural definition of software frameworks

Software frameworks are known to be difficult to design and use, but what exactly makes some
piece of software a framework? What makes a software framework different from other reusable
components, like libraries and toolkits? How do they compare to product lines? In this section,
I’ll give an overview of several definitions of software frameworks, but I will ultimately argue for
an architectural definition of software frameworks.

Software frameworks originally came from the object-oriented community, and as such, they
were defined in OO terms.

A framework is a reusable design of all or part of a system that is represented by a set of abstract
classes and the way their instances interact. [60]

However, OO-based definitions are too narrow in practice; the term “framework” is now applied
to software which uses non-OO mechanisms as the primary way to interact with the client code.1

Others have taken the approach that a software framework has an inherent property: inversion
of control. Inversion of control means that the framework controls the flow of data and the flow
of execution through the program. This is in contrast to a library, where the application calls the
library and is in control of the execution and data. This idea that the framework “calls back” to
the application is also known as the Hollywood Principle (“Don’t call us; we’ll call you”) and is
commonly found in descriptions of frameworks.

The Hollywood Principle is a key to understanding frameworks. It lets a framework cap-
ture architectural and implementation artifacts that don’t vary, deferring the variant parts
to application-specific subclasses. [110]

However, this description is still not ideal, as callbacks are a common paradigm throughout soft-
ware. For example, many collection libraries will sort a collection by calling back to a provided
sort function, yet clearly this software does not have the complexity of those that we term soft-
ware frameworks, like ASP.NET or Eclipse. Additionally, frameworks may not use callbacks for
all features; frameworks are increasingly turning to in-code annotations and configuration files.
Therefore, definitions based on inversion of control end up both excluding more modern frame-
works, yet including simpler forms of reuse.

My view of software frameworks stems from software architecture concepts. In particular,
software frameworks are not simply a module of code reuse, but a module of code that imple-
ments and enforces a software architecture. This view is shared by industry developers; the only
definition I found which described frameworks in architectural terms was in the book “Software
Factories”, by two Microsoft employees [47]. 2 Likewise, I will define a framework, and the asso-
ciated terms, in architectural vocabulary.

Definition 2 (Software Framework, or just Framework). A software framework is a set of reusable
modules which requires that their clients conform to a predefined architecture.

1Many framework designs retain some OO elements and use objects, however, inheritance is no longer the primary
reuse mechanism.

2In this book, they say that “A framework is developed to bootstrap implementations of products based on a com-
mon architectural style.” However, this definition is not quite right as a framework is not solely about bootstrapping.

2.1. AN ARCHITECTURAL DEFINITION OF SOFTWARE FRAMEWORKS 9

Definition 3 (Plugin). A plugin is a module which extends a framework and works within the
constraints of a framework’s defined architecture to add specific functionality. 3

A framework is not simply a set of modules with a protocol for how to access some reusable
functionality. In fact, a framework may have very little functionality; it may only be an implemen-
tation to connect plugins together. Regardless, the framework encapsulates the architecture for
the final system. Consider the following examples:

• Open|SpeedShop [108] is a framework for creating distributed dynamic analyses. It has
several types of plugins: wizards set up an experiment to run, collectors gather the data, ag-
gregators put data together, analyses run some computation on the data, and views display
the results to the user. While the framework does provide some functionality, its primary
purpose is connecting these plugins into a pipe-and-filter architecture. In fact, the reusable
functionality it provides is handled by some built-in libraries; the framework itself just loads
components and connects them together.

• Eclipse [106] is a framework for developer tools. Eclipse provides a mechanism for plugins
to define their own extension points, so that plugins in Eclipse can also be small frameworks
and have their own plugins. Eclipse loads the plugins and connects them together in an
architecture that resembles an acyclic graph of frameworks and plugins.

• Spring [111] is a framework for web applications. Each web application that uses Spring
must adhere to a model-view-controller architecture. Like Open|SpeedShop, Spring pro-
vides some reusable functionality as well, but this functionality is packaged into libraries. In
Spring, these libraries may also be plugins and can be replaced by other plugins.

• ASP.NET [73] is another framework for web applications, which also uses a model-view-
controller architecture. Unlike Spring, ASP.NET requires complete buy-in to their frame-
work with few alternative options for the given libraries. However, it also provides plugins
with many points for variation within the given modules, as can be seen in Vignette 2.1.

Of course, frameworks are not the only form of reusable code. Other reusable codebases go by
the names of library or toolkit.4 While there is no fully agreed on definition for these terms either,
they are frequently used to describe code which contains functional reuse, but not architectural
reuse. For example, a collections library, an XML parsing library, and a UI controls toolkit all
provide significant reusable functionality. However, using libraries and toolkits do not typically
impact the architecture of the application; such libraries are used by applications from many do-
mains and with very diverse architectures. While switching to a different collections library might
require significant low-level code changes, it would not affect the architecture of the application.

3It is interesting to notice that a plugin may be developed by the person who is composing the plugin with the
framework, by a third-party, or even by the framework developer. Who develops the plugin is a separate issue from
what it is.

4In practice, these terms seem to be nearly interchangeable, though library generally implies a single cohesive com-
ponent and toolkit implies a related set of smaller component.

10 CHAPTER 2. SOFTWARE FRAMEWORKS

While the four frameworks above have reusable functionality, large portions of the functional-
ity could be replaced, or even removed, and what would remain would still be a software frame-
work. In fact, any replaced functionality would still have to conform to the framework’s architec-
ture. All of these frameworks also use OO designs, but the designs are not purely object-oriented.
The frameworks above heavily use configuration files, aspects, and dependency injection; objects
are only a part of how they interact with plugins. Therefore I argue that a framework is not sim-
ply a set of modules with reusable, object-oriented functionality, or even a reusable object-oriented
design. While a framework may contain OO designs, a framework is primarily a set of modules
which encapsulates a reusable architecture.

Since a plugin must adhere to the architecture provided by the framework, architectural mis-
match, as originally defined by Garlan, Allen, and Ockerbloom [46], is a serious problem for plu-
gins. Vignette 2.1 provides an example where a plugin does not adhere to the given architecture
and runs into problems. Plugin developers must take care to fully understand the architectural
implications of using a particular software framework and the potential consequences of combin-
ing several frameworks in a single application. When viewed from an architectural perspective,
it is no surprise that frameworks can be difficult to use, even for experienced developers, as they
are a working example of one of the most difficult problems facing software engineering.

Plugin Vignette 2.1: Lifecycle
The ASP.NET web application framework allows developers to create a plugin that corresponds to a

web page in a web application. By creating several plugins and connecting them together with links, they
create a complete web application. When a user requests a web page, an HTTP request is sent to access
that page, and the framework uses the provided plugin to generate the HTML for the page and return it back
to the user.

At the highest level of abstraction, the ASP.NET framework uses a stateless client-server architecture
to interact with the user. This architecture is abstracted as much as possible from the plugins, to the
level that plugins can even pretend to be stateful because the server handles the storing and reloading
of state. Any use of this stateful abstraction must be done through the framework provided mechanisms
and according to a given protocol. Otherwise, the plugin is not aware of, and has no control over, the
client-server architecture.

There is a lower-level architecture that the plugin must be aware of: the ASP.NET framework requires
plugins to adhere to a model-view-controller architecture. All plugins must conform to this architecture and
are composed of three pieces:

• View The plugin provides an ASPX file which represents a static view of the web page. ASPX is
HTML with features specific to ASP.NET, and the framework will process this file into raw HTML later.

• Model The framework creates the model based upon the HTTP request from the user for a page and
saved state from prior requests. The plugin can change this model in the controller.

• Controller The plugin provides a “code-behind” class, written in either C# or VB.NET, that defines
events that happen in response to user actions. Additionally, this controller can dynamically change
the view and the model through a series of callbacks from the server, as described in more detail
below.

To create the HTML for a user request, the ASP.NET framework processes the ASPX file into HTML.
This is a multi-step process, and while this process takes place, the framework makes a series of calls to the

2.1. AN ARCHITECTURAL DEFINITION OF SOFTWARE FRAMEWORKS 11

code-behind class. This series of calls is known as the page lifecycle, and it occurs on every user request
of a page. Lifecycle calls allow the plugin to perform dynamic modifications to the page. For example,
the code-behind class can use the callbacks to populate values to the controls or even dynamically add or
remove controls.

The most commonly used lifecycle methods are PreInit, Init, and Load (though there are eight others
that can be used). PreInit is called before the framework begins processing the ASPX, so the controls on
the page are not initialized yet. Init is called after the controls are initialized from the ASPX, but before they
are loaded with their stateful data. Load is called after the framework has loaded stateful data back into the
controls.

It’s very important for developers to understand how this lifecycle works, as misusing the lifecycle results
in null references [91], disappearing controls [102], and missing user input [11]. Each of these problems
was seen on the ASP.NET help forums, and like many others, the posters of the problems were instructed
to read the Page Lifecycle documentation [74].

As an example of how misusing the lifecycle results in unusual problems, consider the code in Listing
2.1 from the ASP.NET help forums. The purpose of this code is to set the initial values in the drop down
list called DateYear, which is defined in the associated ASPX file. However, the code was throwing an null
reference exception at line 15.

Listing 2.1: Incorrect usage of the page lifecycle
1 Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) Handles Me.PreInit
2

3 ’Generate years for drop down menu
4 Dim Dates As New Collections.Generic.List(Of System.DateTime)
5 ’Dates.Add(System.DateTime.Now)
6

7 If Not Me.IsPostBack Then
8 ’ Add next 5 years
9 For i As Integer = 0 To 4

10 Dates.Add(System.DateTime.Now.AddYears(i))
11 Next
12 End If
13

14 ’ DateYear is a statically declared DropDownList
15 Me.DateYear.DataSource = Dates

16 Me.DateYear.DataTextField = "Year"

17

18 Me.DateYear.DataBind()

19 End Sub

Three other developers responded with possible problems in the code, but each potential issue they
raised turned out to be implemented correctly. Finally, the third developer found the mistake on line 1 of
Listing 2.1.

Sorry just noticed the event you are using! PreInit. You should be using init for this.
You need to read the page life cycle overview http://msdn2.microsoft.com/en-us/library/
ms178472.aspx

CreateChildControls will be called on the control between these two events.

As described earlier, the PreInit callback happens before any controls are initialized, so the field
DateYear is still null. However, the Init callback will guarantee that all statically declared controls exist,

http://msdn2.microsoft.com/en-us/library/ms178472.aspx
http://msdn2.microsoft.com/en-us/library/ms178472.aspx

12 CHAPTER 2. SOFTWARE FRAMEWORKS

though they have no data yet, and is the appropriate place to load this data. In several other forum post-
ings, developers confused the Init and Load events, which results in either no data (if the developer created
controls in Load, after the data loading occurred) or null references and clobbered data (if the user attempt
to read or write the control’s data while in the Init callback, before data loading occurred).

Each of these problems occurred not because of a simple coding error, but because the plugin de-
veloper misunderstood the architectural implications of using the framework. The plugin developer had to
be aware not just of the available method calls and the local pre- and post-conditions, but also how these
methods are used in the more global architecture. The plugin developer must be aware that in ASP.NET,
they are buying into a stateless client-server architecture that will represent statefulness through a model-
view controller sub-architecture. Not adhering to these architectural considerations and tradeoffs results in
defective plugins.

2.2 The essential complexity of software frameworks

With an architectural definition of software frameworks in hand, the questions of why software
frameworks are difficult to design, document, and use becomes more tractable. Software frame-
works are difficult to design, document, and use because of the essential complexity of building
code that encapsulates a reusable software architecture.

Since the goal of a software framework is to create a reusable software architecture, it must be
able to embed many quality attributes tradeoffs into its design. This of course holds true for any
software architecture design: the designer must carefully weight the tradeoffs between several
quality attributes according to the purpose and goals of the system [12].

Designing a good architecture is know to be difficult, but the problem is compounded in the
case of software frameworks. In addition to considering the quality attributes demanded by the
domain of the software framework, all reusable modules have three additional quality attributes
to consider. These three quality attributes can be thought of as three aspects of reusability. In addi-
tion to being defined below, the extreme ends of these quality attributes are depicted graphically
in Figure 2.1.

• Usability is the ease of reusing the API of the module. For a module to have high usability, it
must have a simple, well defined API with as few points of variation as possible [62]. While
usability is relative to an individual’s experience, one module might still be considered more
usable than another, by both novices and experts alike.

• Utility is the amount of reuse achieved by a single reuser of the module. For a module to
have high utility, it must provide as much reusable code as possible for applications that use
it. This includes code for functional reuse and code for architectural reuse.

• Versatility is the scope of potential reusers of the module. For a module to have high ver-
satility, it must be reusable by as many potential applications as possible, including future,
unanticipated applications. To do this, it must be highly flexible so that it can be modified
and reused by a wide range of applications.

2.2. THE ESSENTIAL COMPLEXITY OF SOFTWARE FRAMEWORKS 13

Reusable
Module Client

(a) High Usability: The API is simple and easy to understand.

Reusable
Module

Client

(b) Low Usability: The API is complex to use.

Reusable
Module Client

(c) High Utility: The client gets a large amount of reuse.

ClientReusable
Module

(d) Low Utility: The client receives relatively little reuse.

Future
Client

Future
Client

Client
Client

Client

Reusable
Module

(e) High Versatility: There are many potential clients.

Other
Program

Other
Program

Reusable
Module Client

(f) Low Versatility: There are a few predetermined clients.

Figure 2.1: Graphic depiction of the extremes of usability, utility, and versatility for a reusable
component. The left column depicts high levels of the quality attributes, while the right column
depicts low levels.

Clearly, it is desirable for a reusable module to have high levels of usability, utility, and versatil-
ity in order to maximize its impact on the world (and consequently, its profit margins). However,
even without considering other desirable quality attributes from the domain, these three are in
conflict with one another. Figure 2.2 illustrates the tradeoff space, with examples of reusable mod-
ules that select different tradeoffs. While it is not possible to maximize all three of these quality
attributes, Figure 2.2 shows the ways that two of these quality attributes can be met in a reusable
module.

Region 1 represents libraries and toolkits, such as the Java Collection and I/O libraries. Such
libraries are intended to be easy to use and to be reused by as many applications as possible (high
usability and high versatility). However, they each provide a limited scope of features, such that
a developer must add a lot to make a complete application (low utility).

Region 2 represents product line systems, such as those that appear internally within a com-
pany to be reused in all their systems. Like frameworks, product lines impact the architecture of
the clients for the purpose of increasing utility. These systems are designed to be easy to use so
that training costs are low, and they are designed to provide significant amounts of reuse for those
products within the scope of the company’s interests (high usability and high utility). However,
as the product line would never be used outside the company, they can tightly control the scope
of applications which might reuse the product line (low versatility).

Region 3 represents software frameworks such as those described earlier in this chapter and

14 CHAPTER 2. SOFTWARE FRAMEWORKS

Us
ab
ili
ty

Versatility

Utility

1: Libraries

2: Product Lines 3: Frameworks

Figure 2.2: The tradeoff space for the quality attributes of usability, utility, and versatility for a
resusable module. The small circle represents Ruby On Rails using their built-in scripts to create
web applications, the small square represents using Ruby on Rails without the scripts.

throughout this thesis. In order to increase their impact in software, many of them aim to be as
general purpose as possible (high versatility) and to provide extraordinarily high levels of utility.
While the cost of this is low usability, this is deemed worthwhile if the users are expected and
willing to stick through the steep learning curve and become a member of a community that
continues to use the framework for years.

Any attempt to maximize all three quality attributes is bound to fail. Consider the case of a
module with a small, highly usable API. If this module has maximized utility as well, then there
is a lot of code behind that API. Of course, this code cannot be customized in any way, as allowing
that would necessarily make the API more complex, so the module can only be used by a few
clients that wish to reuse it as-is.

Let us try again from another approach: we can imagine a module, again with a small API,
that is highly versatile and can be reused by many clients. To do this though, it must not be able
to provide much functionality, as each added feature would increase the size of the API in order
to give all clients the ability to customize it. The only way for a module to be usable and versatile
is to provide relatively little utility.

It is important to note that the tradeoff with usability exists regardless of a programmers ex-
perience or of the particular abstractions available in today’s programming languages. While an
experienced developer might find the Collections library more usable than a student would, both
expert and novice will find Eclipse to be a relatively less usable framework. Likewise, new ab-
stractions in programming languages may increase the usability of all applications. However, as
Eclipse attempts to maximize both utility and versatility, it will always be less usable than the
Collections library, regardless of the abstraction chosen. A new abstraction (like object-oriented

2.3. AN ADDED TWIST: DECLARATIVE ARTIFACTS 15

programming, architectural styles, and many others) may shift the entire design space to make it
all easier to use, but the core tradeoff, though weakened, will remain.

The tradeoff space in Figure 2.2 is not a discrete space and is somewhat blurry. For example,
a reusable component may have sub-components that exist in different parts of the space when
viewed by themselves; many frameworks and product lines contain internal libraries. Addition-
ally, a component may shift location in this space depending on how it is reused. As an example,
consider Ruby on Rails, a web application framework. The developers of this framework brag
about being able to create a web application in only 15 minutes [50]. Unfortunately, the scope of
possible web applications that can be made in this way is limited to a predefined set, so Ruby on
Rails exists in the lower left corner alongside product-line systems. However, Ruby on Rails does
provide a different mechanism for creating more complex web applications; doing this requires
both more code and uses more complex APIs, so the tradeoffs of Ruby on Rails shift to the right.
In cases like this, it’s possible to think of the component as actually having two separate APIs; one
for beginner use and one for expert use. This is fairly common for reusable components and can
be seen in both the Swing GUI framework [104] and the Crystal static analysis framework [83].

The result this tradeoff is that frameworks are inherently difficult to use, even when designed
well. If the designer of a framework made the decision to create a reusable software architecture
that can be reused by a wide variety of applications and provide them with maximum reuse ben-
efit, it is no wonder when the framework suffers from usability problems. Given these tradeoffs,
software frameworks will always exist because of their utility and versatility for reuse, but we
will have to live with the usability consequences. In this thesis, I will be addressing this issue by
providing a program verification technique that will help plugin developers find the defects that
occur as a result of a difficult to use API.

2.3 An added twist: declarative artifacts

There is one additional twist to current software frameworks that will be relevant for this thesis.
Traditionally, software frameworks have used object-oriented programming techniques as the pri-
mary abstraction for reuse and communication with plugins. In recent years, declarative artifacts
have become a popular secondary abstraction: Eclipse, ASP.NET, and Apache Server all require
their plugins to create declarative artifacts. At first glance, these declarative artifacts do not even
appear to be program code, and they might be considered a non-code artifact similar to image
resources or translations for internationalization. In fact, as these declarative files might contain
data specific to a particular runtime environment, in some circumstances they might not even be
checked into a code repository.

How prevalent are these declarative artifacts? In a study done with Kevin Bierhoff, George
Fairbanks, and Jonathan Aldrich, we found 11 industry frameworks that are using declarative ar-
tifacts; the full list of 17 frameworks that we studied can be found in Table 2.1. Declarative artifacts
were used for a wide variety of purposes, including user interfaces, architecture configuration at
runtime, descriptions of data formats and validation, deployment configuration, and server con-
figuration. In all of these cases, a pure OO design would have not met the needs of the system,
though some of the frameworks still provide the OO mechanisms.

16 CHAPTER 2. SOFTWARE FRAMEWORKS

Table 2.1: Summary of results from an archival analysis of 17 industry frameworks.

Framework Language Declarative Artifacts?
Apache HTTP Server C Yes
Applets Java No
ASP.NET C#, VB.NET Yes
AWT/Swing Java No
Corba Various No
Eclipse Java Yes
Enterprise Java Beans Java Optional
Facebook PHP and Various Yes
JUnit (and related) Various No
MFC C++ Yes
OpenMPI C No
Ruby on Rails Ruby Yes
Servelets Java Yes
Spring Java Yes
WebOjbects Java Yes
WinForms C# and Various Yes
XSever C No

Declarative artifacts allow for additional modifiability that is not offered by traditional pro-
gramming abstractions. In particular, they allow modifiability through time, through environ-
ments, and through the modifier. I will explain each of these concepts in turn.

Modifications through time. As declarative artifacts are not evaluated until run time, they can
be modified without recompiling. This allows for certain, predefined modifications (like the loca-
tion of a database) to be easily made post-compilation.

Modifications of the environment. Because declarative artifacts are modifiable through time
and are not tied to program code, they can be modified separately for each environment that
the system is deployed in. Following the database example once again, we can quickly deploy a
system to multiple locations, without modifying any code, by editing a declarative artifact that
specifies the location of the database for the particular deployment environment. This enables a
company to develop and deploy complex product line systems with relatively little effort.

Modifications from unusual modifiers. Finally, declarative artifacts can be created for specific
non-programmers so they can modify the program without accessing the program code. These
non-programmers might include UI designers, IT administrators, or even end-users. Using declar-
ative files, each of these people can complete their modification task with little involvement of a
software developer. In the database example, the declarative artifact can be changed by an IT
administrator in response to new changes in the deployed environment. As a further example,

2.3. AN ADDED TWIST: DECLARATIVE ARTIFACTS 17

Vignette 2.2 features an ASP.NET plugin that uses a declarative artifact for the user-interface. In
my experience at LEVEL Studios, this allowed the UI designers to modify the design of the web
page in parallel with the software developer creating the functionality.

As practical as these declarative artifacts are for modifiability, they are not addressed in any
known general purpose program verification systems.5 As seen in Vignette 2.2, these artifacts are
tied with the code to the extent that verifying the code alone is not useful. As part of this thesis, I
will also be providing a first attempt at verifying declarative artifacts alongside program code.

Plugin Vignette 2.2: LoginView
On the ASP.NET forums, a developer reported that he was attempting to retrieve a DropDownList

within his code-behind file, but his code was throwing a NullReferenceException [94]. His plugin uses
a LoginView control, which allows developers to display some controls if the user is logged in, and other
controls if the user is not logged in. It achieves this by having two templates which represent these states,
as shown in the developer’s ASPX file in Listing 2.2.

Listing 2.2: ASPX with a LoginView
1 <asp:LoginView ID="LoginScreen" runat="server">
2 <AnonymousTemplate>

3 You can only set up your account

4 when you are logged in.

5 </AnonymousTemplate>

6 <LoggedInTemplate>

7 <h4>Location</h4>

8 <asp:DropDownList ID="LocationList"
9 runat="server"/>

10 <asp:Button ID="ContinueButton"
11 runat="server" Text="Continue"/>

12 </LoggedInTemplate>

13 </asp:LoginView>

Listing 2.3: Incorrect way of retrieving controls in a LoginView
1 LoginView LoginScreen;

2

3 private void Page_Load(object sender, EventArgs e)
4 {

5 if (!isPostback()) {
6 DropDownList list = (DropDownList) LoginScreen.FindControl("LocationList");

7 list.DataSource = ...;

8 list.DataBind();

9 }

10 }

The developer properly set up a LoginView, including the DropDownList within it, in the ASPX file. The
developer then went to his code-behind file in Listing 2.3, and in the initialization event, attempted to set up
the DropDownList with data when the page is viewed for the first time. The typical way to get a sub-control

5[7] addresses them for Ruby on Rails, but this solution is specific to the Ruby on Rails framework. Likewise, [100]
provides simple verification for Spring.

18 CHAPTER 2. SOFTWARE FRAMEWORKS

is to call Control.findControl with the appropriate name; findControl will return null only if there is no
sub-control with that name. While line 7 was throwing a NullReferenceException since list was null, the
developer was confused because he had used exactly the name he declared in the ASPX file.

Another developer responded to the post and explained this unusual error. The original developer did
correctly set up his controls so that the DropDownList would only show when the user is logged in. However,
the LoggedInTemplate does more than just make the controls invisible if no user is logged in; the controls
will not even exist in memory unless a user is logged in. Therefore, if a developer wishes to set up data
in these controls, he must do so before the control is displayed, but only if the user has logged in. This
constraint make more sense from a security perspective; we do not want any chance of the data within that
control leaking out of the system, so it does not exist at all until necessary. The solution proposed was to
first check the login status from Request.isAuthenticated(), using the page’s Request object, as shown
in the corrected Listing 2.4.

Listing 2.4: Correct way of retrieving controls in a LoginView
1 LoginView LoginScreen;

2

3 private void Page_Load(object sender, EventArgs e)
4 {

5 Request myRequest = getRequest();

6 if (!isPostback() && myRequest.isAuthenticated()) {
7 DropDownList list = (DropDownList) LoginScreen.FindControl("LocationList");

8 list.DataSource = ...;

9 list.DataBind();

10 }

11 }

This example quickly becomes more complex if we want to show different controls to different kinds
of users. The LoginView also allows us to do this by creating many RoleGroups and associating each
with user role, as shown in Listing 2.5. If we also want this functionality, we must check the properties
of the logged-in user (Listing 2.6) to determine whether a control is accessible. This adds a great deal of
complexity to the plugin, and it is compounded if a user is specified in more than one LoginTemplate.

Listing 2.5: ASPX with a LoginView and multiple RoleGroups
1 <asp:LoginView ID="LoginScreen" runat="server">
2 <AnonymousTemplate>

3 You can only set up your account

4 when you are logged in.

5 </AnonymousTemplate>

6 <RoleGroups>

7 <asp:RoleGroup Roles="Registered">

8 <ContentTemplate>

9 <asp:Button ID="ContinueRegistered"
10 runat="server" Text="Continue"/>

11 </ContentTemplate>

12 </asp:RoleGroup>

13 <asp:RoleGroup Roles="Admin">

14 <ContentTemplate>

15 <h4>Location</h4>

16 <asp:DropDownList ID="LocationList"
17 runat="server"/>

2.3. AN ADDED TWIST: DECLARATIVE ARTIFACTS 19

18 <asp:Button ID="ContinueAdmin"
19 runat="server" Text="Continue"/>

20 </ContentTemplate>

21 </asp:RoleGroup>

22 </RoleGroups>

23 </asp:LoginView>

Listing 2.6: Correct way of retrieving controls in a LoginViewwith a RoleGroup
1 LoginView LoginScreen;

2

3 private void Page_Load(object sender, EventArgs e)
4 {

5 Request myRequest = getRequest();

6 if (myRequest.isAuthenticated() && getUser.isInRole("Admin")) {
7 DropDownList list = (DropDownList)

8 LoginScreen.FindControl("LocationList");

9 list.DataSource = ...;

10 list.DataBind();

11 }

12 }

20 CHAPTER 2. SOFTWARE FRAMEWORKS

Chapter 3
Object Collaborations

No runtime entity exists independently in software, whether it be an object, component, or func-
tion. These entities interact and collaborate with each other in structured ways to make a use-
ful program. As programmers, we manipulate these collaborations by performing operations on
these entities, such as invoking methods, passing in arguments, setting stateful fields, and sending
or receiving data through a port.

As seen in Vignette 2.2, the programmer must work with several objects that interact together
(the page, the request, and the controls) in order for his application to produce the desired be-
havior (only show the drop down list when the user is logged in). This was a fairly complex
collaboration between objects, but even smaller collaborations, such as that between an object, a
collection it is in, and an iterator over the collection, happen regularly in programs.

While objects frequently participate in collaborations, not every collaboration is valid. They
are frequently constrained in some way. For example, a list may require that all objects which are
added to it be in a particular state. It is possible that the list checks this requirement, or perhaps
that the item itself does, but it is also possible that the list assumes that the caller is responsible for
enforcing this constraint. Therefore, the programmer must always be aware of which constraints
she must abide by. I will refer to constraints on how several entities collaborate as collaboration
constraints. Vignettes 2.1, 2.2 and 3.1 all contain examples of collaboration constraints.

Collaboration constraints occur with high frequency in software frameworks and are therefore
of particular concern to that category of software. As we saw in Chapter 2, frameworks emphasize
versatility and utility. In order for a framework to be highly versatile, it must provide mechanisms
for the plugin to manipulate the internal representations of the framework and change how these
objects collaborate. At every point where a framework opens this internal representation, there
are implicit constraints on how the plugin may manipulate the collaboration. When a framework
also aims to increase utility, it repeats this pattern many times, in overlapping areas of the API.
This makes the implicit collaboration constraints even more confusing for a plugin developer.

It is the goal of this thesis to make collaboration constraints explicit so that they can be stati-
cally verified with a program analysis. This chapter addresses two sub-goals. First, I show that
collaboration constraints are burdensome on plugin developers and therefore are worthy of fur-
ther study. Second, I identify four important properties of collaboration constraints which any

21

22 CHAPTER 3. OBJECT COLLABORATIONS

(a) ASP.NET (b) Spring

Figure 3.1: Corporate affiliations of the top 25 members of the Spring and ASP.NET help forums.
Data gathered on April 12, 2011. Corporate affiliations determined by users self-description of
their company and position. In both cases, the developers from Microsoft or SpringSouce were
clearly labeled. Consultants are members who made it clear that their primary source of income
was in consulting for use of the framework; most had books, blogs, and speaking arrangements
listed. Other developers are people who use the framework as part of a job in another company.
Unknowns are likely also other developers who chose to keep their affiliation private.

solution must address. This chapter will use an archival analysis of the ASP.NET help forums to
address both of these goals.1

3.1 Why examine forums?

We can directly observe how difficult it is to use frameworks by inspecting posts on developer
help forums, such as those for ASP.NET and Spring. When a developer chooses to post on a help
forum, it tells us several things about his current situation:

• The developer has probably spent several hours trying to figure out the problem himself by
searching for tutorials and documentation.

• The developer has probably asked his colleagues, who also did not know how to fix the
problem.

• The developer has decided that it would be more efficient for him to anonymize the code,
post it, and wait possibly several days for a response, rather than continue to puzzle it out
alone.

The developers who respond to these posts are either more advanced developers or consul-
tants and employees of companies that will benefit from others using this framework successfully.
For example, some Microsoft teams require that employees spend several hours each month an-
swering developer questions on the help forums. Many consultants also answer questions on the
forums in hopes of selling their own third-party products or finding new clients. Figure 3.1 de-
scribes the affiliations of the top 25 posters on the ASP.NET and Spring help forums; notice that
most of them are answering questions on the forums for indirect financial gain. The number of

1This analysis also lead to the discovery of Vignettes 2.1 and 2.2.

3.2. ASP.NET FORUM STUDY 23

Figure 3.2: Post counts on the Spring web forums. The y-axis shows the number of users on a
log scale. The x-axis shows the post count bucketed on a log scale. As seen, there were 36,693
registered users that had not posted at all; many of these appear to be failed spam-bots. Even so,
there were over 11,000 users who made one post. Only 26 users made over a thousand posts, the
highest post count was 10,275 posts by a single user. As can be seen, the regression is linear on a
log-log scale. The vast majority of users post very few times.

posts per user is also exceedingly skewed for both forums; as seen in Figure 3.2, a very few users
are doing most of the posting (presumably answering questions rather than asking them). Most
people who post questions are fairly new to the forum (though not necessarily to the framework),
and the questions are answered by a handful of experts who have limited time.

3.2 ASP.NET Forum Study

To further understand the type of questions people ask, I performed an archival analysis of the
postings in the Web Controls sub-forum of the ASP.NET help forums. At the time of the analysis
(spring of 2007), this was the most popular of the 104 sub-forums, with over 87,000 conversation
threads since 2003. My analysis was on the threads that had their last activity during the first week
of October in 2006. As the analysis itself was conducted many months later, each of these threads
can be considered closed (that is, we expect no further helpful responses).

There were 271 threads with their last activity during this period. I first removed any threads
which met one of the following properties:

• The question was not about Web Controls.

• The poster or responder used extremely poor English, to the point of not being understand-
able.

• The poster needed compilation help or otherwise did not understand basic syntax.

24 CHAPTER 3. OBJECT COLLABORATIONS

• The poster described the problem in such a vague way that it could not be reconstructed.

• There was no response at all or no response that solved the problem.

This left 66 threads which were on topic and were understandable enough to answer. Of these,
50 were requests for tutorials or documentation for a specific task.2 This left 16 threads for study,
which I have archived [2].

The remaining 16 threads had several interesting characteristics.3 They were initiated by de-
velopers who had a problem in their code and were asking for help identifying the cause of the
error and how to fix it. In these threads, the original posters provided their failing code and a de-
tailed description of the failure, and a responding poster provided the fix and a description of why
the code failed. Finally, each of these 16 threads (listed in Table 3.1a) described a problem where
the developer was manipulating 2-5 objects within a collaboration and had broken a collaboration
constraint.

These 16 threads show significant burden on the part of both the plugin and framework devel-
oper in several ways.

• As seen in Table 3.1a, only 7 of the faults resulted in a runtime exception; the remaining 9
resulted in incorrect behavior at run time, which is more difficult to debug than an exception
with a message and a stack trace.

• Four of the faults were not local to the runtime error: based on the runtime error, the plugin
developer would not be led to the method within their code that contained the fault, much
less the line of code that contained it.

• There are three groups of threads, identified in the footnotes of the table, that are actually
related issues that were posted about within the same week. It turns out that several of
the constraints can fail in different ways at run time, depending on how they were broken,
which makes it difficult for developers to search for other people who had a similar problem.
As seen, even in a one week period, there were four threads discussing the issue shown in
Vignette 2.1 and another four about a related lifecycle constraint.

• In two cases, a second poster appeared years later, after my initial study was finished. In
both cases, the second poster came on simply to say that they had the same problem and
that a search led them to this very helpful thread. One person noted that this saved hours
of frustration, and another had already spent many hours trying to find an answer. This
implies that developers will indeed search for a solution first and only post when a search
turns up no useful answers. There are likely more developers who found these posts helpful
and did not post in this manner.

2These posts would be ideally solved with design fragments [36] or similar techniques.
3I do not claim that those were the only 16, it is possible that I missed threads, that my knowledge of ASP.NET

was not sufficient to understand the problem or solution being discussed, or that people continued to respond to posts
much later (though I attempted to mitigate this issue by reading posts that were already several months old). I only
claim that there were at least 16 out of the 271 which had these properties.

3.2. ASP.NET FORUM STUDY 25

Number* Runtime error Runtime local? #Posters #Responders Response time (H:MM)
1031123 Exception No 1 1 3:23
1031139† Exception Yes 1 1 0:47
1031804 Incorrect Behavior Yes 1 1 9:13
1032020† Exception Yes 1 0** 24:44 (over 1 day)
1031933 Incorrect Behavior No 1 1 12:44
1030504‡ Incorrect Behavior Yes 1 3 162:10 (over 6 days)
1027694‡ Incorrect Behavior No 1 1 381:39 (over 15 days!)
1032187‡ Incorrect Behavior Yes 2†† 1¶ 18:36
1032278 Exception Yes 1 1 16:18
1032624† Exception Yes 2‡‡ 1 2:10
1032991§ Exception Yes 1 2 7:43
1033020§ Incorrect Behavior Yes 1 2 3:02
1033046‡ Incorrect Behavior Yes 1 1¶ 1:46
1031946§ Exception Yes 1 3 117:21 (over 4 days)
1033217§ Incorrect Behavior No 1 2 3:13
1033450 Incorrect Behavior Yes 1 1 260:22 (over 10 days)

(a) Properties that show burden

Number* #Classes, #Objects Extrinsic v. Instrinsic Semantics Artifact Types
1031123 3, 3 Intrinsic Temporal, Identity ASPX, VB.NET
1031139† 4, 4 Extrinsic Identity, Value ASPX, VB.NET
1031804 3, 2 Extrinsic Value, Temporal, Identity C#
1032020† 3, 3 Intrinsic Identity, Value ASPX, VB.NET
1031933 5, 5 Extrinsic Callback, Identity C#
1030504‡ 4, 4 Extrinsic Callback C#
1027694‡ 3, 2 Extrinsic Callback ASPX, C#
1032187‡ 3, 3 Extrinsic Callback ASCX, VB.NET
1032278 4, 4 Extrinsic Temporal, Identity VB.NET
1032624† 4, 4 Intrinsic Identity, Value ASPX, C#
1032991§ 2, 2 Extrinsic Identity, Callback C#
1033030§ 2, 2 Extrinsic Value, Callback VB.NET
1033046‡ 2, 2 Extrinsic Callback C#
1031946§ 2, 2 Extrinsic Callback ASPX, C#
1033217§ 2, 2 Extrinsic Value, Callback VB.NET
1033450 2, 2 Extrinsic Value, Temporal, Identity ASPX, VB.NET

* URL is http://forums.asp.net/t/NUMBER.aspx
† Related threads regarding proper usage of the FindControlmethod.
‡ Related threads regarding when to dynamically create controls in the Page lifecycle.
§ Related threads regarding when to access a field in the Page lifecycle.
¶ None of the responders actually gave the correct response.
** Poster ended up “answering” own question, but actually got it slightly wrong.
†† This thread had an additional responder after I concluded the study, written on November 24, 2010. The contents

were “I must have read 10 or more post on how to do this but they were all so complicated I spent hours trying
to understand one of them. Yours was great, I figured it out in a few minutes. Thank you for simplest example
possible.”

‡‡ And another one on September 21, 2010! “this is precious...i did not know that...Perfect..saved me a lot of frustra-
tion :)”

(b) Properties of the underlying collaboration constraint

Table 3.1: Archival analysis of ASP.NET forum postings. These postings were understandable,
solvable, on topic, and were not requests for a tutorial.

http://forums.asp.net/t/NUMBER.aspx

26 CHAPTER 3. OBJECT COLLABORATIONS

• The average time, from original posting to answer, was over 64 hours (about 2.67 days).
Clearly, this is an inefficient way to debug a problem, which implies that most developers
will use this as a method of last resort.

Based on this evidence, collaboration constraints appear to be burdensome for developers.
While these problems were not the largest class of questions posted on the forum, they certainly
required more time from developers in advance to investigate, and they require more time for the
experts to read, understand, and answer as experts cannot simply point developers to an online
tutorial or API. A solution which prevents these questions from being asked would not only free
up time for the plugin developers but for the framework developers as well.

Plugin Vignette 3.1: Drop Down List
This example is from personal experience, rather than from the ASP.NET forums. I ran across this

problem as a consulting developer at LEVEL Studios. We had a web page which had several, dynamically
generated drop down lists on it. As they were dynamically generated, they were not in the ASPX file and
were declared entirely in C#. The drop down lists were also paired; selecting an item in the first caused
the second to be filtered. Selecting an item in the second caused an item in the first to be automatically
selected.

ListControl
ListItemCollection getItems()
ListItem getSelectedItem()

ListItemCollection
ListItem findByText(String)
ListItem findByValue(String)

ListBox
ListSelectionMode getSelectionMode()
void setSelectionMode(ListSelectionMode)

DropDownList

CheckBoxList

RadioButtonList

BulletedList

ListItem
boolean isSelected()
void setSelected(boolean)

*

Figure 3.3: ASP.NET ListControl Class Diagram

The ASP.NET framework provides the relevant classes and methods to change the selection of a
drop down list, as shown in Figure 3.3.4 Notice that if the developer wants to change the selection of a
DropDownList (or any other derived ListControl), she has to access the individual ListItems through the
ListItemCollection and change the selection using setSelected. Based on this information, she might
naı̈vely change the selection as shown in Listing 3.1. Her expectation is that the framework will see that
she has selected a new item and will change the selection accordingly.

Listing 3.1: Incorrect selection for a DropDownList
1 DropDownList list;

2

3 private void Page_Load(object sender, EventArgs e)
4 {

3.2. ASP.NET FORUM STUDY 27

5 ListItem newSel;

6 newSel = list.getItems().findByValue("foo");

7 newSel.setSelected(true);
8 }

When the developer runs this code, she will get the exception shown in Figure 3.4. The error message
clearly describes the problem; a DropDownList had more than one item selected. This error is due to
the fact that the developer did not de-select the previously selected item, and, by design, the framework
does not do this automatically. While an experienced developer will realize that this was the problem, an
inexperienced developer might be confused because she did not select multiple items.

Figure 3.4: Error with partial stack trace from ASP.NET

The stack trace in Figure 3.4 is even more interesting because it does not point to the code where the
developer made the selection. In fact, the entire stack trace is from framework code; there is no plugin
code referenced at all! At run time, the framework called the plugin developer’s code in Listing 3.1, this
code ran and returned to the framework, and then the framework discovered the error just before rendering
the DropDownList into HTML. To make matters worse, the program control could go back and forth several
times before finally reaching the check that triggered the exception. Since the developer doesn’t know
exactly where the problem occurred, or even what object it occurred on, she must search her code by hand
to find the erroneous selection.

The correct code for this task is in Listing 3.2. In this code snippet, the developer de-selects the currently
selected item before selecting a new item.

Listing 3.2: Correctly changing the selection
1 DropDownList list;

2

3 private void Page_Load(object sender, EventArgs e)
4 {

5 ListItem newSel, oldSel;

6 oldSel = list.getSelectedItem();

7 oldSel.setSelected(false);
8 newSel = list.getItems().findByValue("foo");

9 newSel.setSelected(true);
10 }

Now, as it turns out, I was quite familiar with this interesting aspect of the API. So, when I accidently
wrote the code in Listing 3.3, I received the expected runtime error. Oops, I got the old item but I forgot to
deselect it. Minor mistake, so I went back and edited the code to be like Listing 3.4. Notice, the only change
is the addition of line 15. I then ran it, put it through various tests, and committed. Everything worked the
way I expected.

28 CHAPTER 3. OBJECT COLLABORATIONS

Listing 3.3: Original bad code for manipulating selection of a DropDownList
1 private void Second_Selected(object sender, EventArgs e)
2 {

3 ListItem oldItem, newItem;

4 DropDownList firstList = ...

5 DropDownList secondList = ...

6 string newText;

7

8 oldItem = firstList.getSelectedItem();

9

10 //some code here that worked with oldItem
11 newText = //retrieve the new
12

13 newItem = firstList.getItems().findByText("foo");

14 newItem.setSelected(true);
15 //oops, forgot to deselect
16 }

Listing 3.4: “Corrected” version
1 private void Second_Selected(object sender, EventArgs e)
2 {

3 ListItem oldItem, newItem;

4 DropDownList firstList = ...

5 DropDownList secondList = ...

6 string newText;

7

8 oldItem = firstList.getSelectedItem();

9

10 //some code here that worked with oldItem
11 newText = //retrieve the new
12

13 newItem = firstList.getItems().findByText("foo");

14 newItem.setSelected(true);
15 oldItem.setSelected(false);
16 }

A couple of days later, the tester called me over with a very strange bug in my code. It turns out, I
had missed an interesting case: if newItem happens to be the same as oldItem, then the item is selected
(which does nothing, as it is already selected), and then it is de-selected. This leaves no items selected
in the DropDownList, so the framework selects the first item in the list!5 This is an interesting issue, as it
means that ListItem.setSelected(false) must occur before ListItem.setSelected(true), and this is
not a very obvious aspect of this constraint.

Listing 3.5: Using two DropDownLists together and using the wrong one
1 private void Second_Selected(object sender, EventArgs e)
2 {

3 ListItem oldItem, newItem;

4 DropDownList firstList = ...

5 DropDownList secondList = ...

3.2. ASP.NET FORUM STUDY 29

6 string newText;

7

8 oldItem = firstList.getSelectedItem();

9 oldItem.setSelected(false);
10 //some code here that worked with oldItem
11 newText = //retrieve the new
12 newItem = secondList.getItems().findByText(newText);

13 newItem.setSelected(true);
14 }

Listing 3.6: Swapping the selection
1 DropDownList list;

2

3 private void Page_Load(object sender, EventArgs e)
4 {

5 ListItem newSel, oldSel;

6 newSel = list.getItems().findByValue("foo");

7 newSel.setSelected(true);
8 oldSel = list.getSelectedItem();

9 oldSel.setSelected(false);
10 }

There are several other ways to break this constraint in seemingly correct ways. For example, Listing
3.5 deals with two DropDownLists where the developer accidentally uses the wrong list. Another way to
break it would be to completely swap the method calls, as in Listing 3.6. Notice that the Line 8 must happen
before Line 7. Otherwise, there is more than one item selected, and the call to at Line 8 may return the new
ListItem rather than the old one, thus nullifying all of our changes!

There is another interesting aspects of this constraint in that the other sub-types of ListControl do not
necessarily have this constraint. RadioButtonList has a similar constraint, but CheckBoxList can have as
many or as few items selected as it likes. A ListBox is also interesting, as there is an setting to determine
whether it will function as a single-select list or a multi-select list. Of course, the methods involved in the
selection constraint are not in any of these subtypes, but in ListControl and ListItem.

Notice that this means that a DropDownList is not substitutable anywhere a ListControl is used! It has
added an additional constraint which the parent did not have, and so it has broken behavioral subtyping.
While unfortunate, this is not an uncommon problem in frameworks. The framework developers here have
traded off usability of the external API for code reuse within the framework. They may have made the right
choice (who would ever substitute a DropDownList for a multi-select ListBox?), but it has some unfortunate
usability consequences.

4To make this code more accessible to those unfamiliar with C#, we are using traditional getter/setter syntax rather
than properties.

5Clearly, I had a very good tester, as this problem only manifests when oldItem equals newItem and they are not the
first item in the list.

30 CHAPTER 3. OBJECT COLLABORATIONS

3.3 Properties of Collaboration Constraints

Using these 16 threads in Table 3.1b as examples, I sought to understand the properties of collab-
oration constraints that make them difficult to specify using existing techniques such as typestate
[16], pluggable typesystems [8], JML [66], or SCL [55]. I found four properties, as listed in Table
3.1b. In this section, I will also refer to Vignettes 2.1, 2.2, and 3.1 as examples of the properties.

Problem Property 1. Collaboration constraints involve multiple types and objects.

All of the problems described in the threads were examples of broken collaborations between
several objects. Typically 2-5 objects were relevant for the collaboration, and 2-5 classes were also
used (including relevant base classes). In Vignette 3.1, Listing 3.2 required four objects to make
the proper selection. The framework code that the DropDownList example used was located in
four classes (DropDownList, ListControl, ListItemCollection, and ListItem). In Vignette 2.2,
the correct plugin also referenced four objects: the Request object, the LoginView control, the
DropDownList control, and the Page in which all this code was running and which owned the
Request and the LoginView.

Problem Property 2. Collaboration constraints are often extrinsic to a type.

Thirteen of the examples in Table 3.1b are extrinisic constraints, that is, the constraint is de-
fined or checked outside of the type that is being constrained. By contrast, an intrinsic constraint
is one which limits the class it is defined by; class invariants and single-object protocols are exam-
ples of intrinsic constraints. Vignette 3.1 provided an example of an extrinsic constraint. While
the DropDownList was the class that checked the constraint (as seen by the stack trace), the con-
straint itself was on the methods of ListItem. However, the ListItem class is not aware of the
DropDownList class or even that it is within a ListControl at all, and therefore it should not be re-
sponsible for enforcing the constraint. Likewise, in Vignette 2.1, the ability to call certain methods
on a Control is limited based on what callback the Page is currently in, and not on any property
of the Control itself.

Problem Property 3. Collaboration constraints involve semantic properties such as object identity,
primitive values, state, and ordering of operations.

All of the examples in Table 3.1b required that the plugin developer be aware of the frame-
work’s program semantics in a way that goes beyond what is verifiable with traditional typesys-
tems or structural checkers. In particular:

• Object identity matters. Nine constraints required developers to be aware not only of the type
of the object, but the unique identity of the object. In Vignette 3.1, the plugin developer had
to be aware of which ListItem she was using to avoid the problem in Listing 3.5. Likewise,
in Vignette 2.2, the plugin developer had to use not just any Request object; he had to use
the one which was associated with the Page that the LoginViewwas on.

• Temporal requirements matter. Four of the constraints had temporal requirements about the
ordering of operations. As seen in Vignette 3.1, Listing 3.6, swapping two otherwise valid
method calls can impact the collaboration in unexpected ways.

3.3. PROPERTIES OF COLLABORATION CONSTRAINTS 31

• Primitive values matter. Seven constraints referenced primitive values such as booleans and
strings, and in some cases, the value directed control flow in the form of a dynamic state test.
One example of this can be seen in Vignette 2.2, Listing 2.4, where it was not only important
that the call be made to Request.isAuthenticated(), but that this call return true.

• Callbacks matter. Nine of the constraints were regarding a callback and specifically allowed or
disallowed particular operations only within a particular method of the this object. Vignette
2.1 was entirely regarding a callback situation where certain operations were not allowed
within certain contexts.

Every problem examined had at least one of these semantic issues, and 11 of them had at least two
of these properties.

Problem Property 4. Collaboration constraints span many kinds of files and data, including de-
clarative artifacts.

The examples studied spanned many different kinds of program artifacts, not just traditional
program code. In particular, half of the studied examples were using a declarative artifact (ei-
ther ASPX or ASCX) that was relevant to the constraint. Vignette 2.2 shows how a collaboration
constraint extends into ASPX. In this example, the ASPX file affected how the programmer could
reference and use the objects in the C# code-behind file. The code-behind file also had to use the
same strings as the ASPX file for the desired behavior to take place. Vignette 2.1 contains an-
other interesting interaction between these files. The field DateYearwas not available because the
framework uses dependency injection to automatically set this field for the plugin. Had the plugin
set this field itself, the constraint no longer applies. Whether or not the framework performs the
dependency injection in the code-behind file is based on what controls are declared in the ASPX
file.

As discussed in related work, while there exist systems which can specify constraints with
some of these properties, there are no known specifications systems that can specify all of them.
In fact, very few existing systems can handle multiple objects in a generic way, very few can han-
dle extrinsic constraints, and there is only one other piece of work known to do verification of
declarative artifacts. Even the category of semantic properties, which is probably the one that is
most frequently handled in related work, is not frequently done in a generic way. An in-depth
discussion on how related work addresses these properties can be found in Chapter 8. The work
presented in this dissertation aims to specify and analyze constraints with all four of these prop-
erties and do so in a cost-effective manner.

32 CHAPTER 3. OBJECT COLLABORATIONS

Chapter 4
Relationship Specifications

In Chapter 3, I described a collaboration constraint informally as a constraint on how several
objects may interact in a protocol, and I used an archival analysis of the ASP.NET help forums
to understand the properties of these constraints. I will now refine the definition more precisely
below.

Definition 4 (Collaboration Constraint). A collaboration constraint is a precondition that is ex-
pressed as a predicate on the abstract states of several objects.

For example, there were two collaboration constraints in the problem in Vignette 3.1. The first
was a precondition on calls to ListItem.setSelected(boolean) which said that when the oper-
ation is called on a ListItem that is a member of a DropDownList and the parameter is true, then
the DropDownList must be in an unselected state. The second constraint, on the same operation,
governed the case where the parameter is false and required that the ListItem be in the selected
state. These states are abstract because they did not refer to a concrete memory representation of
these two objects, and they did not describe how we know that the ListItem is connected to a
DropDownList in memory. Notice that by combining several collaboration constraints together, a
developer can describe a protocol for using multiple objects based on their abstract states.

Our goal is to provide a cost-effective specification and analysis technique for collaboration
constraints that can handle all the properties described in Chapter 3. To achieve this, I will use
abstract relationships between objects, defined below, as the primary abstraction for specifying and
analyzing these constraints.

Definition 5 (Relationship). A relationship is a user-defined, abstract state-based association amo-
ng several objects.

A relationship is a developer-defined abstraction that describes how several objects are asso-
ciated at a design level. For example, we can talk about the relationship between a data structure
and each item within that data structure. The actual code level association between two such
objects may go through several other objects in the heap; a linked list, for example, might be as-
sociated with its tail-most object only through the pointers that go through every other object in

33

34 CHAPTER 4. RELATIONSHIP SPECIFICATIONS

Listing 4.1: The definition of the Child relation. Every relation must define params, effect, and
test

1 @Relation({ListItem.class, ListControl.class})
2 public @interface Child {
3 String[] params();

4 Effect effect();

5 String test() default "";
6 }

the list. However, we as programmers still talk about this association between the tail item and
the list as though it is directly embedded in the code. A relationship is therefore a form of design
intent and represents an abstract connection between several objects, not a concrete connection. It
will be formally defined as a programmer-named predicate across runtime objects `.

Relationship = Name(`1, . . . , `n)

In Vignette 3.1, there was an association between DropDownList and each of the ListItems. This
could be encoded as two relationships: Child(oldItem, ctrl) and Child(newItem, ctrl).

As relationships are entirely abstract and programmer defined, they can be thought of as an
uninterpreted predicate. The static analysis described later will have no notion of the tacit mean-
ing of a relationship and no way to check that it actually holds in code. In particular, relationships
can represent ownership of objects (like Child(oldItem, ctrl)), but they are not interpreted as such
and can hold whatever meaning the developer imposes on them.

While the relationship abstraction is not specific to a particular programming language1, the
specification language Fusion (Framework Usage SpecificatIONs) is implemented for Java and
XML. To use the Child relationships above, we must first define the relation which describes the
type of the relationship. In Fusion, this will be done with Java annotations; Listing 4.1 defines the
Child relation. All relations are a Java annotation and are identified with the @Relation annotation
that defines the types of the objects in the relationships. Additionally, all relations must have the
three properties shown. In the rest of this chapter, we will assume that all relationships used have
a relation defined in a similar manner.

In this chapter, I will show how Fusion can specify collaboration constraints by joining rela-
tionships with logical connectives to create preconditions on framework operations. I will also
show how an associated static analysis can detect invalid plugins that do not meet these specifica-
tions. This chapter will show how to do this using the collaboration constraints from Vignettes 3.1
and 2.1 as concrete examples. Descriptions of how the analyses is affected by aliasing and how it
works in the presence of declarative artifacts will be saved for Chapter 5.

1This dissertation does assume an imperative, object-oriented language. However, the “object” ` used in a rela-
tionship need not be an object as defined by the OO paradigm; many possible data abstractions could work here. For
consistency though, I will use the term “object” throughout the dissertation.

4.1. SPECIFYING CONSTRAINTS IN FUSION 35

Listing 4.2: Relationship effects on List
1 public interface List {
2 @Item({item, target}, ADD)
3 public void add(Object item);
4

5 @Item({item, target}, REMOVE)
6 public void remove(Object item);
7

8 @Item({item, target}, TEST, result)
9 public boolean contains(Object item);

10

11 @Item({∗, target}, REMOVE)
12 public void clear();
13 }

4.1 Specifying constraints in Fusion

Fusion uses relationships to define pre- and post-conditions of framework operations. A post-
condition is described by relationship effects, and a pre-condition is described by a requires predicate.
Unlike other pre- and post-condition specification systems, Fusion allows specifications to be writ-
ten on many kinds of framework operations, not just method calls. The implementation currently
supports method calls, constructor calls, the beginning of a method, and the end of a method.
Theoretically, it can also support operations like field reads, field writes, and synchronizing on an
object, though those operations are not implemented currently in Fusion. For purposes of describ-
ing the specifications, this section will primarily use method calls as the operation being specified.

Relationship effects are a type of post-condition that specifies the tacit knowledge of the plugin
after calling a framework method. Consider a framework developer who is specifying a typical
List interface where objects in the list are expected to be in an Item relationship with the list. The
framework developer can specify that the method List.add(Object item) has the effect of creat-
ing an Item relationship between the item and the list (also known as the target object). Similarly,
calling List.remove(Object item) removes the Item relationship between the item and the tar-
get object. The plugin can even test the state of this relationship by calling List.contains(Object
item) to determine whether there exists an Item relationship between these objects.

Once the developer has defined a relationship type in Fusion, she can annotate methods to
show relationship effects. Listing 4.2 shows the relationship effects for the simple List example.2

To add or remove a relationship, the developer specifies the objects within the relationship (the
value parameter in Listing 4.1) and the effect desired (the effect parameter in Listing 4.1). To
test the state of a relationship, the developer uses the TEST effect and provides a value for the
third parameter. This must be a boolean value which is true if the effect is added and false if it is
removed.

2The syntax shown is not technically correct Java annotation syntax, but is shown this way for readability purposes.
The correct syntax for @Item({item, target}, TEST, result) is actually @Item(value={”item”, ”target”}, effect=TEST,
test=”result”)

36 CHAPTER 4. RELATIONSHIP SPECIFICATIONS

Notice that a relationship effect only describes what is learned as a result of calling the method
and does not necessarily reflect a change in the heap. For example, List.contains in Listing
4.2 is specified as either adding or removing an Item relationship, but the method of course
is only a lookup and doesn’t change the heap. The relationship, in some sense, already ex-
isted; the specification just provided us with belated information about it. In a similar man-
ner, ListControl.getSelectedItem in Listing 4.3 is specified as adding two relationships, but
of course, the getter does not change the heap. This reemphasizes that relationships are merely a
developer abstraction about design intent; they have no direct correspondence to the code being
specified. We will later see that this gives them a lot of power to verify APIs unidirectionally; they
can be used to verify plugins but not to verify frameworks.

Relationship effects may refer to any variables used by the specified operation. In the case of
method calls, relationships can refer to the parameters, the target of the method call or field access
(designated with the name target), and the returned object (designated with result). Relationship
effects may also refer to types and primitive values. Finally, parameters can be wild-carded, so
Item({*, list}, REMOVE) removes all the Item relationships between list and any other object; this is
especially useful to place on methods such as List.clear(), as shown in Listing 4.2. An example
of these relationship effects on the ListControl API can be found in Listing 4.3; this API uses all
three of the effects described and uses wildcards.

A pre-condition in Fusion is called a requires predicate; this is a logical predicate on rela-
tionships. The logical operators and, or, and implies are all allowed in a requires predicate, and
relationships may be tested for falsehood using not (!). This allows the framework developer to
write constraints such as “the item to deselect must already be selected and must be a member of
the same drop down list as the item to be selected”:

Selected(oldItem) ∧ Child(oldItem, ctrl) ∧ Child(newItem, ctrl)

With just relationship effects and requires predicates, a framework developer could make sim-
ple pre- and post-conditions on operators. However, as described by Property 3, collaboration
constraints have separate properties that are not capturable through this alone. Consider: how
can we specify ListItem.setSelected(boolean) such that:

• We only deselect a ListItem that is currently selected.

• We only select a ListItem after deselecting.

• These operations are only allowed when the ListItems are members of the same List-
Control.

• These operations are only constrained when the ListControl is a DropDownList or other
single-select control.

To address this, Fusion provides a new kind of specification called a trigger predicate. While
this predicate looks similar to the requires predicate, its meaning is very different. The trigger
predicate determines when the constraint applies; it is more similar to the signature of the opera-
tor being constrained. While an operation’s signature can syntactically describe when a constraint

4.1. SPECIFYING CONSTRAINTS IN FUSION 37

Listing 4.3: Partial ListControl API with relationship effect annotations
1 public class ListControl {
2 @List({result, target}, ADD)
3 public ListItemCollection getItems();
4

5 //After this call we know two pieces of information. The returned item is selected and it is a child of this
6 @Child({result, target}, ADD)
7 @Selected({result}, ADD)
8 public ListItem getSelectedItem();
9 }

10 public class ListItem {
11 //If the return is true, then we know we have a selected item. If it is false, we know it was not selected.
12 @Selected({target}, TEST, return)
13 public boolean isSelected();
14

15 @Selected({target}, TEST, select)
16 public void setSelected(boolean select);
17

18 @Text({result, target}, ADD)
19 public String getText();
20

21 //When we call setText, remove any previous Text relationships, then add one for text
22 @Text({∗, target}, REMOVE)
23 @Text({text, target}, ADD)
24 public void setText(String text);
25 }

26 public class ListItemCollection {
27 @Item({item, target}, REMOVE)
28 public void remove(ListItem item);
29

30 @Item({item, target}, ADD)
31 public void add(ListItem item);
32

33 @Item({item, target}, TEST, result)
34 public boolean contains(ListItem item);
35

36 @Item({result, target}, ADD)
37 @Text({text, result}, ADD)
38 public ListItem findByText(String text);
39

40 //if we had any items before this, remove them after this call
41 @Item({∗, target}, REMOVE)
42 public void clear();
43 }

38 CHAPTER 4. RELATIONSHIP SPECIFICATIONS

Listing 4.4: DropDownList Selection Constraints
1 @Constraint(
2 op=‘‘ListItem.setSelected(boolean select)’’,
3 trigger=‘‘select == false and Child(target, ctrl) and ctrl instanceof DropDownList’’,
4 requires=‘‘Selected(target)’’,
5 effect={‘‘!CorrectlySelected(ctrl)’’})
6 @Constraint(
7 op=‘‘ListItem.setSelected(boolean select)’’,
8 trigger=‘‘select == true and Child(target, ctrl) and ctrl instanceof DropDownList’’,
9 requires=‘‘!CorrectlySelected(ctrl)”,

10 effect={‘‘CorrectlySelected(ctrl)’’})
11 @Constraint(
12 op=‘‘end−of−method”,
13 trigger=‘‘ctrl instanceof DropDownList’’,
14 requires=‘‘CorrectlySelected(ctrl)’’,
15 effect={})
16 public class DropDownList {...}

should apply (ie: this is a constraint on ListItem.setSelected(boolean)), a trigger can seman-
tically describe when a constraint should apply (ie: only when the ListItem is a member of a
DropDownList and when the boolean parameter is false).

In Fusion, we can use trigger predicates with requires predicates and relationship effects to
specify a constraint on an operation. This is done using a Java annotation with four parts.

1. operation: This is a signature of an operation to be constrained, such as a method call, con-
structor call, or even a tag signaling the end of a method. Notice that these constraints may
be defined in another class. This makes constraints more expressive than a class or protocol
invariant as they can be extrinsic.

2. trigger predicate: This is a logical predicate over relationships. The plugin’s relationship con-
text must determine that this predicate holds for this constraint to be triggered. If not, the
constraint is ignored. While operation provides a syntactic trigger for the constraint, trig-
ger provides the semantic trigger. The combination of both a syntactic and semantic trigger
allows constraints to be more flexible and expressible than many existing protocol-based
solutions.

3. requires predicate: This is another logical predicate over relationships. If the constraint is
triggered, then this predicate must be true under the current relationship context. If the
requires predicate is not true, this is a broken constraint and the analysis should signal an
error in the plugin.

4. effect list: This is a list of relationship effects. If the constraint is triggered, these effects will
be applied in the same way as the relationship effects described earlier. They will be applied
regardless of the state of the requires predicate.

Listing 4.4 provides the three Fusion constraint specifications needed to completely describe
the collaboration constraint of Vignette 3.1, including a specification for each mode of ListItem.-

4.2. ANALYZING PROGRAMS 39

setSelected(boolean). The first constraint is checking that at every call to ListItem.setSelect-
ed(boolean), if the relationship context shows that the argument is false, the receiver is a Child
of a ListControl, and if that ListControl is a DropDownList, then it must also indicate that
the ListItem is Selected. Additionally, the context will change so that the DropDownList is not
CorrectlySelected. The second constraint is similar to the first and it enforces proper selection of
ListItems in a DropDownList. The third constraint ensures that the plugin method does not end in
an improper state by utilizing the “end-of-method” instruction to trigger when a method is about
to end. This ensures that all DropDownLists are left in a state where only one item is selected.

4.2 Analyzing Programs

One of the primary benefits of formal specifications is using them to statically verify programs.
Fusion provides a static analysis to track relationships through plugin code and check plugin
code against framework constraints. The Fusion analysis is a modular, branch-sensitive, forward
dataflow analysis3. It is designed to work on a three address code representation of Java-like
source. The analysis runs in the Crystal static analysis framework, which provides all of these
features. In this section, I will present the analysis data structures, the intuition behind the three
variants of the analysis, and examples of how it works on the example in Vignette 3.1.

The Fusion analysis requires that it be provided with a points-to analysis that implements a
simple interface. First, it assumes there is a context L that given any variable x, provides a finite
set ¯̀ of abstract locations that the variable might point to. Second, it assumes a finite context Γ`
which maps every location ` to a type τ. The combination of these two contexts, < Γ`,L > is
represented as the alias lattice A. This lattice must conservatively abstract the heap, as defined by
Definition 6.

Definition 6 (Abstraction of Alias Lattice). Assume that a heap h is defined as a set of source
variables x which point to a runtime location ` of type τ. Let H be all the possible heaps at a
particular program point. An alias lattice < Γ`,L > abstracts H at a program counter if and only if

∀ h ∈ H . dom(h) = dom(L) and
∀ (x1 ↪→ `1 : τ1) ∈ h . ∀ (x2 ↪→ `2 : τ2) ∈ h .

(if x1 6= x2 and `1 = `2 then
∃ ` ′ . ` ′ ∈ L(x1) and ` ′ ∈ L(x2) and τ1 <: Γ`(`

′)) and
(if x1 6= x2 and `1 6= `2 then
∃ ` ′1, ` ′2 . ` ′1 ∈ L(x1) and ` ′2 ∈ L(x2) and ` ′1 6= ` ′2 and τ1 <: Γ`(`

′
1) and τ2 <: Γ`(`

′
2))

This definition ensures that if two variables alias under any heap, then the alias lattice will
reflect that by putting the same location ` ′ into each of their location lists. Likewise, if the two
variables are not aliased within a given heap, then the alias lattice will reflect this possibility as
well by having a distinct location in each location set. The definition also ensures that the typing
context Γ` has the most general type for a location.

3By branch-sensitive, we mean that the true and false branches of a conditional may receive different lattice infor-
mation depending upon the condition. This is not a path-sensitive analysis.

40 CHAPTER 4. RELATIONSHIP SPECIFICATIONS

More details on how Fusion uses a given points-to analysis can be found in Chapter 5, for now
it is enough to know that it must meet the requirement above.

4.2.1 The Relation Lattice

Unknown

True

ooooo
False

PPPPP

⊥
nnnnnnn

PPPPPPP

Figure 4.1: The rela-
tionship state lattice.

The status of a relationship is tracked using the four-point dataflow
lattice represented in Figure 4.1, where Unknown represents either
True or False and the bottom of the lattice, ⊥ is a special case used
only inside the flow function. The Fusion analysis uses a tuple lattice
which maps all relationships we want to track to a relationship state
lattice element. We will represent this tuple lattice as ρ. We will say
that ρ is consistent with an alias lattice A when the domain of ρ is
equal to the set of relationships that are possible under A.

Notice that as more references enter the context, there are more
possible relationships, and the height of ρ grows. Even so, the height is always finite as there
is a finite number of locations ` and a finite number of relationships. As the flow function is
monotonic, the analysis always reaches a fix-point.

Since the relationships are tracked with three possible states, True, False, or Unknown, a re-
lationship predicate like the trigger and requires predicates must be evaluated with three-value
logic. The formal rules used to evaluate a relationship predicate under a given lattice is shown
in Appendix B (Figures B.19, B.21, and B.22), but it follows the expected pattern of a three-value
logic.

4.2.2 The flow function

The analysis flow function is responsible for two tasks; it must check that a given operation is
valid, and it must apply any specified relationship effects to the lattice. The flow function is
defined as

fC(A, ρ, instr) = ρ ′

where C is all the constraints, A is the alias lattice, ρ is the starting relationship lattice, ρ ′ is
the ending relation lattice, and instr is the instruction the analysis is currently checking. The
analysis goes through each constraint in C and checks for a match. It first checks to see whether the
operation defined by the constraint matches the instruction, thus representing a syntactic match.
It also checks to see whether ρ determines that the trigger of the constraint applies. If so, it has
both a syntactic and semantic match, and it binds the specification variables to the locations that
triggered the match. These bindings will be used for the remaining steps.

Once the analysis has a match, two things must occur. First, it uses the bindings generated
above to show that the requires predicate of the constraint is true under ρ. If it is not true, then the
analysis reports an error on instr. Second, the analysis must use the same bindings to produce ρ ′

by applying the relationship effects. If the analysis reports an error, then the flow function above
will terminate with no result.

4.2. ANALYZING PROGRAMS 41

Listing 4.5: Walk-through showing how the lattice ρ changes as the analysis flows through the
program.

1 DropDownList ddl = ...;

2 ListItemCollection coll;

3 ListItem newSel, oldSel;

4 //−
5 oldSel = ddl.getSelectedItem();

6 //Child(l2, l1), Selected(l2)
7 oldSel.setSelected(false);
8 //Child(l2, l1), !Selected(l2)
9 coll = ddl.getItems();

10 //Child(l2, l1), !Selected(l2), List(l3, l1)
11 newSel = coll.findByText("foo");

12 //Child(l2, l1), !Selected(l2), List(l3, l1), Item(l4, l3), Text(”foo”, l4)

As an example for how this works, consider the code snippet in Listing 4.5. In this listing, the
comments show the lattice ρ. At line 7, the starting lattice ρ is:

Child(`2, `1) 7→ True
Selected(`2) 7→ True

All relationships that are not explicitly shown are assumed to be Unknown. The points-to lattice A

is not shown in the listing, but for purposes of this example it might be given as:

Γ` = {`1 : DropDownList, `2 : ListItem}

L = {oldSel = {`1}, ddl = {`2}}

The analysis will then check every constraint to see if there is a matching operator and a matching
trigger. It might eventually find the two constraints below:

1 @Constraint(
2 op=‘‘ListItem.setSelected(boolean select)’’,
3 trigger=‘‘select == false and Child(target, ctrl) and ctrl instanceof DropDownList’’,
4 requires=‘‘Selected(target)’’,
5 effect={‘‘!CorrectlySelected(ctrl)’’})
6 @Constraint(
7 op=‘‘ListItem.setSelected(boolean select)’’,
8 trigger=‘‘select == false’’,
9 requires=‘‘TRUE’’,

10 effect={‘‘!Selected(target)’’})

Therefore, as the operator matches and the trigger evaluates to True for both of these constraints,
the analysis will produce the output lattice ρ ′, which will be used as the input for the next line.
When more than one constraint applies, the resulting effects are merged together to produce a
single ρ ′:

Child(`2, `1) 7→ True
Selected(`2) 7→ False

CorrectlySelected(`1) 7→ False

42 CHAPTER 4. RELATIONSHIP SPECIFICATIONS

The analysis is conservative in this merge but attempts to save as much precision as possible;
Appendix B describes it in further detail. Any constraints where the operator does not match,
or where the trigger evaluates to False, are ignored and their effects are not applied. In cases
where the trigger evaluates to Unknown, all the relationships in the effects list are set to Unknown
in order to be conservative. Again, the analysis does actually try to save some precision using
further tricks, such as comparing to the old state, as explained in Appendix B.

4.2.3 Soundness and completeness

Soundness and completeness allow the user of the analysis to either have confidence that there are
no errors at run time if the analysis finds none (if it is sound) or that any errors the analysis finds
will actually occur in some run time scenario (if it is complete). For the purposes of these defini-
tions, an error is a dynamic interpretation of the constraint which causes the requires predicate to
fail. In the formal semantics, an error is signaled as a failure for the flow function to generate a
new lattice for a particular instruction.

I define soundness and completeness of the Fusion analysis by assuming the existence of a
points-to analysis which abstracts the heap using A, as described above. For both of these theo-
rems, let Aconc define the actual heap at some point of a real execution, and let Aabs be a sound
approximation of Aconc by Definition 6. Additionally, let ρabs and ρconc be relationship lattices
consistent with Aabs and Aconc where ρabs is an abstraction of the concrete runtime lattice ρconc,
defined as ρconc v ρabs.

For the sound variant, we expect that if the flow function generates a new lattice using the
imprecise lattice ρabs, then any more concrete lattice will also produce a new lattice for that in-
struction. As the flow function only generates a new lattice if it finds no errors, then there may be false
positives from when ρabs produces errors, but there will be no false negatives. To be locally sound
for this instruction, the new abstract lattice must conservatively approximate any new concrete
lattice. Theorem 1 captures the intuition of local soundness formally.

Theorem 1 (Local Soundness of Relations Analysis).
if fC;Aabs(ρ

abs, instr) = ρabs
′
and ρconc v ρabs

then fC;Aconc(ρ
conc, instr) = ρconc

′
and ρconc

′ v ρabs ′

If the Fusion analysis is complete, we expect a theorem which is the opposite of the soundness
theorem and is shown in Theorem 2. If a flow function generates a new lattice given a lattice
ρconc, then it will also generate a new lattice on any abstraction of ρconc. An analysis with this
property may produce false negatives, as the analysis can find an error using the concrete lattice
yet generate a new lattice using ρabs, but it will produce no false positives. Like the sound analysis,
the resulting lattices must maintain their existing precision relationship.

Theorem 2 (Local Completeness of Relations Analysis).
if fC;Aconc(ρ

conc, instr) = ρconc
′
and ρconc v ρabs

then fC;Aabs(ρ
abs, instr) = ρabs

′
and ρconc

′ v ρabs ′

For this work, I have implemented both a sound variant and a complete variant of the Fusion
analysis. Additionally, I have created a third variant, known as the pragmatic variant, which at-
tempts to balance the tradeoffs between soundness and completeness. This variant is unique in

4.2. ANALYZING PROGRAMS 43

Table 4.1: Predicate checking differences between sound, complete, and pragmatic variants.

Variant Trigger Predicate checks when... Requires Predicate passes when...
Sound True or Unknown True
Complete True True or Unknown
Pragmatic True True

the research literature, but it could be created for other analyses with similar properties to Fu-
sion. In particular, any system which has separate concepts of a trigger predicate and a requires
predicate can support a pragmatic variant.

The formal semantics for the three variants can be found in Appendix B, and the proofs of the
two theorems above, for the appropriate variants, can be found in Appendix C. Global soundness
and global completeness directly follow from local soundness and local completeness due to the
monotonicity of the flow function and the initial conditions of the lattice. Appendix C contains
further discussion on how these global properties hold and why the analysis is monotonic; further
reading on the theoretical properties of monotonic dataflow analyses can be found in [80].

The primary difference in the three variants is how they handle unknownness from the trigger
and requires predicates. As stated before, the relationship lattice uses Unknown, in addition to True
and False, which results in predicates that are evaluated as three-value logic. How the variants
deal with Unknown in each of these predicates is defined in Table 4.1 and is described below.

Trigger condition. The trigger predicate determines when the constraint will check the re-
quires predicate and when it will produce effects. The sound variant must trigger a constraint
whenever there is even a possibility of it triggering at run time. Therefore, it triggers when the
predicate is either True or Unknown. The complete variant can produce no false positives, so it will
only check the requires predicate when the trigger predicate is definitely True. Regardless of the
variant, if the trigger is either True or Unknown, the analysis produces a set of changes to make to
the lattice based upon the effects list. The pragmatic variant will work the same as the complete
variant when determining whether to trigger the constraint. The rationale here is to try to reduce
the number of false positives by only checking constraints when they are known to be applicable.

Error condition. The requires predicate should be true to signal that the operation is safe to
use. The sound variant will cause an error whenever the requires predicate is False or Unknown.
The complete variant, however, can only cause an error if it is sure there is one, so it only flags an
error if the requires predicate is definitely False. In this case, the pragmatic variant will work the
same as the sound variant. If the analysis has come to this point, it already has enough information
to determine that the trigger was true. Therefore, we will require that the plugin definitely show
that the requires predicate is True, with the expectation that this will reduce the false negatives.

While the pragmatic variant can produce false positives and false negatives, it provides a
unique point in the space. It takes advantage of the heuristic that if there is enough precision
to tell whether the trigger predicate is True or False, then there ought to be enough precision
to tell this for the requires predicate as well. Any other specification system which provides a
separate concept for a trigger predicate can also create a pragmatic variant.

We shall now explore how the three variants compare on the examples from Vignette 3.1. Table
4.2 summarizes each of the snippets from Vignette 3.1, where the fault in the snippet is, and the

44 CHAPTER 4. RELATIONSHIP SPECIFICATIONS

Table 4.2: Results from running each variant on the examples from Vignette 3.1.

Listing reference Line number
of fault

Sound
results

Pragmatic
results

Complete
results

3.1: Naı̈ve selection 7 7 7 -
3.2: Correct selection - 9,9 - -
3.3: Forgotten deselection 14 14, 14 14 -
3.4: Nothing selected 14 14 14 14
3.5: Two lists, incorrect 13 13, 13 13 -
(Not given): Two lists, correct - 13, 13 - -
3.6: Swapped selection 7,9 7, 9, 9 7, 9 9

Sound Warnings

True/True Pragmatic Warnings

True/Unknown Complete Warnings

True/False

Unknown/Unknown Unknown/False

Unknown/True

False/False

False/Unknown

False/True

All possible Trigger/Requires combinations

Figure 4.2: Venn diagram of warnings reported by each variant.

results from the three variants of the analysis when using the specifications from Listing 4.3 and
Listing 4.4.

Notice that the results produced by the variants have a subset relationship. This is always
the case; as seen in Figure 4.2, the variants are defined in such a way that the pragmatic variant
will always contain the results of the complete variant, and it will attempt to take the parts of the
complete variant that are heuristically more likely to be true positives than false positives.

Listing 4.6 and 4.7 show the snippet from the first two rows of Table 4.2 with the relationship
lattice described in comments. For simplicity of the examples, the alias lattice is not shown and
all variables are assumed to be unique in the example. Notice that for all variants, the relationship
lattice is the same. This is because all three variants must be conservative when producing the
relationship effects. Excluding the complexities with aliasing that we will see in Chapter 5, the
only difference between the variants are the condition that lead to an error. As presented so far,
the dataflow analysis works identically.

At line 9 in Listing 4.6, both the first and second constraints’ operators will match the instruc-

4.2. ANALYZING PROGRAMS 45

Listing 4.6: Incorrectly changing the selection, with ρ in comments.
1 DropDownList list;

2

3 private void Page_Load(object sender, EventArgs e)
4 {

5 ListItem newSel;

6 //−
7 newSel = list.getItems().findByValue("foo");

8 //Child(newSel, list), Value(”foo”, newSel)
9 newSel.setSelected(true);

10 //Child(newSel, list), Value(”foo”, newSel), Selected(newSel)
11 }

Listing 4.7: Correctly changing the selection, with ρ in comments.
1 DropDownList list;

2

3 private void Page_Load(object sender, EventArgs e)
4 {

5 ListItem newSel, oldSel;

6 //−
7 oldSel = list.getSelectedItem();

8 //Child(oldSel, list), Selected(oldSel)
9 oldSel.setSelected(false);

10 //Child(oldSel, list), !Selected(oldSel), !CorrectlySelected(list)
11 newSel = list.getItems().findByValue("foo");

12 //Child(oldSel, list), !Selected(oldSel), !CorrectlySelected(list), Child(newSel, list), Value(”foo”, newSel)
13 newSel.setSelected(true);
14 //Child(oldSel, list), !Selected(oldSel), CorrectlySelected(list), Child(newSel, list), Value(”foo”, newSel), Selected(newSel)
15 }

tion signature. However, the first constraint’s trigger predicate will evaluate to False, so it will be
ignored as though the operator didn’t match. The second constraint’s trigger predicate evaluates
to True, so all the variants will evaluate the requires predicate. As this will evaluate to Unknown,
both the sound and pragmatic variants will produce an error at line 9. On the other hand, the
complete variant does not have enough precision to discover the error.

Let’s now consider the code in Listing 4.7. When Fusion analyzes line 9, it will again try both
the first and second constraints in Listing 4.4. However, this time the first constraint’s trigger
predicate will evaluate to True and the second constraint’s will be False. All the variants will
therefore evaluate the required predicate of the first constraint. As this evaluates to True as well,
all the variants will pass and apply the effects. The analysis works down to line 13, where the
second constraint matches both the operator and the trigger predicate. As the requires predicate
is True again, all variants should pass and apply effects.

The astute reader may have noticed a discrepancy: all the variants passed in Listing 4.7, yet
Table 4.2 reports that the sound analysis produces two false positives. This is because the results
shown in Table 4.2 are from running the sound analysis alongside a sound may-alias analysis,

46 CHAPTER 4. RELATIONSHIP SPECIFICATIONS

Listing 4.8: A fourth constraint that improves the precision of the analyses.
1 @Constraint(
2 op=‘‘begin−of−method’’,
3 trigger=‘‘TRUE’’,
4 requires=‘‘TRUE’’,
5 effect={‘‘CorrectlySelected(∗)’’})

whereas in Listing 4.7, we assumed a must-alias analysis. As we will see in the next chapter, the
results of all three variants are strongly tied to the points-to analysis.

The results are also strongly tied to the precision of the specifications. For example, adding the
specification in Listing 4.8, which adds the relationship CorrectlySelected for all DropDownLists
at the beginning of every method, will allow the complete variant to detect the bug in Listing 4.6.
The full discussion of how specifications impact the precision of the analysis, including the impact
of automatically generated specifications, can be found in Chapter 7.

4.3 Other kinds of specifications

In prior sections, I have used non-relationship predicates like “select == true” or “ctrl instanceof
DropDownList” within a trigger or requires predicate. Both of these are “special purpose” rela-
tionships with a predefined semantics. This section will now describe how these are used and the
analyses that are associated with them.

I previously introduced relationship effects and constraints as two kinds of specifications in
Fusion. In this section, I will describe a third kind of specification specifically for callbacks. Both
callbacks and relationships effects are syntactic sugar and can be converted into the basic @Con-
straint specification. Finally, this section will introduce inferred relationship specifications, which
are uncommonly used but highly expressive feature of Fusion.

4.3.1 Special purpose relationships

While most of the relationships have an uninterpreted user-defined semantics, it is sometimes
useful to have relationships with a little more power. Therefore, I have provided pre-defined
semantics for the equality relation (==) and the type relation (instanceof) for usability purposes.

The Fusion analysis depends on other analyses to evaluate these predicates. The points-to
analysis already used can evaluate both reference equality and type relationships. Additionally,
Fusion uses a boolean constant propagation analysis to evaluate boolean variables and boolean
equality, like “select == true”. It is relatively straightforward to add these special-purpose analy-
ses, and we can imagine extensions to handle integers, enums, and strings as well.

4.3.2 Converting relationship effects

Relationship effects are syntactic sugar that can be easily translated into a constraint form. Rela-
tionship effects are translated by considering them as a constraint on the annotated method with

4.3. OTHER KINDS OF SPECIFICATIONS 47

public class ListControl {
@Child({result, target}, ADD)
@Selected({result}, ADD)
public void getSelectedItem() {
...

}

...

}

public class ListItem {
@Selected({target}, TEST, sel)
public void setSelected(boolean sel) {
...

}

...

}

@Constraint(
op = ‘‘ListControl.getSelectedItem()’’,

trigger = ‘‘true’’,
requires = ‘‘true’’,
effect = {‘‘Child(result, target)’’, ‘‘Selected(result)’’})

public class ListControl {...}

@Constraint(
op = ‘‘ListItem.setSelected(boolean sel)’’,

trigger = ‘‘sel == TRUE’’,
requires = ‘‘TRUE’’,
effect = {‘‘Selected(target)’’})

@Constraint(
op = ‘‘ListItem.setSelected(boolean sel)’’,

trigger = ‘‘sel == FALSE’’,
requires = ‘‘TRUE’’,
effect = {‘‘!Selected(target)’’})

public class ListItem {...}

Figure 4.3: Translating relationship effects into constraints.

a True trigger predicate, a True requires predicate, and the effect list as annotated. Test effects
are translated into two constraints which use boolean equality. Figure 4.3 shows example effects
translated into constraints.

4.3.3 Callbacks

While relationship effects provide information to a caller, callback states provide information to a
callee. When frameworks make callbacks into plugin code, there is an implicit contract regarding
when the callback will occur and the states of objects at this point. For example, Vignette 2.1
showed the the plugin developer should be aware that the Page’s controls do not exist in the
PreInit callback and do not have data until the Load callback.

The framework developer can specify this using the @Callback annotation. The @Callback
annotation takes the name of an unary relation on the type of the target object.4 An example of
using this specification can be seen in Listing 4.9. This example shows how the callback relation-
ships can be used in the constraints to prevent calls from happening within certain callbacks or to
only allow them to be used within some callbacks.

The @Callback annotations above are translated into constraints with an operation that match-
es a “beginning of method” tag on the specified method and a set of effects where the specified
callback relationship is set to True and all others are set to False, as shown in Listing 4.10

With the specifications in Listing 4.9, the defect in Vignette 2.1 would be found by all three
variants, as can be seen in Listing 4.11.

4The @Callback annotation is very similar to typestate, and indeed, typestate can be used instead of having a state
declaration in this form.

48 CHAPTER 4. RELATIONSHIP SPECIFICATIONS

Listing 4.9: Specifications for problem in Vignette 2.1.
1 @Constraint(
2 op=”ListControl.∗∗”,
3 trigger = ”SubControl(target, page)”,
4 requires = ”!PreInit(page)”,
5 effects = {}
6)
7 @Constraint(
8 op=”ListControl.setDataSource(List data)”,
9 trigger = ”SubControl(target, page)”,

10 requires = ”Loaded(page)”,
11 effects = {}
12)
13 public class Page {
14 @Callback(”PreInit”)
15 protected void Page_PreInit(object sender, EventArgs e);
16

17 @Callback(”Initialized”)
18 protected void Page_Init(object sender, EventArgs e);
19

20 @Callback(”Loaded”)
21 protected void Page_Load(object sender, EventArgs e);
22 }

Listing 4.10: Translated callback specifications from Listing 4.9.
1 @Constraint(
2 op=”BOM:Page.Page PreInit(object sender, EventArgs e)”,
3 trigger = ”TRUE”,
4 requires = ”TRUE”,
5 effects = {PreInit(target), !Initialized(target), !Loaded(target)}
6)
7 @Constraint(
8 op=”BOM:Page.Page Init(object sender, EventArgs e)”,
9 trigger = ”TRUE”,

10 requires = ”TRUE”,
11 effects = {!PreInit(target), Initialized(target), !Loaded(target)}
12)
13 @Constraint(
14 op=”BOM:Page.Page Load(object sender, EventArgs e)”,
15 trigger = ”TRUE”,
16 requires = ”TRUE”,
17 effects = {!PreInit(target), !Initialized(target), Loaded(target)}
18)

4.3. OTHER KINDS OF SPECIFICATIONS 49

Listing 4.11: Incorrect usage of the page lifecycle with ρ in comments using the constraints from
Listing 4.9.

1 DropDownList DateYear;

2

3 public Page_PreInit(object sender, EventArgs e)
4 {

5 List<DateTime> Dates;

6 //SubControl(this, DateYear), PreInit(this), !Initialized(this), !Loaded(this)
7 if (!isPostBack)
8 for (int i = 0; i < 4; i++)
9 Dates.Add(System.DateTime.Now.AddYears(i));

10

11 //SubControl(this, DateYear), PreInit(this), !Initialized(this), !Loaded(this)
12 DateYear.setDataSource(Dates); //constraints will fail
13 DateYear.setDataTextField("Year");

14 DateYear.DataBind()

15 }

Listing 4.12: Using the Infer specifications to create effects
1 @Infer(
2 trigger=‘‘Item(item, list) and List(list, ctrl)’’,
3 effect={‘‘Child(item, ctrl)’’})
4 public class ListControl {...}

4.3.4 Inferred Relationships

In some cases, the relationships between objects is implicit. Consider the ListItemColletion from
the DropDownList example. In this example, the framework developer would like to state that the
items in this list are in a Child relationship with the ListControl parent. While we can annotate the
ListItemCollection class with this information, it seems non-ideal as the ListItemCollection
should not know about ListControls.

Inferred relationships describe these implicit relationships that can be assumed any time some
other relationship predicate is true. Listing 4.12 shows an example for inferring a Child relation-
ship based on the relations Item and List. Whenever the relationship context can show that the
trigger predicate is true, it can infer the relationship effects in the effect list. Inferred relationships
allow the framework developer to specify relationship effects that would otherwise have to be
placed on every location that the predicate is true; this would significantly drive up the cost of
adding these specifications. While the example in Listing 4.12 could have been written as a tra-
ditional constraint, inferred relationships are particularly useful in cases where we need closures
to use the specification several times to create relationships within a more complex data struc-
ture, like a list with no predefined size. In practice, only one API from the Spring case study,
discussed in Section 6.4.3, needed this specification form, but its expressive power made it worthy
of inclusion

It is possible to produce inferred relationships that directly conflict with the relationship con-

50 CHAPTER 4. RELATIONSHIP SPECIFICATIONS

text. To prevent this, the semantics of inferred relationships is that they are ignored in the case
of a conflict, that is, relationships from declared relationship effects and constraints have a higher
precedence. The rationale behind this is that the constraints and relationship effects are explicitly
declared, and this should be reflected by the giving them precedence. An alternative mechanism
would be to signal an error, though it is not currently clear whether this will increase the number
of false positives.

Currently, these specifications are only used on an as-needed basis using backwards chaining.
Because inferred relationships are not generated at every step of the analysis, this is an unsound
and incomplete feature of Fusion, so it is only use by the pragmatic variants for now. This could be
changed if Fusion used forward chaining to greedily create all possible relationships at each step
in the analysis; such an analysis would preserve soundness and completeness, though it would be
very expensive to run.

4.4 Achievement of solution goals

In earlier chapters, I set up several goals for a specification and analysis system. First, it must
address the common properties of collaboration constraints, as given in Chapter 3. Second, it
must be an adoptable, cost-effective solution, as proposed in Chapter 1. In this section, I will
briefly evaluate Fusion against these goals.

4.4.1 Can Fusion capture collaboration constraints?

Property 1: Multiple objects As a relationship captures the associations between several objects,
it is a good representation for collaboration constraints. Relationships can also be used to “build-
up” a collaboration in cases where not all the objects involved exist at the start of the collaboration;
for example, the second ListItem in Vignette 3.1 does not appear until halfway through the col-
laboration.

Property 2: Extrinsic Relationships are not owned by any particular type, so crossing a type
boundary is not an obstacle. The constraints in Fusion can be used to constrain any visible type.
Unlike other specifications, they are not restricted to the defining type. Additionally, the object
being constrained might not be aware of the constraint itself, as the relationships can be added
without its knowledge.

Property 3: Semantic issues As seen, Fusion can handle a wide variety of semantic issues. The
ability to specify callbacks is built into the language, and the ability to specify ordering of opera-
tions is made possible through the use of the trigger predicate to chain several constraints together.
The trigger predicate also makes it possible to specify different constraints based upon primitive
values or object identity.

Property 4: Many artifacts Relationships are not a language-specific abstraction; they are a de-
sign abstraction. Any language with the concept of distinct entities and collaborations between

4.4. ACHIEVEMENT OF SOLUTION GOALS 51

entities can use relationships to describe the collaborations. While this chapter did not show spe-
cific examples with declarative files, the next chapter will use Vignette 2.2 to show how they are
handled.

4.4.2 Does Fusion meet the goals for an adoptable, cost-effective tool?

One of the stated goals of Fusion was to be an adoptable, cost-effective solution to the problem.
Chapter 7 will discuss this in more detail. There are four primary reasons why I believe this to be
an adoptable solution compared to existing work.

Minimize specification writing costs. The primary cost of using any specification and analy-
sis system is the cost of writing specifications. It seems to defeat the purpose of such as system
to require the plugin developer, who is already struggling to understand the framework, to also
learn a new language and specify his code. Therefore, Fusion has specifications only on the frame-
work, which can be written by the framework developer. Therefore, all the burden of learning a
new language is placed on the expert framework developers, not the novice plugin developers.
Additionally, a single framework developer writing specifications can now provide benefit for
hundreds of plugin developers.

While the framework developer receives little direct benefit for writing specifications, it might
improve usage of the framework. It’s also possible that third-party consultants, like those who are
already answering questions on the forums, would be able to sell specification sets for an existing
framework.

Composability of constraints. To further reduce the specification burden, Fusion allows frame-
work developers to specify a single constraint at a time. The constraints are composable, and there
is no need to specify the entire framework, or even an entire class, in order to get benefit from a
single constraint. Additionally, as the analysis doesn’t verify the framework itself, the constraints
can be superficial and only on the API of the framework.

I envision that Fusion could be used as a “firefighting” technique when writing a framework;
instead of specifying the entire API up front, the developers can specify parts as needed based
upon the struggles of plugin developers. For example, as it seems clear from the ASP.NET study
that many plugin developer’s problems were due to misuse of the Page lifecycle, this would be an
ideal place to start writing specifications.

Localized errors. As seen, the analysis provides plugin developers with an error that directs
them to the problem within their own code, rather than to where the problem is discovered at run
time. The exact location is dependent on how the framework developer specifies it, but this makes
sense as the framework developer is the expert for determining which expression was at fault.

Many options for different kinds of cost tradeoffs. Cost-effectiveness might vary based upon
the kind of framework being used, the kind of plugin, or even the stage of development that the
plugin is in. Fusion provides many different knobs to tune specifically to the needs of the system.
For example, changing the amount of specifications, or even using automated specifications as

52 CHAPTER 4. RELATIONSHIP SPECIFICATIONS

described in Chapter 7, can significantly increase the precision of the analysis. The precision can
also be increased using a more precise points-to analysis. Of course, the three variants themselves
also provide a tradeoff point, and Chapter 7 even suggests that while pragmatic may be good for
less mature code, production code might benefit more from the complete analysis.

Chapter 5
Aliasing and Declarative Files

In the previous chapter, I showed how Fusion can specify and analyze collaboration constraints.
While I mentioned that the Fusion analysis requires a points-to analysis, I elided all discussion of
how this works. This chapter will more fully describe how Fusion uses the points-to analysis and
the effect of the precision of the points-to analysis on the precision of the Fusion analysis.

This chapter will also introduce how Fusion handles declarative files. As we will see, the
existence of declarative files negatively impacts the precision of the points-to analysis and the
Fusion analysis. To regain this lost precision, I will introduce one last piece of the specification
language, the restrict-to predicate. This predicate will allow relationships to specify important
information about the aliasing of variables and will allow Fusion to be surprisingly precise in the
presence of declarative files and imprecise points-to analyses.

5.1 Binding specification variables

To understand how the points-to analysis affects Fusion, it is first necessary to understand how
Fusion will use the results. The points-to analysis will provide several potential aliasing config-
urations within the heap, and Fusion will use this information to evaluate constraints under all
potential conditions.

To explore this further, I will formalize how this is done and then provide an intuitive under-
standing of how the analysis uses the points-to information. Recall that the points to lattice, A is
defined as:

A ::= < Γ`; L >

Γ` ::= {` : τ}

L ::= {x 7→ {`}}

Also recall that a relationship R and the relationship lattice ρ are defined as:

ρ ::= {R 7→ t}

R ::= rel(¯̀)
t ::= True | False | Unknown

53

54 CHAPTER 5. ALIASING AND DECLARATIVE FILES

While all of these definitions use `, specification predicates are written not on a runtime label, but
on a specification variable, written as y. These are different from the source variables, written as
x.

P ::= P1 ∧ P2 | P1 ∨ P2 | P1 =⇒ P2 | ¬A | A | True | False
A ::= rel(ȳ)

Therefore, to evaluate the truth of a specification predicate, we rely on a substitution σ that re-
places each y with a `.

σ ::= {y 7→ `}

This will allow the analysis to evaluate a predicate using the judgment below; the rules for this
judgment are in three-value logic and described further in Figures B.19-B.22 of Appendix B. In this
judgment, P[σ] represents the specification predicate with each y substituted by the ` mapped in
σ.

ρ ` P[σ] t

To evaluate the judgment above, Fusion will need to produce all possible substitutions for each
constraint. Specifically, it will use the points-to lattice to generate two sets of σ.

The first set represents the substitutions that are possible without considering the requires pred-
icate. This set will be created using the function findLabels, defined in Figure 5.1. This function
takes:

1. the points-to lattice A,

2. β, which is a mapping of specification variables y to source variables x for every specification
variable in the operator of the constraint, and

3. Γy , which is a typing context for a set of specification variables, in this case, all specification
variables except those used exclusively by Preq.

The details for how β and Γy are created are beyond the scope of this discussion and can be found
in Appendix B, but they are created in a straightforward and expected way. The purpose of this
function is to find all substitutions such that every y in Γy has a `with a substitutable type and that
any y in β only uses the labels pointed to by the corresponding source variable x.

The second set represents the substitutions including the requires predicate. This will be created
using the function allValidSubs, as defined in Figure 5.1. This function will also take the points-to
lattice and a specification typing context. However, it also takes an existing substitution context σ
that it should extend. The function will find all substitutions that will extend σ so that the resulting
substitutions have the same domain as Γy and so that they all satisfy the types defined in Γy .

With these two sets, Fusion can now check a given constraint under a particular points-to lat-
tice and relationship lattice. As shown previously in Table 4.1, the three variants check constraints
differently with respect to when the predicates can be true. As we will see now, they are also
different with respect to how they select a substitution to check. Intuitively, σ represents a pos-
sible heap configuration at run time. Therefore, we will expect that the sound variant checks all
possible heaps, and the complete variant will only check a known subset.

5.1. BINDING SPECIFICATION VARIABLES 55

findLabels(< Γ`; L >;β; Γy) = Σ

Σ = {σ ′ | σ = {y 7→ ` | y ∈ dom(β) ∧ ` ∈ L(β(y)) ∧ ∃ τ ′ . τ ′ <: Γ`(`) ∧ τ ′ <: Γy(y)} ∧

σ ′ ∈ allValidSubs(< Γ`; L >;σ; Γy)}

allValidSubs(< Γ`; L >;σ; Γy) = Σ

Σ = {σ ′ | σ ′ ⊇ σ ∧ dom(σ ′) = dom(Γy) ∧ ∀ y 7→ ` ∈ σ ′ . ∃ τ ′ . τ ′ <: Γ`(`) ∧ τ ′ <: Γy(y)}

Figure 5.1: Functions for generating the substitutions. findLabels uses β to create substitutions
for all specification variables that are bound to a source variable, then uses allValidSubs to gen-
erate substitutions for the remaining, unbound specifications variables in Γy .

For the sound variant, we will check an instruction for a single constraint, op : Ptrg ⇒ Preq ⇓ Ā;.
Let β be a binding between the variables of op and the instruction, and let ρ and A be the entry
lattices such that ρ is consistent with A. Also let Γnoreqy be the free variables in op, Ptrg, and Ā, and
let Γ reqy be all the free variables in the constraint, including those in Preq. The sound variant will
then check the constraint by ensuring that the following predicate is true:

∀σ ∈ findLabels(A;β; Γynoreq) . ρ ` Ptrg[σ]t ∧ t 6= False =⇒
∀σ ′ ∈ allValidSubs(A;σ; Γyreq) . ρ ` Preq[σ ′]True

The sound variant must ensure that there are no false negatives (with respect to the given lattice
A). Therefore, as any of the possible substitutions can occur at run time, it must check all of them
and uses two universal quantifiers.

The reader might notice that the second quantifier above is redundant; we could have instead
written:

∀σ ∈ findLabels(A;β; Γy)
. ρ ` Ptrg[σ]t ∧ t 6= False =⇒ ρ ` Preq[σ]True

The two quantifiers are necessary because this is another key point where the variants are differ-
ent. As shown below, the complete variant uses an existential for the second quantifier.

∀σ ∈ findLabels(A;β; Γynoreq) . ρ ` Ptrg[σ]True =⇒
∃σ ′ ∈ allValidSubs(A;σ; Γyreq) . ρ ` Preq[σ ′]t ∧ t 6= False

The complete variant must ensure that there are no false positives (with respect to the given lattice
A). As the analysis is not sure under what conditions the requires predicate might be true, the
constraint will pass as long as there exists some possibility of the constraint passing at run time.
Why isn’t the first quantifier an existential as well then? The complete variant is not complete with
respect to the entire program, rather, it is complete with respect to a given aliasing configuration (as
preselected by the function findLabels). Since this function is binding the specification variables
that matched to a source variable, it is starting with only those substitutions that the points-to
analyses deems to be possible. A more precise points-to analysis would increase this precision.

56 CHAPTER 5. ALIASING AND DECLARATIVE FILES

The pragmatic analysis follows the complete variant in this case, though of course it uses its
own rules for checking Preq as described earlier in Table 4.1. In practice, the second set produces
a significant number of substitutions since the variables are bound to any known object label with
the right type. The likelyhood of all of these passing is low, and in practice, this is the source of
many false positives in the sound variant. Therefore, the pragmatic analysis will work as shown
below:

∀σ ∈ findLabels(A;β; Γynoreq) . ρ ` Ptrg[σ]True =⇒
∃σ ′ ∈ allValidSubs(A;σ; Γyreq) . ρ ` Preq[σ ′]True

The above checking is done for each constraint in the system, and any failures for a constraint
to meet the given predicate causes an error to the user for that combination of constraint and
source instruction. At present, the particular substitution that caused the failure is not reported,
but that could be easily added with an appropriate reporting capability to explain the substitution
that causes the error to the user.

5.2 Creating effects

Once the flow function has created substitutions and checked the constraint, it needs to use those
substitutions to create any effects. Unlike the previous section, we will now only need to use the
first set of substitutions created by findLabels, as it contains all the specification variables used
by the effects Ā. Additionally, all the variants work the same when producing the effects. In this
section, I’ll describe how effects are created by starting with a single σ for a single constraint and
then working upwards until we change the original lattice ρ to create a new lattice ρ ′. A more
formal description of this is available in Appendix B.

The first step is to create the effects for a single σ. In all variants, if ρ ` Ptrg[σ]True, then
the effects Ā[σ] will be created. However, if ρ ` Ptrg[σ]Unknown, then the effects Ā[σ] will still
be created but marked as coming from an Unknown with a ∗. For example, if we have a con-
straint with effect Selected(item), then when the trigger is True with substitution σ, the anal-
ysis will produce Selected(item)[σ] 7→ True, but if the trigger was Unknown, it will produce
Selected(item)[σ] 7→ True∗. This marker will be used later when determining how to handle
Unknown predicates without losing further precision.

When each σ from findLabels has produced a set of effects, they must be merged together. Any
conflicts, such as True and False, are resolved to Unknown. Additionally, starred effects propagate
themselves, that is, merging True and True∗ produces True∗. The rationale behind this is that if
one substitution produces a True, we cannot be sure that this substitution will be used at run time.
The other substitution that produces True∗ may be used instead. This other substitution also has
an Unknown trigger, which may be False at run time. Therefore, it is important to preserve this
possibility so as not to change the effect to True when it may not actually be the case.

Once each constraint has a set of effects, they have to be merged together as well. At this
level, the constraints are merged slightly differently than above. Unlike the substitutions, where
only one is possible, we know that all constraints exist at all times. Therefore, they are treated
as independent events that may change the effects. This means that they can still conflict and

5.3. POINTS-TO ANALYSIS 57

Table 5.1: Sample of rules for the flow function of the two points-to analyses. Assumes a variable
typing environment Γx and the subtyping relation <:. The differences are shaded.

instr fmay−like(< Γ`; L >, instr) fmust−like(< Γ`; L >, instr)
x1 = x2 < Γ`; < Γ`;

L[x2 7→ L(x1)] > L[x2 7→ L(x1)] >

x = new C(x̄) < Γ`, `fresh : C; < Γ`, `fresh : C;

L[x 7→ {`fresh}] > L[x 7→ {`fresh}] >

x1 = x2.method(x̄)) < Γ`, `fresh : Γx(x1); < Γ`, `fresh : Γx(x1);

L[x1 7→ {` | Γ`(`) <: Γx(x1)} ∪ {`fresh}] > L[x1 7→ {`fresh}] >

x1 = x2.field < Γ`, `fresh : Γx(x1); < Γ`, `fresh : Γx(x1);

L[x1 7→ {` | Γ`(`) <: Γx(x1)} ∪ {`fresh}] > L[x1 7→ {`fresh}] >

resolve to Unknown, however, merging True from one constraint and True∗ from another will now
produce True.

Finally, the effects must be applied to the original ρ using a weak update. Any non-starred
effects are applied directly. Starred effects will cause the relationship to change to Unknown unless
the original relationship in ρ has the same state as the base of the starred effect. This prevents an
unnecessary loss of precision in cases where the effect is actually maintaining the status quo.

5.3 Points-to analysis

The previous two sections described how the analysis uses the points-to lattice to generate a set
of substitutions σ to check the requires predicate and generate relationship effects. In this section,
we explore how the results of the points-to lattice can directly affect the precision of the Fusion
analysis in practice. We will explore this using a single variant of the analysis (pragmatic) with
two different points-to analyses. The first points-to analysis is akin to a may-alias analysis, while
the second is similar to a must-alias analysis. Table 5.1 shows a selection of transfer functions for
the analyses to highlight their differences. The primary difference is that the may-like analysis
adds in all known labels ` that satisfy the type τ of the source variable x, whereas the must-like
analysis assumes unique references unless it explicitly discovers otherwise.

In the results from Table 4.2, I used the may-like analysis for the sound variant (as it is sound
itself) and the must-like analysis for the complete variant. In this table, the pragmatic variant also
used the must-like analysis. Table 5.2 shows only the results for pragmatic, but with both points-to
analyses. Notice that both catch all the errors, but the may-like analyses causes false positives in
both of the correct examples (though still not as many as the sound variant).

Let’s explore the correct selection example to see what happened. We’ll use the pragmatic vari-
ant with the may-like points-to analysis. Listing 5.1 shows both the lattices in comments between
each line.

58 CHAPTER 5. ALIASING AND DECLARATIVE FILES

Table 5.2: Results from running the pragmatic variant with different points-to analyses on the
examples from Vignette 3.1

Listing reference Line number
of fault

Pragmatic re-
sults (may-like)

Pragmatic
results (must-
like)

3.1: Naı̈ve selection 7 7 7
3.2: Correct selection - 9 -
3.3: Forgotten deselection 14 14 14
3.4: Nothing selected 14 14 14
3.5: Two lists, incorrect 13 13 13
(Not given): Two lists, correct - 13 -
3.6: Swapped selection 7, 9 7, 9 7, 9

Listing 5.1: Correct usage of a DropDownList run with the may-like points-to analysis and the
pragmatic variant of Fusion, with A and ρ in comments.

1 DropDownList list;

2

3 private void Page_Load(object sender, EventArgs e)
4 {

5 ListItem newSel, oldSel;

6 ListItemCollection coll;

7 //<l1:DropDownList ; list−>{l1}>
8 //−
9 oldSel = list.getSelectedItem();

10 //<l1:DropDownList, l2:ListItem ; list7→{l1}, oldSel7→{l2}>
11 //Selected(l2), Child(l2, l1)
12 oldSel.setSelected(false);
13 //<l1:DropDownList, l2:ListItem ; list7→{l1}, oldSel7→{l2}>
14 //!Selected(l2), Child(l2, l1), !CorrectlySelected(l1)
15 coll = list.getItems();

16 //<l1:DropDownList, l2:ListItem, l3: ListItemCollection ; list7→{l1}, oldSel7→{l2}, coll7→{l3}>
17 //!Selected(l2), Child(l2, l1), !CorrectlySelected(l1), Items(l3, l1)
18 newSel = coll.findByValue("foo");

19 //<l1:DropDownList, l2:ListItem, l3: ListItemCollection, l4: ListItem ;
20 //list7→{l1}, oldSel7→{l2}, coll7→{l3}, newSel7→{l2,l4}>
21 //!Selected(l2), Child(l2, l1), !CorrectlySelected(l1), Items(l3, l1)
22 newSel.setSelected(true);
23 //<l1:DropDownList, l2:ListItem, l3: ListItemCollection, l4: ListItem ;
24 //list7→{l1}, oldSel7→{l2}, coll7→{l3}, newSel7→{l2,l4}>
25 //Child(l2, l1), Items(l3, l1)
26 }

5.4. GETTING RELATIONSHIPS FROM DECLARATIVE ARTIFACTS 59

Everything works as expected until we get to line 18. Notice that at this instruction, the points-
to analysis will need to decide what newSel can point to. Since it is not sure whether or not it
aliases oldSel, it points to both `2 and `4. Therefore, Fusion will have to run the analysis with
both of these possibilities, and it will create effects for two possible substitutions.

σ1 = {newSel 7→ `2, ctrl 7→ `1, coll 7→ `3} produces Child(`2, `1) 7→ True

σ2 = {newSel 7→ `4, ctrl 7→ `1, coll 7→ `3} produces Child(`4, `1) 7→ True

When these substitutions are merged together, both relationships will go to True*.
Therefore, as only Child(`2, `1) is True in ρ, only this effect will remain, and Child(`4, `1) will be

lost.
At first, this lack of precision will cause no problems. Line 21 will still verify correctly for

the second constraint in Listing 4.4 with both substitutions as σ1 will cause both the trigger and
required predicate to evaluate to True, and the σ2 will cause an Unknown trigger so the requires
predicate will not be checked However, it also means that both of these substitutions will produce
effects on the relationship CorrectlySelected(`1), and the second substitution will be setting it to
True* because its trigger was unknown. Both will again merge to True*, but as the relationship
exists in ρ as False, it will be changed to Unknown, not True. When the analysis reaches the end
of the method, it will attempt to verify the final constraint in Listing 4.4. As the trigger is True but
the requires predicate is now Unknown, the pragmatic variant using a may-like points-to analysis
will give an error.

The type of problem described above will occur in any situation where the code has two vari-
ables of the same type, which is why the problem also appears in the correct example with two
DropDownLists. The must-like analysis simply avoids this by assuming the uniqueness of point-
ers unless otherwise specified, which reduces the number of substitutions used by the Fusion
analysis.

There are two possible solutions to this problem, which are beyond the scope of this thesis.
The first solution is to improve the points-to analysis, either through deeper analysis techniques
or through specifications. Much research has been done in these areas [21, 22, 68, 76, 95], so using
a more sophisticated analysis would certainly be feasible. The second solution is to keep separate
lattices for each potential heap configuration so that they do not ever merge and loose precision.
Doing so would require more implementation effort and may cause an exponential blowup in
large methods, thus limiting the scalability of the analysis.

The important issue to take away from this section is that every additional label in the points-to
lattice can cause later imprecision. This issue will become more relevant later in this chapter.

5.4 Getting relationships from declarative artifacts

We’ll now leave behind points-to analyses, aliases, and labels for a section to discuss the use of
declarative files in Fusion. Don’t despair though, we will be back to the complexities of aliasing
shortly.

Chapter 2 introduced the concept of declarative artifacts and how software frameworks use
these declarative artifacts to increase their flexibility. While these artifacts are increasingly com-

60 CHAPTER 5. ALIASING AND DECLARATIVE FILES

Listing 5.2: ASPX with a LoginView
1 <asp:LoginView ID="LoginScreen" runat="server">
2 <AnonymousTemplate>

3 You can only set up your account

4 when you are logged in.

5 </AnonymousTemplate>

6 <LoggedInTemplate>

7 <h4>Location</h4>

8 <asp:DropDownList ID="LocationList"
9 runat="server"/>

10 <asp:Button ID="ContinueButton"
11 runat="server" Text="Continue"/>

12 </LoggedInTemplate>

13 </asp:LoginView>

Listing 5.3: Incorrect way of retrieving controls in a LoginView
1 LoginView LoginScreen;

2

3 private void Page_Load(object sender, EventArgs e)
4 {

5 if (!isPostback()) {
6 DropDownList list = (DropDownList)

7 LoginScreen.FindControl("LocationList");

8 list.DataSource = ...;

9 list.DataBind();

10 }

11 }

mon, no known general purpose verification technique can handle these files alongside the pro-
gram code. Of course, several types of declarative artifacts provide basic checking (such as sche-
mas for XML), and many frameworks provide custom verification, built into the IDE, that pro-
vide basic checking for their own artifacts (like the ASP.NET, Eclipse, and Spring frameworks).
There are also many research proposals to increase the amount of verification for a given artifact,
for example, adding typechecking to XML. Finally, there are two research proposals that verify
declarative files with code for a specific framework [3, 7], but there is nothing for general purpose
checking. As we will see, it is absolutely necessary to verify declarative files with their associated
program code rather than verifying them separately.

Consider the example with the LoginView, as described in Vignette 2.2. By themselves, both
the code in Listing 5.3 and the declarative ASPX file in Listing 5.2 look correct, and traditional ver-
ifiers would check this appropriately. However, when viewed together, there is clearly a problem
because the DropDownList is inside the LoginView’s LoggedInTemplate.

As presented in Chapter 4, Fusion would also not be able to properly verify the incorrect and
correct versions of this program. Specifying the API is straightforward and is shown in Listing
5.4. The constraint on LoginView.findControl(String) says that if the requested control is in

5.4. GETTING RELATIONSHIPS FROM DECLARATIVE ARTIFACTS 61

Listing 5.4: Specifications for correct usage of LoginView.findControl(String)
1 public class Control {
2 public Control findControl(String name) {...}
3 ...

4 }

5

6 @Constraint(
7 op=”LoginView.findControl(String name) : Control”,
8 trigger = ”Name(name, result) AND LoggedInControl(result, target)”,
9 requires = ”SubControl(target, page) AND PageRequest(request, page) AND Authenticated(request)”,

10 effects = {}
11)
12 @Constraint(
13 op=”LoginView.findControl(String name) : Control”,
14 trigger = ”Name(name, result) AND AnonymousControl(result, target)”,
15 requires = ”SubControl(target, page) AND PageRequest(request, page) AND !Authenticated(request)”,
16 effects = {}
17)
18 public class LoginView extends Control {
19 ...

20 }

21

22 public class Page extends Control {
23 @PageRequest({result, target}, ADD)
24 public Request getRequest() {...}
25 ...

26 }

27

28 public class Request {
29 @Authenticated({this}, TEST, result)
30 public boolean isAuthenticated() {...}
31 ...

32 }

the LoggedInTemplate, we must know that a user is logged in. However, this requires us to have
a LoggedInControl relationship with the appropriate parameters, and this relationship cannot be
generated with the program code shown, even in the correct program in Listing 2.4.

While the LoggedInControl relationship does not exist in the program code, it does exist in the
ASPX file in Listing 5.2. In this file, the requested DropDownList is clearly inside the LoggedIn-
Template. Therefore, we must somehow extract this relationship from the ASPX.

To get these relationships, Fusion supports using XQuery to query XML-based artifacts for
relationships. These relationships are then used as the starting lattice ρ before analyzing any pro-
gram code. While Fusion currently only supports XML-based files, a similar extraction mechanism
could be used for other file types as well.

The XQuery for retrieving the relationships SubControl, LoggedInControl, and Anonymous-
Control are shown in Listing 5.5. This listing first defines several locals used to get the names and
types of the elements, then it declares four queries that retrieve the relationships. While these

62 CHAPTER 5. ALIASING AND DECLARATIVE FILES

Listing 5.5: XQuery to retrieve the relationships SubControl, LoggedInControl, and Anonymous-
Control

1 declare namespace asp="aspx";
2 declare namespace fusion="http://code.google.com/p/fusion";
3 declare variable $doc as xs:string external;
4

5 declare function local:type($element as node()) as xs:string {
6 if (local-name($element) = "Page" and namespace-uri($element) = "aspx")
7 then $element/@codebehind
8 else concat("edu.cmu.cs.fusion.test.aspnet.api.",local-name($element))
9 };

10

11 let $page := doc($doc)/asp:Page/.
12 for $control in $page/asp:*
13 where fusion:isSubtype(local:type($control), "edu.cmu.cs.fusion.test.aspnet.api.Control")
14 return <Relationship name="SubControl" effect="ADD">
15 <Object name ="{data($control/@ID)}" type="{local:type($control)}"/>

16 <Object name="{data($page/@ID)}" type="{local:type($page)}"/>

17 </Relationship>

18

19 let $page := doc($doc)/asp:Page/.
20 for $control in $page/asp:*
21 for $subControl in $control/asp:*
22 where fusion:isSubtype(local:type($control), "edu.cmu.cs.fusion.test.aspnet.api.Control") and
23 fusion:isSubtype(local:type($subControl), "edu.cmu.cs.fusion.test.aspnet.api.Control")

24 return <Relationship name="SubControl" effect="ADD">
25 <Object name ="{data($subControl/@ID)}" type="{local:type($subControl)}"/>

26 <Object name ="{data($control/@ID)}" type="{local:type($control)}"/>

27 </Relationship>

28

29 let $page := doc($doc)/asp:Page/.
30 for $control in $page/asp:LoginView
31 for $subControl in $control/AnonymousTemplate/asp:*
32 where fusion:isSubtype(local:type($subControl), "edu.cmu.cs.fusion.test.aspnet.api.Control")
33 return <Relationship name="AnonymousControl" effect="ADD">
34 <Object name ="{data($subControl/@ID)}" type="{local:type($subControl)}"/>

35 <Object name ="{data($control/@ID)}" type="{local:type($control)}"/>

36 </Relationship>

37

38 let $page := doc($doc)/asp:Page/.
39 for $control in $page/asp:LoginView
40 for $subControl in $control/LoggedInTemplate/asp:*
41 where fusion:isSubtype(local:type($subControl), "edu.cmu.cs.fusion.test.aspnet.api.Control")
42 return <Relationship name="LoggedInControl" effect="ADD">
43 <Object name ="{data($subControl/@ID)}" type="{local:type($subControl)}"/>

44 <Object name ="{data($control/@ID)}" type="{local:type($control)}"/>

45 </Relationship>

46

47 let $page := doc($doc)/asp:Page/.
48 return <ThisObject name="{data($page/@ID)}" type="{local:type($page)}"/>

5.5. IMPACT OF MORE LABELS 63

are unwieldy looking specifications, they would be used for all plugins of a given framework, so
the specification cost is amortized.1 Fusion also supports the ability to bind the this variable to
an object in the declarative artifact; this XQuery is shown at the bottom of Listing 5.5 A similar
mechanism could also be used to bind fields.

When the XQuery from Listing 5.5 is run on the ASPX from Listing 5.2, Fusion will get a
starting lattice as shown:

SubControl(LoginScreen,MyPage) 7→ True

LoggedInControl(LocationList, LoginScreen) 7→ True

LoggedInControl(ContinueButton, LoginScreen) 7→ True

This lattice will then allow Fusion to have the relationships necessary to verify the correct code
and find the error in the broken code.

5.5 Impact of more labels

When the XQuery runs, it influences the Fusion analysis by creating a starting relationship lat-
tice ρ. These relationships must refer to labels in the points-to lattice; therefore the XQuery will
also affect the starting points-to lattice A. As we might guess based upon earlier sections, these
additional labels are going to impact the precision of the points-to analysis.

Let’s start by considering how the may-like points-to analysis runs on a very simple code
snippet. Listing 5.6 shows this code snippet with A in the comments. As expected, the may-like
points to analysis shows two cases: either barList points to the same object as fooList or it points
to a different object. This is a small loss in precision, but it is still manageable.

Now consider what happens when we associate the code with the ASPX in Listing 5.7. This
will create a starting A that contains two labels, representing the two DropDownLists in the ASPX.
Listing 5.8 shows what happens to the points-to lattice when run on the code snippet now. While
fooList still only points to a single fresh label (since it was created by constructor), the barList
could now point to any one of four possible objects: the same object as fooList, one of the two lists
in the ASPX, or some yet-unseen list. More knowledge from the ASPX file has made the analysis
significantly less precise rather than more precise.

We might think we could solve this problem as we did earlier by switching to the must-like
analysis. However, recall that this analysis assumes uniqueness for all variables, so it will only
give barList the option of pointing to a fresh label, as seen in Listing 5.9. Clearly, this is not the
programmer’s intent either.

What we really want is to tell the points-to analysis that the only valid label is the bar label,
since that’s the object we requested with the call to findControl. However, there is no way for the
points-to analysis to know this expected semantics. Even if we were to use a more sophisticated

1Part of the ugliness is due to the ugliness of XML itself and its inappropriateness for being used for this purpose in
the first place. C’est la vie.

64 CHAPTER 5. ALIASING AND DECLARATIVE FILES

Listing 5.6: A simple code snippet, with the may-like points-to analysis.
1 //<−;−>
2 DropDownList fooList = new DropDownList();
3 //<l1:DropDownList ; fooList7→{l1}>
4 DropDownList barList = (DropDownList) findControl("bar");

5 //<l1:DropDownList, l2:DropDownList ; fooList7→{l1}, barList7→{l1,l2}>

Listing 5.7: An ASPX file associated with code snippet from 5.6.
1 <asp:Content ID="Content1" ContentPlaceHolderID="PageContent">

2 <asp:DropDownList ID="bar">

3 <asp:DropDownList ID="baz"/>

4 </asp:Content>

Listing 5.8: Our code snippet again, now associated with the ASPX from Listing 5.7.
1 //<bar:DropDownList, baz:DropDownList ; − >
2 DropDownList fooList = new DropDownList();
3 //<bar:DropDownList, baz:DropDownList, l1:DropDownList ; fooList7→{l1}>
4 DropDownList barList = (DropDownList) findControl("bar");

5 //<bar:DropDownList, baz:DropDownList, l1:DropDownList, l2:DropDownList ;
6 // fooList7→{l1}, barList7→{l1, l2, bar, baz}>

Listing 5.9: Using the must-like analysis doesn’t do what we want either.
1 //<bar:DropDownList, baz:DropDownList ; − >
2 DropDownList fooList = new DropDownList();
3 //<bar:DropDownList, baz:DropDownList, l1:DropDownList ; fooList7→{l1}>
4 DropDownList barList = (DropDownList) findControl("bar");

5 //<bar:DropDownList, baz:DropDownList, l1:DropDownList, l2:DropDownList ; fooList7→{l1}, barList7→{l2}>

5.6. THE RESTRICT PREDICATE 65

Table 5.3: Results from running each variant on the examples from Vignette 2.2.

Listing reference Line number
of fault

Sound
results

Pragmatic
results,
may-like

Pragmatic
results,
must-like

Complete
results

2.3: Incorrect usage 6 6, 6 6 - -
2.4: Correct usage - 7, 7 - - -

points-to analysis, it would not ensure that we get the right object back from findControl; the
most we could expect is to be able to specify is that fooList and barList do not alias.

5.6 The restrict predicate

The problem in the prior section was that the points-to analysis has no way to select out a par-
ticular object from a group of objects. Fusion solves this by using relationships to specify which
labels make sense. For example, what we really want to say about is that the returned object from
Control.findControls(String name) satisfies the predicate:

Name(name, result) ∧ SubControl(result, target)

That is, the returned object is a sub-control of the object we called findControl on and it has the
name we are searching for.

To support this, Fusion constraints will contain one more predicate, the restrict-to predicate.
An example of this predicate can be seen in the Control API constraints in Listing 5.10. The
semantics of this predicate is when the trigger predicate is True, the analysis will restrict the po-
tential substitutions to only those that pass the restrict-to predicate. The sound and complete
variants will only restrict a False predicate, while the pragmatic variant will restrict either False
or Unknown. The formal semantics of this predicate can be found in Appendix B. In practice, this
predicate is frequently Unknown, but the sound and complete variants are not sound or complete
unless they accept an Unknown restrict-to predicate.

With this in place, the analysis can now finally verify programs that use declarative artifacts.
Listing 5.11 shows the snippet run with the restrict-to predicates described above; notice that
now barList only points to the single DropDownList with the name bar, as we expected. This
also allows us to finally verify the examples from Vignette 2.2; Table 5.3 provides the results for
running the analysis with three variants, including the pragmatic variant with both versions. As
the restrict-to predicate makes the may-like analysis a practical option, we will use the may-like
analysis with the pragmatic variant for the remainder of the thesis.

As seen, a few points of variation in these analyses makes a large difference in their results.
Table 5.4 lists all the differences between the three variants of the Fusion analysis.

66 CHAPTER 5. ALIASING AND DECLARATIVE FILES

Listing 5.10: Constraining LoginView.findLabels(String)with a restrict-to predicate.
1 @Constraint(
2 op=”Control.findControl(String name) : Control”,
3 trigger = ”True”,
4 restrict−to = ”Name(name, result) AND SubControl(result, target)”,
5 requires = ”True”,
6 effects = {}
7)
8 public class Control {
9 public Control findControl(String name) {...}

10 ...

11 }

12

13 @Constraint(
14 op=”LoginView.findControl(String name) : Control”,
15 trigger = ”Name(name, result) AND LoggedInControl(result, target)”,
16 requires = ”SubControl(target, page) AND PageRequest(request, page) AND Authenticated(request)”,
17 effects = {}
18)
19 @Constraint(
20 op=”LoginView.findControl(String name) : Control”,
21 trigger = ”Name(name, result) AND AnonymousControl(result, target)”,
22 requires = ”SubControl(target, page) AND PageRequest(request, page) AND !Authenticated(request)”,
23 effects = {}
24)
25 public class LoginView extends Control {
26 ...

27 }

Listing 5.11: Using the restrict-to predicate as seen in Listing 5.10 to get the aliasing that we want
with the may-like points-to analysis

1 //<bar:DropDownList, baz:DropDownList ; − >
2 DropDownList fooList = new DropDownList();
3 //<bar:DropDownList, baz:DropDownList, l1:DropDownList ; fooList7→{l1}>
4 DropDownList barList = (DropDownList) findControl("bar");

5 //<bar:DropDownList, baz:DropDownList, l1:DropDownList ; fooList7→{l1}, barList7→{bar}>

Table 5.4: All differences between sound, complete, and pragmatic variants.

Variant Trigger predicate
checks when

Requires quantifies
σwith

Requires predicate
passes when

Restrict-to
allows σwhen

Sound True/Unknown ∀ True True/Unknown
Complete True ∃ True/Unknown True/Unknown
Pragmatic True ∃ True True

Chapter 6
Case Study: Spring Framework

To validate that Fusion is a general tool for specifying collaboration constraints, I studied how
Fusion can be used to specify the Spring framework, a framework with a surprisingly different
design from ASP.NET. In this chapter, I’ll present the methodology of this study and some quan-
titative results that compare the variants of Fusion. I’ll also present four collaboration constraints
in Spring that I specified with Fusion and use them to highlight several interesting tradeoffs that
occur when using Fusion.

Based on this study, there is good reason to believe that relationship-based specifications can
be used to specify collaboration constraints within software frameworks that use a wide variety
of mechanisms to interact with plugins. Overall, I had to make very few changes to Fusion to be
able to specify the collaboration constraints described in this chapter. There are several features
that would allow for more collaboration constraints to be specified, but all of these are engineering
efforts that would not require any additional research contributions.

6.1 Why Spring

When selecting a framework for this case study, I considered several criteria. First, the framework
had to be written in Java and XML, as Fusion currently only supports those languages. Second,
I chose not to use a framework that I was already familiar with in order to prevent unintentional
bias from seeing similar collaboration constraints before starting the evaluation. Third, I wanted to
use a framework which was large, complex, and uses several mechanisms to interact with plugin
code, not just traditional OO mechanisms. Finally, I wanted a framework with a large enough
following to have an active community forum from which I could draw examples. The Spring
Framework fit all of these criteria.

The primary downside to using Spring as a case study is that it is a competitor to ASP.NET.
Both frameworks are web application frameworks, meant to help developers build large industrial
web applications. In theory, this shared domain might mean similar architecture and design of
the framework, which might result in similar collaboration constraints. However, I found that the
two frameworks are quite different from each other at nearly every level of abstraction. While

67

68 CHAPTER 6. CASE STUDY: SPRING FRAMEWORK

both frameworks use the model-view-controller pattern to represent a request for a web page
and responding with the HTML for this request, the similarities end there. The frameworks have
completely different structures to their APIs, different mechanisms for connecting several pages
into a web application, and different reuse capabilities for common tasks. The reason for all these
differences is because the two framework have nearly opposite business drivers. This completely
changes how the frameworks are architected, and the differences trickle down into even low-level
design decisions.

In ASP.NET, the primary business driver is simple: keep the client using as many Microsoft
technologies as possible. In fact, ASP.NET will generally only work with other Microsoft prod-
ucts: the plugin developer must deploy their application using Microsoft’s web server running
on a Microsoft operating system, and likely using a Microsoft database. Even the development is
controlled by Microsoft: the languages, IDE, and build systems are all required Microsoft prod-
ucts, and many shops will use Microsoft source repositories and project management software as
well.

All this control over every aspect of development and deployment means that Microsoft can
make many assumptions about the environment in order to simplify the design of ASP.NET. For
instance, there’s no need for generic interfaces to many components when there is only one option.
The framework can also take advantage of the IDE control and use tools to auto-generate common
code and provide WYSIWYG editors for creating the UI of a page. This all leads to smaller, cleaner
APIs. Of course, the plugin developers must be prepared to fully buy-in to Microsoft and might
not be able to interact easily with legacy systems, but Microsoft hopes that such systems will be
converted and further lock the application to Microsoft.

Spring takes a very different approach to attracting customers. Instead of locking in clients,
Spring aims to support a wide variety of legacy systems and be as interoperable as possible.
VMWare, the owners of Spring, boast that “Spring provides a range of capabilities for creating enter-
prise Java, rich web, and enterprise integration applications that can be consumed in a lightweight,
a-la-carte manner.” [101] Each component of Spring can be used independently or can be replaced
by a third-party component, and it is assumed that developers will be integrating with an exist-
ing third-party web application framework. The book “Pro Spring”, written by a member of the
Spring team, devotes a chapter on how to integrate Spring with Struts, the next most popular Java
web application framework [51]. Both the official Spring reference manual, and a second popular
Spring book, go further by describing how to integrate Spring with Struts, WebWork, Tapestry,
and Java Server Faces [61, 113].

Even the language used to create the views is modular in Spring. While views in ASP.NET
are always written in ASPX, Spring views can be created from many different technologies. While
JSP is popular, both of the books above dedicate a chapter to describing other technologies with
Spring, such as Velocity, Tiles, RSS, and even how to integrate with a custom technology.

While Spring provides a great amount of flexibility, the cost to the design is high. Each point
of variability must be behind an API, and the API must be as generic as possible. In order to
promote reuse then, the class hierarchies are necessarily deep so that the most generic API is at
the top of the hierarchy and the most specific APIs are at the leaves. As an example, consider the
controller hierarchy in Figure 6.1. The top most interface has a single method, which is certainly
more simple than the Page API in ASP.NET. This interface provides no code reuse capability and

6.1. WHY SPRING 69

Controller

AbstractController

AbstractURLViewController

UrlFilenameViewController

BaseCommandController

AbstractCommandControllerAbstractFormController

AbstractWizardFormController

MultiActionController

ParameterizableViewController ServletForwardingController

ServletWrappingController

SimpleFormController

CancellableFormController

public: 1
prot.: 0

public: 3
prot.: 1

public: 3
prot.: 3

public: 2
prot.: 2

public: 2
prot.: 2

public: 6
prot.: 1

public: 6
prot.: 10

public: 17
prot.: 16

public: 2
prot.: 7

public: 0
prot.: 2

public: 4
prot.: 17

public: 8
prot.: 27

public: 4
prot.: 14

public: 4
prot.: 6

Figure 6.1: UML class diagram of the Spring Controller hierarchy. Italicized class names are
abstract classes or interfaces. This diagram also lists the number of public and protected methods
defined or redefined in each class. The most commonly extended class is generally regarded to be
SimpleFormController, which is five levels deep in the hierarchy and has access to 77 public or
protected methods above it. Some of these are implementations of an abstract method declared
higher in the interface or overridden implementations, but most are not.

70 CHAPTER 6. CASE STUDY: SPRING FRAMEWORK

effectively represents the raw request from the user for a web page. Any further functionality is
provided by the leaf classes, like SimpleFormController, which is somewhat equivalent to a very
simple Page in ASP.NET. However, the API of SimpleFormController is much more complex as
it is spread across this entire hierarchy.

The differences in business drivers have lead to significant differences in the design of these
two frameworks. This makes Spring a useful and interesting framework for studying the general-
izability of relationship-based specifications.

6.2 Methodology for gathering examples

In Chapter 3, I described a study on the ASP.NET help forums where I went through 271 forum
threads that had last activity during a one week time period in October, 2006. From this, I identi-
fied 16 threads where a developer had a specific coding problem and received a usable response.
I identified the collaboration constraint within these 16 threads and noted the properties that they
shared in common.

This same methodology was not effective for gathering examples from the Spring forums. Un-
like the ASP.NET forums, the Spring forums have no reward system to encourage the community
to answer questions; therefore, there were significant numbers of unanswered questions. Addi-
tionally, as Spring is meant to integrate with so many other technologies, there were far more
tutorial requests of the form “How do I get Spring to work with X?”

In order to find examples effectively, I created an automatic filtering system that would scan
threads for specific properties and only return those that met my criteria. The criteria I used are:

• Has a <pre> tag. To ensure that there was a specific example being discussed and filter out
requests for tutorials and documentation, I accepted only threads where there was code
posted within an HTML <pre> tag (for pre-formatted text, commonly used for displaying
code). This might miss threads where people did not use the <pre> tag to display code.

• Uses words “exception” or “error”. Again to filter out requests for tutorials and documentation,
I accepted only threads where the words “exception” or “error” appeared somewhere. I
found this had a higher false positive rate than I expected, as people were asking for tutorials
on how to show an error message. However, it generally seemed to keep only posts where
some error occurred in a developer’s program. This unfortunately means that I missed any
issues where the error was unexpected run time behavior, rather than an exception.

• Responded to by a top-poster. I accepted only threads where one of the responders was in the
top-25 of all posters. I found that these posters are careful to respond only to problems that
they can understand and reproduce, and they are more likely to provide a solution. This
filtering mechanism will miss any threads that were correctly solved by a user with a lower
post count.

• Has an affirmation. To ensure that there actually was a solution presented, I accepted only
threads where the original poster had a secondary post with one of the following phrases:
“solved”, “that work”, “works”, and “working”. This is meant to capture threads where the

6.3. QUANTITATIVE RESULTS 71

Table 6.1: Filtering properties applied to the ASP.NET example threads from Table 3.1a in Chap-
ter 3. Nearly all provided code, and about half used the keywords I was looking for. A majority
were also responded to by an All-Star or Star level responder, indicating a significant amount
of expertise. While few people on the forums directly affirmed a correct solution in a posting,
many would come back to check the “solution” box next to the post which solved their problem,
indicated with “(Checked)” in the column. Spring does not have this feature on their forum.

Number Code Error All-Star or Star responder Affirmed
1031123 Y Error Y
1031139 Y Error, Exception Y
1031804 Y
1032020 Y Error Y
1031933 Y Y
1030504 Y Y
1027694 Y
1032187 Y (Checked)
1032278 Y Exception Y (Checked)
1032624 Y
1032991 Y Error Y
1033020 Y Error Y Y
1033046 Y
1031946 Y Error Y (Checked)
1033217 Y Error Y Y
1033450 Y Error Y (Checked)

original poster returns to say “Thanks! That worked for me.” This filter will miss threads
with solutions where the original poster either did not return or did not respond in this way.

Additionally, I limited the date range to be before October of 2007 in order to capture only Spring
2.0, as the next version of Spring had significant API changes.1

As seen in Table 6.1, these criteria also appeared in my 16 ASP.NET examples. Therefore, while
not gathered using the same method, I believe that this technique was a good way to capture the
interesting and relevant posts for this case study.

6.3 Quantitative Results

Using the methodology described above, I found 156 threads that met my criteria; all of these
are archived [2]. I then determined which of these threads described a violated collaboration
constraint, and of those, which were possible to describe using Fusion. As Table 6.2 shows, 53
had collaboration constraints, and 17 of these were specifiable in Fusion. Another 34 would be

1I chose not to use the newer version of Spring as it heavily uses annotations rather than subtyping to identify call-
back locations. While it is theoretically possible to use relationships for either one, I have not implemented annotation
support in Fusion at this time.

72 CHAPTER 6. CASE STUDY: SPRING FRAMEWORK

Table 6.2: Breakdown of threads in Spring. There were several features that could be added to
make Fusion work for more constraints. JSP is a commonly-used language to describe the view of
a Spring webpage, and there were many constraints that need to match JSP code to the XML and
Java. OGNL is a language that can be used inside of XML to execute simple expressions; Spring
uses it to execute arbitrary code in XML. Two threads were about a collaboration constraint
that describes a requirement on the filesystem, though nearly all of the JSP-based collaboration
constraints would also need this feature support. Some collaboration constraints required the
XML to be aware of an object’s fields and methods, so field and reflection support are necessary
to handle these. Finally, simple string manipulation, such as handling concatenate, was needed
for one thread in addition to many of the JSP, reflection, and file resource threads.

Not a collaboration constraint 103
Requires JSP support 17
Requires OGNL support 4
Requires file resource support 2
Requires field support 5
Requires reflection support 5
String manipulation 1
Broken beyond repair 2
Specifiable in Fusion 17
Total 156

specifiable with additional feature support for Fusion, as detailed in Table 6.2. There were also
two threads that had a collaboration constraint, but the posters had so completely mangled their
code that I could see no way for Fusion to help them. Most collaboration constraints require that
the developer do something correct for the constraint to trigger in the first place. However, these
developers appeared to not even be using the right APIs to start with and needed to start over
entirely.

The remaining 103 threads were not useful for the study. These contained mostly requests
for tutorials, but there were also feature requests, Spring bug reports, issues about associated
frameworks (like Acegi Security framework or Hibernate persistence framework). There were also
a few postings which might have been collaboration constraints, but there was so little information
that I could not even categorize the problem.

Surprisingly, the collaboration constraints described in the 17 threads only spanned eight col-
laboration constraints, as shown in Table 6.3. Two particularly problematic constraints covered
53% of the threads. Like the examples in ASP.NET, where three constraints covered 63% of the
threads, it appears that specifying only a few problematic APIs would provide significant benefit.

Based on the examples from the threads and the solutions given, I created 24 test programs,
including good and bad programs for each of the APIs [1]. To keep these programs similar to
snippets from a fully functioning web application, I created them by modifying the JPetStore [63]
and PhoneBook [99] examples that are distributed with Spring. The examples included the rele-
vant classes containing the error, all referenced classes, and the original XML configuration files.
It was important to include these files since, as discussed in Chapter 5, their presence changes the
analysis results. For each API, I used as much of the code as possible from the original forum

6.3. QUANTITATIVE RESULTS 73

Table 6.3: Analysis of collaboration constraints found in the Spring threads. I used the same crite-
ria for classification as in Table 3.1b in the ASP.NET study. These threads can be accessed through
the URL http://forum.springsource.org/showthread.php?<NUMBER> and also are archived at
[2].

Numbers API #Classes,
#Objects

Extrinsic v.
Intrinsic

Semantics Artifact
Types

13320,
21751,
33139,
33168,
33456,
36333

OnSubmit 6, 5 Extrinsic Callback,
Identity,
Value

Java

26787,
36109,
43182

SetupForm 1, 1 Extrinsic Callback,
Identity,
Temporal

XML

32429,
39040

AppContext 3, 2 Extrinsic Identity,
Value

Java, XML

28603,
39209

MAVModel 4, 4 Intrinsic Callback,
Identity

Java

39480 RefData 4, 4 Extrinsic Callback,
Identity,
Value

Java, XML

36891 ViewResolver 2, 2 Extrinsic Temporal,
Value

XML

38940 Action 2, 1 Extrinsic Identity,
Value

Java, XML

43643 SerialFlow 2, 1 Extrinsic Identity,
Value

Java, XML

74 CHAPTER 6. CASE STUDY: SPRING FRAMEWORK

Table 6.4: Complete results from the Spring case study. The first columns give the API name,
the section this API is discussed in, and the names of the example programs that I created based
upon the forum threads. The “Ideal” column shows what a perfect analysis should give; an “X”
represents an error, and a checkmark represents a passing example. The final three columns
show the results from the analyses. Results that match the ideal are in bold green font. The full
code for the examples is archived in [1].

API (Section) Example name Ideal Sound Pragmatic Complete
AppContext (§6.4.1) Correct X X X X
AppContext (§6.4.1) BadFactory X X X X
AppContext (§6.4.1) BadBean X X X X
OnSubmit (§6.4.2) SameViewsCorrect X X X X
OnSubmit (§6.4.2) DiffViewsCorrect X X X X
OnSubmit (§6.4.2) SameViewsIncorrect X X X X
ViewResolver (§6.4.3) CorrectOnlyOne X X X X
ViewResolver (§6.4.3) CorrectChainEnd X X X X
ViewResolver (§6.4.3) NotEndOfChain X X X X
RefData (§6.4.4) Correct X X X X
RefData (§6.4.4) ChangedRequest X X X X
RefData (§6.4.4) UsedFBO X X X X
MAVModel (§A.1) CorrectWithPOJO X X X X
MAVModel (§A.1) CorrectWithMap X X X X
MAVModel (§A.1) IncorrectWithMap X X X X
MAVModel (§A.1) IncorrectAddingMap X X X X
Action (§A.2) CorrectType X X X X
Action (§A.2) IncorrectType X X X X
SerialFlow (§A.3) CorrectFlow X X X X
SerialFlow (§A.3) CorrectNotFlow X X X X
SerialFlow (§A.3) IncorrectNotSerial X X X X
SetupForm (§A.4) CalledSetupDirect X X X X
SetupForm (§A.4) CalledSetupIndirect X X X X
SetupForm (§A.4) ForgotSetup X X X X

Table 6.5: Summary of results from the Spring case study from Table 6.4. This table compares re-
sults of the 24 examples from the three variants to the “ideal” analysis that has no false results. In
these examples, the pragmatic variant matched ideal, and the complete variant did surprisingly
well. The sound variant was never able to be precise enough to verify a program as correct.

True Positive (X) True Negative (X) False Positive (X) False Negative (X)
Ideal 11 13 0 0
Sound 11 0 13 0
Pragmatic 11 13 0 0
Complete 7 13 0 4

6.4. DETAILED EXAMPLES 75

thread and copied it into either JPetStore or PhoneBook to make the “bad” examples. I created
the good example by making the change suggested by the responders on the forum threads. I
also created additional examples by making some reasonable assumptions of other ways that a
developer might break the same constraint.

To test Fusion’s ability to detect the errors, I created specifications for each of the eight API’s. I
then ran the three variants of the analysis; the pragmatic variant was run with the may-like variant
of the points-to analysis. The detailed results are displayed in Table 6.4, and a summary is shown
in Table 6.5.

As seen in Table 6.4, the pragmatic variant with the shared points-to analysis clearly outshone
the competition. While it appears perfect in these examples, it would not likely do as well in
large programs with more aliasing possibilities and would begin to act more like the complete
analysis. However, for running on examples of the size posted on the forums, it does quite well
and arguably would have helped many people find the defect in their programs without using the
forums.

Regarding performance, the analysis runs fast enough to not be a concern for small program
such as these. The first run of the analysis takes longer as there is a global search through the
classpath to create a type hierarchy; while this should theoretically as fast as the compiler, there
are several bugs in Eclipse’s implementation that cause this to take several minutes to run. Because
of this major performance hit, Fusion caches the entire hierarchy for later use. Secondary runs take
only a few seconds, as the Fusion analysis itself is very fast. A further discussion of performance
and scalability, on a more substantial program, can be found in Chapter 7.

6.4 Detailed Examples

This section will present four specific examples from the case study to better understand the nature
of the collaboration constraints that were seen and the extent to which Fusion could specify the
constraint. The first two examples are meant to show the expressiveness of Fusion; the first is a
small example that is not easy to capture in other specification systems, and the second is a larger
example that uses nearly all of the expressiveness of Fusion. The next two examples are interesting
because they made explicit some of the tradeoffs that occur in a specification language as abstract
as Fusion and show its flexibility to meet the needs of the specification writer. The remaining
examples were similar in nature to those in this section, and brief descriptions of the problems
alongside the Fusion specifications for them can be found in Appendix A.

6.4.1 Object identity

In previous chapters, I have described object identity as an important aspect of collaboration con-
straints, and it is one which is not easily capturable using many existing specifications systems,
as discussed in Chapter 8. The Spring forums provide an example that showcases how object
identity is an integral part of interacting with modern frameworks like Spring.

Like many other frameworks, Spring uses dependency injection to automatically wire together
components from a declarative file [42]. In Spring, the developer creates new objects by declar-
ing them in a <bean> tag in a Spring configuration file. Listing 6.1 shows example tags; Spring

76 CHAPTER 6. CASE STUDY: SPRING FRAMEWORK

ApplicationContextSupport

ApplicationContext

void setApplicationContext(ApplicationContext ctx)
ApplicationContext getApplicationContext()

BeanFactory
Object getBean(String beanName)

ListableBeanFactory HierarchicalBeanFactory

Figure 6.2: Class diagram of the ApplicationContext and ApplicationObjectSupport.

Listing 6.1: An example of dependency injection in Spring.
1 <beans>

2 <bean id="accountValidator" class="AccountValidator"/>

3

4 <bean id="petDatabase" class="Database">

5 <property name="user" value="foo"/>

6 <property name="databaseName" value="pets"/>

7 </bean>

8

9 <bean id="myStore" class="PetStore">

10 <property name="database" ref="petDatabase"/>

11 </bean>

12

13 <bean id="accountController" class="AccountFormController">

14 <property name="petStore" ref="myStore"/>

15 <property name="validator" ref="accountValidator"/>

16 </bean>

17 </beans>

will use this information to create four objects with the type specified. Based on this file, Spring
will set the database field of PetStore object to be the object declared as petDatabase, and
the AccountFormController that is created will reference both the AccountValidator and the
PetStore objects. Spring uses reflection and setter methods to provide this functionality.

In Spring, dependency injection is used for many things, but one of the most important is
injecting the application context. The application context represents the collection of bean objects
that Spring instantiated together from the same configuration file, and it is concretely represented
with the ApplicationContext type. The ApplicationContext interface, seen in Figure 6.2, has a
one method of interest for our purposes: Object getBean(String beanName). This method will
return the unique object represented by the given name in the configuration file. For example, we
can call ac.getBean("myStore") to get the PetStore object that is represented in Listing 6.1. The
ApplicationContext itself is injected into any bean which extends ApplicationObjectSupport;
this class has a single setter/getter pair to inject and retrieve the ApplicationContext.

In thread number 32429 [84], these two simple interfaces cause a problem for the user “pom-

6.4. DETAILED EXAMPLES 77

piuses”, who posts about a null pointer problem he is having. He is helped by Marten Deinum,
a Spring expert who is frequently on the forums. A shortened version of the exchange between
then, shown below, is quite interesting.

pompiuses: If I extend ApplicationObjectSupport, I should according to documentation
be able to get the applicationContext using the method getApplicationContext().

The problem is that it always returns null no matter what. What I’m I missing here??

I know for a fact the the applicationContext is not null, because if I i.e extend Abstract-
Controller in one of my controllers and then use the getApplicationContext()method,
it works.

Marten Deinum: How are you instantiating the object extending ApplicationObject-
Support. It implements the ApplicationContextAware interface so the Application-
Context should be automatically injected if specified/configured inside a applicationContext
file.

pompiuses: I instantiate it like any other object ;
MyObject myObject = new MyObject();

Exactly what needs to be specified inside a applicationContext file? MyObject?

Marten Deinum: When you create an object with new it isn’t a Spring managed bean and
hence not being injected with anything or under Spring management. Assuming you already
running some kind of application you already have a applicationContext.xml (or whatever the
name is you specified). For more information check the first few chapters of the Spring reference
guide.

Configure your bean as a prototype and retrieve instances from the applicationcontext.
<bean id="myObject" class="MyObject" scope="prototype"/>

Then from some other spring managed bean
MyObject object = (MyObject) context.getBean("myObject");

pompiuses: Yes I know I can create a bean in the application context and retrieve it the way
you describe, but that’s not the issue here.

As I wrote, MyObject extends ApplicationObjectSupport. That should enable MyObject
to access the ApplicationContext using the getApplicationContext() method.

I want this because then I can fetch beans, using applicationContext.getbean("some-
Bean"), from MyObject.

But since getApplicationContext() always returns null, something is not right.

Marten Deinum: Wel actually it is

First of all if you want to have the applicationContext injected it MUST be a spring managed
bean. If it isn’t your ApplicationContext isn’t going to be injected. So object created with
new SomeObject implementing ApplicationContextAware are never going to be injected
with the applicationcontext....

78 CHAPTER 6. CASE STUDY: SPRING FRAMEWORK

(This is followed by a detailed one-page explanation about the internals of how this
works.)

pompiuses: Thanks for the great input! I got it working by adding this line into my applica-
tionContext.xml:
<bean id="myObjectBean" class="com.something.MyObject"/>

In this exchange, Marten quickly guessed, and confirmed, the root of the problem: the poster
was creating objects with new, rather than allowing them to be “Spring-managed” by creating
them in the XML configuration file. Even with an expert, pompiuses requires two explanations in
order to understand these fairly simple interface. This user was not fully aware of how the object’s
identity, not its type, is responsible for whether getApplicationContext() returns null.

Rather than a page of English text, I’ll specify the constraint using a few Fusion specifications.
To represent an object that is Spring-managed, there will be a relationship

Context(String,Object,ApplicationContext)

where the first parameter is the unique name of a bean from the configuration file, the second
parameter is the bean itself, and the third parameter is the application context that manages
the bean. This single relationship will allow us to specify both of the constraints surrounding
ApplicationContext.

First, to get an ApplicationContext, the ApplicationObjectSupport object that we have
must already be managed by an ApplicationContext. The constraint for this is simple:
1 @Constraint(
2 op=‘‘ApplicationObjectSupport.getApplicationContext() : ApplicationContext’’,
3 restrictTo=‘‘Context(name, target, result)’’,
4 requires=‘‘Context(name, target, result)’’
5)

That is, we restrict this call to only return an object for which a Context exists, and we require that
such a Context actually exists.

The second constraint is that when we have an ApplicationContext, all requests to get a bean
must be valid. As it turns out, this constraint has identical form to the one above.
1 @Constraint(
2 op=‘‘ApplicationContext.getBean(String name) : Object’’,
3 restrictTo=‘‘Context(name, result, target)’’,
4 requires=‘‘Context(name, result, target)’’
5)

Of course, for these constraints to work, we must have prior knowledge about the Context
relationships that exist from the XML configuration files. Listing 6.2 provides the XQuery that
makes this happen.

What is particularly interesting about this example is that a type-based approach cannot cap-
ture unique identities of objects, yet only a few specifications and a single relationship can specify
this problem. This example could be further improved if Fusion was aware of the file-system re-
sources; this would allow Fusion to properly handle the case where a single application context
loads beans from two or more XML files. In its current state, Fusion will treat these as separate
application contexts.

6.4. DETAILED EXAMPLES 79

Listing 6.2: XQuery to retrieve the relationship Context from a Spring configuration file
1 declare namespace sf="http://www.springframework.org/schema/beans";
2 declare variable $doc as xs:string external;
3

4 for $bean in doc($doc)/sf:beans/sf:bean
5 return <Relationship name="Context" effect="ADD">
6 <Object name ="{data($bean/@id)}" type="java.lang.String"/>

7 <Object name ="{data($bean/@id)}" type="{data($bean/@class)}"/>

8 <Object name ="{$doc}" type="org.springframework.context.ApplicationContext"/>

9 </Relationship>

End-User

HTTP GET/POST
(URL)

HTTP RESPONSE
(HTML)

Spring Web Server

Front controller MyController

Request

ModelAndView

View

Model

HTML

Figure 6.3: A diagram showing the data flow from a user’s browser through the Spring frame-
work and back to the user as HTML.

6.4.2 Expressiveness for complex constraints

In this section, I present an API that is both difficult to use (6 threads referenced this API, as seen in
Table 6.3) and which fully exercises the expressiveness of the specification language. The example
comes from the SimpleFormController class, perhaps one of the most commonly used classes of
the Spring MVC framework. This API is discussed in all the popular books on Spring [51, 61, 113]
and included in the official tutorial on the MVC framework [90], yet it is still an API that is easy
to break in many ways.

It is best to first understand how the API is used in most situations. At a high level, the in-
teraction between the end-user and the Spring MVC components is as shown in Figure 6.3. The
end-user requests a web page containing a form using an HTTP GET request. Spring looks up
the Controller for this request and passes the request on to this Controller. The controller will
return a ModelAndView object back to the Spring framework; this object contains the name of a
view and a Map of the model data that the view might need. The Spring framework then finds the
view (likely a JSP page), passes it the model data, and returns HTML to the user.

When the user enters data into their browser and clicks the submit button, the browser sends

80 CHAPTER 6. CASE STUDY: SPRING FRAMEWORK

Listing 6.3: A simple form to edit an account
1 public class EditAccountForm extends SimpleFormController {
2 private Database db;
3

4 public void setDatabase(AccountDatabase db) {this.db = db;}
5

6 public Object formBackingObject(HttpServletRequest request) throws Exception {
7 Integer id = request.getAttribute("accountID");

8 if (id == null || id.intValue() <= 0)
9 throw new AccountException("Can only edit accounts with an id greater than 0")

10 return db.getAccount(id.getInteger());
11 }

12

13 public Map referenceData(HttpServletRequest request) throws Exception {
14 Map data = new HashMap();
15 data.put("states", db.getAllStates());

16 data.put("countries", db.getAllCountries());

17 return data;
18 }

19

20 public ModelAndView onSubmit(HttpServletRequest request, HttpServletResponse response,
21 Object command, BindException errors) throws Exception {
22 Account account = (Account)command;

23 db.save(account);

24 return new ModelAndView(getSuccessView(), null);
25 }

26 }

an HTTP POST message to the Spring framework with the user’s data attached. The POST pro-
cess happens nearly the same way as the GET process. The only difference might be that the
Controller stores the user data submitted and likely returns a different model and view for the
user to move on to (ie: a “Thank you for submitting!” page).

The purpose of the SimpleFormController is to encapsulate much of this for reuse. Develop-
ers can extend from SimpleFormController to easily create a simple form with a single submit
button and can override key methods to get basic functionality. For example, Listing 6.3 pro-
vides an implementation for a form to edit account information. The method formBackingObject
returns an object that represents the initial data to show to the user (the existing account in the
database). The method referenceData returns a Map of all data that is relevant to the form, but
is not part of an individual submission (like the list of states and countries). Finally, the method
onSubmit stores the data to the database and sends the user to a “success” page to confirm that
their account change was saved.

The last step necessary to make this work is the XML configuration file, seen in Listing 6.4. As
seen, this creates an instance of the class in Listing 6.3 with a particular form view and success
view. The command name will match the command name used in the form view JSP, and that
view will expect an object with the type given by command type. The command type is also the
same as the type returned by formBackingObject. As given in Listings 6.3 and 6.4, this form will

6.4. DETAILED EXAMPLES 81

Listing 6.4: Configuration for an edit account form
1 <bean id="editAccountForm" class="AccountFormController">

2 <property name="database" ref="myAccountDatabase"/>

3 <property name="formView" value="editAccount"/>

4 <property name="successView" value="thanks"/>

5 <property name="commandName" value="accountForm"/>

6 <property name="commandType" value="Account"/>

7 </bean>

work as expected.
Now, we will add a seemingly minor twist. Instead of returning to a thank you page, let’s

say our developer wants to go back to the same form. Therefore, in Listing 6.4, she changes the
success view as follows:

4 <property name="successView" value="editAccount"/>

Our developer isn’t entirely naive; she knows that in order to go to the form view, she’ll need to
provide the appropriate model data. Therefore, she also changes the return from the onSubmit
method to return the user’s entered data.2

20 public ModelAndView onSubmit(HttpServletRequest request, HttpServletResponse response,
21 Object command, BindException errors) throws Exception {
22 Account account = (Account)command;

23 accounts.save(account);

24 return new ModelAndView(getSuccessView(), errors.getModel());
25 }

She runs her application, and at first, everything appears fine. She can enter data on her form, she
can submit it, and it sends her back to the form again, with almost all of her data in place. Her text
boxes all have data, but the drop down lists for the states and countries are completely empty!

As it turns out, when an HTTP POST occurs to the SimpleFormController, it will bind the
user’s data into errors.getModel(), but it won’t call referenceData and bind that as well. Pre-
sumably, this is because the reference data won’t be needed for the success view. Of course, this
isn’t the case when the success view happens to be the form view.

There are two ways to solve this problem. The first is to manually call referenceData and
store the result into the model map, but this is not recommended. The recommended practice is
to instead return from onSubmitwith a call to showForm, as shown:

20 public ModelAndView onSubmit(HttpServletRequest request, HttpServletResponse response,
21 Object command, BindException errors) throws Exception {
22 Account account = (Account)command;

23 accounts.save(account);

24 return showForm(request, response, errors);
25 }

2Don’t ask why the model data is stored in an object called errors with type BindException. It’s not my design
choice, nor is it relevant to the problem, and the answer may be longer than this thesis. Just go with it.

82 CHAPTER 6. CASE STUDY: SPRING FRAMEWORK

This call is made automatically when an HTTP GET occurs, but not on HTTP POST. In addition to
setting up the reference data, it also does several other tasks necessary for proper form function-
ality.

This constraint is very simple to trigger (all we need is for the success view to be the same as
the form view), yet very difficult to discover and fix. Of course, by specifying this constraint in
Fusion, we will help the developer to find the problem before she runs her application and walks
through all the steps necessary to trigger the problem.

To specify this constraint in Fusion, we will need four relationship types:

1. FormViewName(SimpleFormController, String) represents the association between a Sim-
pleFormController and the string id of its form view.

2. SuccessViewName(SimpleFormController, String) represents the association between a Sim-
pleFormController and the string id of its success view.

3. MAVViewName(ModelAndView, String) represents the relationship between a ModelAndView
object and the string id of the view it contains.

4. ShowForm(ModelAndView, HttpServletRequest, BindException) represents the relationship
between a HttpServletRequest and a BindException when they are used as parameters to
a showForm call and return the given ModelAndView.

The only relationships retrieved from XML are the FormViewName and SuccessViewName rela-
tionships; the XQuery to retrieve these is shown in Listing 6.5.

The specifications for the constraint on how to return from SimpleFormController.onSubmit
are in Listing 6.6. The first two specifications are straightforward: upon requesting either a form
view or a success view, Fusion will restrict the possible options for the return value to be only what
was already known from the configuration file. The next two are also straightforward, as they
simply associate a ModelAndView object with the view parameter that was used at its construction
with the MAVViewName relationship. The next specification is more interesting; the goal here is to
find out that the returned ModelAndView from a call to showForm always will have the form view
as its view. Since we already have the FormViewName relationship and wish to use the one we
have, this relationship appears in the trigger predicate. This will then bind the view parameter to
the appropriate object when we create the MAVViewName relationship later.

Finally, the constraint itself is at the end of the onSubmit method, specified with the opera-
tion EOM: SimpleFormController.onSubmit. Enforcing the desired rule is now simple. We are
only concerned with the case where we are attempting to return a ModelAndView object from
this method, and that ModelAndView object’s view is our form view. In this case, we require that
ModelAndView must have been the result of a proper call to showForm.

As seen in Table 6.4, this constraint works exactly as expected with the pragmatic variant. In
the original example, where the success view and form view are different, the final constraint
won’t trigger because the view of the ModelAndView being returned is not a form view. However,
if it is a form view, then it will ensure that this ModelAndView object was the result of a call to
showForm, as opposed to a call to new ModelAndView.

6.4. DETAILED EXAMPLES 83

Listing 6.5: Retrieve the relationships FormViewName and SuccessViewName from a Spring
XML file

1 declare namespace sf="http://www.springframework.org/schema/beans";
2 declare namespace fusion="http://code.google.com/p/fusion";
3 declare variable $doc as xs:string external;
4

5 for $bean in doc($doc)/sf:beans/sf:bean
6 let $formView := $bean/sf:property[@name="formView"]
7 where fusion:isSubtype($bean/@class,"org.springframework.web.servlet.mvc.SimpleFormController")
8 and not(empty($formView))
9 return <Relationship name="FormViewName" effect="ADD">

10 <Object name ="{data($bean/@id)}" type="{data($bean/@class)}"/>

11 <Object name ="{data($formView/@value)}" type="java.lang.String"/>

12 </Relationship>

13

14 for $bean in doc($doc)/sf:beans/sf:bean
15 let $successView := $bean/sf:property[@name="successView"]
16 where fusion:isSubtype($bean/@class,"org.springframework.web.servlet.mvc.SimpleFormController")
17 and not(empty($successView))
18 return <Relationship name="SuccessViewName" effect="ADD">
19 <Object name ="{data($bean/@id)}" type="{data($bean/@class)}"/>

20 <Object name ="{data($successView/@value)}" type="java.lang.String"/>

21 </Relationship>

6.4.3 Trigger predicate v. Requires predicate

The next example highlights how the pragmatic variant is affected by the form of the specifi-
cations. In particular, we will see two specifications that, while identical within the sound and
complete variants, are different under the pragmatic variant due to how the pragmatic variant
treats the trigger and requires predicates differently.

This example will study the use of ViewResolvers in Spring. As seen in the last section,
Controllers return a ModelAndView object which contains the name of a view. A ViewResolver
looks up this name, retrieves a file on the system, and does any processing to associate the model
with the view. For example, the InternalResourceViewResolver in Listing 6.7 will look up a JSP
file and use the model data as the parameters to the JSP. After processing, the resulting data is sent
back to the end-user that made the original HTTP Request.

In Spring, a ViewResolvermay handle HTML, JSP, TXT, or even a PDF. To deal with all of these
within a single application, Spring allows a programmer to chain ViewResolvers together so that
if the first one in the chain cannot find the view that goes with the identifier, it can pass the request
on to the next ViewResolver. However, some ViewResolvers don’t forward the request through;
these ViewResolvers can only be the last item in the chain. The InternalResourceViewResolver
is one such example; if it cannot find the view for an identifier, it will simply return with no view.
In fact, all subtypes of UrlBasedViewResolver, of which InternalResourceViewResolver is one,
will not forward a request and must be last in the chain.

This can cause confusion, as was the case for the programmer “ilpata” in thread number 36891
[56] from Table 6.3. This programmer was attempting to use two ViewResolvers but chained them

84 CHAPTER 6. CASE STUDY: SPRING FRAMEWORK

Listing 6.6: Specifications for the correct return from SimpleFormController.onSubmit
1 @Constraint(
2 op=‘‘SimpleFormController.getFormView() : String’’,
3 restrictTo=‘‘FormViewName(target, result)’’
4)
5 @Constraint(
6 op=‘‘SimpleFormController.getSuccessView() : String’’,
7 restrictTo=‘‘SuccessViewName(target, result)’’
8)
9

10 @Constraint(
11 op=‘‘ModelAndView(String view)’’,
12 effect={‘‘MAVViewName(result, view)’’}
13)
14 @Constraint(
15 op=‘‘ModelAndView(String view, Map model)’’,
16 effect={‘‘MAVViewName(result, view)’’}
17)
18

19 @Constraint(
20 op=‘‘SimpleFormController.showForm(HttpServletRequest request, HttpServletResponse response,
21 BindException errors) : ModelAndView’’,
22 trigger=‘‘FormViewName(target, view)’’,
23 effect={‘‘MAVViewName(result, view)’’, ‘‘ShowForm(result, request, errors)’’}
24)
25

26 @Constraint(
27 op=‘‘EOM: SimpleFormController.onSubmit(HttpServletRequest request, HttpServletResponse response,
28 Object command, BindException errors) : ModelAndView’’,
29 trigger=‘‘MAVViewName(result, view) AND FormViewName(target, view)’’,
30 requires=‘‘ShowForm(result, request, errors)’’
31)

Listing 6.7: Incorrect resolver chain
1 <beans>

2 <bean id="jspViewResolver"

3 class="org.springframework.web.servlet.view.InternalResourceViewResolver">

4 <property name="order" value="1"/>

5 <property name="viewClass" value="org.springframework.web.servlet.view.JstlView"/>

6 <property name="prefix" value="/WEB-INF/jsp/"/>

7 <property name="suffix" value=".jsp"/>

8 </bean>

9

10 <bean id="alternativeViewResolver"

11 class="org.springframework.web.servlet.view.ResourceBundleViewResolver">

12 <property name="order" value="2"/>

13 <property name="basename" value="views"/>

14 </bean>

15 </beans

6.4. DETAILED EXAMPLES 85

Listing 6.8: XQuery to retrieve the relationship ResolverChain from a Spring configuration file
1 declare namespace sf="http://www.springframework.org/schema/beans";
2 declare namespace fusion="http://code.google.com/p/fusion"
3 declare variable $doc as xs:string external;
4

5 for $res1 in doc($doc)/sf:beans/sf:bean
6 for $res2 in doc($doc)/sf:beans/sf:bean
7 where fusion:isSubtype($res1/@class, "ViewResolver") and
8 fusion:isSubtype($res2/@class, "ViewResolver") and
9 $res1/sf:property[@name="order"]/@value = ($res2/sf:property[@name="order"]/@value - 1)

10 return <Relationship name="ResolverChain" effect="ADD">
11 <Object name ="{data($res1/@id)}" type="{data($res1/@class)}"/>

12 <Object name ="{data($res2/@id)}" type="{data($res2/@class)}"/>

13 </Relationship>

so that the InternalResourceViewResolverwas first rather than last, as seen by the configuration
file posted in Listing 6.7. This programmer was particularly confused because there was a sec-
ondary bug that would cause the ResourceBundleViewResolver to fail if it was ever run, so from
“ilpata”’s perspective, it was at least partially working when the InternalResourceViewResolver
was first in the chain. Due to the delayed nature of the error when the InternalResourceView-
Resolver is first in the chain, “ilpata” assumed that this was more correct than the opposite and
so had to be told three times by the experts that this was the primary issue and that a secondary
issue was causing the other error.3 Because of this, the thread took three days to resolve.

By specifying this in Fusion, we can detect the defect at compile time, and hopefully make it
clear to “ilpata” earlier that the chaining issue is the primary problem. To create the constraint, I
use the relation

ResolverChain(ViewResolver, ViewResolver)

to describes a chain of two resolvers where the second parameter comes after the first parameter
in the chain. A larger chain of size n can then be represented by n − 1 ResolverChain relation-
ships. The XQuery in Listing 6.8 will retrieve these relationships from a Spring XML file; thus,
the XML from Listing 6.7 will produce the single relationship ResolverChain(jspViewResolver,
alternativeViewResolver).

The constraint itself seems fairly straightforward. As this constraint only concerns XML, and
not Java, we will use the “XML” operator in Fusion to verify that the XML passes the constraint
right after all XML files have been processed by the XQuery. At this point, if we have an object of
type UrlBasedViewResolver, we must ensure that it does not have anything after it in the chain.
This could be written as:

1 @Constraint(
2 op=‘‘XML’’,
3 trigger=‘‘prevRev instanceof UrlBasedViewResolver’’,
4 requires=‘‘!ResolverChain(prevRev, nextRev)’’
5)

3The secondary issue is not currently specifiable by Fusion, as it requires knowledge of URLs and resources.

86 CHAPTER 6. CASE STUDY: SPRING FRAMEWORK

Listing 6.9: Correct resolver chain of three resolvers
1 <beans>

2 <bean id="primaryViewResolver" class="org.springframework.web.servlet.view.XMLViewResolver">

3 <property name="order" value="1"/>

4 </bean>

5

6 <bean id="alternativeViewResolver"

7 class="org.springframework.web.servlet.view.ResourceBundleViewResolver">

8 <property name="order" value="2"/>

9 <property name="basename" value="views"/>

10 </bean>

11

12 <bean id="jspViewResolver"

13 class="org.springframework.web.servlet.view.InternalResourceViewResolver">

14 <property name="order" value="3"/>

15 <property name="viewClass" value="org.springframework.web.servlet.view.JstlView"/>

16 <property name="prefix" value="/WEB-INF/jsp/"/>

17 <property name="suffix" value=".jsp"/>

18 </bean>

19 </beans>

The constraint above will allow all three variants to detect the error in Listing 6.7. However,
when this constraint is used on correct code, such as that in Listing 6.9, something interesting
occurs: the pragmatic variant believes there is still a bug. A little investigation reveals the source:
while the trigger predicate is True, the requires predicate is Unknown. While we do not have any
ResolverChain relationships with jspViewResolver as the first parameter, we don’t know that
those relationships are false, either. Our XQuery only created relationships; it did not specify
the non existence of the relationships ResolverChain(jspViewResolver, primaryViewResolver) and
ResolverChain(jspViewResolver, alternativeViewResolver).

There are two ways to address this issue. The first would be to modify the XQuery to specify
non-existence of all other possible relationships. This will have the side effect of also increasing
the precision of the sound and complete variants, but the specification cost is high and the analysis
run time will be high as well. The second is a seemingly innocuous change: swap the trigger and
requires predicate to be a logically equivalent constraint of the form:

1 @Constraint(
2 op=‘‘XML’’,
3 trigger=‘‘ResolverChain(prevRev, nextRev)’’,
4 requires=‘‘prevRev !instanceof UrlBasedViewResolver’’
5)

This works because now the relationship which can produce Unknown is in the trigger clause
and the instanceof predicate, which only evaluates to True or False, is in the requires clause.

This should seem amiss to the reader: up until this point, we have thought of the association
between trigger and requires to be implication. That is, Ptrg =⇒ Preq. However, we have just
determined that, for the pragmatic variant, A =⇒ ¬B is not equivalent to B =⇒ ¬A! In fact,
as seen by Table 6.6, these are also not equivalent in the pragmatic variant to A ∧ B =⇒ False.

6.4. DETAILED EXAMPLES 87

While all three forms are logically equivalent4, and do produce the same results within the sound
and complete variants, the pragmatic variant treats them differently.

This is a core feature of the pragmatic variant’s heuristic. The pragmatic variant assumes that
if there is enough knowledge for the trigger predicate to be known, then there must be enough
for the requires predicate. While this works well in instances where there is no negation, it can
cause interesting results when there is negation in the requires predicate, as most constraints and
XQuery do not remove relationships explicitly. Unfortunately, there is no hard rule for how to
use negation in the requires predicate, and how to write the specification depends on the desired
results as shown in Table 6.6. Luckily, using negation seems to be an uncommon paradigm in
practice; only this constraint and the constraint from Vignette 3.1 use negation, and the constraints
in Vignette 3.1 do explicitly remove the relationship in question, thus avoiding the entire problem..

This constraint highlights how the specification writer’s choices make large effects on the anal-
ysis results, even on small, well defined constraints. The benefit of Fusion is that it uses heuristics
about how a developer might typically write a specification in order to achieve cost-effective re-
sults. The entire purpose of the pragmatic variant is to encapsulate a heuristic that triggers are
intended to be true, rather than unknown. While such heuristics can backfire, they generally pro-
vide better results than either a provably sound or provably complete system, as seen in the results
from Table 6.4.

6.4.4 Objects v. Operations

The final example explores the tradeoffs that can occur between the complexity of the specification
and the precision of the analysis. As it will turn out, more complex and precise specifications are
not necessarily better!

Recall that SimpleFormController.referenceData should return a Map that maps Strings
to Objects for the view to use. This map will contain any data needed for the view, with the
exception of the form backing object. Therefore, most implementations of referenceData take the
following steps:

1. Create a Map

2. Get values out of the Request

3. Use above values to retrieve data from elsewhere, like a database

4. Put data into the Map using predetermined String constants that match the variables used
in the associated view

As simple as this sounds, the user “CuriousHARD” ran into problems with this when the form
kept resetting the user’s data. After posting for help on the forums [29], the user “Marten Deinum”
found several problems in CuriousHARD’s code, including two related to the referenceData
method displayed in Listing 6.10.

4They are actually not equivalent when there are variables bound by one and not by the other. While this happens
to be the case here (recall the two quantifiers from Chapter 5), it is a secondary issue. The phenomenon described on
the pragmatic variant will even arise when a single quantifier works over both A and B.

88 CHAPTER 6. CASE STUDY: SPRING FRAMEWORK

Table
6.6:

A
truth

table
com

paring
logically

equivalent
constraints.

These
three

constraints
are

logically
equivalent

if
w

e
think

of
a

constraint
as
P

t
r
g

=⇒
P

r
e
q ,and

they
are

treated
equiva-

lently
by

the
sound

and
com

plete
variants.

H
ow

ever,the
pragm

atic
variant

treats
them

differ-
ently.

A
True

True
True

False
False

False
U

nknow
n

U
nknow

n
U

nknow
n

B
True

False
U

nknow
n

True
False

U
nknow

n
True

False
U

nknow
n

Sound
P
trg

=
A

Error
Error

Error
Error

Error
P
re
q

=
¬
B

Sound
P
trg

=
B

Error
Error

Error
Error

Error
P
re
q

=
¬
A

Sound
P
trg

=
A

∧
B

Error
Error

Error
Error

Error
P
re
q

=
False

C
om

plete
P
trg

=
A

Error
P
re
q

=
¬
B

C
om

plete
P
trg

=
B

Error
P
re
q

=
¬
A

C
om

plete
P
trg

=
A

∧
B

Error
P
re
q

=
False

Pragm
atic

P
trg

=
A

Error
Error

P
re
q

=
¬
B

Pragm
atic

P
trg

=
B

Error
Error

P
re
q

=
¬
A

Pragm
atic

P
trg

=
A

∧
B

Error
P
re
q

=
False

6.4. DETAILED EXAMPLES 89

Listing 6.10: Original buggy implementation of referenceData, as posted by CuriousHARD
[29]

1 public class QuotationCntrl extends AbstractWizardFormController {
2 protected Map referenceData(HttpServletRequest request, Object command,
3 Errors errors, int page) throws Exception {
4 model = new HashMap<String, Object>();
5 model.put("quotation", formBackingObject(request));

6

7 if (page == 0)
8 request.setAttribute("branches", dao.getBranches());

9 else if (page == 1)
10 request.setAttribute("vh", dao.getVehicleDescription());

11 else if (page == 2) {
12 request.setAttribute("policyCoverTypes", dao.getPolicyCoverTypes());

13 request.setAttribute("companies", dao.getInsuranceCompanies());

14 }

15 return model;
16 }

17 ...

18 }

1. The first problem is that the code in Listing 6.10 directly manipulates the request object. This
makes this code fragile, as there is no guarantee that this object’s data will be propagated
throughout the system; it is given as a parameter for reading data, not for writing data. As
seen in Listing 6.11, the correct way to set the values is to create and manipulate a Map that
is returned from this method and use the request as a read-only structure.

2. The second problem is on line 5 of Listing 6.10, where the code actually puts the form back-
ing object into the returned Map. As the form backing object is handled separately by the
framework, it should not be put into this Map, as can be seen in Listing 6.11. Doing so caused
the problem seen by CuriousHARD, where the form kept overwriting the user’s data with a
new form backing object.

Notice that both of these constraints are extrinsic (they constrain operations HttpServlet-
Request and Map respectively), and they only make this constraint within the context of a call
to referenceData. Therefore, we will use a @Callback specification to signal whether we are
within a referenceData method. As it turns out, there are actually four such methods in the
AbstractFormController hierarchy, so we specify all of them as shown in Listing 6.12.5 The
unary relationship used for this callback has type RefData(AbstractFormController).

5This is not unusual in Spring: there are four versions of the showForm method and three versions of the onSubmit
method. For simplicity, I elided these multiple versions in the earlier example.

90 CHAPTER 6. CASE STUDY: SPRING FRAMEWORK

Listing 6.11: Correct version of referenceData, as posted by Marten Deinum [29]
1 public class QuotationCntrl extends AbstractWizardFormController {
2 protected Map referenceData(HttpServletRequest request, Object command,
3 Errors errors, int page) throws Exception {
4 model = new HashMap<String, Object>();
5

6 if (page == 0)
7 map.put("branches", dao.getBranches());

8 else if (page == 1)
9 map.put("vh", dao.getVehicleDescription());

10 else if (page == 2) {
11 map.put("policyCoverTypes", dao.getPolicyCoverTypes());

12 map.put("companies", dao.getInsuranceCompanies());

13 }

14 return model;
15 }

16 ...

17 }

Listing 6.12: Callback specifications on all the versions of referenceData.
1 public class AbstractFormController extends BaseCommandController {
2 @Callback(‘‘RefData’’)
3 protected Map referenceData(HttpServletRequest request, Object command,
4 Errors errors) throws Exception {...}
5 ...

6 }

7

8 public class SimpleFormController extends AbstractFormController {
9 @Callback(‘‘RefData’’)

10 protected Map referenceData(HttpServletRequest request) throws Exception {...}
11 ...

12 }

13

14 public class AbstractWizardFormController extends AbstractFormController {
15 @Callback(‘‘RefData’’)
16 protected Map referenceData(HttpServletRequest req, int page) throws Exception {...}
17

18 @Callback(‘‘RefData’’)
19 protected Map referenceData(HttpServletRequest req, Object command,
20 Errors errors, int page) throws Exception {...}
21 ...

22 }

6.4. DETAILED EXAMPLES 91

I’ll now provide specifications for the first constraint. At the simplest level, we want to prevent
calls to request.setAttribute from within referenceData. This can be accomplished with the
following specification:

1 @Constraint(
2 op=‘‘ServletRequest.setAttribute(String str, Object obj) : void’’,
3 trigger=‘‘RefData(ctrlr)’’,
4 requires=‘‘FALSE’’
5)

However, the specification above might be overly general. Is it really the case that we want to
prevent all calls to this method, on all request objects? What we really want is to prevent mod-
ification to only the request object used as a parameter into referenceData. By abstracting the
read-only state of this parameter into a relationship, we can do this instead:

1 @Constraint(
2 op=‘‘BOM: AbstractFormController.referenceData(HttpServletRequest req, Object command,
3 Errors errors) : Map’’,
4 effect={‘‘ReadOnly(req)’’}
5)
6 @Constraint(
7 op=‘‘BOM: SimpleFormController.referenceData(HttpServletRequest req) : Map’’,
8 effect={‘‘ReadOnly(req)’’}
9)

10 @Constraint(
11 op=‘‘BOM: AbstractWizardFormController.referenceData(HttpServletRequest req, int page) : Map’’,
12 effect={‘‘ReadOnly(req)’’}
13)
14 @Constraint(
15 op=‘‘BOM: AbstractWizardFormController.referenceData(HttpServletRequest req, Object command,
16 Errors errors, int page) : Map’’,
17 effect={‘‘ReadOnly(req)’’}
18)
19 @Constraint(
20 op=‘‘HttpServletRequest.setAttribute(String str, Object obj) : void’’,
21 trigger=‘‘TRUE’’,
22 requires=‘‘!ReadOnly(target)’’
23)

In this specification, the system will mark the parameter as read-only in lines 1-18, and so it will
disallow any method calls that are marked as not being read only, such as in lines 19-23. However,
writable methods could be called on other HttpServletRequest objects, if we had access to any.

These two sets of specifications show how to trade off generality with regard to the object and
to the operations. The first set limits a specific operation on all objects, while the second set limits
all modifying operations on a specific object. The second set is also more modular and modifiable:
if a developer adds new operations to HttpServletRequest, she does not need to be aware of all
the possible specifications that clients have already written regarding modifiability. Instead, she
can just make a constraint similar to lines 19-23 if the new operations is a modifying operation.

From this, we might presume the second set is clearly better to use: it’s more precise and more
modular. However, there is still an interesting argument for using the first specification: it is small,

92 CHAPTER 6. CASE STUDY: SPRING FRAMEWORK

Listing 6.13: Retrieve the relationship FormCommand from a Spring XML file
1 declare namespace sf="http://www.springframework.org/schema/beans";
2 declare namespace fusion="http://code.google.com/p/fusion";
3 declare variable $doc as xs:string external;
4

5 for $bean in doc($doc)/sf:beans/sf:bean
6 let $cmdClass := $bean/sf:property[@name="commandClass"]
7 let $cmdName := $bean/sf:property[@name="commandName"]
8 let $beanType := data($bean/@class)
9 where fusion:isSubtype($beanType,"BaseCommandController") and not(empty($cmdClass))

10 return <Relationship name="FormCommand" effect="ADD">
11 <Object name ="{data($cmdClass/@value)}" type="java.lang.Class"/>

12 <Object name ="{data($cmdName/@value)}" type="java.lang.String"/>

13 <Object name ="{data($bean/@id)}" type="{$beanType}"/>

14 </Relationship>

easy to write and understand, and it will still likely capture most problems with few false posi-
tives. To even get a false positive, we would need access to a second object with the same type, and
that seems unlikely. Likewise, while it isn’t flexible to future changes to the HttpServletRequest
API, we can rightly question how likely it is for such changes to occur and affect this type of
program.

The second problem from the thread contains a similar tradeoff. Recall that the rule is that we
cannot insert the form backing object into the Map returned by referenceData. In particular, we
are not allowed to use the command that will be associated with this backing object as a key in
the Map. For this constraint, we will the FormCommand(Class, String, BaseCommandController)
relationship.6 This relationship associates a BaseCommandController with the command name
and the class of the backing object that was declared in the XML file; the XQuery to retrieve this
relationship is in Listing 6.13.

Our first attempt at this is simple: prevent all calls to Map.put when we are in referenceData
and the key matches the command name:

1 @Constraint(
2 op=‘‘Map.put(String str, Object obj) : Object’’,
3 trigger=‘‘FormCommand(clss, str, ctrlr) AND RefData(ctrlr)’’,
4 requires=‘‘FALSE’’
5)

However, as before, this works in most cases but is slightly unsatisfactory, as it prevents this
operation on all maps, not just the map which is returned from the referenceDatamethod.

The problem can be fixed by tracking the keys that are put into a map (with the MapKey(Object,
Map) relationship) and then placing a constraint on the end of the referenceDatamethod that the
Map being returned does not contain the form command as a key. The specifications in Listing 6.14
do exactly this and allow the pragmatic analysis to find all of the erroneous plugins.

6As seen in Figure 6.1, BaseCommandController is a superclass of SimpleFormController that handles mapping a
form backing object to a command for the view to use.

6.5. GENERALIZABLE PROPERTIES OF FUSION 93

Listing 6.14: Specifications to precisely describe correct usage of the Map in referenceData.
1 @Constraint(
2 op=‘‘Map.put(Object key, Object value) : void’’,
3 effect={‘‘MapKey(target, key)’’}
4)
5

6 @Constraint(
7 op=‘‘EOM: AbstractFormController.referenceData(..) : Map’’,
8 trigger=‘‘MapKey(result, str) AND FormCommand(clss, str, target)’’,
9 requires=‘‘FALSE’’

10)

These specifications aren’t without problems. While they are correct with regard to allowing
and disallowing the right sets of plugins, the error produced is not in as useful of a location for
the plugin developer. While the first attempt gave an error at the line where the command name
was put into the Map, the second set delays the error until the return statement.

Both of these constraints show the tradeoff between creating a generic constraint that applies
to all objects and creating more specifications which are specific to the problem. Which is “better”
is dependent on several external factors, including the problem itself, the expected ways that a
plugin developer might break the constraint, and the time of the framework developer. Since
the Fusion language works with an abstract representation that is not directly tied to the heap, it
provides framework developers with the flexibility to choose their own level of abstraction based
upon their needs. In fact, the anticipated use of Fusion would be as a fire-fighting tool, where
specifications are only written or refined on an as needed-basis. When a developer discovers a
commonly broken constraint, she can create a small specification that will check most instances,
and if it becomes a further problem, she can refine it later.

6.5 Generalizable properties of Fusion

In this thesis, I’ve shown Fusion to be able to specify the collaboration constraints found within
the ASP.NET and Spring frameworks. While it is not possible to generalize from this to all frame-
works, the Spring case study did give a sense as to what parts of this system might generalize
easily to other frameworks, and what parts might not.

1. Relationships generalize. The relationship abstraction generalized well and did not change
throughout the case study. Its flexibility allowed it to be used to specify not only pure Java
examples, but also pure XML examples and mixed examples. The relationships themselves
can even cross the boundaries of frameworks; as seen above, we created the MapKey(Object,
Map) and ReadOnly(ServletRequest) relationships that are used by the Spring framework,
but they are really owned and created by the Collections framework and Servlet framework
respectively.

2. Constraints generalize. The form of writing the constraints with distinct predicates for the
trigger, requirement, restriction, and effect also generalizes well. While there are several

94 CHAPTER 6. CASE STUDY: SPRING FRAMEWORK

kinds of specifications in Fusion that are specific to common paradigms (like the callback
specification and the effect specifications), and we might make others to address common
paradigms of other frameworks, all of them can be rewritten into the general constraint form.

3. Operators do not generalize. When I started this research, the only operator allowed in the “op”
part of a constraint was a method call. This has expanded to cover constructors, beginning of
method tags, end of method tags, and even an operator for checking a constraint only after
the declarative files are processed. These were sufficient to cover the interaction paradigms
that Spring has with its plugins, but such paradigms might be different for other systems. As
seen in Table 6.2 field read and writes were also important for Spring, and one could imagine
scenarios where even locking on a particular object is part of a collaboration constraint.

4. Languages do not generalize. Even for very similar languages, such as Java and C# or XML
and ASPX, the language features that are used the most for framework interactions are the
ones that are the most complex and the most distinctive to the specific language. To make
this system truly work for C#, I would need to add support for properties, delegates, and
partial classes, all of which play key roles in the ASP.NET framework. To completely work
for Spring, Table 6.2 showed that Fusion needed to support JSP, OGNL, reflection, and even
filesystem resources. While the declarative languages XML, ASPX, and JSP all have sim-
ilar syntax, their form is distinct enough that each would require their own language for
retrieving relationships.

While the Fusion language itself might not generalize beyond the common paradigms of Java
and XML-based frameworks, it seems reasonable that the abstractions that Fusion is based upon,
particularly the relationship and constraint abstractions, would generalize to other languages and
paradigms.

Chapter 7
Adoptability

In my thesis, I have set out to create an adoptable specification and analysis tool to describe collab-
oration constraints and statically detect violations of them. In previous chapters, I have shown the
functionality and scope of the system, but I did not discuss whether it was adoptable. That is, is
the Fusion tool reasonable to use in practice?

While the best way to answer such a question would be to deploy the tool to a wide variety of
industry projects, this is not feasible for an alpha-stage research project. Therefore, I have used the
research literature to create a list of properties that an adoptable specification and analysis system
must have. This list is by no means complete; it leaves out many properties such as a good user
interface and integration with existing tools. However, I can show that Fusion does have several
properties which are necessary, if not sufficient, for industrial adoption.

In this chapter, I will present a second case study done with Pradel, Aldrich, and Gross [86].
In this case study, we combined Pradel and Gross’s specification miner [85] and Fusion to analyze
the DaCapo benchmarks, a well-studied suite of program analysis benchmarks [18], to check col-
laboration constraints from the Java Standard Libraries. This case study shows several properties
of Fusion that are necessary for adoption and are part of existing industry tools.

7.1 Reducing specification burden

One of the most important properties of an adoptable specification language is to reduce the cost
of writing specifications as much as possible. Many commercial tools go as far as having no
specifications at all, including Klocwork [64], Fortify [41], Findbugs [37], and Coverity [28]. Other
tools, like JSure [70] and Spec# [88], reduce the specification burden by making languages that
are highly modular so that the developers can specify as little or as much of the system as they
like, thus allowing them to make their own cost-benefit tradeoff. Fusion also works on this model
by allowing developers to specify as each constraint independently without specifying the entire
framework.

Even writing these few specifications can be costly, as developers must learn a new speci-
fication language. To further reduce the specification burden, some tools have begun inferring

95

96 CHAPTER 7. ADOPTABILITY

specifications through analysis. Inference is well-known within the type systems community, and
entire languages, such as ML, are built with type inference in mind. Even popular industry lan-
guages, such as C#, have incorporated local type inference to reduce the burden of writing down
type specifications [75].

While static inference can reduce type specifications, dynamic inference has been shown to
capture more complex specifications. Both the Daikon research tool [48] and the commercial tool
TestOne [6] use dynamic analysis to infer the pre- and post-conditions of methods. More recently,
dynamic analysis has been used to infer multi-object protocols [67, 69, 85] similar to those de-
scribed by Fusion. In our recent study we utilized these dynamically inferred protocols as spec-
ifications of collaboration constraints and used them to check programs without any developer
intervention.

Our combined system and evaluation of it is written up fully in [86], but I provide a brief high-
level description here. We ran the specification miner described in [85] on several samples runs of
production-quality code. From these runs, the specification miner produces state machines based
upon the calls it sees; a sample state machine from the Iterator protocol is shown in Figure 7.1.
We translated each of these protocols into a Fusion specification. The actual translation is written
up in [86] and is not necessary for this discussion. However, it is important to know that in order
to retain precision, we created what we termed the “triple bookkeeping” system: we effectively
translated the state machine in three ways. For each state machine, we created relationships from
the states themselves, the operations used to transition, and the associations between each pair
of objects in the protocol. This allows the analysis to regain precision from the other two sets of
relationships even when one set losses precision.

The triple bookkeeping of the state machine creates some very complex constraint specifica-
tions. The protocol of Figure 7.1 is translated into 13 constraints, as shown in Listing 7.1, which
utilizes 8 relationships. By contrast, the same protocol, specified by hand, only uses 3 constraints
and 2 relationships, as shown in Listing 7.2. When specified by hand, the developer can take ad-
vantage of their global abstractions of the protocol, rather than doing more local transformations.
In fact, Listing 7.2 is not only more concise, but also more precise as the protocol miner in [85]
does not take advantage of the return values from methods (like Iterator.hasNext()). While the
inferred constraints are far more complex, they took no intervention from the developer beyond
running the specification miner on sample programs.

7.2 Scalability and Performance

Scalability is another important property of an adoptable program analysis. In [14], the Coverity
team explains that in order for their tool to be marketable to companies, they have to be able to run
their analysis tool in an overnight build of 12 hours. Based on their experience, an analysis tool
needs to process 1400 LOC a minute, which comes to about 1 MLOC an hour. In extreme cases,
such as where they are running on over 10 MLOC, they can get away with a 24 hour analysis time.

To truly evaluate scalability, I would need to show the run times for samples of different sizes
of programs with different numbers of specifications; I will not be doing that here. Instead, I will
demonstrate that Fusion can achieve the high bar set by Coverity with regards to performance
and I will identify the aspects that lead to scalability and performance concerns within Fusion.

7.2. SCALABILITY AND PERFORMANCE 97

Listing 7.1: Automatically generated specifications for the state machine shown in Figure 7.1.
While these specifications appear to be unnecessarily repetitive, the repetition is necessary for
more complex inferred protocols.

1 Constraint(op =‘‘Iterator.remove() : void’’,
2 trg =‘‘(fsm162(target))’’,
3 req = ‘‘TRUE AND remove(target)’’)
4 Constraint(op =‘‘Iterator.remove() : void’’,
5 trg =‘‘(fsm162(target)) AND (s1(target))’’,
6 eff = {‘‘hasNext(target)’’, ‘‘!s1(target)’’, ‘‘s0(target)’’, ‘‘!next(target)’’, ‘‘fsm162(target)’’,
7 ‘‘!s3(target)’’, ‘‘!remove(target)’’})
8 Constraint(op =‘‘Iterator.remove() : void’’,
9 trg =‘‘(fsm162(target))’’,

10 eff = {‘‘hasNext(target)’’, ‘‘!s1(target)’’, ‘‘s0(target)’’, ‘‘!next(target)’’, ‘‘fsm162(target)’’,
11 ‘‘!s3(target)’’, ‘‘!remove(target)’’})
12 Constraint(op =‘‘Iterator.next() : Object’’,
13 trg =‘‘(fsm162(target))’’,
14 req = ‘‘TRUE AND next(target)’’)
15 Constraint(op =‘‘Iterator.next() : Object’’,
16 eff = {‘‘hasNext(target)’’, ‘‘remove(target)’’, ‘‘!next(target)’’, ‘‘fsm162(target)’’, ‘‘!s3(target)’’,
17 ‘‘s1(target)’’, ‘‘!s0(target)’’})
18 Constraint(op =‘‘Iterator.next() : Object’’,
19 trg =‘‘(fsm162(target)) AND (s3(target))’’,
20 eff = {‘‘hasNext(target)’’, ‘‘remove(target)’’, ‘‘!next(target)’’, ‘‘fsm162(target)’’, ‘‘!s3(target)’’,
21 ‘‘s1(target)’’, ‘‘!s0(target)’’})
22 Constraint(
23 op =‘‘Iterator.next() : Object’’,
24 trg =‘‘(fsm162(target))’’,
25 eff = {‘‘hasNext(target)’’, ‘‘remove(target)’’, ‘‘!next(target)’’, ‘‘fsm162(target)’’, ‘‘!s3(target)’’,
26 ‘‘s1(target)’’, ‘‘!s0(target)’’})
27 Constraint(op =‘‘Iterator.hasNext() : boolean’’,
28 trg =‘‘(fsm162(target))’’,
29 req = ‘‘TRUE AND hasNext(target)’’)
30 Constraint(op =‘‘Iterator.hasNext() : boolean’’,
31 trg =‘‘(s0(target)) AND (fsm162(target))’’,
32 eff = {‘‘hasNext(target)’’, ‘‘!s1(target)’’, ‘‘next(target)’’, ‘‘s3(target)’’, ‘‘fsm162(target)’’,
33 ‘‘!remove(target)’’, ‘‘!s0(target)’’})
34 Constraint(op =‘‘Iterator.hasNext() : boolean’’,
35 trg =‘‘(fsm162(target)) AND (s1(target))’’,
36 eff = {‘‘hasNext(target)’’, ‘‘!s1(target)’’, ‘‘next(target)’’, ‘‘s3(target)’’, ‘‘fsm162(target)’’,
37 ‘‘!remove(target)’’, ‘‘!s0(target)’’})
38 Constraint(op =‘‘Iterator.hasNext() : boolean’’,
39 eff = {‘‘hasNext(target)’’, ‘‘!s1(target)’’, ‘‘next(target)’’, ‘‘s3(target)’’, ‘‘fsm162(target)’’,
40 ‘‘!remove(target)’’, ‘‘!s0(target)’’})
41 Constraint(op =‘‘Iterator.hasNext() : boolean’’,
42 trg =‘‘(fsm162(target)) AND (s3(target))’’,
43 eff = {‘‘hasNext(target)’’, ‘‘!s1(target)’’, ‘‘next(target)’’, ‘‘s3(target)’’, ‘‘fsm162(target)’’,
44 ‘‘!remove(target)’’, ‘‘!s0(target)’’})
45 Constraint(op =‘‘Iterator.hasNext() : boolean’’,
46 trg =‘‘(fsm162(target))’’,
47 eff = {‘‘hasNext(target)’’, ‘‘!s1(target)’’, ‘‘next(target)’’, ‘‘s3(target)’’, ‘‘fsm162(target)’’,
48 ‘‘!remove(target)’’, ‘‘!s0(target)’’})

98 CHAPTER 7. ADOPTABILITY

Iterator.hasNext()
Iterator.hasNext()

Iterator.next()

Iterator.remove()

Iterator.hasNext()
Iterator.hasNext()

Iterator.next()

Figure 7.1: An inferred state machine on the Iterator protocol.

Listing 7.2: Manually written specifications for the state machine shown in Figure 7.1.
1 Constraint(
2 op =‘‘Iterator.hasNext() : boolean’’,
3 eff = {‘‘?HasNext(target) : result’’})
4 Constraint(
5 op =‘‘Iterator.next() : Object’’,
6 req =‘‘HasNext(target)’’,
7 eff = {‘‘!HasNext(target)’’, ‘‘Removable(target)’’,})
8 Constraint(
9 op =‘‘Iterator.remove() : void’’,

10 trg =‘‘Removable(target)’’,
11 eff = {‘‘!Removable(target)’’})

Once we had the 223 inferred constraint specifications as described above, we ran Fusion with
the specifications on the entire DaCapo benchmark. The DaCapo benchmark is a 1.5 MLOC bench-
mark of production code used for program analysis [18] and provides a useful measure for how
well our system works. While primarily used by dynamic analysis tools, it has recently been used
by static tools as well, including some related work [20, 25, 45, 78]. The size of each program
within the benchmark is shown in Table 7.1. Fusion successfully ran overnight on this benchmark
on an Intel machine with a 3.0 GHz quad-core processor and 8GB of RAM. While not running at
speeds of 1MLOC per hour, we made few optimizations and it ran overnight easily.

Simply running an intra-procedural analysis on 1.5 MLOC is fairly trivial though. In practice,
I found that three aspects beyond the lines of code significantly contributed to the performance
of Fusion: the number and complexity of these specifications, the number of times the specified
API was used, and the number of options produced by the points-to analysis. The complexity of
the specifications affect performance because there are simply more relationship effects to make
and more relationships to keep track of. The frequency that the API was used affected how often
an instruction in the program matched an operation in the specifications; in our case study, this

7.3. PRECISION 99

Program Description LOC
avrora Analysis of microcontrollers 69,393
batik SVG toolkit 186,460
daytrader Application server benchmark 12,325
eclipse Software development platform 289,641
fop Output-independent print formatter 102,909
h2 SQL relational database 120,821
jython Python interpreter 245,016
lucene Text indexing tool 124,105
pmd Source code analyzer 60,062
sunflow Photo-realistic rendering system 21,970
tomcat Servlet container 161,131
xalan XML processing 172,300
Sum 1,566,133

Table 7.1: DaCapo programs used for the evaluation of the inferred specifications. Table from
[86].

happened 606,706 times. Not all of these resulted in an error, or even a triggered constraint, but
each match takes time because we have to check the constraint to see if it is triggered.

The final piece, the points-to analysis, was a surprisingly large factor for scalability and per-
formance. In most cases when a constraint was triggered, there would be only a few substitutions
σ produced by the points-to analysis, as described in Chapter 5. However, certain methods would
produce thousands of substitutions; this frequently occurred in methods with many string con-
catenations. String concatenations produce a temporary string as a result, so it was not unusual
for a single method to have 15-20 potential labels for Strings. As any of these could be aliased,
there is a huge explosion in the number of possible substitutions. Code with string concatenations
would not be a problem normally, but we had several protocols about the StringBuffer API, so
these constraints matched instructions frequently. The sheer number of substitutions took sur-
prisingly long to check, and in tests, a single method like this would take hours and seem to hang
the analysis. To prevent this from occurring, we stopped analyzing a method if a constraint ever
matched with over 100 substitutions or if it takes longer than 30 seconds of analysis time. In prac-
tice, this occurs in less than 1% of methods, so we determined this to be a good tradeoff between
precision and performance. Coverity uses similar techniques in order to keep the analysis time
within an overnight run[14].

7.3 Precision

For a static analysis tool to be adopted by industry, its results must be precise enough to be cost
effective. Both false negatives and false positives decrease the value of a tool, and successful
industry tools provide a good balance between these. Each false negative from a tool decreases
its potential value, and the total cost of using the tool, including purchase cost and setup costs,
must be correspondingly lower. False positives also decrease value, though in a very different

100 CHAPTER 7. ADOPTABILITY

way. Each false positive costs (expensive) developer time to investigate. Worse yet, if there are
many false positives, developers will be unable to find the true positives and will stop using the
tool altogether. For this reason, sound analyses have had little little headway in industrial use.
Even unsound analyses tools must be mindful of this; in [14], the Coverity team explained their
experiences with false positives:

False positives do matter. In our experience, more than 30% easily causes problems. People
ignore the tool. True bugs get lost in the false. A vicious cycle starts where low trust causes
complex bugs to be labeled false positives, leading to yet lower trust....We aim for below 20%
for “stable” checkers. When forced to choose between more bugs or fewer false positives we
typically choose the later.

In Chapters 4 and 5, the pragmatic variant worked very well; in fact, it was perfectly precise.
However, this was on very limited examples. Each example program was relatively small and
was generated from snippets of code from internet help forums. In earlier chapters, I noticed that,
in addition to the variant, there were two other factors that impact precision: the precision of the
points-to analysis and the precision of the specifications. While neither was a serious issue in the
Spring case study, the DaCapo case study thoroughly tested both of these factors.

The DaCapo benchmarks are entirely large, open source programs that are currently in pro-
duction. As we expect to see relatively few bugs in previously-tested production code, we will
expect our false positive rate to be high. Additionally, this code has much more complex aliasing
patterns, and without any aliasing control specifications, like fractional permissions [21] or own-
ership types [27], it is going to be very difficult for a points-to analysis to produce precise results.
Therefore, we must expect Fusion to perform worse accordingly.

The specifications used in this case study are also not very precise. As the 223 protocols are
dynamically inferred, they can only capture the parts of the protocol that the training runs actually
used. To make matters worse, the translation from these protocols into specifications are not as
precise as human specifications, and the inferred protocols do not capture value-based informa-
tion, like whether the return value from hasNext is true or false. To remove the worst offenders,
we employed an automatic filtering system, described in [86] to prune out any protocols with
signs of being an imprecise protocol. For example, one pruning mechanism was to remove pro-
tocols that were not seen at least a certain number of times in the training programs. Pruning
out protocols removed large numbers of warnings; the complete analysis reported 993 warnings
before pruning, but only 81 after pruning.

Even with complex aliasing patterns and imprecise specs, the analysis performed reasonably.
While the pragmatic analysis did not fare well, the complete analysis had a false positive rate of
51% and found 41 real issues in the DaCapo program, including 26 defects and 15 code smells.
Table 7.2 shows a breakdown of the results. Most of the false positives were from incomplete
protocols, that is, imprecise specifications. There were only two false positives from imprecisions
in the points-to analysis.1 Overall, while it does not achieve the 30% marker given by Coverity,
the analysis performed well in a very difficult environment and might do considerably better in
other environments.

1Given that these results are for the complete variant, which uses the must-like analysis, there are probably many
false negatives from this. The only way to evaluate how many would be to analyze the results of the sound variant to
find them all.

7.4. USABLE ERROR REPORTS 101

Kind of Issue Number
Total 81
False Positive 40

Incomplete Protocol 30
Imprecise aliasing 2
Extended, specialized protocols 8

True Positive 41
Bug 26
Code smell 15

Table 7.2: Results from running inferred specifications on the DaCapo programs using the com-
plete analysis and after automatically pruning bad protocols. In addition to incomplete protocols
and imprecise aliasing, eight false positives were from programs that extended existing protocols
with their own specialized semantics.

Listing 7.3: Bug found by the iterator specifications in Listing 7.1.
1 Map comparators = ...

2 Iterator i = comparators.values().iterator();

3 for (Comparator c = (Comparator) i.next(); c != null; c = (Comparator) i.next()) {
4 ...

5 }

Most of the defects found were from only a few very commonly used protocols. Listing 7.3
gives an example of a defect found on the Iterator protocol; this was found using the constraint
specifications from Listing 7.1. In this listing, the code assumes that a call to next will return null
if there is no next operator, which is incorrect according to the specification of Iterator [103]. The
analysis also found several issues that we classified as a code smell. These issues were a fault in
the code that would not cause an error, but make the code less readable. Listing 7.4 shows code
that closes a stream twice; while not technically an error, this is unnecessary.

7.4 Usable error reports

The final property to discuss is the ability for the analysis to produce understandable error mes-
sages. In the article on their experiences at Coverity, the team mentioned the need for understand-
able error messages several times and seemed to think this was their biggest technical hurdle:

Further, explaining errors is often more difficult than finding them. A misunderstood explana-
tion means the error is ignored or, worse, transmuted into a false positive.

That is, even a tool that produces very few false positives may have a high false positive rate in
practice if the error messages themselves are not understandable. This has become so important
to them that they “have completely abandoned some analyses that might generate difficult-to-
understand reports” [14]. The problem is not uncommon; the FindBugs team has a website that

102 CHAPTER 7. ADOPTABILITY

Listing 7.4: Code smell found by inferred specifications
1 BufferedReader in = null;
2 try {
3 in = new BufferedReader(...);
4 ...

5 in.close();

6 }

7 finally {
8 if (in != null) {
9 try {in.close();}

10 catch (IOException e) { ... }
11 }

12 }

describes every defect, with examples for some, so that people will not mistakenly mark warnings
as false positives [38]. In all the industry tools I have used, the error messages are pre-defined and
it is easy to access examples and further discussion of the error. This is practical for most tools to
do as the checkers are all provided by the tool company; end-users never or rarely write their own
specifications and never use specification languages as complex as Fusion.

While I could depend on the framework developer to write their own error messages for each
constraint specification, it seems unlikely that developers would do so and more likely that this
would just be a hinderance to adoption. On the other hand, just showing the failing constraint to
the user as a logical predicate is insufficient for explaining the error. This would require the plugin
developer, who already is unsure of the problem (after all, they wrote the code) to understand a
new specification language and understand the abstractions that the framework developer chose
to use.

As a step toward fixing this situation, I created error reporting logic (ERL) to automatically
generate human-readable error messages from failing first-order logic propositions [26]. The
premise of ERL is to find the sub-parts of the proposition which contribute to the failure and
must be fixed. ERL breaks apart these contributing pieces so that each error message represents
a single action that a developer must take to resolve the error. Therefore, a failing conjunction
where both sides are failing results in two error messages, as there are two distinct tasks. On the
other hand, a failing disjunction where both sides are failing results in a single error messages
that allows the user to select between two tasks. A conjunction with only one side failing will
only show one error message, as the system will only show the sub-parts that need to be changed
rather than the entire failing proposition.

In [26], we evaluated ERL on AcmeStudio which, like Fusion, uses first-order predicate logic
specifications that may not have a human-readable error message [5]. Our qualitative analysis
suggested that the more focused error messages helped developers to find and fix their errors.
ERL is currently being added to Fusion, and I expect the benefits to Fusion will be similar to the
benefits found with AcmeStudio. While this is still not as good as a detailed English description
with examples, this is a major improvement that could be added to other logical specification
systems as well, including [16, 66].

7.5. FUTURE WORK FOR ADOPTABILITY 103

7.5 Future work for adoptability

In addition to improving further on the above properties, there are several other steps needed to
truly make Fusion adoptable by industry.

1. Visualizations of the relationships and the aliasing patterns at each line of code would make
it much easier to determine whether a warning was a true positive or false positive, or even
whether the specification itself is incorrect. While we do not have such a visualization now,
we do have a textual output that shows the lattices at a highlighted line, and I have found
this to be extremely helpful when trying to understand the cause of the error in complex
code from DaCapo.

2. Adjustments to inferred constraints, done by the plugin developer on the fly, would make
inferred protocols much more tractable. While dynamic inference creates mostly correct
protocols, there were several cases where the protocol was just slightly off and causing false
positives. The ability for the plugin developer to change this on the fly, perhaps through a
visualization or perhaps automatically by marking false positives, would greatly improve
the results.

3. Suggestions to fix the errors would improve the error messages. Even with ERL, the error
messages reference relationships, which are a framework developer’s abstraction of their
API. It would be much better if the plugin developer received suggestions for how to fix the
problem in terms of their own code, rather than in terms of a foreign abstraction.

4. Support for file resources would greatly increase the scope of defects Fusion can find. The
Coverity team has a law: “You can’t check what you can’t see”. [14] Right now, many im-
portant files are effectively invisible to Fusion, and most other analysis tools, because they
are accessed through dynamically created filepaths that a static analysis tool can’t yet follow.
This will enable many other kinds of checking, including checking JSP files for compatibility
with associated Java and XML files in Spring.

104 CHAPTER 7. ADOPTABILITY

Chapter 8
Related Work

There are four primary areas of related work. First, there are other approaches to helping plugin
developers understand frameworks, some of which take a tutorial-based approach, and some of
which take a predicate-based specification approach; both are described here. There are also other
uses of relationships as specifications. The analysis itself is very similar to many existing shape
analyses and can even be encoded within some well-known analysis frameworks. Finally, there
are three similar areas of work (typestates, tracematches, and session types) which also seek to
encode protocols, including a few systems that support multi-object protocols.

8.1 Tutorial-based framework assistance

Most of the work on improving the usability of software frameworks has been through either doc-
umentation of the framework design or through tutorial assistance. Johnson’s early work on soft-
ware frameworks described them as compositions of design patterns [59, 60]. This was followed
by research that aimed to formalize and extract these design patterns [30, 44, 97]. However, design
patterns alone have been insufficient for specifying frameworks. While they provide information
at a high level of abstraction, they become unwieldy when used to describe lower-level constraints
as seen here because they cannot handle all the points of variation without an explosive number
of patterns to express them.

More recent work on frameworks helps developers by documenting tutorial-like use cases [36,
43, 71, 89]. These use cases are more flexible than the original pattern-based work as they do not
attempt to describe frameworks using external patterns; rather, they work within the abstractions
of the framework. This allows them to describe the specific steps that the plugin developer must
take to achieve some task. While this work can help a plugin developer find the right API and get
started using it, it does not help a plugin developer expand beyond the tutorial. This body of work
is complementary to the work in this thesis; the tutorial-style helps a developer get started on a
good path, and Fusion ensures that as developers expand their application that they stay away
from bad paths.

105

106 CHAPTER 8. RELATED WORK

8.2 Formal specifications of frameworks

SCL [55] allows framework developers to create a specification for the structural constraints for
using the framework. Unlike Fusion, it does not handle the semantic aspects of the protocol,
including object identity or values.

Like Fusion, Contracts [52] also view associations between objects as a key factor in specifying
systems. A contract also declares the objects involved in the contract, an invariant, and a lifetime
where the invariant is guaranteed to hold. Contracts allow all the power of first-order predicate
logic and can express very complex invariants. Contracts differ from Fusion because they do not
check the conformance of plugins and the specifications are more complex to write due to their
higher level of expressive power.

Others have noted the importance of handling inheritance for code reuse purposes. Dhara
and Leavens noted the problem in [33] and relaxed the constraints in JML to better handle this
problem. Parkinson and Bierman introduced a verification technique based on separation logic
that handle subclasses which break behavioral subtyping [82]. Parkinson and Bierman’s approach
is particularly interesting because they were able to handle broken behavioral subtyping and did
so in a modular analysis. Fusion does not do this and assumes global knowledge of constraints;
however, Fusion must have global knowledge anyway in order to handle constraints which are
not class invariants.

Relationships are not a new construct to specification languages. Bierman and Wren formal-
ized UML relationships as a first-class language construct [17]. The language extension they cre-
ated gives relationships attributes and inheritance, and developers use the relationships by ex-
plicitly adding and removing them. Balzer et. al. expanded on this work by describing invariants
on relations using discrete mathematics and support semantic invariants and invariants between
several relations [10]. In contrast to previous work, the relationships presented in this paper are
added and removed implicitly through use of framework operations, and if inferred relationships
are used, they may be entirely hidden from the developer.

This work also has some overlap with formal methods, particularly in describing the rela-
tionships and invariants of code [40, 66]. These formal methods verify that the specified code
is correct with respect to the specification; this is also called “implementation-side verification”.
Instead, we are checking the unspecified plugin code against the framework’s specification; this
is known as “client-side verification”. Other formal methods [57, 98] focus on a detailed descrip-
tion of the entire system. These systems also allow developers to model the invariants between
objects. However, the checkers for these systems are meant to stand on their own, without any
ties to executable code. The closest work in formal methods is [8], as it also allows for framework
developers to define their own constraints. All of these checkers expect to verify invariants of the
system that are true throughout the lifetime of the application. Instead, Fusion checks constraints
that only hold true for specific contexts, and it takes into account that the relationships between
objects might change over time.

Many verification and typechecking systems [4, 19, 24, 39, 72] have proposed doing a static
analysis to verify as much of the system as possible, and then using a dynamic analysis for un-
verifiable program points. Fusion could be easily modified to also take this approach; any issue
found by the sound variant, but not by the complete variant, would require instrumentation for a

8.3. LOGICAL ANALYSES 107

Table 8.1: Comparison of closely related work. These four areas are likely isomophic solutions
with different design choices in the solution space. The cited works are only those which handle
multiple objects in some way; they are many more papers in each of these areas.

Specified a valid protocol Specifies erroneous paths of the protocol
State-based Typestate [16, 65, 79] Relationship constraints [58]
Operation-based Session Types [54] Tracematches [78]

runtime check.

8.3 Logical analyses

The Fusion analysis is similar to a shape analysis, with the closest being TVLA [92]. TVLA allows
developers to extend shape analysis using custom predicates that relate different objects. Fusion
constraints could be written as custom TVLA predicates, but the lower level of abstraction would
result in a more complex specification and would require greater expertise from the specifier.

While the mechanism to infer relationships is clearly a Prolog engine, the main analysis can
also be modeled as a logic program. In fact, I did model the DropDownList example constraint
in Datalog, in hopes of feeding it into BDDBDDB and taking advantage of the pointer analysis
described in [114]. I found it to be troublesome to model data-flow as it is not built-in and must
be modeled at a low level. Additionally, I needed higher-order functions to make the technique
practical for framework developers to write the specifications, and Datalog does not currently
support this.

8.4 Typestates, Tracematches, and Session types

The most related work to Fusion are typestates, tracematches, and session types, all of which seek
to describe object protocols. None of the work described here can handle declarative artifacts,
though a few can specify semantic aspects of constraints, extrinsic constraints, and/or multi-object
constraints, with some limitations. Table 8.1 shows how these four areas are related and the dif-
ferent properties of each. I will first describe how each research area is related to relationship
constraints, and I will come back to the comparison in Table 8.1 at the end of the chapter.

Typestates [32] provide a mechanism for specifying a protocol on a single object by using a
state machine. There have been several approaches to inter-object typestate. Kuncak et al. manip-
ulated the typestate of many objects together through their participation in data structures [65].
Nanda et al. take this a step further by allowing external objects to affect a particular object’s state,
but unlike relationships, it requires that the objects reference each other through a pre-defined
path [79]. Bierhoff and Aldrich add permissions to typestates and allows objects to capture the
permission of another object, thus binding the objects as needed for the protocol [16]. Relation-
ships can combine multiple objects into a single state-like construct and is more general for this
purpose than typestate; it can describe all of the examples used in multiple object typestate work.

108 CHAPTER 8. RELATED WORK

However, Fusion does not contain a built-in aliasing system, and therefore it may be less precise
if there is significant aliasing.

With respect to the specifications, relationships are more incremental than typestate because
the entire protocol does not need to be specified in order to specify a single constraint. Addition-
ally, the plugin developer does not add any specifications, which she must do with some of the
typestate approaches. However, typestate analyses aim to be sound, and can also check that both
the plugin and the framework meet the specification. The relationship analysis assumes that the
framework properly meets the specification and only analyzes the plugin.

Tracematches have also been used to enforce protocols [112]. Unlike typestate, which specifies
the correct protocol, tracematches specify a temporal sequence of events which lead to an error
state. This is actually more similar to how Fusion specifies constraints. In tracematches, this is
done by defining a state machine for the protocol and then specifying the bad paths.

The tracematch specification approach is similar to that of relationships; the main difference is
in how the techniques specify the path leading up to the error state. Tracematches must specify
the entire good path leading up to the error state, which leads to many specifications to define a
single bad error state. In cases where multiple execution traces lead to the same error, such as the
many ways to find an item in a DropDownList and select it incorrectly, a tracematch would have
to specify each possibility, as seen in Listing 8.1. Instead, Fusion allows us to specify a relationship
predicate that triggers the check, and we separately write specifications on the good paths leading
up to the check to produce the relationships necessary for the trigger. This difference affects how
robust a specification is in the face of API changes. If the framework developer adds a new way
to access ListItems in a ListControl, possibly through several methods calls, the existing trace-
matches will not cover that new sub-path. However, all the constraint specifications in Fusion will
continue to work if the sub-path eventually results in the same relationships as other sub-paths.

Unlike relationships, tracematches are enforced both dynamically and statically using a global
analysis [19]. The static analysis soundly determines possible violations, and it instruments the
code to check them dynamically. Bodden et al. provide a static analysis which optimizes the
dynamic analysis by verifying more errors statically [20], and Naeem and Lhoták specifically op-
timize with regard to tracematches that involve multiple objects [78] . While this work handles
multiple objects and object identity, it cannot currently handle value-based constraints. In partic-
ular, tracematches can be used to determine that a call to hasNext appeared before a call to next,
but cannot check whether the call returned true.

As seen, typestate and tracematches are state-machine based approaches, but this approach
generally breaks down in the presence of multiple objects. The core of the problem is that all
objects much be accessible to start up the state machine, and in many of the multiple-object con-
straints, only a couple objects exist at a time. The typestate approach given by Bierhoff [15] attacks
this issue by using a permission capture to hold onto the object permissions for later use in the
protocol, while the tracematch approach must specify all possible paths up to the point where the
first object was bound [77]. Fusion avoids this by abstracting away the earlier binding of objects
into relationships and then composing relationships together into logical predicates.

Session types [53] were originally created to describe the protocol between two processes. They
were later extended to allow for multi-party sessions [54]. Like typestate, session types describe
the protocol to follow, instead of the bad paths. However, like Fusion and tracematches, session

8.4. TYPESTATES, TRACEMATCHES, AND SESSION TYPES 109

Listing 8.1: The tracematch to specify the DropDownList selection protocol from Vignette 3.1.
1 tracematch(DropDownList ddl, ListItemCollection coll, ListItem newSel, ListItem oldSel) {

2 sym getCurrent after returning(oldSel):

3 call(* DropDownList+.getSelectedItem()) && target(ddl)

4 sym deselect after:

5 call(* ListItem+.setSelected(boolean select)) && target(oldSel) && select == false
6 sym getList after returning(coll):

7 call(* DropDownList+.getItems()) && target(ddl)

8 sym getItem after returning(newSel):

9 (call(* ListItemCollection+.findByValue(...)) ||

10 call(* ListItemCollection+.findByName(...))) && target(coll)

11 sym select after:

12 call(* ListItem+.setSelected(boolean select)) && target(newSel) && select == true
13

14 getList getItem select (getCurrent deslect+)+ |

15 getCurrent getList getItem select deselect+ |

16 getList getCurrent getItem select deselect+ |

17 getList getItem getCurrent select deselect+

18 {

19 throw new RuntimeException("Need to deselect the existing object before selecting");
20 }

21 }

types describe the specification globally; this allows them to easily handle extrinsic constraints.
After the protocol is specified as a session, each participant is verified against the protocol.

It’s important to note that the “party” abstraction used in multi-party session types does not
entirely map to objects in a multi-object protocol. A party is a process, or perhaps, a component.
Therefore, in a situation where a plugin interacts with the framework through four objects, as
in the DropDownList problem from Vignette 3.1, there are only two parties: the framework, and
the plugin. However, it seems this is an arbitrary division; we could just as easily divide the
framework into its component parts and call this a five-party protocol (the 4 objects, plus the
plugin that is calling them).

As described, type systems, trace matches, and state machines are all related to relationship
constraints and to each other. Table 8.1 shows two axes where these areas have fundamentally
different design choices to specify the same kinds of protocols. While I and others hypothesize
that these areas are isomorphic, the design choices affect the ease of specifying different types of
protocols.

The first axes is in specifying the valid parts of the protocol or the erroneous parts. Both
typestate and session types specify the correct way for objects to interact, and any deviation from
the specified protocol is an error. On the other hand, tracematches and relationship constraints
specify the bad usages that can cause an error, and all usages otherwise are deemed acceptable.
The choice of which is “better” is dependent on whether the protocol in question has more good
paths or more error paths.

The second axes is on how the protocol is specified. Typestates and relationship constraints use
a state-based approach where the specifications are on a state-like abstraction. On the other hand,

110 CHAPTER 8. RELATED WORK

tracematches and session types use operation-based specifications; they specify the path of interest
in a regex-like syntax on the operations. Again, which choice is “better” is dependent on the
protocols. If we expect protocols where operations and states have a near 1:1 relationship (like a
File protocol), an operation-based approach is a clean abstraction. However, if several operations
transition to the same state, or if a single operation transitions to different states depending on the
current state, a state-based abstraction is cleaner, as seen with the example from Listing 8.1.

The Fusion system is unique from the related specification and verification systems in several
ways. First, it completes the design space in Table 8.1 by providing a state-based specification
for erroneous protocols. Second, it is the first system shown to be able to specify and analyze
constraints that span both code files and declarative artifacts. Finally, it is the only system that
provides not just a sound analysis, but also a complete variant and a pragmatic variant in order to
provide more cost-effective results.

Chapter 9
Conclusion

In this dissertation, I made the following thesis statement:

Collaboration constraints are inherent to the design of software frameworks but are burdensome
for plugin developers. These constraints can be defined by specifications that describe the rela-
tionships between objects and how relationships change, and an adoptable static analysis can
check that code conforms to the specified constraints.

This thesis presents both a new problem, previously undiscussed in the research literature, and a
solution that, while built upon a foundation of prior work, also adds its own contributions to the
community.

9.1 Frameworks and Collaboration Constraints

I have argued that collaboration constraints are the outcome of several interacting quality at-
tributes of software frameworks, and that they cannot be removed from reusable software compo-
nents, such as frameworks, without sacrificing other desirable quality attributes. Chapter 2 took
an architectural view of software frameworks and showed that the designs of reusable compo-
nents, including software frameworks, must address a tricky tradeoff. These designs need three
quality attributes to be reusable: usability of the API of the component, utility of the component,
and versatility of clients to the component. However, Chapter 2 argues that these form an inherent
tradeoff; only two can be maximized.

The choice in this tradeoff is determined by the business drivers of the component. Some, like
many libraries, maintain a highly usable APIs by decreasing utility and versatility. Others, like
software frameworks aim to increase utility with architectural reuse and to still maintain high lev-
els of versatility; in these cases, the usability of the API suffers. This is the first work to present
software framework designs as inherently less usable, yet for good reasons rather than for acci-
dental ones. Indeed, framework design is a wicked problem [23].

Collaboration constraints are one result of trading away usability in reusable components.
These abstract, state-based preconditions across several objects cause developers problems to the

111

112 CHAPTER 9. CONCLUSION

point that they must post on help forums to understand why their code doesn’t work when they
violate a constraint. In Chapters 3 and 6, archival analyses of the ASP.NET and Spring frameworks
help forums showed that these constraints had several common properties.

1. Collaboration constraints involve multiple types and objects.

2. Collaboration constraints are often extrinsic to a type.

3. Collaboration constraints involve semantic properties such as object identity, primitive val-
ues, state, and ordering of operations.

4. Collaboration constraints span many kinds of files and data, including declarative artifacts.

While they may occur less often in some types of programs, the archival analyses showed that
these constraints are burdensome for developers. When plugin developers violated a collabo-
ration constraint and posted their problem on the forum, they might wait for hours or days for
a response. The responding developers frequently addressed the same collaboration constraint
multiple times, but the old postings were not found by plugin developers, perhaps because the
runtime form of the error was different depending on how the constraint was broken.

This is the first work to recognize collaboration constraints as a unique class of constraints and
to show that they are common and troublesome for developers.

9.2 Relationships

To describe collaboration constraints and detect violations of them in plugin code, this disserta-
tion introduces Fusion, a specification and static analysis system. While there are many possible
methods to address this problem, static analysis meets my goals well; it allows developers to de-
tect their errors earlier than run time, yet it can work with existing languages and frameworks. I
specifically aimed for a system with modular, lightweight specifications to improve the adoption
potential of the system.

Fusion uses relationships to describe collaboration constraints. As the relationships in Fusion
are abstracted from program code, they can be used modularly; it is not necessary to specify an
entire class to show what each relationship means in concrete semantics. This also means that
relationships are an abstraction that can span across programming language boundaries.

This dissertation has shown that relationship-based specifications, as embodied by Fusion, can
capture all four of the properties above which are common in collaboration constraints and that it
is the first specification language of its kind to do so. Additionally, I have shown that it is able to
specify many real collaboration constraints in the ASP.NET and Spring frameworks. Each example
was specified modularly with few specifications. The examples also showed the variability of
the specification language; a single constraint could be specified several ways depending on the
desired goals of the framework developer.

The analysis itself is a straightforward dataflow analysis, but it also makes a unique contri-
bution to static analysis. The analysis has three variants: a sound variant that can guarantee
that passing programs are free of defects, a complete variant that can guarantee that all issues
it finds are real violations, and a pragmatic variant that makes no guarantees but seeks to make

9.3. FUTURE WORK 113

a cost-benefit tradeoff. This is the first analysis of its kind, and the case studies provided some
interesting results about the tradeoff. While the pragmatic variant was clearly the best for small,
untested programs of the type that are posted on forums, the complete variant provided better
results for large, production-quality code using inferred specifications. This is not a preset config-
uration, rather, it is another point in the tradeoff space that might be changed depending on the
use of the verification system. Such a knob broadens the possibility of using static analysis.

9.3 Future work

There are many potential avenues for future work, ranging from studies of socio-technical ecosys-
tems to improvements in usability of verification systems to new programming languages.

In my studies of software frameworks, I found that some framework forums, like ASP.NET,
were exceptionally active, while others, like Ruby-on-Rails, seemed dead by comparison. I no-
ticed that the active frameworks had carefully cultivated their ecosystems and the surrounding
technologies. For example, in ASP.NET, framework developers were very active on the forums,
there was a ranking system which designated top members as “MVP”s, and there was a built-in
means for marking responses as having solved the original problem. What is the effect of these
features on the activity of the forum, and what is the effect to the entire ecosystem of the frame-
work?

It would be interesting to find out what makes for successful uses of forums and find ways to
encourage developers to use them in this way. In the study, it seemed that posters who got helpful
responses posted more code than others, yet carefully crafted the smallest example that would
reproduce their error. This of course takes time, but perhaps there are technical means to assist
developers in creating these smallest reproducible examples.

This work highlighted the need for more attention to the usability of verification systems.
While the work on error reporting logic was an improvement to error messages, these messages
are still written in terms of the formal specification, rather than in terms that the plugin developer
would understand. As the plugin developer is already having difficulty understanding the API,
it seems unreasonable to require them to learn the formal specification of the API as well. Yet,
all specification and verification systems seem to make the assumption that it is better to require
developers to understand a formal specification. This would require developers to not only learn
the formal language, but also to understand all the aspects of the specification, including those that
they are not using. If a developer forgot to check hasNext before calling next, is it really necessary
for them to understand the details of concurrent modification problems? Perhaps, however, we
can improve on this and make suggestions to the developer on how to fix their program within
terms of their own code. This would allow developers to quickly move through their current task,
yet the specifications could still be available for exploring and understanding the API.

Finally, this work has shown the need for a programming language specific to the needs of
configuration files, such as those seen in Eclipse, Spring, Hibernate, and others. These configura-
tion files are frequently written in XML, which is intended as a data markup language. However,
as seen in the case studies, these configuration files do more than act as a data repository; they
create objects, assign objects to fields, and even handle control flow. Yet XML was not intended as

114 CHAPTER 9. CONCLUSION

a programming language, and the technologies that support it, such as XPath and XQuery, are not
sufficient for describing the deep semantics of these files.

While purists may suggest that these functions should be done in the programming language
of the framework, this is not sufficient either. These frameworks specifically moved away from this
model because the base programming languages had too many additional abstractions that made
this difficult; the extensibility of XML makes it easy to use for configuration files. Additionally,
it allows for the configuration file to by changed at run time, not at compile time. This means
that the same codebase can be deployed to multiple environments without recompiling each time,
and the configuration file can be changed dynamically with the environment. Further still, as
such changes are normally handled by an IT professional rather than the programmer, XML is a
common, easy-to-learn syntax that an IT professional can easily learn.

Experts in programming languages would make a different suggestion: these configuration
files clearly represent a domain-specific language. Therefore, framework developers should cre-
ate a new language, specific to their needs, for these configuration files. While this is possible,
and while there are many good tools out there to help in this process, it still is not a satisfactory
solution. The plugin developers would have to learn a new syntax just to learn the framework;
XML works well because it is a known syntax, and while the semantics might change, there are
some pieces which are consistent, such as containment through nesting nodes.

Instead of using XML or creating domain specific languages for each framework, I believe
that the best solution would be a language for configuration that can be used by all frameworks.
This would get the benefits of XML (a common language and shared syntax for all frameworks)
yet also provide a set of language features that make sense for configuration. Possible language
features might include objects, awareness of the filesystem, built-in string manipulation, and an
extensible semantics. These are only potential ideas though, and there need to be further studies
of configuration files before creating such a language.

9.4 Tradeoffs, tradeoffs, tradeoffs...

Tradeoffs have been a recurrent theme in this dissertation and have appeared in both anticipated
and unanticipated ways.

There was an anticipated tradeoff in the static analysis. An analysis cannot find all and only
true positives; there must be false results. By creating three variants of the analysis, I was able to
explore the extremes of this tradeoff (soundness and completeness) and one point in the middle
(pragmatic) to determine which was most useful in practice. The answer was dependent on the
specifications used and the complexity of the analyzed code. The pragmatic variant as a clear win-
ner for precise, handwritten specifications analyzed on simple, under-development code, but the
complete variant was best for imprecise specifications analyzed on highly-complex, well-tested
production code.

An unanticipated, though unsurprising, tradeoff came from the specifications themselves. As
discussed in Chapter 6, there are many tradeoffs in the precision of the specifications, the com-
plexity and cost of writing them, and the quality of the results. While it is not terribly surprising
that a more precise specification is more complex and difficulty to write, what was surprising was
that in some cases, like Section 6.4.4, the error given was more useful from the less precise speci-

9.4. TRADEOFFS, TRADEOFFS, TRADEOFFS... 115

fication. Even though the less precise specification might give a false positive, such instances are
rare enough in this case that we would trade that for increased quality of the true positives. The
flexibility of the specification language allowed me to describe each of the example problems in
several ways and select the most beneficial. Alternatively, Chapter 7 showed how fully-automated
techniques could generate specifications; while such specifications are comparatively very impre-
cise, they take relatively little cost to create. One can even imagine a semi-automated tool that
would provide further points on this tradeoff space.

The final tradeoff in this dissertation is not in the solution space, but in the problem domain
itself. As described in Chapter 2, reusable component design is fraught with complex tradeoffs.
It is possible to eliminate collaboration constraints and all the problems they produce, but only
at the expense of other quality attributes of functionality. Each reusable component comes with a
unique set of business drivers, and so while there is design guidance available for how to manage
this tradeoff, there is no solution for how to actually solve it. A designer must use their own
judgment to select the most ideal location in this tradeoff space and attempt to limit the resulting
damage from collaboration constraints as much as possible.

This dissertation does not present a single, one-size-fits-all solution because there is not a sin-
gular problem. Collaboration constraints exist in many different settings, and there are a variety of
situations for both specification and analysis. A truly adoptable verification system allows itself to
be customized easily for each new situation it might encounter, thus increasing its versatility. This
dissertation has shown several ways this can occur, many of which can be used by other verifica-
tion systems. Through this variability, perhaps we can overcome the inherent usability problems
of software frameworks by providing developers with a set of tools and techniques that are as rich
and as versatile as the frameworks themselves.

116 CHAPTER 9. CONCLUSION

Appendix A
Extended Case Study

This appendix contains the final four APIs studied in the Spring case study described in Chapter
6. While not as interesting as the four show in Chapter 6, they are included for completeness. The
quantitative results from the analysis are listed in Table 6.4.

A.1 Returning a ModelAndView with the errors map

Recall that Section 6.4.2 presented an example constraint about how to properly return a Model-
AndView object from the onSubmitmethod. In the study, I found two other threads that were about
a related constraint.

In thread 39209 [93], the user “senthilnathan74” was having problems getting the right model
data returned. Ze wanted to return the errors.getModel() map as the model, as seen in Listing
A.1, yet the view was throwing an exception when attempting to access the model map. The
problem with hir code is that it is using the wrong constructor; this constructor will create a new
map with a single key-value pair as given by the last two parameters. Instead, ze should have
used the constructor that takes a Map, as shown in Listing A.2

In another thread [49], the user “gurnard” was instructed by “Colin Yates” to “add errors.getModel()
to the ModelAndView you return from onSubmit.” “gurnard”’s response was in Listing A.3, which
also doesn’t work, as it will add the errors.getModel() object as a value in the map rather than

Listing A.1: Incorrect way of creating a new ModelAndView.
1 protected ModelAndView onSubmit(HttpServletRequest request, HttpServletResponse response,
2 Object command, BindException errors) throws Exception {
3 AccountForm accountForm = (AccountForm) command;

4 ...

5 ModelAndView mav = new ModelAndView(getSuccessView(), "account", errors.getModel());
6 return mav;
7 }

117

118 APPENDIX A. EXTENDED CASE STUDY

Listing A.2: Correct way to create a new ModelAndViewwith errors.getModel().
1 protected ModelAndView onSubmit(HttpServletRequest request, HttpServletResponse response,
2 Object command, BindException errors) throws Exception {
3 AccountForm accountForm = (AccountForm) command;

4 ...

5 ModelAndView mav = new ModelAndView(getSuccessView(), errors.getModel());
6 return mav;
7 }

Listing A.3: Another incorrect way of creating a new ModelAndView.
1 protected ModelAndView onSubmit(HttpServletRequest request, HttpServletResponse response,
2 Object command, BindException errors) throws Exception {
3 AccountForm accountForm = (AccountForm) command;

4 ...

5 ModelAndView mav = new ModelAndView(getSuccessView(), "account", accountForm);
6 mav.addObject("errors", errors.getModel());

7 return mav;
8 }

adding all the items within it. Instead, ze should have used addAllObjects(), as seen in Listing
A.5.

To specify these constraints, I first use an effect to mark Maps that are returned from a call to
errors.getModel() as bound models, as seen in Listing A.4. Then, I create a constraints to prevent
these methods from being called with a bound model. These constraints will allow Listing A.2 and
A.5 to pass, but they will produce warnings from all three variants for Listings A.1 and A.3.

A.2 Using Web Flow Actions

One of the major sub-frameworks of Spring is the Web Flow framework. While many websites
allow the user to navigate anywhere they like, certain series of actions in a web application have
a specific path, or flow, that a user must follow. For example, the checkout process on many
websites requires that users perform certain actions in a certain order. Spring Web Flow (SWF)
allows programmers to define appropriate the appropriate paths that a user may take. These
flows may branch depending on user input, and they may call to sub-flows.

Listing A.6 shows a simple flow where a user can attempt to login; if the login fails, it redirects
back to the login page. Such a flow could be called by other flows to check if a user is logged in.
For this flow to work, there must be beans that represent the action that is taken at each of these
steps (ie: Lines 10 and 17). These beans must implement the Action interface or extend from a
class which implements this interface, such as the FormAction class. Listing A.7 shows the beans
that are used by this flow.

As described, this is a straightforward constraint. All beans referenced by an action tag in
the flow must exist in the ApplicationContext and they must be a subtype of Action. However,

A.2. USING WEB FLOW ACTIONS 119

Listing A.4: Specifications
1 public class BindException extends Exception implements BindingResult
2 @BoundModel(target, result)
3 public Map getModel() {...}
4 ...

5 }

6

7 @Constraint(
8 op=‘‘ModelAndView(String view, String key, Object value)’’,
9 trg=‘‘BoundModel(errors, value)’’,

10 req=‘‘FALSE’’
11)
12 @Constraint(
13 op=‘‘ModelAndView.addObject(String key, Object object) : ModelAndView’’,
14 trg=‘‘BoundModel(errors, object)’’,
15 req=‘‘FALSE’’
16)
17 public class ModelAndView {...}

Listing A.5: Correct way of creating a new ModelAndViewwith a single key-value pair.
1 protected ModelAndView onSubmit(HttpServletRequest request, HttpServletResponse response,
2 Object command, BindException errors) throws Exception {
3 AccountForm accountForm = (AccountForm) command;

4 ...

5 ModelAndView mav = new ModelAndView(getSuccessView(), "account", accountForm);
6 mav.addAllObjects(errors.getModel());

7 return mav;
8 }

120 APPENDIX A. EXTENDED CASE STUDY

Listing A.6: A simple example of a flow to log in to a system.
1 <?xml version="1.0" encoding="UTF-8"?>
2 <flow xmlns="http://www.springframework.org/schema/webflow"

3 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

4 xsi:schemaLocation="http://www.springframework.org/schema/webflow

5 http://www.springframework.org/schema/webflow/spring-webflow-1.0.xsd">

6

7 <start-state idref="checkLogin" />

8

9 <action-state id="checkLogin">

10 <action bean="checkStudentLoggedInAction"/>

11 <transition on="success" to="finish" />

12 <transition on="error" to="enterLogin" />

13 </action-state>

14

15 <view-state id="enterLogin" view="details">

16 <render-actions>

17 <action bean="loginAction"/>

18 </render-actions>

19 <transition on="enter" to="validateStudentLogin" />

20 </view-state>

21

22 <action-state id="validateStudentLogin">

23 <action bean="loginAction"/>

24 <transition on="success" to="finish" />

25 <transition on="error" to="enterLogin" />

26 </action-state>

27

28 <end-state id="finish"/>

29 </flow>

Listing A.7: Beans for the flow in Listing A.6
1 <beans xmlns="http://www.springframework.org/schema/beans"

2 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

3 xsi:schemaLocation="http://www.springframework.org/schema/beans

4 http://www.springframework.org/schema/beans/spring-beans.xsd">

5

6 <bean id="checkStudentLoggedInAction" class="org.springframework.webflow.action.Action"/>

7

8 <bean id="loginAction" class="org.springframework.webflow.action.FormAction">

9 <property name="formObjectClass" value="StudentLoginInfo"/>

10 <property name="validator">

11 <bean class="studentValidator"/>

12 </property>

13 </bean>

14

15 <bean id="studentValidator" class="StudentLoginValidator"/>

16 </beans>

A.3. SERIALIZING FLOW OBJECTS 121

there is a very subtle mistake that a developer can make.
In thread 38940 [87], the developer “raydawg” was working with an application that uses

both the Spring framework and the Struts framework. As described in Chapter 6, Spring is meant
to work alongside many other frameworks, and is completely compatible with Struts, another
common web application framework. This developer created a web flow similar to the one in
Listing A.6 and referenced their own version of the loginAction:1

1 <bean id="loginAction" class="edu.ucr.c3.rsvp.controller.students.Login"/>

When the developer ran this flow, the framework produced the following error:

org.springframework.beans.factory.BeanNotOfRequiredTypeException:

Bean named ’loginAction’ must be of type

[org.springframework.webflow.execution.Action],

but was actually of type

[edu.ucr.c3.rsvp.controller.students.Login]

This was very confusing for the developer; ze understood perfectly well that the loginAction
must extend from Action. In fact, ze posted the code in Listing A.8 on the forum, to show that
Login extended from the right classes.

The user “jeremyg484” discovered the problem:

It seems you are confusing a Struts action with an SWF action. FlowAction is SWF’s inte-
gration point for Struts that is meant to launch or resume a flow. It is a Struts action and is
to be configured in your struts-config. The action specified in your action-state on the other
hand is an SWF action, and as you currently have it defined it must be an implementation of
org.springframework.webflow.execution.Action as the error message states.

In other words, while FlowAction is a class provided by Spring, it extends from the Struts Action
interface, not the Spring Action interface!

To specify this constraint, we will use the Context relationship in Section 6.4.1 and a new re-
lationship, Action(String) to represent the name of a bean which must be an action. The same
XQuery from Section 6.4.1 will retrieve the Context relationship from the bean file (Listing 6.2),
and the XQuery in Listing A.9 will retrieve the Action relationship from the flow file. In the case
study, I found that certain relationships, like Context, were reused across many constraints.

The constraint itself is very simple, as shown in Listing A.10. It use the “XML” operator to
check the declarative files before processing any Java files to ensure that they are consistent. When
it finds an Action, it ensures that this action name was declared in the context with the right type.

A.3 Serializing Flow Objects

Spring Web Flow allow developers to create objects that are used throughout the flow. These ob-
jects are called “flow variables” and are defined in the flow file; Listing A.11 provides an example

1Yes, that package shows that this comes from a developer at UC Riverside. It’s most interesting what you can learn
from package names on public forums!

122 APPENDIX A. EXTENDED CASE STUDY

Listing A.8: Code posted by “raydawg” in [87].
1 public class Login extends RSVPAction {
2

3 public ActionForward executeRSVPApp(ActionMapping mapping, ActionForm form,
4 HttpServletRequest req, HttpServletResponse resp, HttpSession sess) throws Exception {
5

6 ActionForward forward = null;
7

8some database logic, etc....

9

10 return forward;
11 }//executeFRSApp
12 }

13

14 public abstract class RSVPAction extends FlowAction {
15

16 public RSVPAction() {
17 super();
18 }

19

20 /∗∗
21 ∗ Do a security check and only call the executeFRSApp method if
22 ∗ it passes.
23 ∗/
24 public final ActionForward execute(ActionMapping mapping, ActionForm form,
25 HttpServletRequest req, HttpServletResponse resp) throws Exception {
26

27some code.....

28 return forward;
29 }//execute
30 }

A.3. SERIALIZING FLOW OBJECTS 123

Listing A.9: XQuery to retrieve the Action relationship
1 declare namespace sf="http://www.springframework.org/schema/webflow";
2 declare namespace fusion="http://code.google.com/p/fusion";
3 declare variable $doc as xs:string external;
4

5 for $state in doc($doc)/sf:flow/sf:view-state
6 for $action in $state/sf:render-actions/sf:action
7 return <Relationship name="Action" effect="ADD">
8 <Object name ="{data($action/@bean)}" type="java.lang.String"/>

9 </Relationship>

10

11 for $state in doc($doc)/sf:flow/sf:view-state
12 for $action in $state/sf:transition/sf:action
13 return <Relationship name="Action" effect="ADD">
14 <Object name ="{data($action/@bean)}" type="java.lang.String"/>

15 </Relationship>

16

17 for $state in doc($doc)/sf:flow/sf:action-state
18 for $action in $state/sf:action
19 return <Relationship name="Action" effect="ADD">
20 <Object name ="{data($action/@bean)}" type="java.lang.String"/>

21 </Relationship>

Listing A.10: Constraint to check that all actions are actually an Action.
1 @Constraint(
2 op=‘‘XML’’,
3 trg=‘‘Action(name)’’,
4 req=‘‘Context(name, action, context) AND action instanceof Action’’
5)

124 APPENDIX A. EXTENDED CASE STUDY

Listing A.11: A flow with a variable, example from [113]
1 <?xml version="1.0" encoding="UTF-8"?>
2 <flow xmlns="http://www.springframework.org/schema/webflow"

3 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

4 xsi:schemaLocation="http://www.springframework.org/schema/webflow

5 http://www.springframework.org/schema/webflow/spring-webflow-1.0.xsd">

6

7 <var name="customer" class="com.springinaction.pizza.domain.Customer" scope="flow"/>

8

9 <start-state idref="askForPhoneNumber" />

10

11 <view-state id="askForPhoneNumber" view="phoneNumberForm">

12 <transition on="submit" to="lookupCustomer" />

13 </view-state>

14

15 <action-state id="lookupCustomer">

16 <action bean="lookupCistomerAction"/>

17 <transistion on="success" to="checkDeliveryArea"/>

18 <transistion on-exception="com.springinaction.pizza.service.CustomerNotFoundException"

19 to="addNewCustomer"/>

20 </action-state>

21

22 <decision-state id="checkDeliveryArea">

23 <if test="{$flowScope.customer.inDeliveryArea}"

24 then="finish"

25 else="warnNoDeliveryAvailable"/>

26 </decision-state>

27

28 <view-state id="addNewCustomer" ... />

29

30 <view-state id="warnNoDeliveryAvailable" ... />

31

32 <end-state id="finish" />

33 </flow>

of a flow variable being defined (line 7) and used (line 23). There are four possible “scopes” for
a flow variable: request, flash, flow, and conversation. The scope defines the lifetime of the flow
variable. For example, a request variable only lasts for the length of a single request from the user,
while a flow variable will last for the entire flow but is not accessible in sub-flows. The framework
controls the creation and destruction of these objects.

In some scopes, like flash and flow, the framework must be able to store the object across
requests from the user. To do this, it serializes the object. This means that there is a hidden
constraint: flow objects with a flash or flow scope must implement Serializable. If this is not the
case, the framework will throw an exception at the point when it attempts to serialize the object.

To specify this, we first need to be aware of these flow variables that are declared in the
flow configuration file. Listing A.12 retrieves two unary relationships that represent whether an
object is a FlowVariable or a FlashVariable. The constraint specification itself runs after all the

A.3. SERIALIZING FLOW OBJECTS 125

Listing A.12: XQuery to retrieve the FlowVariable and FlashVariable relationships
1 declare namespace sf="http://www.springframework.org/schema/webflow";
2 declare namespace fusion="http://code.google.com/p/fusion";
3 declare variable $doc as xs:string external;
4

5 for $var in doc($doc)/sf:flow/sf:var
6 where $var/@scope = "flow"
7 return <Relationship name="FlowVariable" effect="ADD">
8 <Object name ="{data($var/@name)}" type="{data($var/@class)}"/>

9 </Relationship>

10

11 for $var in doc($doc)/sf:flow/sf:var
12 where $var/@scope = "flash"
13 return <Relationship name="FlashVariable" effect="ADD">
14 <Object name ="{data($var/@name)}" type="{data($var/@class)}"/>

15 </Relationship>

Listing A.13: Constraint to check that all flow and flash variables are Serializable.
1 @Constraint(
2 op=‘‘XML’’,
3 trg=‘‘FlowVariable(bean) OR FlashVariable(bean)’’,
4 req=‘‘bean instanceof Serializable’’
5)

126 APPENDIX A. EXTENDED CASE STUDY

Listing A.14: Using a FormAction in a single view-state
1 <flow xmlns="http://www.springframework.org/schema/webflow"

2 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

3 xsi:schemaLocation="http://www.springframework.org/schema/webflow

4 http://www.springframework.org/schema/webflow/spring-webflow-1.0.xsd">

5

6 <start-state idref="enterCriteria"/>

7

8 <view-state id="enterCriteria" view="searchCriteria">

9 <render-actions>

10 <action bean="formAction" method="setupForm"/>

11 </render-actions>

12 <transition on="search" to="displayResults">

13 <action bean="formAction" method="bindAndValidate"/>

14 </transition>

15 </view-state>

16 ...

17 </flow>

XML is loaded, and it verifies that all objects that are a FlowVariable or FlashVariable implement
Serializable, as seen in Listing A.13.

It is interesting that this constraint takes exactly the same form as the constraint in Section A.2.
This makes sense; both are checking that an object declared in XML has the right Java type. If XML
was aware of these types, or if a custom typed configuration language was used instead, neither
of these constraints would be necessary because they would be built into the typechecker. While
Fusion can be used to encode a typesystem, it is certainly not the ideal way of doing so.

A.4 The FormAction lifecycle

In the same way that Spring provided a Controller hierarchy, it also provides an Action hier-
archy with reusable subclasses for common tasks. The FormAction is an Action that represents
a user’s submitted data to a form, or set of forms across a flow, and works analogously to the
SimpleFormController.

Using a FormAction is a little more complex though. While SimpleFormController ensures
that all callbacks happen in the right order, FormAction depends on the programmer to make the
callbacks for it within the XML flow. Listing A.14 provides an example of such a file. In this
example, the programmer sets up the FormAction in the state “enterCriteria” (line 10) and then
binds and validates it at the same time in the transition out of the state (line 13). Listing A.15
shows how these can be split up across multiple states; this example sets up the FormAction on
entry to the “enterCustomerDetails” state, binds it on the “submit” transition, and validates it in
the “processDetails” state.

Notice that Web Flow provides a great deal of flexibility; we can perform other actions between
these states, skip the user ahead based upon entered data, or even cancel the entire flow at any
time. This flexibility comes at the cost of usability of the API though. The programmer must

A.4. THE FORMACTION LIFECYCLE 127

Listing A.15: Using a FormAction in multiple states, based on code from [96]
1 <flow xmlns="http://www.springframework.org/schema/webflow"

2 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

3 xsi:schemaLocation="http://www.springframework.org/schema/webflow

4 http://www.springframework.org/schema/webflow/spring-webflow-1.0.xsd">

5

6 <start-state idref="enterCustomerDetails"/>

7

8 <view-state id="enterCustomerDetails" view="cutsomerRegisterForm">

9 <entry-actions>

10 <action bean="customerRegisterAction" method="setupForm"/>

11 </entry-actions>

12 <transition on="submit" to="processDetails">

13 <action bean="customerRegisterAction" method="bind"/>

14 </transition>

15 </view-state>

16

17 <action-state id="processDetails">

18 <action bean="customerRegisterAction" method="validate"/>

19 <transition on="success" to="enterEnquiryDetails"/>

20 <transition on="error" to="enterCustomerDetails"/>

21 </action-state>

22 ...

23 </flow>

still respect the unwritten rules about the order in which things may be called. In the case study,
three programmers [34, 81, 96] did not set up the FormAction before binding it. This caused
unusual problems, including not transitioning in exception conditions (results in not catching the
exception), not having the model data available in the view (results in an exception from the view),
and missing property editors that cause the view to display strangely.

To describe the constraint that a FormActionmust be set up at some point before being bound,
we will need the following four relationships:

• SetupAction(String, FormAction) provides the name of the state that sets up a FormAction.

• BindAction(String, FormAction) provides the name of the state that binds a FormAction.

• Transition(String, String, String) describes the transition step from one state to another state.

• Path(String, String) represents the existence of a path from one state to another through
Transitions.

The XQuery to retrieve the first three relationships is shown in Listing A.16. The Path relationship
is more unusual. This relationship represents the transitive closure on the Transition relationship
and is created through use of the @Infer specs shown in Listing A.17.

Again, the constraint itself is simple: we specify that the XML must ensure that if a binding
call is made on a FormAction, then a setup call must have occurred sometime in advance. This
constraint is shown in Listing A.18.

128 APPENDIX A. EXTENDED CASE STUDY

Listing A.16: XQuery to retrieve the SetupAction, BindAction and Transition relationships
1 declare namespace sf="http://www.springframework.org/schema/webflow";
2 declare namespace fusion="http://code.google.com/p/fusion";
3 declare variable $doc as xs:string external;
4

5 for $state in doc($doc)/sf:flow/sf:view-state
6 for $action in $state/sf:render-actions/sf:action
7 where $action/@method = "setupForm"
8 return
9 <Relationship name="SetupAction" effect="ADD">

10 <Object name ="{data($state/@id)}" type="java.lang.String"/>

11 <Object name ="{data($action/@bean)}" type="org.springframework.webflow.action.FormAction"/>

12 </Relationship>

13

14 for $state in doc($doc)/sf:flow/sf:view-state
15 for $action in $state/sf:transition/sf:action
16 where $action/@method = "bindAndValidate"
17 return
18 <Relationship name="BindAction" effect="ADD">

19 <Object name ="{data($state/@id)}" type="java.lang.String"/>

20 <Object name ="{data($action/@bean)}" type="org.springframework.webflow.action.FormAction"/>

21 </Relationship>

22

23 for $state in doc($doc)/sf:flow/sf:view-state
24 for $action in $state/sf:transition/sf:action
25 where $action/@method = "bind"
26 return
27 <Relationship name="BindAction" effect="ADD">

28 <Object name ="{data($state/@id)}" type="java.lang.String"/>

29 <Object name ="{data($action/@bean)}" type="org.springframework.webflow.action.FormAction"/>

30 </Relationship>

31

32 for $state in doc($doc)/sf:flow/sf:view-state
33 for $trans in $state/sf:transition
34 return
35 <Relationship name="Transition" effect="ADD">

36 <Object name ="{data($state/@id)}" type="java.lang.String"/>

37 <Object name ="{data($trans/@on)}" type="java.lang.String"/>

38 <Object name ="{data($trans/@to)}" type="java.lang.String"/>

39 </Relationship>

A.4. THE FORMACTION LIFECYCLE 129

Listing A.17: Specifications to infer a path between states.
1 @Infer(
2 trg=‘‘Transition(pState, t, state) AND Transition(state, s, nState)’’,
3 eff={‘‘Path(pState, nState)’’}
4)
5 @Infer(
6 trg=‘‘Transition(pState, t, nState)’’,
7 eff={‘‘Path(pState, nState)’’}
8)

Listing A.18: Specifications to enforce that setup always occurs sometime before binding.
1 @Constraint(
2 op=‘‘XML’’,
3 trg=‘‘BindAction(state, form)’’,
4 req=‘‘SetupAction(pState, form) AND Path(pState, state)’’
5)

This constraint shows one of the interesting differences between the three variants of the anal-
ysis. Recall from Chapter 5 that while the trigger predicate will bind all variables with a universal
quantifier, the requires predicate uses either a universal or existential depending on the variant.
This issue only becomes relevant in cases like Listing A.18, where a variable is used only in the
requires predicate (pState). Therefore, for the complete variant, this constraint reads “if a state
binds a form, then some prior state must have setup the form.” On the other hand, the sound
variant checks that “if a state binds a form, then all prior states must have setup the form.” Given
this, it is unsurprising that the sound variant always gives a warning in practice.

130 APPENDIX A. EXTENDED CASE STUDY

Appendix B
Formalism

This appendix formally presents the abstract grammar and semantics of the specifications and
analysis. The first section provides the grammar, the following sections define several operators
and functions on elements of the grammar, and the final section presents the inference rules that
define the formal semantics. In this appendix, I will be using the following typographical nota-
tions:

• an overbar (x̄, ¯̀, ȳ : τ̄) represents an ordered list. |x̄| gives the length of the list.

• braces ({`}, {cons}, {P ⇓ Q}) represents an unordered set.

• braces with an arrow ({y 7→ x}) represents an unordered map with unique keys which can
be used to retrieve values from the map. dom and rng functions can be used to access the
domain or range of a map.

• braces with two semicolons ({A;B;C}) represent a set of triples. Projection can be used
({A;B;C}.B) to access a set with a single element of the triple.

• ∅ represents an empty list, set, or map.

• sets and maps can be created with set construction (σ = {y 7→ ` | X(y, x) = `})

B.1 Abstract Grammar

Listing B.1 describes the abstract grammar of Fusion. In this grammar, I use the following special
variables:

• x represents a source variable

• y represents a specification variable, where the values target and result have special mean-
ings

• m represents a method name

131

132 APPENDIX B. FORMALISM

• rel represents a relation name

• τ represents a type

• ` represents a label for an abstraction of a runtime object

A constraint is represented with cons, which has the five parts described in Chapters 4 and
5. P is a logical predicate on relationship predicates R, which are across specification variables
y. For this formalism, the only atomic predicates are relationship predicates, but this is easily
extended. M,N, T and R are analogous to P,Q,A, and S, but they are across object labels ` instead
of specification variables. R is an actual relationship across abstractions of objects as described in
Chapter 4.

Source instructions are represented in three address code with instr, and the specifications to
describe them are shown as op. Only four instructions and operations are shown, but this is also
easily extended in the obvious manner.

The flow lattice is a map of relationships to ternary values. There is also a “delta lattice” that
represents the effects that should be made to the flow lattice. This δ uses a seven-point lattice with
elements E, where bot represents “the constraint does not apply” and ∗ represents “the constraint
applies, but no change was specified.” I will refer to bot as the “no effect” and ∗ as the “ignore
effect”.

The next pieces of the grammar represent the bindings from specification variables to source
variables and object labels. It also includes the grammar needed for making strong updates to
variables.

The last pieces of the grammar are all environments that will be used. As before, B and A

are the boolean constant propagation lattice and the points-to lattice respectively. R, C, and I
are the sets of Fusion relations, constraint specifications, and inference specifications to use in the
analysis.

B.1. ABSTRACT GRAMMAR 133

constraint cons ::= op : Pctx ⇒ Preq ⇓ Q̄eff;Prst
predicate P ::= P1 ∧ P2 | P1 ∨ P2 | P1 =⇒ P2 | Q | true | false

negation predicate Q ::= ¬A | A

atomic predicate A ::= S | S/y | . . .

relation predicate S ::= rel(ȳ)

relationship logic M ::= M1 ∧M2 |M1 ∨M2 |M1 =⇒ M2 | N | true | false

negation relationship N ::= ¬T | T

atomic relationship T ::= R | R/` | . . .

relationship R ::= rel(¯̀)

source instruction instr ::= xret = xthis.m(x̄) | xret = new τ(x) |

return xret(xthis.m(x̄)) | begin(x.m(x̄)) | . . .

instruction signature op ::= τthis.m(τ̄ ȳ) : τret | new τ(τ̄ ȳ) |

eom(τthis.m(τ̄ ȳ) : τret) | bom(τthis.m(τ̄ ȳ)) | . . .

flow lattice ρ ::= {R 7→ t}

ternary logic t ::= True | False | Unknown
delta lattice δ ::= {R 7→ E}

delta lattice elements E ::= unknown | true | false | true ∗ | false ∗ | ∗ | bot

variable binding β ::= {y 7→ x}
substitution σ ::= {y 7→ `}

set of substitutions Σ ::= {σ}

spec updates α ::= {y 7→ {`}}

source updates γ ::= {x 7→ {`}}

bool constants lattice B ::= {` 7→ t}

alias lattice A ::= < Γ`; L >

aliases L ::= {x 7→ {`}}

location types Γ` ::= {` : τ}

spec variable types Γy ::= {y : τ}

relation type R ::= {rel 7→ τ̄}

constraints C ::= {cons}

relation inference rules I ::= {P ⇓ Q}

Figure B.1: Abstract grammar of Fusion

134 APPENDIX B. FORMALISM

B.2 Operations on lattices

There are two lattices used in the semantics. The flow lattice ρ is the lattice used by the flow
analysis. ρ is a tuple lattice of relationships to ternary values, which are in the lattice shown by
Figure B.2a. The effect lattice δ is only used internally in the Fusion semantics. It is also a tuple
lattice, but it maps relationships to the seven-point effect lattice in Figure B.2b.

Both of these sub-lattices have the expected lattice operations (v and t), plus there are four
additional operators as seen in Figures B.3 and B.4 .

• The equality join operator is similar to the t operator, but it recombines truewith true∗
and falsewith false∗

• The override operator allows one effect to override the other, unless it is bot or ∗.

• The polarize operator
↑
∗ moves the true and false elements to true∗ and false∗ respec-

tively. This is almost the same as E t ∗, except that bot remains where it is.

• The change operator ⇐ makes the effect prescribed in E onto the ternary value t.

These operators on the sub-lattices are used in the expected way on the parent lattices. Figure B.5
shows the operators for δ, and Figure B.6 shows the operators for ρ.

B.2. OPERATIONS ON LATTICES 135

Unknown

True

ooooo
False

PPPPP

⊥
nnnnnnn

PPPPPPP

(a) The ternary value lattice, used by ρ

unknown

true∗
nnnnnn

false∗

QQQQQ

true ∗
mmmmmmmm

PPPPPPP
false

bot

mmmmmm
PPPPPP

(b) The seven-point effect lattice, used by δ

Figure B.2: The sub lattices used by ρ and δ

El Er = E ′

E bot = E

bot E = E

E ∗ = E

∗ E = E

E E = E

true true∗ = true

true ∗ true = true

false false∗ = false

false ∗ false = false

true false = unknown

false true = unknown

true ∗ false = unknown

false true∗ = unknown

false ∗ true = unknown

true false∗ = unknown

true ∗ false∗ = unknown

false ∗ true∗ = unknown

E unknown = unknown

unknown E = unknown

Figure B.3: Equality join operator on E

136 APPENDIX B. FORMALISM

E E ′ = E ′′

E bot = E

E ∗ = E

E true = true

E true∗ = true∗
E false = false

E false∗ = false∗
E unknown = unknown

↑
∗ E = E ′ ↑

∗ false = false∗↑
∗ true = true∗↑
∗ ∗ = ∗↑

∗ bot = bot↑
∗ unknown = unknown↑
∗ true∗ = true∗↑
∗ false∗ = false∗

t ⇐ E = t ′

t ⇐ bot = t

t ⇐ ∗ = t

False ⇐ false∗ = False
True ⇐ false∗ = Unknown

Unknown ⇐ false∗ = Unknown
True ⇐ true∗ = True

False ⇐ true∗ = Unknown
Unknown ⇐ true∗ = Unknown

t ⇐ false = False
t ⇐ true = True

t ⇐ unknown = Unknown

Figure B.4: Operations on the elements of the relationship lattice, E

B.2. OPERATIONS ON LATTICES 137

δ v δ ′

∅ v δ
(v−∅)

δc v δa Ec v Ea

R 7→ Ec, δc v R 7→ Ea, δa
(v−δ)

δ t δ ′ = δ ′′

∅ t∅ = ∅
(t−∅)

δl t δr = δ ′ El t Er = E ′

R 7→ El, δl t R 7→ Er, δr = R 7→ E ′, δ ′
(t−δ)

δ δ ′ = δ ′′

∅ ∅ = ∅
(EQJOIN−∅)

δl δr = δ ′ El Er = E ′

R 7→ El, δl R 7→ Er, δr = R 7→ E ′, δ ′
(EQJOIN−δ)

δ δ ′ = δ ′′

∅ ∅ = ∅
(OVERRIDE−∅)

δl δr = δ ′ El Er = E ′

R 7→ El, δl R 7→ Er, δr = R 7→ E ′, δ ′
(OVERRIDE−δ)

↑
∗ δ = δ ′

↑
∗ ∅ = ∅

(POLAR−∅)

↑
∗ δ = δ ′

↑
∗ E = E ′↑

∗ R 7→ E, δ = R 7→ E ′, δ ′
(POLAR−δ)

Figure B.5: Operations on the change lattice, δ

138 APPENDIX B. FORMALISM

ρ v ρ ′

∅ v ρ
(t−∅)

ρc v ρa tc v ta

R 7→ tc, ρc v R 7→ ta, ρa
(t−ρ)

ρ t ρ ′ = ρ ′′

∅ t∅ = ∅
(t−∅)

ρl t ρr = ρ ′ tl t tr = t ′

R 7→ tl, ρl t R 7→ tr, ρr = R 7→ t ′, ρ ′
(t−ρ)

ρ ⇐ δ = ρ ′

∅ ⇐ ∅ = ∅
(⇐−∅)

ρ ⇐ δ = ρ ′ t ⇐ E = t ′

R 7→ t, ρ ⇐ R 7→ E, δ = R 7→ t ′, ρ ′
(⇐−ρ)

Figure B.6: Operations on the relationship lattice, ρ

B.3. OPERATIONS ON SPECIFICATIONS 139

B.3 Operations on specifications

Substitution of predicates is straightforward. Figure B.7 shows how given a P over specification
variables and a substitution σ, we can create a predicate in the target language over object labels
`.

The semantics will need to be able to access the free variable that occur within each part of
the constraint and the type that is expected. This will be represented by the specification typing
environment Γy . Figure B.8 shows how the free variables are retrieved from the specifications.
The constraint itself finds its free variables by combining the free variables of all the subparts.
This operator must respect the types required by each part, as seen in Figure B.9. Notice that the
semantics are that if two typing contexts have different types for a given y, then one must be a
subtype of the other. Theoretically, this could be extended to allow for intersection types, and in
fact the implementation of Fusion will allow this.

P[σ] = M

(P1 ∧ P2)[σ] = P1[σ] ∧ P2[σ]

(P1 ∨ P2)[σ] = P1[σ] ∨ P2[σ]

(P1 =⇒ P2)[σ] = P1[σ] =⇒ P2[σ]

true[σ] = true

false[σ] = false

(¬A)[σ] = ¬A[σ]

(rel(ȳ)/ytest)[σ] = rel(ȳ)[σ]/σ(ytest)

rel(ȳ)[σ] = rel(ȳ[σ])

(y, ȳ)[σ] = σ(y), ȳ[σ]

Figure B.7: Substitutions on specifications.

140 APPENDIX B. FORMALISM

FV(cons) = Γy

FV(op : Pctx ⇒ Preq ⇓ Q̄eff;Prst) = FV(op) ∪ FV(Pctx) ∪ FV(Preq) ∪ FV(Q) ∪ FV(Prst)

FV(P) = Γy

FV(P1 ∧ P2) = FV(P1) ∪ FV(P2)

FV(P1 ∨ P2) = FV(P1) ∪ FV(P2)

FV(P1 =⇒ P2) = FV(P1) ∪ FV(P2)

FV(true) = ∅
FV(false) = ∅
FV(¬A) = FV(A)

FV(rel(ȳ)/ytest) = FV(A), ytest : boolean

FV(rel(ȳ)) = ȳ : R(rel)

FV(instr) = Γy

FV(τthis.m(τy) : τret) = target : τthis, result : τret, y : τ

FV(new τ(τy)) = target : τ, y : τ

FV(eomτthis.m(τy) : τret) = result : τret, target : τthis
FV(bomτthis.m(τy)) = target : τthis, y : τ

Figure B.8: Generating free variables from specifications

Γy ∪ Γ ′y = Γ ′′y

Γy ∪∅ = Γy
(∪−∅)

y 6∈ dom(Γ ly) Γ ly ∪ Γ ry = Γy

Γ ly ∪ y : τ, Γ ry = y : τ, Γy
(∪−NOTIN)

τl <: τr Γ ly ∪ Γ ry = Γy

y : τl, Γ ly ∪ y : τr, Γ ry = y : τl, Γy
(∪−LEFTSUB)

τr <: τl Γ ly ∪ Γ ry = Γy

y : τl, Γ ly ∪ y : τr, Γ ry = y : τr, Γy
(∪−RIGHT−SUB)

Γy ⊆ Γ ′y

dom(Γy) ⊆ dom(Γ ′y) ∀y : τ ∈ Γy . Γ ′y <: τ

Γy ⊆ Γ ′y
(⊆−ΓY)

Figure B.9: Operations on free variables

B.4. POINTS-TO OPERATIONS 141

B.4 Points-to Operations

While I have defined the points-to lattice as < Γ`,L >, it actually has a third part, Γx , that gives the
types of the variables. However, as this is static information, this is always the same, regardless of
whether we have an abstract or concrete heap. As it is only used in the operator matching rules, it
will be elided.

Recall from Chapter 4 that A must always respect the abstraction from Theorem 6. Given this,
thev operation on A must be given as shown in Figure B.10. Figure B.10 also shows the operation
to make a strong update to A with the updates in γ.

When a constraint generates a strong update, it will initially be on α, a mapping on specifica-
tion variables. This will eventually be converted into γ, a mapping on source variables, using the
bindings from β. The v operator for α and γ is shown in Figure B.11, and the substitution using
β is in Figure B.12.

A vA A ′

dom(L ′) = dom(L)

dom(Γ ′`) ⊆ dom(Γ`) ∀ ` ′ : τ ′ ∈ Γ ′` . τ ′ <: Γ`(`
′) ∀ x ′ 7→ ¯̀ ′ ∈ L ′. ¯̀′ ⊆ L(x ′) ∧ ¯̀ ′ 6= ∅

< Γ ′` ; L
′ >vA< Γ`; L >

()(vA)

A ⇐ γ = A ′

A ⇐ ∅ = A
(⇐−∅)

< Γ`; L >⇐ γ =< Γ ′` ; L
′ > x ∈ dom(L) {`} ⊆ L(x)

< Γ`; L >⇐ x 7→ {`}, γ =< Γ ′` ; L
′[x 7→ {`}] >

(⇐−SET)

Figure B.10: Operations on the points-to lattice A

142 APPENDIX B. FORMALISM

γ v γ ′

∅ v γ
(v−∅)

γc v γa {`}c ⊆ {`}a

x 7→ {`}c, γc v x 7→ {`}a, γa
(v−6∅)

γl t γr = γ ′

∅ t∅ = ∅
(t−∅)

γl t γr = γ ′ {`}l ∪ {`}r = {`}

x 7→ {`}l, γl t x 7→ {`}r, γr = x 7→ {`}, γ ′
(t−6∅)

α v α ′

∅ v ∅
(v−∅)

αc v αa {`}c ⊆ {`}a

y 7→ {`}c, αc v y 7→ {`}a, αa
(v− 6∅)

Figure B.11: Precision of γ and α

α[β] = γ

∅[β] = ∅
y 7→ {`}, α[β] = y 7→ {`}[β], α[β]

y 7→ {`}[y 7→ x, β] = x 7→ {`}

y1 7→ {`}[y2 7→ x, β] = y1 7→ {`}[β]

y 7→ {`}[∅] = ∅

Figure B.12: Substitution on α

B.5. THE BOOLEAN CONSTANT PROPAGATION LATTICE 143

B.5 The Boolean Constant Propagation lattice

The Fusion analysis also relies on a boolean constant propagation analysis. Fusion assumes an
abstraction of this lattice that maps object labels to ternary values and the expected precision
operator v as shown in Figure B.13. Fusion uses this lattice when creating an effect based upon a
relationship effect. Figure B.14 shows the rules for the function value, which will create a mapping
R 7→ E based upon the lattice and an effect N.

B vB B ′

dom(Bc) = dom(Ba) ∀ ` : t ∈ Bc. t v Ba(`)

Bc vB Ba
()(vB)

Figure B.13: Precision for the boolean constant propagation lattice

value(B;N) = R 7→ E

value(B;R) = R 7→ true (VAL−R)
value(B; ¬R) = R 7→ false (VAL−¬R)

B(`) = True
value(B;R/`) = R 7→ true (VAL−T−TRUE)

B(`) = True
value(B; ¬R/`) = R 7→ false (VAL−¬T−FALSE)

B(`) = False
value(B;R/`) = R 7→ false (VAL−T−FALSE)

B(`) = False
value(B; ¬R/`) = R 7→ true (VAL−¬T−TRUE)

Figure B.14: Using B to get the value of an effect N

144 APPENDIX B. FORMALISM

B.6 Functions

The semantics will use 6 functions that use set creation to produce new substitutions and lattices.
The first two functions, seen in Figure B.15 are for creating sets of substitutions. The function

findLabels will, given a lattice A, a binding β, and specification types as in Γy , return the set of all
substitutions possible from A and β such that each substitution has the domain given in β and
respects the types given in Γy . The domain of Γy may be larger than the domain of β. The second
function, allValidSubs, does something similar, but it is not limited by β. Instead, it will create all
substitutions based upon the entire domain of Γy such that the types of Γy are respected and that
each substitution created is a superset of the given substitution σ. That is, it will use σ as a starting
point for creating further substitutions based on Γvary.

The next 3 functions, seen in Figure B.17, will generate effect lattices δ. The functions ignore
and⊥ are straightforward and will create a δ such that every R is mapped to ∗ and bot respectively.
The function lattice will create a delta lattice from the effects list of a constraint. It will do so given
a specific substitution σ and a B to use for test effects. Notice that when multiple effects are made,
they can override each other such that later effects override earlier effects.

The last function, transfer, in Figure B.18, will transfer a relationship lattice into a new domain,
as dictated by A. As the flow analysis proceeds, the lattice A will gain new variables x and object
labels `. These new object labels will cause new relationships to be possible. The function transfer
adds these new relationships and sets them to the default starting value, Unknown.

findLabels(< Γ`; L >;β; Γy) = Σ

Σ = {σ ′ | σ = {y 7→ ` | y ∈ dom(β) ∧ ` ∈ L(β(y)) ∧ ∃ τ ′ . τ ′ <: Γ`(`) ∧ τ ′ <: Γy(y)} ∧

σ ′ ∈ allValidSubs(< Γ`; L >;σ; Γy)}

allValidSubs(< Γ`; L >;σ; Γy) = Σ

Σ = {σ ′ | σ ′ ⊇ σ ∧ dom(σ ′) = dom(Γy) ∧ ∀ y 7→ ` ∈ σ ′ . ∃ τ ′ . τ ′ <: Γ`(`) ∧ τ ′ <: Γy(y)}

Figure B.15: Functions to create substitutions

B.6. FUNCTIONS 145

⊥(σ) = α

α = {y 7→ ∅ | y ∈ dom(σ)}

Figure B.16: Creating an empty update

ignore(< Γ`; L >) = δ

δ = {rel(¯̀) 7→ ∗ | R(rel) = τ̄ ∧ |τ̄| = |¯̀| = n ∧ ∀ni=1 . ∃τ ′ . τ ′ <: τi ∧ τ ′ <: Γ`(`i)}

⊥(< Γ`; L >) = δ

δ = {rel(¯̀) 7→ bot | R(rel) = τ̄ ∧ |τ̄| = |¯̀| = n ∧ ∀ni=1 . ∃τ ′ . τ ′ <: τi ∧ τ ′ <: Γ`(`i)}

lattice(A; B;σ;Q, Q̄) = δ

δ = lattice(A; B;σ;Q) lattice(A; B;σ; Q̄)

lattice(A; B;σ;Q) = δ

δ = ignore(A) {value(B;Q[σ ′]) | σ ′ ∈ allValidSubs(A;σ; FV(Q))}

lattice(A; B;σ; ∅) = δ

δ = ignore(A)

Figure B.17: Functions to create an effect lattice δ.

transfer(ρ; A) = ρ ′

ρ ′ = {R 7→ t | R = rel(¯̀) ∧ R(rel) = τ̄ ∧ |τ̄| = |¯̀| = n ∧ ∀ni=1 . ∃τ ′ . τ ′ <: τi ∧ τ ′ <:

Γ`(`i) ∧ (R ∈ dom(ρ) =⇒ t = ρ(R)) ∧ (R 6∈ dom(ρ) =⇒ t = Unknown)}

Figure B.18: Transfer lattice into new aliasing domain function

146 APPENDIX B. FORMALISM

B.7 Rules

This section will describe the formal rules for the flow function by starting with the lowest level
rules and working back up.

At the core of the analysis is a simple logic engine. This logic engine will simply evaluate
whether a given relationship predicate, M is satisfied by the context ρ. The rules for this are
shown in Figures B.19-B.22.

While most of the rules (Figures B.21 and B.22) are as one would expect for a three-value logic
system and the same for all variants, Figure B.19 shows an interesting difference. In the sound and
complete variants, the rule for checking the atomic relationship R is a trivial lookup into ρ (REL).
This is also the case in the pragmatic variant when the relationship maps to either True or False
(REL-T-F). The interesting case is in the pragmatic variant when the relationship maps to Unknown.
The pragmatic variant admits the rules (REL-U) and (INFER) to handle this case. These rules attempt
to use the inferred relationships, defined in Section 4.3.4, to retrieve the desired relationship.

The rule for the inference judgement ρ infers ρ ′ is defined in Figure B.20. This rule first checks
to see if the trigger of an inferred relation is true, and if so, uses the function lattice to produce the
inferred relationships described by R̄[σ]. For all relationships not defined by R̄[σ], lattice defaults
to bot to signal that there are no changes. There are two properties to note about the rules (REL-U),
(INFER), and (DISCOVER):

1. The use of inferred relationships does not change the original lattice ρ. This allows the
inferred relationships to disappear if the generator, P, is no longer true.

2. Any inferred values must be strictly more precise than the relationship’s value in ρ, as enforced
by ρ ′ @ ρ. This means that relationships can move from Unknown to True, but they can not
move from False to True. This property guarantees termination and gives declared effects
precedence over inferred ones.

Inferred relationships can not be used in the sound and complete variants. This does not
limit the expressiveness of the specifications, as inferred relations can always be written directly
within the constraints. Doing so does make the specifications more difficult to write; the frame-
work developer must add the inferred relations to any constraint which will also prove the trigger
predicate. Since inferred relations do change the semantics, they are not syntactic sugar, but they
are not necessary for reasons beyond the ease of writing specifications.

B.7. RULES 147

A; B; ρ ` R t Sound and Complete variants

ρ(R) = t

A; B; ρ ` R t
(REL)

A; B; ρ ` R t Pragmatic variants

ρ(R) = t t 6= Unknown
A; B; ρ ` R t

(REL−T−F)

ρ(R) = Unknown A; B ` ρ infers ρ ′ ρ ρ ′ ` R t t 6= Unknown
A; B; ρ ` R t

(INFER)

ρ(R) = Unknown
¬∃ρ . A; B ` ρ infers ρ ′ ∧ ρ ρ ′ ` R t ∧ t 6= Unknown

A; B; ρ ` R Unknown
(REL−U)

Figure B.19: Three value truth evaluation on M, continued on B.21. The sound and complete
variant use only the rule rel− sound− complete, the other rules are for the pragmatic variant.

A; B ` ρ infers ρ ′

P ⇓ Q̄ ∈ I A; B; ρ ` P[σ] True lattice(A; B;σ; Q̄) = δ ρ ′ = ρ ⇐ δ ρ ′ @ ρ

A; B ` ρ infers ρ ′ (DISCOVER)

Figure B.20: Inferred Relationship Discovery.

148 APPENDIX B. FORMALISM

A; B; ρ `M t

A; B; ρ ` R t B(`test) = t t 6= Unknown
A; B; ρ ` R/`test True

(REL−TEST−T)

A; B; ρ ` R t1 B(`test) = t2 t1 6= Unknown t2 6= Unknown t1 6= t2

A; B; ρ ` R/`test False
(REL−TEST−F)

A; B; ρ ` R Unknown
A; B; ρ ` R/`test Unknown

(REL−TEST−U1)
B(`test) = Unknown A; B; ρ ` R t

A; B; ρ ` R/`test Unknown
(REL−TEST−U2)

A; B; ρ ` T Unknown
A; B; ρ ` ¬T Unknown

(¬T−U)
A; B; ρ ` T False
A; B; ρ ` ¬T True

(¬T−T)
A; B; ρ ` T True

A; B; ρ ` ¬T False
(¬T−F)

A; B; ρ ` true True
(TRUE)

A; B; ρ ` false False
(FALSE)

A; B; ρ `M1 False
A; B; ρ `M1 =⇒ M2 True

(=⇒ −T1)
A; B; ρ ` P2 True

A; B; ρ `M1 =⇒ M2 True
(=⇒ −T2)

A; B; ρ `M1 True A; B; ρ `M2 False
A; B; ρ `M1 =⇒ M2 False

(=⇒ −F)

A; B; ρ `M1 Unknown A; B; ρ `M2 Unknown
A; B; ρ `M1 =⇒ M2 Unknown

(=⇒ −U1)

A; B; ρ `M1 True A; B; ρ `M2 Unknown
A; B; ρ `M1 =⇒ M2 Unknown

(=⇒ −U2)

A; B; ρ `M1 Unknown A; B; ρ `M2 False
A; B; ρ `M1 =⇒ M2 Unknown

(=⇒ −U3)

Figure B.21: Three value truth evaluation onM, continued on B.22.

B.7. RULES 149

A; B; ρ `M t

A; B; ρ `M1 True A; B; ρ `M2 True
A; B; ρ `M1 ∧M2 True

(∧−T)
A; B; ρ `M1False

A; B; ρ `M1 ∧M2False
(∧−F1)

A; B; ρ `M2 False
A; B; ρ `M1 ∧M2 False

(∧−F2)
A; B; ρ `M1 True A; B; ρ `M2 Unknown

A; B; ρ `M1 ∧M2 Unknown
(∧−U1)

A; B; ρ `M1 Unknown A; B; ρ `M2 True
A; B; ρ `M1 ∧M2 Unknown

(∧−U2)

A; B; ρ `M1 Unknown A; B; ρ `M2 Unknown
A; B; ρ `M1 ∧M2 Unknown

(∧−U3)

A; B; ρ `M1 True
A; B; ρ `M1 ∨M2 True

(∨−T1)
A; B; ρ `M2 True

A; B; ρ `M1 ∨M2 True
(∨−T2)

A; B; ρ `M1 False A; B; ρ `M2 False
A; B; ρ `M1 ∨M2 False

(∨−F)

A; B; ρ `M1 False A; B; ρ `M2 Unknown
A; B; ρ `M1 ∨M2 Unknown

(∨−U1)

A; B; ρ `M1 Unknown A; B; ρ `M2 False
A; B; ρ `M1 ∨M2 Unknown

(∨−U2)

A; B; ρ `M1 Unknown A; B; ρ `M2 Unknown
A; B; ρ `M1 ∨M2 Unknown

(∨−U3)

Figure B.22: Three value truth evaluation onM, continued from B.21.

150 APPENDIX B. FORMALISM

instr : op Z⇒ β

∃τ ′ . τ ′ <: τthis ∧ τ ′ <: Γx(xthis)

∃τ ′ . τ ′ <: τret ∧ τ ′ <: Γx(xret) ∃τ ′ . τ ′ <: τ ∧ τ ′ <: Γx(x)

xret = xthis.m(x) : τthis.m(τ y) : τret Z⇒ xret 7→ result, xthis 7→ target, x 7→ y
(INVOKE)

∃τ ′ . τ ′ <: new ∧ τ ′ <: Γx(xret) ∃τ ′ . τ ′ <: τ ∧ τ ′ <: Γx(x)

xret = new m(x) : new τ(τ y) Z⇒ xret 7→ target, x 7→ y
(CONSTRUCTOR)

∃τ ′ . τ ′ <: τthis ∧ τ ′ <: Γx(xthis)

∃τ ′ . τ ′ <: τret ∧ τ ′ <: Γx(xret) ∃τ ′ . τ ′ <: τ ∧ τ ′ <: Γx(x)

return xret(xthis.m(x)) : eom(τthis.m(τ y) : τret) Z⇒ xret 7→ result, xthis 7→ target, x 7→ y
(EOM)

∃τ ′ . τ ′ <: τthis ∧ τ ′ <: Γx(xthis) ∃τ ′ . τ ′ <: τ ∧ τ ′ <: Γx(x)

begin(xthis.m(x)) : bom(τthis.m(τ y))) Z⇒ xthis 7→ target, x 7→ y
(BOM)

Figure B.23: Instruction binding.

In order to check a constraint, the analysis must determine whether a source instruction, called
instr, matches the operation op defined by a constraint, and it must bind up source variables x
to specification variables y, as contained in β. The rules for are defined in Figure B.23. The rules
match variables appropriately and ensure that there exists some typing possibility that would
make them compatible. These rules can be expanded to allow for new types of operations.

B.7. RULES 151

A; B; ρ; cons ` instr ↪→ δ, γ Assume cons = op : Pctx ⇒ Preq ⇓ Q̄;Prst

instr : op Z⇒ β Γy = FV(op) ∪ FV(Pctx) ∪ FV(Q̄) findLabels(A; Γy ;β) = Σ

Σ 6= ∅ T = {σ, δ, γ | σ ∈ Σ ∧ A; B; ρ; σ ` cons ↪→ δ, α ∧ γ = α[β]}

T .σ = Σ δ ′ = tT .δ γ ′ = tT .γ
A; B; ρ; cons ` instr ↪→ δ ′, γ ′

(MATCH)

instr : op Z⇒ β Γy = FV(op) ∪ FV(Pctx) ∪ FV(Q̄) findLabels(A; Γy ;β) = ∅
A; B; ρ; cons ` instr ↪→ ⊥(A),∅

(NO−ALIASES)

¬(instr : op Z⇒ β)

A; B; ρ; cons ` instr ↪→ ⊥(A),∅
(NO−MATCH)

Figure B.24: Check a single constraint on all possible alias bindings given the two alias environ-
ments.

With these pieces in place, I will now show how to check a single constraint. This is done with
the judgment

A; B; ρ; cons ` instr ↪→ δ, γ

shown in Figure B.24. This judgment takes the environments and a constraint, and it determines
how to change the lattices for a given instruction. The lattice changes are represented in δ, and the
alias changes are represented in γ.

The analysis starts by checking whether the instruction matches the constrained operation
using the instruction matching rules from Figure B.23. If not, the rule (NO-MATCH) will apply. If
there is a match, it will also check whether the binding provided can produce any substitutions. If
no substitutions are available, then rule (NO-ALIASES) applies. Both of these rules produce no lattice
effects.

If there are substitutions, as shown in rule (MATCH), then the analysis must check this con-
straint for every aliasing configuration possible, as represented by Σ. This rule checks that for
each substitution σ, the constraint passes and produces the change lattices δ and α. The α for each
substitution is converted into a γ using the bindings for the instruction. Once the analysis has all
change lattices for each substitution, the analysis combines them together using the t operator
and returns the combined change lattices.

As seen in Figure B.24, the rule (MATCH) must check the validity of each possible substitution.
This is done with the judgment

A; B; ρ;σ ` cons ↪→ δ, α

The rules for this judgment, shown in Figure B.25, are the primary point of difference between the
variants of the analysis. The differences are highlighted for convenience. The rules for this judg-
ment will all use the function lattice to produce the relationship delta lattice when appropriate,
and they will use the restriction rules in Figure B.26 to produce the alias delta lattice.

152 APPENDIX B. FORMALISM

Sound Variant. The sound variant first checks Ptrg[σ] under ρ. It uses this to determine which
rule applies. If Ptrg[σ] is True, as seen in rule (BOUND-T), then the analysis must check if Preq is
True under ρ for all substitutions. If Preq is not True with all substitution from Σ, then the analysis
produces an error. If there is no error, the rule produces the effects dictated by the function lattice
and will produce effects based upon the restriction judgment. If Ptrg[σ] is False, then the analysis
uses rule (BOUND-F). In this situation the constraint does not trigger, so the requires predicate is not
checked. The analysis returns no delta lattice changes, and it returns σ so that this substitution is
not restricted.

In the case that Ptrg[σ] is Unknown, the sound variant proceeds in a similar manner to the
case where Ptrg[σ] is True as it must consider the possibility that the trigger predicate is actually
true, as seen in (BOUND-U) The only difference is in how it treats effects. The analysis must use the
polarizing operator to be conservative with the effects it is producing in case the trigger predicate
is actually false at runtime. Likewise, it will always produce the aliasing change effect σ.

Complete Variant. Like the sound variant, the complete variant starts by checking Ptrg[σ]

under ρ. If Ptrg[σ] is True, as seen in rule (BOUND-T), then the analysis must check Preq under ρ
given any substitution. As this is the complete variant, the analysis does not care whether Preq is
True or Unknown. If no substitutions work, either because none exist or because they all show Preq
to be false, then the analysis produces an error. Otherwise, the rule produces effects as expected. If
the analysis determines that Ptrg[σ] is False, then it uses the rule (BOUND-F). Like the sound variant,
the requires predicate is not checked, the analysis returns no delta lattice changes, and it returns σ
so that this substitution is not restricted.

Finally, if Ptrg[σ] is Unknown, the complete variant will not check Preq as it cannot be sure
whether the constraint is actually triggered and it should not produce an error. However, it must
still produce some conservative effects in case the constraint is triggered given a more concrete
lattice. Like the sound rule in the case of an unknown trigger, the rule uses the polarizing operator↑
∗ to produce only conservative effects, and it produces the aliasing change effect σ.

Pragmatic Variant. The pragmatic variant is a combination of the sound and complete vari-
ants. It has the same rule for False as the other two variants, (BOUND-F). The rule (BOUND-U) for
pragmatic is also the same as the rule (BOUND-U) for completeness. This means that this variant can
produce both false positives and false negatives. False negatives can occur when Ptrg is Unknown
under ρ, but a more precise lattice would have found Ptrg to be True and eventually generated
an error. False positives occur when Ptrg is True under ρ and Preq is Unknown under ρ, but Preq
would have been True under a more precise lattice.

B.7. RULES 153

For all of these rules, cons = op : Pctx ⇒ Preq ⇓ Q̄;Prst

A; B; ρ;σ ` cons ↪→ δ, α (Pragmatic)

A; B; ρ ` Pctx[σ] True
allValidSubs(A;σ; FV(cons)) = Σ ∃ σ ′ ∈ Σ . A; B; ρ ` Preq[σ ′] True

lattice(A; B;σ; Q̄) = δ A; B; ρ;σ `α Prst ↪→ α

A; B; ρ;σ ` cons ↪→ δ, α
(BOUND−T)

A; B; ρ ` Pctx[σ] False
A; B; ρ;σ ` cons ↪→ ⊥(A), σ

(BOUND−F)

A; B; ρ ` Pctx[σ] Unknown
lattice(A; B;σ; Q̄) = δ

A; B; ρ;σ ` cons ↪→↑
∗ δ, σ

(BOUND−U)

A; B; ρ;σ ` cons ↪→ δ, α (Sound)

A; B; ρ ` Pctx[σ] True
allValidSubs(A;σ; FV(cons)) = Σ ∀ σ ′ ∈ Σ . A; B; ρ ` Preq[σ ′] True

lattice(A; B;σ; Q̄) = δ A; B; ρ;σ `α Prst ↪→ α

A; B; ρ;σ ` cons ↪→ δ, α
(BOUND−T)

A; B; ρ ` Pctx[σ] False
A; B; ρ;σ ` cons ↪→ ⊥(A), σ

(BOUND−F)

A; B; ρ ` Pctx[σ] Unknown
allValidSubs(A;σ; FV(cons)) = Σ ∀ σ ′ ∈ Σ . A; B; ρ ` Preq[σ ′] True

lattice(A; B;σ; Q̄) = δ

A; B; ρ;σ ` cons ↪→↑
∗ δ, σ

(BOUND−U)

A; B; ρ;σ ` cons ↪→ δ, α (Complete)

A; B; ρ ` Pctx[σ] True allValidSubs(A;σ; FV(cons)) = Σ

∃ σ ′ ∈ Σ . A; B; ρ ` Preq[σ ′] True ∨ A; B; ρ ` Preq[σ ′] Unknown
lattice(A; B;σ; Q̄) = δ A; B; ρ;σ `α Prst ↪→ α

A; B; ρ;σ ` cons ↪→ δ, α
(BOUND−T)

A; B; ρ ` Pctx[σ] False
A; B; ρ;σ ` cons ↪→ ⊥(A), σ

(BOUND−F)

A; B; ρ ` Pctx[σ] Unknown
lattice(A; B;σ; Q̄) = δ

A; B; ρ;σ ` cons ↪→↑
∗ δ, σ

(BOUND−U)

Figure B.25: Check a bound constraint.

154 APPENDIX B. FORMALISM

A; B; ρ;σ `α P ↪→ α (Sound and Complete)

Σ = allValidSubs(A;σ, FV(P))

∃σ ′ ∈ Σ. A; B; ρ ` P[σ ′] t t 6= False

A; B; ρ;σ `α P ↪→ σ
(RESTRICT−T−U−SOUND/COMPLETE)

Σ = allValidSubs(A;σ, FV(P))

∀σ ′ ∈ Σ. A; B; ρ ` P[σ ′] False

A; B; ρ;σ `α P ↪→ ⊥(σ)
(RESTRICT−F−SOUND/COMPLETE)

A; B; ρ;σ `α P ↪→ α (Pragmatic)

Σ = allValidSubs(A;σ, FV(P))

∃σ ′ ∈ Σ. A; B; ρ ` P[σ ′] True

A; B; ρ;σ `α P ↪→ σ
(RESTRICT−T−PRAGMATIC)

Σ = allValidSubs(A;σ, FV(P))

∀σ ′ ∈ Σ. A; B; ρ ` P[σ ′] t ∧ t 6= True

A; B; ρ;σ `α P ↪→ ⊥(σ)
(RESTRICT−F−U−PRAGMATIC)

Figure B.26: Restricting substitutions based on a predicate.

When the analysis is checking a constraint, it may find a restrict predicate and need to restrict
the aliases of a variable accordingly. This is done in the rule (BOUND-T) in Figure B.25. The rules
in Figure B.26 show how, given a predicate, the analysis determines which aliases to restrict. The
substitutions to restrict to are returned from the rule with the lattice α. As before, the pragmatic
variant works different from the sound and complete variants, as shown by the shading. The
sound and complete variants will only restrict a substitution σ if there are no possible ways to
make the predicate True or False, as seen in rule (RESTRICT-F-SOUND/COMPLETE). If there is any way
for the substitution to make the predicate True or Unknown, it will return σ as a potentially valid
substitution. This is the only way to safely restrict substitutions, but as Unknown is a fairly com-
mon result, it means that restriction happens only in rare circumstances when the analysis has
very precise knowledge.

The pragmatic variant attempts to rectify this by allowing for unsafe restrictions. In particular,
it treats Unknown the same way it treats False, as seen in rules (RESTRICT-T-PRAGMATIC) and (RESTRICT-F-

U-PRAGMATIC). This allows for more aggressive restrictions, which in practice are usually acceptable.

B.7. RULES 155

fC;A;B(ρ, instr) = ρ ′,A ′

falias(A, instr) = A ′ T = {cons, δ, γ | cons ∈ C ∧ A ′; B; ρ; cons ` instr ↪→ δ, γ}

T .cons = C A ′ ⇐ (tT .γ) = A ′′ transfer(ρ,A ′′) ⇐ (T .δ) = ρ ′

fC(A; B; ρ; instr) = ρ ′,A ′′ (FLOW−CONS)

Figure B.27: Flow function

Finally, I present the semantics for the flow function of the analysis in Figure B.27. The flow
function for the Fusion analysis checks all the individual constraints and produces the output
lattices for the instruction. The flow function starts by first calling the alias analysis to produce
the new alias lattice for the instruction. Then, using the judgments defined previously, the flow
function iterates through each constraint and receives the change lattices δ and γ. The γ lattices
are all combined using the t operator, and the changes are applies to the incoming alias lattice A ′

to produce the outgoing alias lattice A ′′.
The δ lattices are combined as well, but we use the operator here instead. This operator

will effectively remove the true∗ and false∗ elements from the lattice. This operator will allow
true∗ to be effectively changed to true as long as all the substitutions agreed to it and at least
one substitution definitely made the change to true; this preserves some precision even in cases
where there are a lot of Unknown predicates as long as at least one made a concrete change. Once
the analysis has the final change lattice δ, it transfers the lattice ρ into the new aliasing context A ′′

and applies the effects.
There are three final rules that are not used in the semantics above but are necessary for the

proofs in Appendix C, these are shown in Figure B.28. The first and second show that there is
a consistency between an A and a ρ or δ such that all labels in ρ or δ exist in A with the right
type and that the domain of ρ of δ contains all possible relationships that can be created under A.
The second shows the consistency between an A, a σ, and a Γy . This shows that under some A, σ
contains a valid substitution for every y in Γy .

156 APPENDIX B. FORMALISM

A ` ρ consistent

dom(ρ) = {rel(¯̀) | τ̄ = R(rel) ∧ |τ̄| = |¯̀| = n ∧ ∀ni=1 . ∃ τ ′ . τ ′ <: τi ∧ τ ′ <: Γ`(`i)}

< Γ`; L >` ρ consistent
(CONSISTENT−ρ)

A ` δ consistent

dom(δ) = {rel(¯̀) | τ̄ = R(rel) ∧ |τ̄| = |¯̀| = n ∧ ∀ni=1 . ∃ τ ′ . τ ′ <: τi ∧ τ ′ <: Γ`(`i)}

< Γ`; L >` δ consistent
(CONSISTENT−δ)

A ` σ validFor Γy

dom(σ) ⊇ dom(Γy) ∀ y : τ ∈ Γy . ∃ τ ′ . τ ′ <: Γ`(σ(y)) ∧ τ ′ <: τ

< Γ`; L >` σ validFor Γy
(σ−VALID)

Figure B.28: Consistency of ρ and validity of σ against A

Appendix C
Proofs of Soundness and Completeness

C.1 Soundness

Global soundness from local soundness, consistency, monotonicity, and sound aliasing and sound
boolean propagation.

Theorem 1. Soundness of Flow Function

forall der.

Bconc v Babs

Aconc v Aabs

Aabs ` ρabs consistent
Aconc ` ρconc consistent

ρconc v ρabs

fC;Aabs;Babs(ρ
abs; instr) = ρabs

′
,Aabs

′′

exists der.

fC;Aconc;Bconc(ρ
conc; instr) = ρconc

′
,Aconc

′′

ρconc
′ v ρabs ′

Aconc
′′ v Aabs

′′

Proof:

T abs = {cons, δ, γ | cons ∈ C ∧ Aabs
′
; Babs; ρabs; cons ` instr ↪→ δ, γ}

By inversion on fC;Aabs;Babs(ρ
abs; instr) = ρabs

′
,Aabs

′′

T abs.cons = C By inversion on fC;Aabs;Babs(ρ
abs; instr) = ρabs

′
,Aabs

′′

γabs = tT abs.γ By inversion on fC;Aabs;Babs(ρ
abs; instr) = ρabs

′
,Aabs

′′

Aabs
′′

= Aabs
′ ⇐ γabs By inversion on fC;Aabs;Babs(ρ

abs; instr) = ρabs
′
,Aabs

′′

157

158 APPENDIX C. PROOFS OF SOUNDNESS AND COMPLETENESS

δabs = T abs.δ By inversion on fC;Aabs;Babs(ρ
abs; instr) = ρabs

′
,Aabs

′′

ρabs
′
= transfer(ρabs,Aabs

′′
) ⇐ δabs By inversion on fC;Aabs;Babs(ρ

abs; instr) = ρabs
′
,Aabs

′′

falias(Aabs; instr) = Aabs
′

By inversion on fC;Aabs;Babs(ρ
abs; instr) = ρabs

′
,Aabs

′′

falias(Aconc; instr) = Aconc
′

By Theorem Aliasing Flow Function Sound
Aconc

′ vA Aabs
′

By Theorem Aliasing Flow Function Sound
Aconc

′ ` ρconc ′ consistent By Theorem Aliasing Flow Function Preserves Consistency
∀ cons ∈ C .

Let Aabs
′
; Babs; ρabs; cons ` instr ↪→ δa, γa By construction of T abs

Aconc
′
; Bconc; ρconc; cons ` instr ↪→ δc, γc By Lemma 1(Soundness of Single Constraint)

δc v δa By Lemma 1(Soundness of Single Constraint)
γc v γa By Lemma 1(Soundness of Single Constraint)
Aconc

′ ` δc consistent By Lemma 9(Consistency of a Single Constraint)
dom(γc) ⊆ dom(Aconc

′
.L) By Lemma 9(Consistency of a Single Constraint)

Let T conc = {cons, δ, γ | cons ∈ C ∧ Aconc
′
; Bconc; ρconc; cons ` instr ↪→ δ, γ}

T conc.cons = C By set construction
Let δconc = T conc.δ By rule (EQJOIN)

δconc v δabs By Lemma 30(eqjoin delta operator preserves alap)
Let γconc = tT conc.γ By rule (tδ)

γconc v γabs By Lemma 33(tγ operator preserves v)
Let Aconc

′′
= Aconc

′ ⇐ γ By rule (⇐A)

Aconc
′′ v Aabs

′′
By Lemma 34(Leftarrow AliasA preserves alap)

Let ρconc
′′

= transfer(ρconc,Aconc
′′
) Apply transfer function

Let ρconc
′
= ρconc

′′ ⇐ δconc By rule (⇐ρ)

ρconc
′ v ρabs ′ By Lemma 38(⇐ρ preserves v)

fC;Aconc;Bconc(ρ
conc, instr) = ρconc

′
,Aconc

′′
By rule (FLOW-CONS)

�

C.1. SOUNDNESS 159

Lemma 1 (Soundness of Single Constraint).

forall deriv.

Aabs; ρabs; cons ` instr ↪→ δabs, γabs

Aconc v Aabs

Bconc v Babs

ρconc v ρabs

Aabs ` ρabs consistent
Aconc ` ρconc consistent

exists deriv.

Aconc; ρconc; cons ` instr ↪→ δconc, γconc

δconc v δabs

γconc v γabs

Proof:
By case analysis on Aabs; ρabs; cons ` instr ↪→ δabs, γabs

Case:

instr : op Z⇒ β Γy = FV(op) ∪ FV(Pctx) ∪ FV(Q̄) findLabels(Aabs; Γy ;β) = Σabs

Σabs 6= ∅ T abs = {σ, δ, γ|σ ∈ Σabs ∧ Aabs; Babs; ρabs; σ ` cons ↪→ δ, α ∧ γ = α[β]}

T abs.σ = Σabs δabs = tT abs.δ γabs = tT abs.γ
Aabs; Babs; ρabs;op : Pctx ⇒ Preq ⇓ Q̄;` instr ↪→ δabs, γabs

(MATCH)

Σconc = findLabels(Aconc; Γy ;β) By Lemma 22(FindLabels returns subsets)
Σconc ⊆ Σabs By Lemma 22(FindLabels returns subsets)
By case analysis on Σconc

Case: Σconc = ∅

Aconc; ρconc; cons ` instr ↪→ ignore(Aconc),∅ By rule (NO-MATCH)

∅ v γconc By rule vγ −∅
Aabs ` δabs consistent By Lemma consistency of a single constraint
Aconc ` ⊥(Aconc) consistent By Lemma ⊥ is consistent
⊥(Aconc) v δabs By rule vδ −δ

Case: Σconc 6= ∅

∀σ ∈ Σconc

160 APPENDIX C. PROOFS OF SOUNDNESS AND COMPLETENESS

Aabs; Babs; ρabs; σ ` cons ↪→ δa, αa By σ ∈ Σabs
Aconc ` σ validFor Γy By Lemma 22(FindLabels returns subsets)
dom(σ) = dom(Γy) By Lemma 22(FindLabels returns subsets)
Aconc; Bconc; ρconc; σ ` cons ↪→ δc, αc

By Lemma 2(Soundness of Fully Bound Check)
δc v δa By Lemma 2(Soundness of Fully Bound Check)
αc v αa By Lemma 2(Soundness of Fully Bound Check)
dom(αc) = dom(σ) By Lemma bound constraint check consistent
Aconc ` δc consistent By Lemma bound constraint check consistent
Let γc = αc[β]

dom(γc) ⊆ dom(Lconc) By dom(β) ⊆ dom(Lconc)

γc v γa By Lemma subs preserves v

Let T conc = {σ, δ, γ | σ ∈ Σconc ∧ Aconc; Bconc; ρconc; σ ` cons ↪→ δ, α ∧ γ = α[β]}

T conc.σ = Σconc By set construction and quantifier
Let δconc = tT conc.δ
δconc v δabs By Lemma tδ preserves v and Lemma tδ is less precise than operands
Let γconc = tT conc.γ
γconc v γabs By Lemma tδ preserves v and Lemma tδ is less precise than operands

Case:
instr : op Z⇒ β findLabels(Aabs; Γy ;β) = ∅

Aabs; Babs; ρabs;op : Pctx ⇒ Preq ⇓ Q̄;` instr ↪→ ⊥(Aabs),∅
(NO−ALIASES)

Σconc = findLabels(Aconc; Γy ;β) By Lemma 22(FindLabels returns subsets)
Σconc ⊆ Σabs By Lemma 22(FindLabels returns subsets)
Σconc = ∅ By Σconc ⊂ Σabs
Aconc; Bconc; ρconc;op : Pctx ⇒ Preq ⇓ Q̄;` instr ↪→ ⊥(Aconc),∅ By rule (NO-ALIASES)

⊥(Aconc) v ⊥(Aabs) By rule v −⊥
∅ v ∅ By rule v −∅

Case:
¬(instr : op Z⇒ β)

Aabs; Babs; ρabs;op : Pctx ⇒ Preq ⇓ Q̄;` instr ↪→ ⊥(Aabs),∅
(NO−MATCH)

Aconc; Bconc; ρconc;op : Pctx ⇒ Preq ⇓ Q̄;` instr ↪→ ⊥(Aconc),∅ By rule (NO-MATCH)

⊥(Aconc) v ⊥(Aabs) By rule v −⊥
∅ v ∅ By rule v −∅

�

C.1. SOUNDNESS 161

Lemma 2 (Soundness of Fully Bound Check).

forall deriv.

cons = op : Pctx ⇒ Preq ⇓ Q̄;Prst

Aconc v Aabs

Bconc v Babs

ρconc v ρabs

Aabs ` ρabs consistent
Aconc ` ρconc consistent
Aconc ` σ validFor FV(Pctx)

dom(σ) = dom(FV(Pctx))

Aabs; Babs; ρabs;σ ` cons ↪→ δabs, αabs

exists deriv.

Aconc; Bconc; ρconc;σ ` cons ↪→ δconc, αconc

δconc v δabs

αconc v αabs

Proof:
By case analysis on Aabs; Babs; ρabs;σ ` cons ↪→ δabs, αabs

Case:
Aabs; Babs; ρabs ` Pctx[σ] False

Aabs; Babs; ρabs;σ ` cons ↪→ ⊥(Aabs), σ
(BOUND−F−SOUND)

Aconc; Bconc; ρconc ` Pctx[σ] tc By Lemma 4(Truth Checking Sound)
tc v False By Lemma 4(Truth Checking Sound)
tc = False By inversion on tc v False
Aconc; Bconc; ρconc;σ ` cons ↪→ ⊥(Aconc),∅ By rule (BOUND-F-SOUND)

⊥(Aconc) v ⊥(Aabs) By Lemma ⊥ preserves v
σ v σ By rule (v −∅)

Case:

cons = op : Pctx ⇒ Preq ⇓ Q̄;Prst
Aabs; Babs; ρabs ` Pctx[σ] True allValidSubs(Aabs;σ; FV(cons)) = Σabs

∀ σ ′ ∈ Σabs . Aabs; Babs; ρ ` Preq[σ ′] True
lattice(Aabs; Babs;σ; Q̄) = δabs Aabs; Babs; ρabs;σ `α Prst ↪→ αabs

Aabs; Babs; ρabs;σ ` cons ↪→ δabs, αabs
(BOUND−T−SOUND)

Bconc; ρconc ` Pctx[σ] tc By Lemma 4(Truth Checking Sound)
tc v True By Lemma 4(Truth Checking Sound)

162 APPENDIX C. PROOFS OF SOUNDNESS AND COMPLETENESS

tc = True By inversion on tc v True
Σconc = allValidSubs(Aconc;σ; FV(cons)) By Lemma 23(ValidSubs returns subsets)
∀ σ ∈ Σconc . Aconc ` σ validFor FV(cons) By Lemma 23(ValidSubs returns subsets)
∀ σ ∈ Σconc . Aconc ` σ validFor FV(Preq) By FV(Preq) ⊆ FV(cons)

Σconc ⊆ Σabs By Lemma 23(ValidSubs returns subsets)
∀ σ ′ ∈ Σconc . Babs; ρabs ` Preq[σ ′] True By Σc ⊆ Σa
lattice(Aconc; Bconc;σ; Q̄) = δconc By Lemma 25(Lattice preserves precision)
δconc v δabs By Lemma 25(Lattice preserves precision)
Aconc; Bconc; ρconc;σ `α Prst ↪→ αconc By Lemma 3(Soundness of Restriction)
αconc v αabs By Lemma 3(Soundness of Restriction)
Aconc; Bconc; ρconc;σ `full cons → δconc, σ By rule (BOUND-T-SOUND)

Case:

cons = op : Pctx ⇒ Preq ⇓ Q̄;Prst
Aabs; Babs; ρabs ` Pctx[σ] Unknown

allValidSubs(Aabs;σ; FV(cons)) = Σabs

∀ σ ′ ∈ Σabs . Aabs; Babs; ρ ` Preq[σ ′] True
lattice(Aabs; Babs;σ; Q̄) = δabs

Aabs; Babs; ρabs;σ ` cons ↪→↑
∗ δabs ′ , σ

(BOUND−U−SOUND)

Aconc; Bconc; ρconc ` Pctx[σ] tc By Lemma 4(Truth Checking Sound)
Case analysis on tc

Case: tc = True

Σconc = allValidSubs(Aconc;σ; FV(cons)) By Lemma 23(ValidSubs returns subsets)
∀ σ ∈ Σconc . Aconc ` σ validFor FV(cons) By Lemma 23(ValidSubs returns subsets)
Σconc ⊆ Σabs By Lemma 23(ValidSubs returns subsets)
∀ σ ′ ∈ Σconc . Bconc; ρconc ` Preq[σ ′] True

By Σc ⊆ Σa and Lemma 4(Truth Checking Sound)
lattice(Aconc; Bconc;σ; Q̄) = δconc By Lemma 25(Lattice preserves precision)
δconc v δabs ′ By Lemma 25(Lattice preserves precision)

Let δabs =
↑
∗ δabs ′

δabs
′ v δabs By Lemma

↑
∗ result is less precise

δconc v δabs By Lemma transitivity of v
Aconc; Bconc; ρconc;σ `α Prst ↪→ αconcBy Lemma 24(Restriction less precise than substitution)
αconc v σ By Lemma 24(Restriction less precise than substitution)
Aconc; Bconc; ρconc;σ ` cons ↪→ δconc, αconc By rule (BOUND-T-SOUND)

Case: tc = Unknown

Σconc = allValidSubs(Aconc;σ; FV(cons)) By Lemma 23(ValidSubs returns subsets)

C.1. SOUNDNESS 163

∀ σ ∈ Σconc . Aconc ` σ validFor FV(cons) By Lemma 23(ValidSubs returns subsets)
Σconc ⊆ Σabs By Lemma 23(ValidSubs returns subsets)
∀ σ ′ ∈ Σconc . Bconc; ρconc ` Preq[σ ′] True

By Σc ⊆ Σa and Lemma 4(Truth Checking Sound)
lattice(Aconc; Bconc;σ; Q̄) = δconc

′
By Lemma 25(Lattice preserves precision)

δconc
′ v δabs ′ By By Lemma 25(Lattice preserves precision)

Let δabs =
↑
∗ δabs ′

Let δconc =
↑
∗ δconc ′

δconc v δabs By Lemma
↑
∗ preserves v

σ v σ By rule vα − =

Aconc; Bconc; ρconc;σ ` cons ↪→ δconc, σ By rule (BOUND-U-SOUND)

Case: tc = False

Aconc; Bconc; ρconc;σ ` cons ↪→ ⊥(Aconc), σ By rule (BOUND-F-SOUND)

⊥(Aconc) v δabs By rule v −⊥
σ v σ By rule v − =

�

Lemma 3 (Soundness of Restriction).

forall deriv.

Aabs; Babs; ρabs;σ `α P ↪→ αabs

Aconc v Aabs

Bconc v Babs

ρconc v ρabs

Aabs ` ρabs consistent
Aconc ` ρconc consistent

exists deriv.

Aconc; Bconc; ρconc;σ `α P ↪→ αconc

αconc v αabs

Proof:
By case analysis on Aabs; Babs; ρabs;σ `α P ↪→ αabs

Case:

Σabs = allValidSubs(Aabs;σ, FV(P))

∃σ ′ ∈ Σabs.Aabs; Babs; ρabs ` P[σ ′] ta ta 6= False

Aabs; Babs; ρabs;σ `α P ↪→ σ
(RESTRICT−T−U−SOUND/COMPLETE)

164 APPENDIX C. PROOFS OF SOUNDNESS AND COMPLETENESS

Aconc; Bconc; ρconc;σ `α P ↪→ αconc By Lemma 24(Restriction less precise than substitution)
αconc v σ By Lemma 24(Restriction less precise than substitution)

Case:
Σabs = allValidSubs(Aabs;σ, FV(P)) ∀σ ′ ∈ Σabs.Aabs; Babs; ρabs ` P[σ ′] False

Aabs; Babs; ρabs;σ `α P ↪→ ⊥(σ)
(RESTRICT−F−SOUND/COMPLETE)

Σconc = allValidSubs(Aconc;σ, FV(P)) By Lemma 23(ValidSubs returns subsets)
Σconc ⊆ Σabs By Lemma 23(ValidSubs returns subsets)
∀σ ′ ∈ Σconc

Aabs; Babs; ρabs ` P[σ ′] False By σ ′ ∈ Σabs
Aconc; Bconc; ρconc ` P[σ ′] False By Lemma 4(Truth Checking Sound)

∀σ ′ ∈ Σconc.Aconc; Bconc; ρconc ` P[σ ′] False By quantification above
Aconc; Bconc; ρconc;σ `α P ↪→ ⊥(σ) By rule (RESTRICT-F-SOUND/COMPLETE)

⊥(σ) v ⊥(σ) By vα − =

�

Lemma 4 (Truth Checking Sound).

forall deriv.

ρconc v ρabs

Aconc v Aabs

Bconc v Babs

Aconc ` σ validFor FV(P)

Aconc ` ρconc consistent

Aabs; Babs; ρabs ` P[σ] ta

exists deriv.

Aconc; Bconc; ρconc ` P[σ] tc

tc v ta

Proof:
By induction on ρabs ` P[σ] ta

Case:
ρabs(rel(y)[σ]) = ta

Aabs; Babs; ρabs ` rel(y)[σ] ta
(REL)

C.1. SOUNDNESS 165

Let R = rel(y)[σ]

R ∈ dom(ρconc) By Lemma σ valid and ρ consistent
Let tc = ρconc(R)

tc v ta By inversion on ρconc v ρabs
Aconc; Bconc; ρconc ` rel(y)[σ] tc By rule (REL)

Case:
Aabs; Babs; ρ ` S[σ] ta Babs(ytest[σ]) = ta ta 6= Unknown

Aabs; Babs; ρabs ` S/ytest[σ] True
(REL−TEST−T)

Aconc; Bconc; ρconc ` S[σ] tc By induction hypothesis
tc v ta
By case analysis on tc

Case: tc = True

Bconc(ytest[σ]) = True By Bconc v Babs

Aconc; Bconc; ρconc ` S/ytest[σ] True By rule (REL − TEST − T)

True v True By rule v − =

Case: tc = False

Bconc(ytest[σ]) = False By Bconc v Babs

Aconc; Bconc; ρconc ` S/ytest[σ] True By rule (REL − TEST − T)

True v True By rule v − =

Case: tc = Unknown

Contradiction with Bconc v Babs

Case:

Aabs; Babs; ρ ` S[σ] ta1 Babs(ytest[σ]) = ta2
ta1 6= Unknown ta2 6= Unknown ta1 6= ta2

Aabs; Babs; ρabs ` S/ytest[σ] False
(REL−TEST−F)

Aconc; Bconc; ρconc ` S[σ] tc1 By induction hypothesis
tc1 v ta1
By case analysis on tc1

Case: tc1 = True

Bconc(ytest[σ]) = tc2 By Bconc v Babs

tc2 = False By tc1 v ta1 and ta1 6= ta2 and Bconc v Babs

Aconc; Bconc; ρconc ` A/`test False By rule (REL − TEST − F)

False v False By rule v − =

166 APPENDIX C. PROOFS OF SOUNDNESS AND COMPLETENESS

Case: tc1 = False

Bconc(ytest[σ]) = tc2 By Bconc v Babs

tc2 = False By tc1 v ta1 and ta1 6= ta2 and Bconc v Babs

Aconc; Bconc; ρconc ` A/`test False By rule (REL − TEST − F)

False v False By rule v − =

Case: tc1 = Unknown

Contradiction with Bconc v Babs

Case:
Aabs; Babs; ρabs ` S[σ] Unknown

Aabs; Babs; ρabs ` S/ytest[σ] Unknown
(REL−TEST−U1)

Aconc; Bconc; ρconc ` S[σ] tc By induction hypothesis
tc1 v Unknown By induction hypothesis
Let tc2 = Bconc(`test) By case analysis on tc1

Case: tc1 = True

Let tc2 = Bconc(ytest[σ])

By case analysis on tc1

Case: tc2 = True

Aconc; Bconc; ρconc ` S/ytest[σ] True By rule (REL − TEST − T)

True v Unknown By rule v −>

Case: tc2 = False

Aconc; Bconc; ρconc ` S/ytest[σ] False By rule (REL − TEST − F)

False v Unknown By rule v −>

Case: tc2 = Unknown

Aconc; Bconc; ρconc ` S/ytest[σ] Unknown By rule (REL − TEST −U2)

Unknown v Unknown By rule v −>

Case: tc1 = False

Let tc2 = Bconc(ytest[σ])

By case analysis on tc1

C.1. SOUNDNESS 167

Case: tc2 = False

Aconc; Bconc; ρconc ` S/ytest[σ] True By rule (REL − TEST − T)

True v Unknown By rule v −>

Case: tc2 = True

Aconc; Bconc; ρconc ` S/ytest[σ] False By rule (REL − TEST − F)

False v Unknown By rule v −>

Case: tc2 = Unknown

Aconc; Bconc; ρconc ` S/ytest[σ] Unknown By rule (REL − TEST −U2)

Unknown v Unknown By rule v −>

Case: tc1 = Unknown

Aconc; Bconc; ρconc ` S/ytest[σ] Unknown By rule (REL − TEST −U1)

Unknown v Unknown By rule v −>

Case:
Babs(ytest[σ]) = Unknown Aabs; Babs; ρabs ` S[σ] ta

Aabs; Babs; ρabs ` S/ytest[σ] Unknown
(REL−TEST−U2)

Aconc; Bconc; ρconc ` A tc1 By induction hypothesis
tc1 v ta By induction hypothesis
By case analysis on tc1

Case: tc1 = True

Let tc2 = Bconc(ytest[σ])

By case analysis on tc2

Case: tc2 = True

Aconc; Bconc; ρconc ` S/ytest[σ] True By rule (REL − TEST − T)

True v Unknown By rule v −>

Case: tc2 = False

Aconc; Bconc; ρconc ` S/ytest[σ] False By rule (REL − TEST − F)

False v Unknown By rule v −>

168 APPENDIX C. PROOFS OF SOUNDNESS AND COMPLETENESS

Case: tc2 = Unknown

Aconc; Bconc; ρconc ` S/ytest[σ] Unknown By rule (REL − TEST −U2)

Unknown v Unknown By rule v −>

Case: tc1 = False

Let tc2 = Bconc(ytest[σ])

By case analysis on tc1

Case: tc2 = False

Aconc; Bconc; ρconc ` S/ytest[σ] True By rule (REL − TEST − T)

True v Unknown By rule v −>

Case: tc2 = True

Aconc; Bconc; ρconc ` S/ytest[σ] False By rule (REL − TEST − F)

False v Unknown By rule v −>

Case: tc2 = Unknown

Aconc; Bconc; ρconc ` S/ytest[σ] Unknown By rule (REL − TEST −U2)

Unknown v Unknown By rule v −>

Case: tc1 = Unknown

Aconc; Bconc; ρconc ` S/ytest[σ] Unknown By rule (REL − TEST −U1)

Unknown v Unknown By rule v −>

Case:
Aabs; Babs; ρabs ` A[σ] Unknown

Aabs; Babs; ρabs ` ¬A[σ] Unknown
(¬T−UNKNOWN)

Aconc; Bconc; ρconc ` A[σ] tc By induction hypothesis
tc v Unknown By induction hypothesis
By case analysis on the value of tc

Case: tc = True

Aconc; Bconc; ρconc ` ¬A False By rule (¬ − T − F)

False v Unknown By rule v −>

C.1. SOUNDNESS 169

Case: tc = False

Aconc; Bconc; ρconc ` ¬A True By rule (¬ − T − T)

True v Unknown By rule v −>

Case: tc = Unknown

Aconc; Bconc; ρconc ` ¬A Unknown By rule (¬ − T −U)

Unknown v Unknown By rule v −>

Case:
Aabs; Babs; ρabs ` A[σ]False

Aabs; Babs; ρabs ` ¬A[σ]True
(¬T−T)

Aconc; Bconc; ρconc ` A[σ] tc By induction hypothesis
tc v False By induction hypothesis
tc = False By inversion on tc v False
Aconc; Bconc; ρconc ` ¬A[σ] True By rule (¬ − T − T)

Case:
Aabs; Babs; ρabs ` A[σ]True

Aabs; Babs; ρabs ` ¬A[σ]False
(¬T−F)

Aconc; Bconc; ρconc ` A[σ] tc By induction hypothesis
tc v True By induction hypothesis
tc = True By inversion on tc v True
Aconc; Bconc; ρconc ` ¬A[σ] False By rule (¬ − T − F)

Case:
Aabs; Babs; ρabs ` true True

(TRUE)

Aconc; Bconc; ρconc ` true True By rule (TRUE)

True v True By rule v − =

Case:
Aabs; Babs; ρabs ` false False

(FALSE)

Aconc; Bconc; ρconc ` false False By rule (FALSE)

False v False By rule v − =

Remaining cases work as expected for a three value logic.

�

170 APPENDIX C. PROOFS OF SOUNDNESS AND COMPLETENESS

C.2 Completeness

Theorem 2. Completeness of Relations Analysis

forall der.

Bconc v Babs

Aconc v Aabs

Aabs ` ρabs consistent
Aconc ` ρconc consistent

ρconc v ρabs

fC;Aconc;Bconc(ρ
conc; instr) = ρconc

′
,Aconc

′′

exists der.

fC;Aabs;Babs(ρ
abs, instr) = ρabs

′
,Aabs

′′

ρconc
′ v ρabs ′

Aconc
′′ v Aabs

′′

Proof:

T conc = {cons, δ, γ|cons ∈ C ∧ Aconc
′
; Bconc; ρconc; cons ` instr ↪→ δ, γ}

By inversion on fC;Aconc;Bconc(ρ
conc; instr) = ρconc

′
,Aconc

′′

T conc.cons = C By inversion on fC;Aconc;Bconc(ρ
conc; instr) = ρconc

′
,Aconc

′′

γconc = tT conc.γ By inversion on fC;Aconc;Bconc(ρ
conc; instr) = ρconc

′
,Aconc

′′

Aconc
′′

= Aconc
′ ⇐ γconc By inversion on fC;Aconc;Bconc(ρ

conc; instr) = ρconc
′
,Aconc

′′

δconc = T conc.δ By inversion on fC;Aconc;Bconc(ρ
conc; instr) = ρconc

′
,Aconc

′′

ρconc
′
= transfer(ρconc,Aconc

′′
) ⇐ δconc

By inversion on fC;Aconc;Bconc(ρ
conc; instr) = ρconc

′
,Aconc

′′

falias(Aconc; instr) = Aconc
′

By inversion on fC;Aconc;Bconc(ρ
conc; instr) = ρconc

′
,Aconc

′′

falias(Aabs; instr) = Aabs
′

By Theorem Aliasing Flow Function Complete
Aconc

′ vA Aabs
′

By Theorem Aliasing Flow Function Complete
Aabs

′ ` ρabs ′ consistent By Theorem Aliasing Flow Function Preserves Consistency
∀ cons ∈ C .

Let Aconc
′
; Bconc; ρconc; cons ` instr ↪→ δc, γc By construction of T conc

Aabs
′
; Babs; ρabs; cons ` instr ↪→ δa, γa By Lemma 5(Completeness of Single Constraint)

δc v δa By Lemma 5(Completeness of Single Constraint)
γc v γa By Lemma 5(Completeness of Single Constraint)
Aabs

′ ` δa consistent By Lemma 9(Consistency of a Single Constraint)
dom(γa) ⊆ dom(Aabs

′
.L) By Lemma 9(Consistency of a Single Constraint)

Let T abs = {cons, δ, γ | cons ∈ C ∧ Aabs
′
; Babs; ρabs; cons ` instr ↪→ δ, γ}

T conc.cons = C By set construction
Let δabs = tT abs.δ By rule (EQJOIN)

C.2. COMPLETENESS 171

δconc v δabs By Lemma 30(eqjoin delta operator preserves alap)
Let γabs = tT abs.γ By rule (tγ)

γconc v γabs By Lemma 33(tγ operator preserves v)
Let Aabs

′′
= Aabs

′ ⇐ γ By rule (⇐A)

Aconc
′′ v Aabs

′′
By Lemma 34(Leftarrow AliasA preserves alap)

Let ρabs
′′

= transfer(ρabs,Aabs
′′
) Apply function transfer

Let ρabs
′
= ρabs

′′ ⇐ δabs By rule (⇐ρ)

ρconc
′ v ρabs ′ By Lemma 38(⇐ρ preserves v)

fC(Aabs; Babs; ρabs, instr) = ρabs
′
,Aabs

′′
By rule (FLOW-CONS)

�

Lemma 5 (Completeness of Single Constraint).

forall deriv.

Aconc; ρconc; cons ` instr ↪→ δconc, γconc

Aconc v Aabs

Bconc v Babs

ρconc v ρabs

Aabs ` ρabs consistent
Aconc ` ρconc consistent

exists deriv.

Aabs; ρabs; cons ` instr ↪→ δabs, γabs

δconc v δabs

γconc v γabs

Proof:
By case analysis on Aconc; ρconc; cons ` instr ↪→ δconc, γconc

Case:

instr : op Z⇒ β

Γy = FV(op) ∪ FV(Pctx) ∪ FV(Q̄) findLabels(Aconc; Γy ;β) = Σconc Σconc 6= ∅
T conc = {σ, δ, γ | σ ∈ Σconc ∧ Aconc; Bconc; ρconc; σ ` cons ↪→ δ, α ∧ γ = α[β]}

T conc.σ = Σconc δconc = tT conc.δ γconc = tT conc.γ
Aconc; Bconc; ρconc;op : Pctx ⇒ Preq ⇓ Q̄;Prst ` instr ↪→ δconc, γconc

(MATCH)

Σabs = findLabels(Aabs; Γy ;β) = Σabs By Lemma 22(FindLabels returns subsets)
Σconc ⊆ Σabs By Lemma 22(FindLabels returns subsets)
∀σ ∈ Σabs.A ` σ validFor Γy ∧ dom(σ) = dom(Γy)By Lemma 22(FindLabels returns subsets)
Σabs 6= ∅ By Σconc 6= ∅ ∧ Σconc ⊆ Σabs
∀ σ ∈ Σconc .

172 APPENDIX C. PROOFS OF SOUNDNESS AND COMPLETENESS

Aabs; Babs; ρabs;σ ` cons ↪→ δa, αa By Lemma 6(Completeness with Full Substitution)
δc v δa By Lemma 6(Completeness with Full Substitution)
αc v αa By Lemma 6(Completeness with Full Substitution)
αc[β] v αa[β] By Lemma substitution preserves v

Let T = {σ, δ, γ | σ ∈ Σabs ∧ Aabs; Babs; ρabsσ ` δ, γ ∧ γ = α[β]}

T .σ = Σabs By Lemma bound passes when σ valid
Let δabs = tT .δ
δconc v δabs By Lemma t preserves v and Lemma t less precise than operands
Let γabs = tT .γ
γconc v γabs By Lemma t preserves v and Lemma t less precise than operands
Aabs; Babs; ρabs;op : Pctx ⇒ Preq ⇓ Q̄;Prst ` instr ↪→ δabs, γabs By rule (MATCH)

Case:
instr : op Z⇒ β findLabels(Aconc; Γy ;β) = ∅

Aconc; Bconc; ρconc;op : Pctx ⇒ Preq ⇓ Q̄;Prst ` instr ↪→ ⊥(Aconc),∅
(NO−ALIASES)

Let Σabs = findLabels(Aabs; Γy ;β) By set construction
Case analysis on the structure of Σabs

Case: Σabs = ∅

Aconc; Bconc; ρconc;op : Pctx ⇒ Preq ⇓ Q̄;Prst ` instr ↪→ ⊥(Aconc),∅
By rule (NO-ALIASES)

⊥(Aconc) v ⊥(Aabs) By Lemma ⊥maintains v
∅ v ∅ By rule v −∅

Case: Σabs 6= ∅

Let T = {σ, δ, γ | σ ∈ Σabs ∧ Aabs; Babs; ρabsσ ` δ, γ ∧ γ = α[β]}

T .σ = Σabs By Lemma bound passes when σ valid
Let δabs = tT .δ
⊥(Aconc) v δabs By rule v −⊥
Let γabs = tT .γ
∅ v γabs By rule v −∅
Aabs; Babs; ρabs;op : Pctx ⇒ Preq ⇓ Q̄;Prst ` instr ↪→ δabs, γabs By rule (MATCH)

Case:
¬(instr : op Z⇒ β)

Aconc; Bconc; ρconc;op : Pctx ⇒ Preq ⇓ Q̄;Prst ` instr ↪→ ⊥(Aconc),∅
(NO−MATCH)

C.2. COMPLETENESS 173

Aabs; Babs; ρabs;op : Pctx ⇒ Preq ⇓ Q̄;Prst ` instr ↪→ ⊥(Aabs),∅ By rule (NO-MATCH)

⊥(Aconc) v ⊥(Aabs) By Lemma ⊥ preserves v
∅ v ∅ By rule v −∅

�

174 APPENDIX C. PROOFS OF SOUNDNESS AND COMPLETENESS

Lemma 6 (Completeness with Full Substitution).

forall deriv.

Aconc vA Aabs

Bconc vB Babs

ρconc v ρabs

Aabs ` ρabs consistent
Aconc ` ρconc consistent
Aconc; Bconc; ρconc;σ ` cons → δconc, αconc

Aconc ` σ validFor Γy
Γy = Γy = FV(op) ∪ FV(Pctx) ∪ FV(Q)

exists deriv.

Aabs; Babs; ρabs;σ ` cons → δabs, αabs

δconc v δabs

αconc v αabs

Proof:
By case analysis on Aconc; Bconc; ρconc;σ ` cons → δconc, αconc

Case:
Aconc; Bconc; ρconc ` Pctx[σ] False

Aconc; Bconc; ρconc;σ ` op : Pctx ⇒ Preq ⇓ Q̄;Prst ↪→ ⊥(Aconc), σ
(BOUND−F)

Aabs; Babs; ρabs ` Pctx[σ] ta By Lemma 8(Truth Checking Complete)
False v ta By Lemma 8(Truth Checking Complete)
By case analysis on the value of ta

Case: ta = False

Aabs; Babs; ρabs;σ ` cons ↪→ ⊥(Aabs), σ By rule (BOUND-F)

⊥(Aconc) v ⊥(Aabs) By Lemma ⊥ preserves v
σ v σ By rule v − =

Case: ta = True

Invalid case by False v ta

Case: ta = Unknown

lattice(Aabs; Babs;σ; Q̄) = δabs By applying function lattice

C.2. COMPLETENESS 175

Let δabs =
↑
∗ δabs ′

Aabs; Babs; ρabs;σ ` cons ↪→ δabs, σ By rule (BOUND-U)

Aabs ` δabs ′ consistent By lattice consistent

Aabs ` δabs consistent By
↑
∗ preserves consistent

Aconc ` ⊥(Aconc) consistent By Lemma ⊥ is consistent
⊥(Aconc) v δabs By Lemma ⊥ is less precise
σ v σ By rule v − =

Case:

cons = op : Pctx ⇒ Preq ⇓ Q̄;Prst
Aconc; Bconc; ρconc ` Pctx[σ] True allValidSubs(Aconc;σ; FV(cons)) = Σconc

∃ σ ′ ∈ Σconc . Aconc; Bconc; ρconc ` Preq[σ ′] True ∨ Aconc; Bconc; ρconc ` Preq[σ ′] Unknown
lattice(Aconc; Bconc;σ; Q̄) = δconc Aconc; Bconc; ρconc;σ `α Prst ↪→ αconc

Aconc; Bconc; ρconc;σ ` cons ↪→ δconc, αconc
(BOUND−T)

Aabs; Babs; ρabs ` Pctx[σ] ta By Lemma 8(Truth Checking Complete)
True v ta By Lemma 8(Truth Checking Complete)
By case analysis on ta

Case: ta = True

Σabs = allValidSubs(Aabs;σ; FV(cons)) By Lemma 23(ValidSubs returns subsets)
Σconc ⊆ Σabs By Lemma 23(ValidSubs returns subsets)
∃ σ ′ ∈ Σabs . Aconc; Bconc; ρconc ` Preq[σ ′] True∨

Aconc; Bconc; ρconc ` Preq[σ ′] Unknown By Σconc ⊆ Σabs
∃ σ ′ ∈ Σabs . Aabs; Babs; ρabs ` Preq[σ ′] True∨

Aabs; Babs; ρabs ` Preq[σ ′] Unknown By Lemma 8(Truth Checking Complete)
lattice(Aabs; Babs;σ; Q̄) = δabs By applying function lattice
Aabs; Babs; ρabs;σ `α Prst ↪→ αabs By Lemma 7(Completeness of Restriction)
Aabs; Babs; ρabs;σ ` cons → δabs, σ By rule (BOUND-T)

δconc v δabs By Lemma 25(Lattice preserves precision)
αconc v αabs By Lemma 7(Completeness of Restriction)

Case: ta = False

Invalid case by True v ta

Case: ta = Unknown

lattice(Aabs; Babs;σ; Q̄) = δabs By applying function lattice
δconc v δabs ′ By Lemma 25(Lattice preserves precision)

Let δabs =
↑
∗ δabs ′

176 APPENDIX C. PROOFS OF SOUNDNESS AND COMPLETENESS

δabs
′ v δabs By Lemma polar less precise than operand

δconc v δabs By Lemma transitivity of v
Aabs; Babs; ρabs;σ ` cons ↪→ δabs, σ By rule (BOUND-U)

αconc v σ By Lemma restrict less precise than substitution

Case:
Aconc; Bconc; ρconc ` Pctx[σ] Unknown lattice(Aconc; Bconc;σ; Q̄) = δconc

Aconc; Bconc; ρconc;σ ` op : Pctx ⇒ Preq ⇓ Q̄;Prst ↪→↑
∗ δconc, σ

(BOUND−U)

Aabs; Babs; ρabs ` Pctx[σ] ta By Lemma 8(Truth Checking Complete)
Unknown v ta By Lemma 8(Truth Checking Complete)
Aabs; Babs; ρabs ` Pctx[σ] Unknown By inversion on Unknown v ta
lattice(Aabs; Babs;σ; Q̄) = δabs By applying function lattice
δconc

′ v δabs ′ By Lemma 25(Lattice preserves precision)↑
∗ δconc v

↑
∗ δabs By Lemma

↑
∗ preserves v

σ v σ By rule v − =

Aabs; Babs; ρabs;σ ` cons ↪→ δabs, αabs By rule (BOUND-U)

�

Lemma 7 (Completeness of Restriction).

forall deriv.

Aconc; Bconc; ρconc;σ `α P ↪→ αconc

Aconc v Aabs

Bconc v Babs

ρconc v ρabs

Aabs ` ρabs consistent
Aconc ` ρconc consistent

exists deriv.

Aabs; Babs; ρabs;σ `α P ↪→ αabs

αconc v αabs

Proof:
By case analysis on Aconc; Bconc; ρconc;σ `α P ↪→ αconc

Case:

Σconc = allValidSubs(Aconc;σ, FV(P))

∃σ ′ ∈ Σconc.Aconc; Bconc; ρconc ` P[σ ′] tc tc 6= False
Aconc; Bconc; ρconc;σ `α P ↪→ σ

(RESTRICT−T−U−SOUND/COMPLETE)

C.2. COMPLETENESS 177

Σabs = allValidSubs(Aabs;σ, FV(P)) By applying function allValidSubs
Σconc ⊆ Σconc By Lemma 23(ValidSubs returns subsets)
∃σ ′ ∈ Σabs.Aconc; Bconc; ρconc ` P[σ ′] tc By Σconc ⊆ Σconc
∃σ ′ ∈ Σabs.Aabs; Babs; ρabs ` P[σ ′] ta By Lemma 8(Truth Checking Complete)
tc v ta By Lemma 8(Truth Checking Complete)
tc 6= False By tc v ta and tc 6= False
Aabs; Babs; ρabs;σ `α P ↪→ σ By rule (RESTRICT-T-U-SOUND/COMPLETE)

σ v σ By rule (v − =)

Case:

Σconc = allValidSubs(Aconc;σ, FV(P))

∀σ ′ ∈ Σconc.Aconc; Bconc; ρconc ` P[σ ′] False
Aconc; Bconc; ρconc;σ `α P ↪→ ⊥(σ)

(RESTRICT−F−SOUND/COMPLETE)

Σabs = allValidSubs(Aabs;σ, FV(P)) By applying function allValidSubs
Σconc ⊆ Σabs By Lemma 23(ValidSubs returns subsets)
∀σ ′ ∈ Σabs.Aabs; Babs; ρabs ` P[σ ′] ta By Lemma consistency of truth checking
Case on property of Σabs

Case: ∀σ ′ ∈ Σabs.Aabs; Babs; ρabs ` P[σ ′] False

Aabs; Babs; ρabs;σ `α P ↪→ σ By rule (RESTRICT-F-SOUND/COMPLETE)

⊥(σ) v σ By rule (v −⊥)

Case: ∃σ ′ ∈ Σabs.Aabs; Babs; ρabs ` P[σ ′] ta ∧ ta 6= False

tc v ta By Lemma 8(Truth Checking Complete)
tc 6= False By tc v ta and tc 6= False
Aabs; Babs; ρabs;σ `α P ↪→ σ By rule (RESTRICT-T-U-SOUND/COMPLETE)

⊥(σ) v σ By rule (v −⊥)

�

178 APPENDIX C. PROOFS OF SOUNDNESS AND COMPLETENESS

Lemma 8 (Truth Checking Complete).

forall deriv.

ρconc v ρabs

Aconc v Aabs

Bconc v Babs

Aabs ` σ validFor FV(P)

Aabs ` ρabs consistent
Aconc; Bconc; ρconc ` P[σ]tc

exists deriv.

Aabs; Babs; ρabs ` P[σ]ta

tc v ta

Proof:
By induction on ρconc ` P[σ] ta

Case:
ρconc(rel(y)[σ]) = tc

Aconc; Bconc; ρconc ` rel(y)[σ] tc
(REL)

Let R = rel(y)[σ]

R ∈ dom(ρabs) By Lemma σ valid and ρ consistent
Let ta = ρabs(R)

tc v ta By inversion on ρconc v ρabs
Aabs; Babs; ρabs ` rel(y)[σ] ta By rule (REL)

Case:
Aconc; Bconc; ρ ` S[σ] tc Bconc(ytest[σ]) = tc tc 6= Unknown

Aconc; Bconc; ρconc ` S/ytest[σ] True
(REL−TEST−T)

Aabs; Babs; ρabs ` A ta By induction hypothesis
tc v ta By induction hypothesis
By case analysis on tc

Case: tc = True

By case analysis on Babs(`test)

Case: Babs(`test) = True
By case analysis on ta

Case: ta = True

C.2. COMPLETENESS 179

Aabs; Babs; ρabs ` A/`test True By rule (REL-TEST-T)

True v True By rule v − =

Case: ta = False
Invalid case by ρconc v ρabs

Case: ta = Unknown
Aabs; Babs; ρabs ` A/`test Unknown By rule (REL-TEST-U1)

True v Unknown By rule v −Unknown

Case: Babs(`test) = False
Invalid case by Bconc vB Babs

Case: Babs(`test) = Unknown
Aabs; Babs; ρabs ` A/`test Unknown By rule (REL-TEST-U2)

Case: tc = False

By case analysis on Babs(`test)

Case: Babs(`test) = False
By case analysis on ta

Case: ta = False
Aabs; Babs; ρabs ` A/`test False By rule (REL-TEST-F)

False v False By rule v − =

Case: ta = True
Invalid case by ρconc v ρabs

Case: ta = Unknown
Aabs; Babs; ρabs ` A/`test Unknown By rule (REL-TEST-U1)

False v Unknown By rule v −Unknown

Case: Babs(`test) = True
Invalid case by Bconc vB Babs

Case: Babs(`test) = Unknown
Aabs; Babs; ρabs ` A/`test Unknown By rule (REL-TEST-U2)

Case: tc = Unknown

180 APPENDIX C. PROOFS OF SOUNDNESS AND COMPLETENESS

Invalid case by tc 6= Unknown

Case:

Aconc; Bconc; ρ ` S[σ] tc1 Bconc(ytest[σ]) = tc2
tc1 6= Unknown tc2 6= Unknown tc1 6= tc2

Aconc; Bconc; ρconc ` S/ytest[σ] False
(REL−TEST−F)

Aabs; Babs; ρabs ` A ta1 By induction hypothesis
tc1 v ta1 By induction hypothesis
By case analysis on tc1

Case: tc1 = True

tc2 = False By tc1 6= tc2 and tc1 6= Unknown
By case analysis on Babs(`test)

Case: Babs(`test) = False
By case analysis on ta1
Case: ta1 = True

Aabs; Babs; ρabs ` A/`test False By rule (REL-TEST-F)

False v False By rule v − =

Case: ta1 = False
Invalid case by ρconc v ρabs

Case: ta1 = Unknown
Aabs; Babs; ρabs ` A/`test Unknown By rule (REL-TEST-U1)

False v Unknown By rule v −Unknown

Case: Babs(`test) = True
Invalid case by Bconc vB Babs

Case: Babs(`test) = Unknown
Aabs; Babs; ρabs ` A/`test Unknown By rule (REL-TEST-U2)

Case: tc1 = False

tc2 = True By tc1 6= tc2 and tc1 6= Unknown
By case analysis on Babs(`test)

Case: Babs(`test) = True

C.2. COMPLETENESS 181

By case analysis on ta1
Case: ta1 = False

Aabs; Babs; ρabs ` A/`test False By rule (REL-TEST-F)

False v False By rule v − =

Case: ta1 = True
Invalid case by ρconc v ρabs

Case: ta1 = Unknown
Aabs; Babs; ρabs ` A/`test Unknown By rule (REL-TEST-U1)

False v Unknown By rule v −Unknown

Case: Babs(`test) = False
Invalid case by Bconc vB Babs

Case: Babs(`test) = Unknown
Babs; ρabs ` A/`test Unknown By rule (REL-TEST-U2)

Case: tc1 = Unknown

Invalid case by ta1 6= Unknown

Case:
Aconc; Bconc; ρconc ` S[σ] Unknown

Aconc; Bconc; ρconc ` S/ytest[σ] Unknown
(REL−TEST−U1)

Babs; ρabs ` A ta By induction hypothesis
Unknown v ta By induction hypothesis
Aabs; Babs; ρabs ` A/`test Unknown By rule (REL-TEST-U1)

Unknown v Unknown By rule v −Unknown

Case:
Bconc(ytest[σ]) = Unknown Aconc; Bconc; ρconc ` S[σ] ta

Aconc; Bconc; ρconc ` S/ytest[σ] Unknown
(REL−TEST−U2)

Aabs; Babs; ρabs ` A ta By induction hypothesis
tc v ta By induction hypothesis
Babs(`test) = Unknown By Bconc vB Babs

Aabs; Babs; ρabs ` A/`test Unknown By rule (REL-TEST-U2)

Unknown v Unknown By rule v −Unknown

182 APPENDIX C. PROOFS OF SOUNDNESS AND COMPLETENESS

Case:
Aconc; Bconc; ρconc ` A[σ] Unknown

Aconc; Bconc; ρconc ` ¬A[σ] Unknown
(¬T−UNKNOWN)

Aabs; Babs; ρabs ` S ta By induction hypothesis
Unknown v ta By induction hypothesis
Aabs; Babs; ρabs ` ¬S Unknown By rule (¬S −U)

Unknown v Unknown By rule v −Unknown

Case:
Aconc; Bconc; ρconc ` A[σ]False
Aconc; Bconc; ρconc ` ¬A[σ]True

(¬T−T)

Aabs; Babs; ρabs ` S ta By induction hypothesis
False v ta By induction hypothesis
By case analysis on the value of ta

Case: ta = False

Aabs; Babs; ρabs ` ¬S True By rule (¬S − T)

True v True By rule v − =

Case: ta = True

Contradiction with False v ta

Case: ta = Unknown

Aabs; Babs; ρabs ` ¬S Unknown By rule (¬S −U)

True v Unknown By rule v − =

Case:
Aconc; Bconc; ρconc ` A[σ]True

Aconc; Bconc; ρconc ` ¬A[σ]False
(¬T−F)

Aabs; Babs; ρabs ` S ta By induction hypothesis
True v ta By induction hypothesis
By case analysis on the value of ta

Case: ta = True

Aabs; Babs; ρabs ` ¬S False By rule (¬S − F)

False v False By rule v − =

C.2. COMPLETENESS 183

Case: ta = False

Contradiction with True v ta

Case: ta = Unknown

Aabs; Babs; ρabs ` ¬S Unknown By rule (¬S −U)

False v Unknown By rule v − =

Case:
Aconc; Bconc; ρconc ` trueTrue

(TRUE)

Aabs; Babs; ρabs ` trueTrue By rule (TRUE)

True v True By rule v − =

Case:
Aconc; Bconc; ρconc ` falseFalse

(FALSE)

Aabs; Babs; ρabs ` falseFalse By rule (FALSE)

False v False By rule v − =

Remaining cases work as expected for a three value logic.

�

184 APPENDIX C. PROOFS OF SOUNDNESS AND COMPLETENESS

C.3 Consistency

Theorem 3. Consistency

forall deriv.

A ` ρ consistent
falias(A, instr) = A ′

fC;A ′;B(ρ; instr) = ρ ′,A ′′

exists deriv.

A ′′ ` ρ ′ consistent

Proof:

T = {cons, δ, γ|cons ∈ C ∧ A ′; B; ρ; cons ` instr ↪→ δ, γ}

By inversion on fC;A ′;B(ρ; instr) = ρ ′,A ′′

T .cons = C By inversion on fC;A ′;B(ρ; instr) = ρ ′,A ′′

γ = (tT .γ) By inversion on fC;A ′;B(ρ; instr) = ρ ′,A ′′

A ′′ = A ′ ⇐ γ By inversion on fC;A ′;B(ρ; instr) = ρ ′,A ′′

δ = (tT .δ) By inversion on fC;A ′;B(ρ; instr) = ρ ′,A ′′

ρ ′ = transfer(ρ,A ′′) ⇐ δ By inversion on fC;A ′;B(ρ; instr) = ρ ′,A ′′

A ′ ` ρ consistent By Lemma Aliasing Flow preserves Consistency
∀cons ∈ C

A ′; B; ρ; cons ` instr ↪→ δ, γ By construction of T
A ′ ` δ consistent By Lemma 9(Consistency of a Single Constraint)
dom(γ) ⊆ dom(A ′.L) By Lemma 9(Consistency of a Single Constraint)

A ′ ` δ consistent By Lemma 20(tδ operator preserves consistency)
dom(γ) ⊆ dom(A ′.L) By Lemma tγ preserves domains
A ′′ ` δ consistent By Lemma ⇐A preserves consistent
A ′′ ` transfer(ρ,A ′′) consistent By Lemma transfer is consistent
A ′′ ` ρ ′ consistent By Lemma ⇐ preserves consistency

�

C.3. CONSISTENCY 185

Lemma 9 (Consistency of a Single Constraint).

forall deriv.

A ` ρ consistent
A; B; ρ; cons ` instr ↪→ δ, γ

exists deriv.

A ` δ consistent
dom(γ) ⊆ dom(A.L)

Proof:
By case analysis on A; ρ; cons ` instr ↪→ δ, γ

Case:

Γy = FV(op) ∪ FV(Pctx) ∪ FV(Q̄) instr : op Z⇒ β findLabels(A; Γy ;β) = Σ

Σ 6= ∅ T = {σ, δ, γ|σ ∈ Σ ∧ A; B; ρ; σ ` cons ↪→ δ, α ∧ γ = α[β]}

T .σ = Σ δ ′ = tT .δ γ ′ = tT .γ
A; B; ρ;op : Pctx ⇒ Preq ⇓ Q̄;Prst ` instr ↪→ δ ′, γ ′

(MATCH)

∀σ ∈ Σ

A; B; ρ; σ ` cons ↪→ δ, α By construction of T
γ = α[β] By construction of T
A ` δ consistent By Lemma 10(Consistency of Full Binding)
rng(β) ⊆ dom(A.L) By Lemma matching uses valid variables
dom(γ) ⊆ dom(A.L) By substitution

A ` δ consistent By Lemma t preserves consistency
dom(γ ′) ⊆ dom(A.L) By Lemma t preserves domain

Case:
cons = op : Pctx ⇒ Preq ⇓ Q;Prst instr : op Z⇒ β findLabels(A; Γy ;β) = ∅

A; B; ρ;op : Pctx ⇒ Preq ⇓ Q̄;` instr ↪→ ignore(A),∅
(NO−ALIASES)

A ` ignore(A) consistent By Lemma ignore is consistent
∅ ⊆ dom(A.L) By rule (⊆ −∅)

Case:
cons = op : Pctx ⇒ Preq ⇓ Q;Prst ¬(instr : op Z⇒ β)

A; B; ρ; cons ` instr ↪→ ignore(A),∅
(NO−MATCH)

186 APPENDIX C. PROOFS OF SOUNDNESS AND COMPLETENESS

A ` ignore(A) consistent By Lemma ignore is consistent
∅ ⊆ dom(A.L) By rule (⊆ −∅)

�

Lemma 10 (Consistency of Full Binding).

forall deriv.

cons = op : Pctx ⇒ Preq ⇓ Q;Prst

A ` σ validFor FV(Q̄)

A ` ρ consistent
A; B; ρ;σ ` cons ↪→ δ, α

exists deriv.

A ` δ consistent
dom(α) = dom(σ)

Proof:

By case analysis on all variants of A; B; ρ;σ ` cons ↪→ δ, α

Case:

A; B; ρ ` Pctx[σ] True
allValidSubs(A;σ; FV(cons)) = Σ ∃ σ ′ ∈ Σ . A; B; ρ ` Preq[σ ′] True

lattice(A; B;σ; Q̄) = δ A; B; ρ;σ `α Prst ↪→ α

A; B; ρ;σ ` cons ↪→ δ, α
(BOUND−T−PRAGMATIC)

A ` δ consistent By Lemma 11(Consistency of Lattice)
dom(α) = dom(σ) By Lemma 12(Consistency of Restriction)

Case:
A; B; ρ ` Pctx[σ] False

A; B; ρ;σ ` cons ↪→ ⊥(A), σ
(BOUND−F−PRAGMATIC)

A ` ⊥(A) consistent By Lemma ⊥ consistent
dom(σ) = dom(σ) By equality

Case:

A; B; ρ ` Pctx[σ] Unknown
lattice(A; B;σ; Q̄) = δ

A; B; ρ;σ ` cons ↪→↑
∗ δ, σ

(BOUND−U−PRAGMATIC)

C.3. CONSISTENCY 187

A ` δ consistent By Lemma 11(Consistency of Lattice)

A `
↑
∗ δ consistent By Lemma

↑
∗ preserves consistent

dom(σ) = dom(σ) By equality

Case:

A; B; ρ ` Pctx[σ] True
allValidSubs(A;σ; FV(cons)) = Σ ∀ σ ′ ∈ Σ . A; B; ρ ` Preq[σ ′] True

lattice(A; B;σ; Q̄) = δ A; B; ρ;σ `α Prst ↪→ α

A; B; ρ;σ ` cons ↪→ δ, α
(BOUND−T−SOUND)

A ` δ consistent By Lemma 11(Consistency of Lattice)
dom(α) = dom(σ) By Lemma 12(Consistency of Restriction)

Case:
A; B; ρ ` Pctx[σ] False

A; B; ρ;σ ` cons ↪→ ⊥(A), σ
(BOUND−F−SOUND)

A ` ⊥(A) consistent By Lemma ⊥ consistent
dom(σ) = dom(σ) By equality

Case:

A; B; ρ ` Pctx[σ] Unknown
allValidSubs(A;σ; FV(cons)) = Σ ∀ σ ′ ∈ Σ . A; B; ρ ` Preq[σ ′] True

lattice(A; B;σ; Q̄) = δ

A; B; ρ;σ ` cons ↪→↑
∗ δ, σ

(BOUND−U−SOUND)

A ` δ consistent By Lemma 11(Consistency of Lattice)

A `
↑
∗ δ consistent By Lemma

↑
∗ preserves consistent

dom(σ) = dom(σ) By equality

Case:

A; B; ρ ` Pctx[σ] True allValidSubs(A;σ; FV(cons)) = Σ

∃ σ ′ ∈ Σ . A; B; ρ ` Preq[σ ′] True ∨ A; B; ρ ` Preq[σ ′] Unknown
lattice(A; B;σ; Q̄) = δ A; B; ρ;σ `α Prst ↪→ α

A; B; ρ;σ ` cons ↪→ δ, α
(BOUND−T−COMPLETE)

A ` δ consistent By Lemma 11(Consistency of Lattice)
dom(α) = dom(σ) By Lemma 12(Consistency of Restriction)

Case:
A; B; ρ ` Pctx[σ] False

A; B; ρ;σ ` cons ↪→ ⊥(A), σ
(BOUND−F−COMPLETE)

188 APPENDIX C. PROOFS OF SOUNDNESS AND COMPLETENESS

A ` ⊥(A) consistent By Lemma ⊥ consistent
dom(σ) = dom(σ) By equality

Case:

A; B; ρ ` Pctx[σ] Unknown
lattice(A; B;σ; Q̄) = δ

A; B; ρ;σ ` cons ↪→↑
∗ δ, σ

(BOUND−U−COMPLETE)

A ` δ consistent By Lemma 11(Consistency of Lattice)

A `
↑
∗ δ consistent By Lemma

↑
∗ preserves consistent

dom(σ) = dom(σ) By equality

�

Lemma 11 (Consistency of Lattice).

forall deriv.

A ` σ validFor FV(Q)

lattice(A; B;σ; Q̄) = δ

exists deriv.

A ` δ consistent

Lemma 12 (Consistency of Restriction).

forall deriv.

A; B; ρ;σ;`α P → α

exists deriv.

dom(α) = dom(σ)

Lemma 13 (Consistency and precision implies domains are subset).

∀ deriv.
< Γc` ; L

c >` ρc consistent
< Γa` ; La >` ρa consistent
< Γc` ; L

c >vA< Γ
a
` ; La >

∃ deriv.
dom(ρc) ⊆ dom(ρa)

Proof:

C.3. CONSISTENCY 189

dom(ρc) = {rel(¯̀) | τ̄ = R(rel) ∧ |τ̄| = |¯̀| = n ∧ ∀ni=1 . ∃ τ ′ . τ ′ <: τi ∧ τ ′ <: Γc` (`i)}

By inversion on < Γc` ; L
c >` ρc consistent

dom(ρa) = {rel(¯̀) | τ̄ = R(rel) ∧ |τ̄| = |¯̀| = n ∧ ∀ni=1 . ∃ τ ′ . τ ′ <: τi ∧ τ ′ <: Γa` (`i)}

By inversion on < Γa` ; La >` ρa consistent
∀rel(¯̀) ∈ dom(ρc) . τ̄ = R(rel) ∧ |τ̄| = |¯̀| = n ∧ ∀ni=1 . ∃ τ ′ . τ ′ <: τi ∧ τ ′ <: Γc` (`i)

By construction of dom(ρc)

dom(Γa`) = dom(Γc`) By inversion on < Γc` ; L
c >vA< Γ

a
` ; La >

∀ ` : τ ∈ Γc` . τ <: Γa` (`) By inversion on < Γc` ; L
c >vA< Γ

a
` ; La >

∀ rel(¯̀) ∈ dom(ρc) . τ̄ = R(rel) ∧ |τ̄| = |¯̀| = n ∧ ∀ni=1 . ∃ τ ′ . τ ′ <: τi ∧ τ ′ <: Γa` (`i)

By <: transitive
∀ rel(¯̀) ∈ dom(ρc) . rel(¯̀) ∈ dom(ρa) By construction of dom(ρa)

dom(ρc) ⊆ dom(ρa) By ⊆

�

Lemma 14 (σ valid and ρ consistent gives R ∈ ρ).

forall deriv.

< Γ`; L >` σ validFor FV(rel(ȳ))

< Γ`; L >` ρ consistent
exists deriv.

rel(ȳ)[σ] ∈ dom(ρ)

Proof:

dom(σ) ⊇ dom(Γy) By inversion on < Γ`; L >` σ validFor FV(rel(ȳ))

∀ y : τ ∈ Γy . ∃ τ ′ . τ ′ <: Γ`(σ(y)) ∧ τ ′ <: τ By inversion on < Γ`; L >` σ validFor FV(rel(ȳ))

dom(ρ) = {rel(¯̀) | τ̄ = R(rel) ∧ |τ̄| = |¯̀| = n ∧ ∀ni=1 . ∃ τ ′ . τ ′ <: τi ∧ τ ′ <: Γ`(`i)}

By inversion on < Γ`; L >` ρ consistent
ȳ = dom(FV(rel(ȳ))) By inversion on FV
Let τ̄ = R(rel)
¯̀ = ȳ[σ] By dom(σ) ⊇ dom(Γy)

|¯̀| = |ȳ| = |τ̄| = n By substitution and typing of rel
Let Γy = FV(rel(ȳ))

Γy = y0 : τ0, . . . , yn : τn By inversion of FV
∀ni=1 . ∃ τ ′ . τ ′ <: τi ∧ τ ′ <: Γ`(`i) By dom(σ) ⊇ dom(Γy)

rel(ȳ)[σ] ∈ dom(ρ) By construction of the domain of ρ

�

190 APPENDIX C. PROOFS OF SOUNDNESS AND COMPLETENESS

Lemma 15. Consistency implies same domain, ρ/ρ

∀ deriv.
< Γ`; L >` ρ1 consistent
< Γ`; L >` ρ2 consistent

∃ deriv.
dom(ρ1) = dom(ρ2)

Lemma 16. Consistency implies same domain, ρ/δ

∀ deriv.
< Γ`; L >` ρ consistent
< Γ`; L >` δ consistent

∃ deriv.
dom(ρ) = dom(δ)

Lemma 17. Consistency implies same domain, δ/δ

∀ deriv.
< Γ`; L >` δ1 consistent
< Γ`; L >` δ2 consistent

∃ deriv.
dom(δ1) = dom(δ2)

Lemma 18. consistent and v causes subset domains on δ

∀ deriv.
Aconc v Aconc

Aconc ` δconc

Aabs ` δabs

∃ deriv.
dom(δconc) ⊆ dom(δabs)

Lemma 19. consistent and v causes subset domains on ρ

∀ deriv.
Aconc v Aconc

Aconc ` ρconc

Aabs ` ρabs

∃ deriv.
dom(ρconc) ⊆ dom(ρabs)

C.3. CONSISTENCY 191

Lemma 20 (tδ operator preserves consistency).

∀ deriv.
A ` δl consistent
A ` δr consistent

∃ deriv.
δl t δr = δ

A ` δ consistent

Proof: Trivially true. �

TODO this lemma. Working on Consistency theorem.

Lemma 21. tγ operator preserves v

∀ deriv.
γconcl v γabsl

γconcr v γabsr

γconcl t γconcr = γconc

γabsl t γabsr = γabs

∃ deriv.
γconc v γabs

Proof: Trivially true. �

192 APPENDIX C. PROOFS OF SOUNDNESS AND COMPLETENESS

C.4 Function Lemmas

Lemma 22 (FindLabels returns subsets).

forall deriv.

< Γc` ,L
c >vA< Γ

a
` ,L

a >

dom(β) ⊆ dom(Γy)

rng(β) ⊆ dom(Lc)

rng(β) ⊆ dom(La)

exists deriv.

findLabels(< Γa` ,L
a >, Γy , β) = Σa

findLabels(< Γc` ,L
c >, Γy , β) = Σc

Σc ⊆ Σa

∀σ ∈ Σc. < Γc` ,Lc >` σ validFor Γy ∧ dom(σ) = dom(Γy)

∀σ ∈ Σa. < Γa` ,La >` σ validFor Γy ∧ dom(σ) = dom(Γy)

Proof:

findLabels(< Γa` ,L
a >, Γy , β) = Σa By applying function findLabels

Σa = {σ ′ | dom(σ) = dom(β) ∧ σ = {y 7→ ` | ` ∈ La(β(y)) ∧ ∃ τ ′ . τ ′ <: Γa` (`) ∧ τ ′ <: Γy(y)} ∧ allValidSubs(< Γa` ; La >;σ; Γy) = (Σat, Σau) ∧ (σ ′ ∈ Σat ∨ σ ′ ∈ Σau)}By definition of findLabels
findLabels(< Γc` ,L

c >, Γy , β) = Σc ‘By applying function findLabels
Σc = {σ ′ | dom(σ) = dom(β) ∧ σ = {y 7→ ` | ` ∈ Lc(β(y)) ∧ ∃ τ ′ . τ ′ <: Γc` (`) ∧ τ ′ <: Γy(y)} ∧ allValidSubs(< Γc` ; L

c >;σ; Γy) = (Σct, Σcu) ∧ (σ ′ ∈ Σct ∨ σ ′ ∈ Σcu)}By definition of findLabels
∀ σ ′ ∈ Σc .

Let σ = {y 7→ ` | ` ∈ Lc(β(y)) ∧ ∃ τ ′ . τ ′ <: Γc` (`) ∧ τ ′ <: Γy(y)} ∧ dom(σ) = dom(β)By set construction
allValidSubs(< Γc` ; L

c >;σ; Γy) = Σc
′

By set construction
dom(σ) ⊆ dom(Γy) By subsets
allValidSubs(< Γa` ; La >;σ; Γy) = Σa

′
By Lemma 23(ValidSubs returns subsets)

Σc
′ ⊆ Σa ′ By Lemma 23(ValidSubs returns subsets)

σ ′ ∈ Σc ′ By set construction
σ ′ ∈ Σa ′ By subsets
σ ′ ∈ Σa By set construction

Σc ⊆ Σa
∀σ ∈ Σc. < Γc` ,Lc >` σ validFor Γy ∧ dom(σ) = dom(Γy)By Lemma 23(ValidSubs returns subsets)
∀σ ∈ Σa. < Γa` ,La >` σ validFor Γy ∧ dom(σ) = dom(Γy)By Lemma 23(ValidSubs returns subsets)

�

C.4. FUNCTION LEMMAS 193

Lemma 23 (ValidSubs returns subsets).

forall deriv.

< Γc` ; L
c >vA< Γ

a
` ; La >

dom(σ) ⊆ dom(Γy)

exists deriv.

allValidSubs(< Γa` ; La >;σ; Γy) = Σa

allValidSubs(< Γc` ; L
c >;σ; Γy) = Σc

∀ σ ∈ Σa . < Γa` ; La >` σ validFor Γy ∧ dom(σ) = dom(Γy)

∀ σ ∈ Σc . < Γc` ; Lc >` σ validFor Γy ∧ dom(σ) = dom(Γy)

Σc ⊆ Σa

Proof:

allValidSubs(< Γa` ; La >;σ; Γy) = (Σta, Σ
u
a) By applying function allValidSubs

Let Σa = {σ ′ | σ ′ ⊇ σ ∧ dom(σ ′) = dom(Γy) ∧

∀ y 7→ ` ∈ σ ′ . ∃ τ ′ . τ ′ <: Γa` (`) ∧ τ ′ <: Γy(y)}

∀σ ∈ Σa . dom(σ) = dom(Γy) ∧ ∀ y 7→ ` ∈ σ . ∃ τ ′ . τ ′ <: Γa` (`) ∧ τ ′ <: Γy(y)By construction of Σa

∀σ ∈ Σa . < Γa` ; La >` σ validFor Γy By rule (σ − VALID)

allValidSubs(< Γc` ; L
c >;σ; Γy) = Σc By applying function allValidSubs

Let Σc = {σ ′ | σ ′ ⊇ σ ∧ dom(σ ′) = dom(Γy) ∧

∀ y 7→ ` ∈ σ ′ . ∃ τ ′ . τ ′ <: Γc` (`) ∧ τ ′ <: Γy(y)}

∀σ ∈ Σc . dom(σ) = dom(Γy) ∧ ∀ y 7→ ` ∈ σ . ∃ τ ′ . τ ′ <: Γc` (`) ∧ τ ′ <: Γy(y)By construction of Σc

∀σ ∈ Σc . < Γc` ; Lc >` σ validFor Γy By rule (σ − VALID)

dom(Lc) = dom(La) By inversion on < Γc` ; L
c >vA< Γ

a
` ; La >

dom(Γc`) ⊆ dom(Γa`) By inversion on < Γc` ; L
c >vA< Γ

a
` ; La >

∀ ` ′ : τ ′ ∈ Γc` . τ ′ <: Γa` (` ′) By inversion on < Γc` ; L
c >vA< Γ

a
` ; La >

∀ x ′ 7→ {`} ∈ Lc. {`} ⊆ La(x ′) ∧ {`} 6= ∅ By inversion on < Γc` ; L
c >vA< Γ

a
` ; La >

∀ ` ∈ dom(Γc`) . Γ
c
` (`) <: Γa` (`) By rewriting

∀ x ∈ dom(Lc) . Lc(x) ⊆ La(x) ∧ Lc(x) 6= ∅ By rewriting
∀ σ ′ ∈ Σc .

σ ′ ⊇ σ By construction of σ ′

dom(σ ′) = dom(Γy) By construction of σ ′

∀ (y 7→ `) ∈ σ ′ .

∃ τ ′ . τ ′ <: Γc` (`) ∧ τ ′ <: Γy(y) By construction of σ ′

∃ τ ′ . τ ′ <: Γa` (`) ∧ τ ′ <: Γy(y) By Γc` (`) <: Γa` (`)

194 APPENDIX C. PROOFS OF SOUNDNESS AND COMPLETENESS

∀ (y 7→ `) ∈ σ ′ . ∃τ ′ . τ ′ <: Γa` (`) ∧ τ ′ <: Γy(y)

σ ′ ∈ Σa By construction of Σa

Σc ⊆ Σa By quantification above

�

Lemma 24 (Restriction less precise than substitution).

forall deriv.

A ` ρ consistent
exists deriv.

A; B; ρ;σ `α P 7→ α

α v σ

Proof:

Σ = allValidSubs(A;σ; FV(P)) By applying function allValidSubs
By case analysis on the property of Σ

Case: ∃σ ′ ∈ Σ.A; B; ρ ` P[σ ′] t ∧ t 6= False

A; B; ρ;σ `α P 7→ σ By rule (RESTRICT-T-U-SOUND/COMPLETE)

σ v σ By rule vα − =

Case: ¬∃σ ′ ∈ Σ.A; B; ρ ` P[σ ′] t ∧ t 6= False

∀σ ′ ∈ Σ.A; B; ρ ` P[σ ′] False By rewriting
A; B; ρ;σ `α P 7→ ⊥(σ) By rule (RESTRICT-F-SOUND/COMPLETE)

⊥(σ) v σ By rule vα −⊥

�

C.4. FUNCTION LEMMAS 195

Lemma 25 (Lattice preserves precision).

forall deriv.

Ac v Aa

Bc v Ba

Ac ` σ validFor FV(Q̄)

Aa ` σ validFor FV(Q̄)

dom(sigma) = dom(FV(Q̄))

exists deriv.

lattice(Ac; Bc;σ; Q̄) = δc

lattice(Aa; Ba;σ; Q̄) = δa

δc v δa

Proof:

By induction on the structure of Q̄:

Case: Q̄ = Q, Q̄ ′

lattice(Ac; Bc;σ;Q) = δc1 By induction hypothesis
lattice(Aa; Ba;σ;Q) = δa1 By induction hypothesis
δc1 v δa1 By induction hypothesis
lattice(Ac; Bc;σ; Q̄ ′) = δc2 By induction hypothesis
lattice(Aa; Ba;σ; Q̄ ′) = δa2 By induction hypothesis
δc2 v δa2 By induction hypothesis
Let δc = δc1 δc2
Let δa = δa1 δa1
lattice(Ac; Bc;σ;Q, Q̄ ′) = δc By rule (LATTICE-LIST)

lattice(Aa; Ba;σ;Q, Q̄ ′) = δa By rule (LATTICE-LIST)

δc v δa By Lemma preserves v

Case: Q̄ = ∅

lattice(Ac; Bc;σ; ∅) = ignore(Ac) By rule (LATTICE − ∅)

lattice(Aa; Ba;σ; ∅) = ignore(Aa) By rule (LATTICE − ∅)

ignore(Ac) v ignore(Aa) By Lemma ignore preserves v

Case: Q̄ = Q

196 APPENDIX C. PROOFS OF SOUNDNESS AND COMPLETENESS

Σc = allValidSubs(Ac;σ; FV(Q)) By applying function allValidSubs
Σa = allValidSubs(Ac;σ; FV(Q)) By applying function allValidSubs
Σc ⊆ Σa By Lemma 23(ValidSubs returns subsets)
Let δc

′
= δ ′ = {R 7→ E | σ ′ ∈ Σc ∧ value(B;Q[σ ′]) = R 7→ E} Let δa

′
= δ ′ = {R 7→ E | σ ′ ∈ Σa ∧ value(B;Q[σ ′]) = R 7→ E} dom(δc

′
) ⊆ dom(δa

′
)By Σc ⊆ Σa

∀σ ′ ∈ Σc .

Ac ` σ ′ validFor FV(Q) By Lemma 23(ValidSubs returns subsets)
Aa ` σ ′ validFor FV(Q) By Lemma 23(ValidSubs returns subsets)
value(Bc, Q[σ ′]) = R 7→ Ec By Lemma 26(Lattice value preserves precision)
value(Ba, Q[σ ′]) = R 7→ Ea By Lemma 26(Lattice value preserves precision)
Ec v Ea By Lemma 26(Lattice value preserves precision)

∀R 7→ Ec ∈ δc ′ . Ec v δa ′(R) By quantification
δc

′ v δa ′ By rule (vδ)

Let δc = ignore(Ac) δc
′

Let δa = ignore(Aa) δa
′

lattice(Ac; Bc;σ;Q) = δc By rule (LATTICE-Q)

lattice(Aa; Ba;σ;Q) = δa By rule (LATTICE-Q)

ignore(Ac) v ignore(Aa) By Lemma ignore preserves v
δc v δa By Lemma preserves v

�

Lemma 26 (Lattice value preserves precision).

forall deriv.

Ac v Aa

Bc v Ba

Ac ` σ validFor FV(Q̄)

Aa ` σ validFor FV(Q̄)

exists deriv.

value(Bc, Q[σ]) = R 7→ Ec

value(Ba, Q[σ]) = R 7→ Ea

Ec v Ea

Proof:

By induction on the structure of Q:

C.4. FUNCTION LEMMAS 197

Case: Q = S

R = S[σ]

value(Bc, R) = R 7→ true By definition of value
value(Ba, R) = R 7→ true By definition of value
True v True By rule v − =

Case: Q = ¬S

R = A[σ]

value(Bc,¬R) = R 7→ false By definition of value
value(Ba,¬R) = R 7→ false By definition of value
False v False By rule v − =

Case: Q = S/y

R = S[σ]

` = σ(y) value(Bc, R/`) = R 7→ Bc(`) By definition of value
value(Ba, R/`) = R 7→ Ba(`) By definition of value
Bc(`) v Ba(`) By inversion on Bc v Ba

Case: Q = ¬S/y

R = S[σ]

` = σ(y) value(Bc,¬R/`) = R 7→ ¬Bc(`) By definition of value
value(Ba,¬R/`) = R 7→ ¬Ba(`) By definition of value
Bc(`) v Ba(`) By inversion on Bc v Ba

¬Bc(`) v ¬Ba(`) By Lemma ¬ preserves v

�

Lemma 27. ignore preserves v

∀ deriv.
Aconc v Aabs

ignore(Aconc) = δconc

ignore(Aabs) = δabs

∃ deriv.
αconc v αabs

198 APPENDIX C. PROOFS OF SOUNDNESS AND COMPLETENESS

Lemma 28. findLabels and v produces subsets

∀ deriv.
Aconc v Aabs

Σabs = findLabels(Aabs; Γy[
];β)

Σconc = findLabels(Aconc; Γy[
];β)

∃ deriv.
Σconc ⊆ Σabs

C.5. OPERATOR LEMMAS 199

C.5 Operator Lemmas

All proofs in this section are omitted as they are trivially reproducible from the rules of the opera-
tors.

Lemma 29. tδ operator preserves v

∀ deriv.
δconcl v δabsl

δconcr v δabsr

δconcl t δconcr = δconc

δabsl t δabsr = δabs

∃ deriv.
δconc v δabs

Lemma 30 (eqjoin delta operator preserves alap).

∀ deriv.
δconcl v δabsl

δconcr v δabsr

δconcl δconcr = δconc

δabsl δabsr = δabs

∃ deriv.
δconc v δabs

Note: The proof for this is a tedious case-by-case proof, and I used the Agda lemma prover to
verify that all cases were covered.

Lemma 31.
↑
∗δ operator preserves v

∀ deriv.
δconc v δabs

∃ deriv. ↑
∗ δconc v

↑
∗ δabs

200 APPENDIX C. PROOFS OF SOUNDNESS AND COMPLETENESS

Lemma 32. δ operator preserves v

∀ deriv.
δconcl v δabsl

δconcr v δabsr

δconcl δconcr = δconc

δabsl δabsr = δabs

∃ deriv.
δconc v δabs

Lemma 33 (tγ operator preserves v).

∀ deriv.
γconcl v γabsl

γconcr v γabsr

γconcl t γconcr = γconc

γabsl t γabsr = γabs

∃ deriv.
γconc v γabs

Lemma 34 (Leftarrow AliasA preserves alap).

∀ deriv.
Aconc v Aabs

γconc v γabs

Aconc ⇐ γconc = Aconc
′

Aabs ⇐ γabs = Aabs
′

∃ deriv.

Aconc
′ v Aabs

′

Lemma 35. tδ less precise than operands

∀ deriv.
d1 : δ = δl t δr

∃ deriv.
d2 : δl v δ
d3 : δr v δ

C.5. OPERATOR LEMMAS 201

Lemma 36. tγ less precise than operands

∀ deriv.
d1 : γ = γl t γr

∃ deriv.
d2 : γl v γ
d3 : γr v γ

Lemma 37.
↑
∗δ less precise than operand

∀ deriv.

δ ′ =
↑
∗ δ

∃ deriv.

δ v
↑
∗ δ ′

Lemma 38 (⇐ρ preserves v).

∀ deriv.
d1 : ρconc v ρabs

d2 : δconc v δabs

d3 : ρconc ⇐ δconc = ρconc
′

d4 : ρabs ⇐ δabs = ρabs
′

∃ deriv.

d5 : ρconc
′ v ρabs ′

Lemma 39. Substitution preserves vα

∀ deriv.
d1 : αconc v αabs
d2 : αconc[β] = αconc ′

d3 : αabs[β] = αabs ′

∃ deriv.

d4 : αconc
′ v αabs ′

202 APPENDIX C. PROOFS OF SOUNDNESS AND COMPLETENESS

Bibliography

[1] Archive of the example projects used in this dissertation and studied in table 6.4, . URL
http://www.cs.cmu.edu/˜cchristo/docs/fusionexamples.zip.

[2] Archive of the asp.net and spring forum threads discussed in this dissertation, . URL http:
//www.cs.cmu.edu/˜cchristo/docs/forumposts.zip.

[3]

[4] Martı́n Abadi, Luca Cardelli, Benjamin Pierce, and Gordon Plotkin. Dynamic typing in a
statically typed language. ACM Trans. Program. Lang. Syst., 13(2):237–268, 1991. ISSN 0164-
0925. doi: http://doi.acm.org/10.1145/103135.103138.

[5] ABLE research group. AcmeStudio. URL http://www.cs.cmu.edu/˜acme/AcmeStudio/.

[6] Agitar. Agitar TestOne. URL http://www.agitar.com.

[7] Jong-hoon An, Avik Chaudhuri, and Jeffrey S. Foster. Static typing for ruby on rails. In
Proceedings of the 2009 IEEE/ACM International Conference on Automated Software Engineering,
ASE ’09, pages 590–594, Washington, DC, USA, 2009. IEEE Computer Society. ISBN 978-0-
7695-3891-4. doi: http://dx.doi.org/10.1109/ASE.2009.80. URL http://dx.doi.org/10.
1109/ASE.2009.80.

[8] Chris Andreae, James Noble, Shane Markstrum, and Todd Millstein. A framework for im-
plementing pluggable type systems. In Proceedings of the 21st annual ACM SIGPLAN con-
ference on Object-oriented programming systems, languages, and applications, pages 57–74, 2006.
ISBN 1-59593-348-4. doi: http://doi.acm.org/10.1145/1167473.1167479.

[9] Apache. Hadoop. URL http://hadoop.apache.org/.

[10] Stephanie Balzer, Thomas Gross, and Patrick Eugster. A relational model of object collab-
orations and its use in reasoning about relationships. In Proc. of the European Conference on
Object Oriented Programming, 2007.

[11] “bashaasnoot” and “vivek iit”. Dynamic user controls, 2006. URL http://forums.asp.
net/thread/1419194.aspx.

[12] Len Bass, Paul Clements, and Rick Kazman. Software Architecture in Practice. Addison-
Wesley, second edition edition, 2003.

203

http://www.cs.cmu.edu/~cchristo/docs/fusionexamples.zip
http://www.cs.cmu.edu/~cchristo/docs/forumposts.zip
http://www.cs.cmu.edu/~cchristo/docs/forumposts.zip
http://www.cs.cmu.edu/~acme/AcmeStudio/
http://www.agitar.com
http://dx.doi.org/10.1109/ASE.2009.80
http://dx.doi.org/10.1109/ASE.2009.80
http://hadoop.apache.org/
http://forums.asp.net/thread/1419194.aspx
http://forums.asp.net/thread/1419194.aspx

204 BIBLIOGRAPHY

[13] Kent Beck and Ward Cunningham. A laboratory for teaching object-oriented thinking. In
Proceedings of the Conference on Object-Oriented Programming: Systems, Languages, and Applica-
tions, pages 1–6, 1989.

[14] Al Bessey, Ken Block, Ben Chelf, Andy Chou, Bryan Fulton, Seth Hallem, Charles Henri-
Gros, Asya Kamsky, Scott McPeak, and Dawson Engler. A few billion lines of code later:
using static analysis to find bugs in the real world. Commun. ACM, 53:66–75, February 2010.
ISSN 0001-0782.

[15] Kevin Bierhoff. API Protocol Compliance in Object-Oriented Software. PhD thesis, Carnegie
Mellon University, 2009.

[16] Kevin Bierhoff and Jonathan Aldrich. Modular typestate checking of aliased objects. In Proc.
of the Conference on Object Oriented Programming, Systems, Languages, and Applications, 2007.

[17] Gavin Bierman and Alisdair Wren. First-class relationships in an object-oriented language.
In Proc. of the European Conference on Object Oriented Programming, 2005.

[18] Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M. Khang, Kathryn S. McKin-
ley, Rotem Bentzur, Amer Diwan, Daniel Feinberg, Daniel Frampton, Samuel Z. Guyer, Mar-
tin Hirzel, Antony Hosking, Maria Jump, Han Lee, J. Eliot B. Moss, Aashish Phansalkar,
Darko Stefanović, Thomas VanDrunen, Daniel von Dincklage, and Ben Wiedermann. The
dacapo benchmarks: java benchmarking development and analysis. In Proceedings of the
21st annual ACM SIGPLAN conference on Object-oriented programming systems, languages, and
applications, 2006.

[19] Eric Bodden, Laurie Hendren, and Ondřej Lhoták. A staged static program analysis to
improve the performance of runtime monitoring. In Proc. of the European Conference on Object
Oriented Programming, 2007.

[20] Eric Bodden, Patrick Lam, and Laurie Hendren. Finding programming errors earlier by
evaluating runtime monitors ahead-of-time. In Proc. of the symposium on Foundations of Soft-
ware Engineering, 2008.

[21] John Boyland. Checking interference with fractional permissions. In Radhia Cousot, editor,
Static Analysis, volume 2694 of Lecture Notes in Computer Science, pages 1075–1075. Springer
Berlin / Heidelberg, 2003. URL http://dx.doi.org/10.1007/3-540-44898-5_4.

[22] Martin Bravenboer and Yannis Smaragdakis. Strictly declarative specification of sophis-
ticated points-to analyses. In Proceeding of the 24th ACM SIGPLAN conference on Object ori-
ented programming systems languages and applications, OOPSLA ’09, pages 243–262, New York,
NY, USA, 2009. ACM. ISBN 978-1-60558-766-0. doi: http://doi.acm.org/10.1145/1640089.
1640108. URL http://doi.acm.org/10.1145/1640089.1640108.

[23] Richard Buchanan. Wicked problems in design thinking. Design Issues, 8(2):pp. 5–21, 1992.
ISSN 07479360. URL http://www.jstor.org/stable/1511637.

http://dx.doi.org/10.1007/3-540-44898-5_4
http://doi.acm.org/10.1145/1640089.1640108
http://www.jstor.org/stable/1511637

205

[24] Robert Cartwright and Mike Fagan. Soft typing. In Proceedings of the ACM SIGPLAN 1991
conference on Programming language design and implementation, pages 278–292, 1991. ISBN
0-89791-428-7. doi: http://doi.acm.org/10.1145/113445.113469.

[25] Feng Chen and Grigore Roşu. Mop: an efficient and generic runtime verification framework.
In Proceedings of the 22nd annual ACM SIGPLAN conference on Object-oriented programming
systems and applications, OOPSLA ’07, pages 569–588, New York, NY, USA, 2007. ACM. ISBN
978-1-59593-786-5. doi: http://doi.acm.org/10.1145/1297027.1297069. URL http://doi.
acm.org/10.1145/1297027.1297069.

[26] Trisha Quan Ciera Jaspan and Jonathan Aldrich. Error reporting logic. In Proceedings of the
Conference on Automated Software Engineering, 2008.

[27] David G. Clarke, John M. Potter, and James Noble. Ownership types for flexible alias
protection. In Proceedings of the 13th ACM SIGPLAN conference on Object-oriented program-
ming, systems, languages, and applications, OOPSLA ’98, pages 48–64, New York, NY, USA,
1998. ACM. ISBN 1-58113-005-8. doi: http://doi.acm.org/10.1145/286936.286947. URL
http://doi.acm.org/10.1145/286936.286947.

[28] Coverity. Coverity Static Analysis. URL http://www.coverity.com/products/

static-analysis.html.

[29] “CuriousHARD” and “Marten Deinum”. How to handle this situation using awfc, 2007.
URL http://forum.springsource.org/showthread.php?39480.

[30] W. Lowe D. Heuzeroth, S. Mandel. Generating design pattern detectors from pattern speci-
fications. In 18th IEEE International Conference on Automated Software Engineering, 2003.

[31] David Heinemeier Hansson. Ruby on Rails. URL http://rubyonrails.org/.

[32] Robert DeLine and Manuel Fähndrich. Typestates for objects. In Proc. of the European Con-
ference on Object Oriented Programming, 2004.

[33] Krishna Kishore Dhara and Gary T. Leavens. Forcing behavioral subtyping through speci-
fication inheritance. In Proc. of the International Conference on Software Engineering, 1996.

[34] “dr pompeii” and “Marten Deinum”. problem:migration spring mvc to swf, 2006. URL
http://forum.springsource.org/showthread.php?36109.

[35] Facebook. Facebook API. URL http://developers.facebook.com/.

[36] George Fairbanks, David Garlan, and William Scherlis. Design fragments make using
frameworks easier. In OOPSLA, pages 762–763, 2006. ISBN 1-59593-491-X. doi: http:
//doi.acm.org/10.1145/1176617.1176713.

[37] FindBugs. FindBugs Project, . URL http://findbugs.sourceforge.net.

[38] FindBugs. FindBugs Bug Descriptions, . URL http://findbugs.sourceforge.net/
bugDescriptions.html.

http://doi.acm.org/10.1145/1297027.1297069
http://doi.acm.org/10.1145/1297027.1297069
http://doi.acm.org/10.1145/286936.286947
http://www.coverity.com/products/static-analysis.html
http://www.coverity.com/products/static-analysis.html
http://forum.springsource.org/showthread.php?39480
http://rubyonrails.org/
http://forum.springsource.org/showthread.php?36109
http://developers.facebook.com/
http://findbugs.sourceforge.net
http://findbugs.sourceforge.net/bugDescriptions.html
http://findbugs.sourceforge.net/bugDescriptions.html

206 BIBLIOGRAPHY

[39] Cormac Flanagan. Hybrid type checking. In Proceedings of the 33rd ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 245–256, 2006. ISBN 1-59593-027-2.
doi: http://doi.acm.org/10.1145/1111037.1111059.

[40] Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson, James B. Saxe, and
Raymie Stata. Extended static checking for Java. In Proceedings of the Conference on Program-
ming Language Design and Implementation, 2002.

[41] Fortify Software. Fortify SCA. URL http://www.fortifysoftware.com.

[42] Martin Fowler. Inversion of control containers and the dependency injection pattern. http:
//www.martinfowler.com/articles/injection.html, 2004.

[43] Gary Froehlich, H. James Hoover, Ling Liu, and Paul Sorenson. Hooking into object-
oriented application frameworks. In Proceedings of the 19th International Conference on Soft-
ware engineering, 1997.

[44] P. van Winsen G. Florijn, M. Meijers. Tool support for object-oriented patterns. In ECOOP,
LNCS. Springer, 1997.

[45] Mark Gabel and Zhendong Su. Online inference and enforcement of temporal properties.
In Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering - Vol-
ume 1, ICSE ’10, pages 15–24, New York, NY, USA, 2010. ACM. ISBN 978-1-60558-719-6.
doi: http://doi.acm.org/10.1145/1806799.1806806. URL http://doi.acm.org/10.1145/
1806799.1806806.

[46] D. Garlan, R. Allen, and J. Ockerbloom. Architectural mismatch: why reuse is so hard.
Software, IEEE, 12(6):17 –26, November 1995. ISSN 0740-7459. doi: 10.1109/52.469757.

[47] Jack Greenfield and Keith Short. Software Factories: Assembling applications with patterns,
models, frameworks, and tools. Wiley Publishing, Inc., 2004.

[48] MIT Program Analysis Group. Daikon project page. URL http://groups.csail.mit.edu/
pag/daikon/.

[49] “gurnard”, “Colin Yates”, and “kfranklin”. posting form to self, 2006. URL http://forum.
springsource.org/showthread.php?28603.

[50] David Heinemeier Hansson. Creating a weblog in 15 minutes with rails 2. URL http:
//media.rubyonrails.org/video/rails_blog_2.mov.

[51] Rob Harrop and Jan Machacek. Pro Spring. A-Press, 2005.

[52] Richard Helm, Ian M. Holland, and Dipayan Gangopadhyay. Contracts: specifying behav-
ioral compositions in object-oriented systems. In Proc. of the Conference on Object Oriented
Programming, Systems, Languages, and Applications, 1990.

http://www.fortifysoftware.com
http://www.martinfowler.com/articles/injection.html
http://www.martinfowler.com/articles/injection.html
http://doi.acm.org/10.1145/1806799.1806806
http://doi.acm.org/10.1145/1806799.1806806
http://groups.csail.mit.edu/pag/daikon/
http://groups.csail.mit.edu/pag/daikon/
http://forum.springsource.org/showthread.php?28603
http://forum.springsource.org/showthread.php?28603
http://media.rubyonrails.org/video/rails_blog_2.mov
http://media.rubyonrails.org/video/rails_blog_2.mov

207

[53] Kohei Honda, Vasco Thudichum Vasconcelos, and Makoto Kubo. Language primitives and
type discipline for structured communication-based programming. In Proceedings of the 7th
European Symposium on Programming: Programming Languages and Systems, pages 122–138,
London, UK, 1998. Springer-Verlag. ISBN 3-540-64302-8. URL http://portal.acm.org/
citation.cfm?id=645392.651876.

[54] Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session
types. In Proceedings of the 35th annual ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, POPL ’08, pages 273–284, New York, NY, USA, 2008. ACM.
ISBN 978-1-59593-689-9. doi: http://doi.acm.org/10.1145/1328438.1328472. URL http:
//doi.acm.org/10.1145/1328438.1328472.

[55] Daqing Hou and H. James Hoover. Using SCL to specify and check design intent in source
code. IEEE Trans. Softw. Eng., 32(6), 2006.

[56] “ilpata”, “Rossen Stoyanchev”, and “Marten Deinum”. problem with viewresolver order
attribute, 2006. URL http://forum.springsource.org/showthread.php?36891.

[57] Daniel Jackson. Alloy: a lightweight object modelling notation. ACM Trans. Softw. Eng.
Methodol., 11(2):256–290, 2002. ISSN 1049-331X. doi: http://doi.acm.org/10.1145/505145.
505149.

[58] Ciera Jaspan and Jonathan Aldrich. Checking framework interactions with relationships. In
ECOOP, 2009.

[59] Ralph E. Johnson. Documenting frameworks using patterns. In OOPSLA, 1992.

[60] Ralph E. Johnson. Frameworks = (components + patterns). Commun. ACM, 40(10), 1997.

[61] Rod Johnson, Juergen Hoeller, Alef Arendsen, Colin Sampaleanu, Rob Harrop, Thomas Ris-
berg, Darren Davison, Dmitriy Kopylenko, Mark Pollack, Thierry Templier, Erwin Vervaet,
Portia Tung, Ben Hale, Adrian Colyer, John Lewis, Costin Leau, and Rick Evans. The spring
framework - reference documentation, version 2.0.8. URL http://static.springsource.
org/spring/docs/2.0.8/reference/.

[62] Joshua Bloch. How to design a good api and why it matters. URL http://www.infoq.com/
presentations/effective-api-design.

[63] Juergen Hoeller. Jpetstore sample application, version 2.0.8. URL http:

//sourceforge.net/projects/springframework/files/springframework-2/2.0.8/

spring-framework-2.0.8-with-dependencies.zip/download. Found in the zip file
under samples/JPetStore.

[64] Klocwork. Klocwork K7. URL http://www.klocwork.com.

[65] Viktor Kuncak, Patrick Lam, Karen Zee, and Martin Rinard. Modular Pluggable Analyses
for Data Structure Consistency. IEEE Trans. Softw. Eng., 32(12), 12 2006.

http://portal.acm.org/citation.cfm?id=645392.651876
http://portal.acm.org/citation.cfm?id=645392.651876
http://doi.acm.org/10.1145/1328438.1328472
http://doi.acm.org/10.1145/1328438.1328472
http://forum.springsource.org/showthread.php?36891
http://static.springsource.org/spring/docs/2.0.8/reference/
http://static.springsource.org/spring/docs/2.0.8/reference/
http://www.infoq.com/presentations/effective-api-design
http://www.infoq.com/presentations/effective-api-design
http://sourceforge.net/projects/springframework/files/springframework-2/2.0.8/spring-framework-2.0.8-with-dependencies.zip/download
http://sourceforge.net/projects/springframework/files/springframework-2/2.0.8/spring-framework-2.0.8-with-dependencies.zip/download
http://sourceforge.net/projects/springframework/files/springframework-2/2.0.8/spring-framework-2.0.8-with-dependencies.zip/download
http://www.klocwork.com

208 BIBLIOGRAPHY

[66] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preliminary design of JML: a behavioral
interface specification language for Java. SIGSOFT Softw. Eng. Notes, 31(3), 2006.

[67] Choonghwan Lee, Feng Chen, and Grigore Roşu. Mining parametric specifications. In
Proceedings of the 33rd International Conference on Software Engineering, ICSE ’11, pages 591–
600, 2011.

[68] Ondrej Lhoták and Kwok-Chiang Andrew Chung. Points-to analysis with efficient strong
updates. In Proceedings of the 38th annual ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, POPL ’11, pages 3–16, New York, NY, USA, 2011. ACM. ISBN 978-
1-4503-0490-0. doi: http://doi.acm.org/10.1145/1926385.1926389. URL http://doi.acm.
org/10.1145/1926385.1926389.

[69] David Lo and Shahar Maoz. Mining hierarchical scenario-based specifications. In Proceed-
ings of the Conference on Automated Software Engineering, 2009.

[70] Sure Logic. JSure for Concurrency. URL http://www.surelogic.com/concurrency-tools.
html.

[71] David Mandelin, Lin Xu, Rastislav Bod, and Doug Kimelman. Jungloid mining: helping to
navigate the API jungle. In Proceedings of the 2005 ACM SIGPLAN conference on Programming
Language Design and Implementation, 2005.

[72] Philippe Meunier, Robert Bruce Findler, and Matthias Felleisen. Modular set-based analysis
from contracts. In Proceedings of the 33rd ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 218–231, 2006. ISBN 1-59593-027-2. doi: http://doi.acm.org/
10.1145/1111037.1111057.

[73] Microsoft. ASP.NET. URL http://www.asp.net/.

[74] Microsoft. Asp.net page lifecycle overview, . URL http://msdn2.microsoft.com/en-us/
library/ms178472.aspx.

[75] Microsoft. C# version 3.0 specification, . URL http://msdn.microsoft.com/en-us/
library/ms364047(v=vs.80).aspx.

[76] Ana Milanova, Atanas Rountev, and Barbara G. Ryder. Parameterized object sensitivity for
points-to analysis for java. ACM Trans. Softw. Eng. Methodol., 14:1–41, January 2005. ISSN
1049-331X. doi: http://doi.acm.org/10.1145/1044834.1044835. URL http://doi.acm.org/
10.1145/1044834.1044835.

[77] Nomair A. Naeem. Personal communication at OOPSLA, 2008.

[78] Nomair A. Naeem and Ondřej Lhoták. Typestate-like analysis of multiple interacting ob-
jects. In Proc. of the Conference on Object Oriented Programming, Systems, Languages, and Appli-
cations, 2008.

http://doi.acm.org/10.1145/1926385.1926389
http://doi.acm.org/10.1145/1926385.1926389
http://www.surelogic.com/concurrency-tools.html
http://www.surelogic.com/concurrency-tools.html
http://www.asp.net/
http://msdn2.microsoft.com/en-us/library/ms178472.aspx
http://msdn2.microsoft.com/en-us/library/ms178472.aspx
http://msdn.microsoft.com/en-us/library/ms364047(v=vs.80).aspx
http://msdn.microsoft.com/en-us/library/ms364047(v=vs.80).aspx
http://doi.acm.org/10.1145/1044834.1044835
http://doi.acm.org/10.1145/1044834.1044835

209

[79] Mangala Gowri Nanda, Christian Grothoff, and Satish Chandra. Deriving object typestates
in the presence of inter-object references. In Proc. of the Conference on Object Oriented Program-
ming, Systems, Languages, and Applications, 2005.

[80] Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles of Program Analysis.
Springer, 1999.

[81] “nyker”, “dr pompeii”, and “Marten Deinum”. transition on-exception not working, 2006.
URL http://forum.springsource.org/showthread.php?43182.

[82] Matthew J. Parkinson and Gavin M. Bierman. Separation logic, abstraction and inheritance.
In Proc. of the symposium on Principles of Programming Languages, 2008.

[83] PLAID Research Group. The crystal static analysis framework. URL http://code.google.
com/p/crystalsaf.

[84] “pompiuses” and “Marten Deinum”. Applicationobjectsupport always returns null for ap-
plicationcontext, 2006. URL http://forum.springsource.org/showthread.php?32429.

[85] Michael Pradel and Thomas R. Gross. Automatic generation of object usage specifications
from large method traces. In Proceedings of the Conference on Automated Software Engineering,
2009.

[86] Michael Pradel, Ciera Jaspan, Jonathan Aldrich, and Thomas R. Gross. Statically checking
api protocol conformance with mined multi-object specifications. Under Submission, 2011.

[87] “raydawg” and “jeremyg484”. Struts and webflow confusion, 2006. URL http://forum.
springsource.org/showthread.php?38940.

[88] Microsoft Research. Spec#. URL http://research.microsoft.com/en-us/projects/
specsharp/.

[89] Dirk Riehle and Thomas Gross. Role model based framework design and integration. In
OOPSLA, pages 117–133, 1998. ISBN 1-58113-005-8. doi: http://doi.acm.org/10.1145/
286936.286951.

[90] Thomas Risberg, Rick Evans, and Portia Tung. Spring mvc step-by-step. URL http://
static.springsource.org/docs/Spring-MVC-step-by-step/.

[91] “roseability”, “DWesthead”, “bitmask”, and “mokeefe”. Codebehind with master pages,
2006. URL http://forums.asp.net/thread/1422132.aspx.

[92] Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm. Parametric shape analysis via 3-valued
logic. ACM Trans. Program. Lang. Syst., 24(3):217–298, 2002. ISSN 0164-0925. doi: http:
//doi.acm.org/10.1145/514188.514190.

[93] “senthilnathan74” and “Marten Deinum”. Question on having same view..., 2006. URL
http://forum.springsource.org/showthread.php?39209.

http://forum.springsource.org/showthread.php?43182
http://code.google.com/p/crystalsaf
http://code.google.com/p/crystalsaf
http://forum.springsource.org/showthread.php?32429
http://forum.springsource.org/showthread.php?38940
http://forum.springsource.org/showthread.php?38940
http://research.microsoft.com/en-us/projects/specsharp/
http://research.microsoft.com/en-us/projects/specsharp/
http://static.springsource.org/docs/Spring-MVC-step-by-step/
http://static.springsource.org/docs/Spring-MVC-step-by-step/
http://forums.asp.net/thread/1422132.aspx
http://forum.springsource.org/showthread.php?39209

210 BIBLIOGRAPHY

[94] “sharkman” and “Fredrik N”. Binding to a DropDownList membership roles, 2006. URL
http://forums.asp.net/thread/1415249.aspx.

[95] Yannis Smaragdakis, Martin Bravenboer, and Ondrej Lhoták. Pick your contexts well: un-
derstanding object-sensitivity. In Proceedings of the 38th annual ACM SIGPLAN-SIGACT sym-
posium on Principles of programming languages, POPL ’11, pages 17–30, New York, NY, USA,
2011. ACM. ISBN 978-1-4503-0490-0. doi: http://doi.acm.org/10.1145/1926385.1926390.
URL http://doi.acm.org/10.1145/1926385.1926390.

[96] “sokol”, “Keith Donald”, and “robh”. Binding object using form taglib in swf?, 2006. URL
http://forum.springsource.org/showthread.php?26787.

[97] Neelam Soundarajan and Jason O. Hallstrom. Responsibilities and rewards: Specifying
design patterns. In Proceedings of the 26th International Conference on Software Engineering,
2004.

[98] J. M. Spivey. The Z notation: a reference manual. Prentice-Hall, Inc., Upper Saddle River, NJ,
USA, 1989. ISBN 0-13-983768-X.

[99] SpringSource. Phonebook sample application, version 2.0.8, . URL http:

//sourceforge.net/projects/springframework/files/springframework-2/2.0.8/

spring-framework-2.0.8-with-dependencies.zip/download.

[100] SpringSource. SpringIDE, . URL http://www.springsource.org/springide/release-20.

[101] a division of VMWare SpringSource. The standard for enterprise java development. URL
http://www.springsource.com/developer/spring.

[102] “strangewill”, “vivek iit”, “TonyAlicea”, and “sreejukg”. Control disappearing, 2006. URL
http://forums.asp.net/thread/1419089.aspx.

[103] Sunacle. Iterator JavaDoc, . URL http://download.oracle.com/javase/6/docs/api/
java/util/Iterator.html.

[104] Sunacle. The swing gui framework, version 6, . URL http://download.oracle.com/
javase/6/docs/api/javax/swing/package-summary.html.

[105] Joshua Sunshine, Karl Naden, Sven Stork, Jonathan Aldrich, and ric Tanter. First-class state
change in plaid. In Proceedings of Object-Oriented Programming, Systems, Languages, and Ap-
plications, 2011.

[106] The Eclipse Foundation. The Eclipse Project. URL http://www.eclipse.org/.

[107] The JUnit Project. JUnit. URL http://www.junit.org/.

[108] The Krell Institute. Open|SpeedShop. URL http://www.openspeedshop.org/.

[109] The OpenMPI Project. OpenMPI. URL http://www.open-mpi.org/.

http://forums.asp.net/thread/1415249.aspx
http://doi.acm.org/10.1145/1926385.1926390
http://forum.springsource.org/showthread.php?26787
http://sourceforge.net/projects/springframework/files/springframework-2/2.0.8/spring-framework-2.0.8-with-dependencies.zip/download
http://sourceforge.net/projects/springframework/files/springframework-2/2.0.8/spring-framework-2.0.8-with-dependencies.zip/download
http://sourceforge.net/projects/springframework/files/springframework-2/2.0.8/spring-framework-2.0.8-with-dependencies.zip/download
http://www.springsource.org/springide/release-20
http://www.springsource.com/developer/spring
http://forums.asp.net/thread/1419089.aspx
http://download.oracle.com/javase/6/docs/api/java/util/Iterator.html
http://download.oracle.com/javase/6/docs/api/java/util/Iterator.html
http://download.oracle.com/javase/6/docs/api/javax/swing/package-summary.html
http://download.oracle.com/javase/6/docs/api/javax/swing/package-summary.html
http://www.eclipse.org/
http://www.junit.org/
http://www.openspeedshop.org/
http://www.open-mpi.org/

211

[110] John Vlissides. Protection, Part 1: The Hollywood Principle. C++ Report, February 1996.

[111] VMWare. Spring. URL http://www.springsource.com/.

[112] Robert J. Walker and Kevin Viggers. Implementing Protocols via Declarative Event Patterns.
In Proc. of the symposium on Foundations of Software Engineering, 2004.

[113] Craig Walls. Spring in Action. Manning, 2008.

[114] John Whaley and Monica S. Lam. Cloning-based context-sensitive pointer alias analysis
using binary decision diagrams. In Proceedings of the ACM SIGPLAN 2004 conference on Pro-
gramming language design and implementation, pages 131–144, 2004. ISBN 1-58113-807-5. doi:
http://doi.acm.org/10.1145/996841.996859.

http://www.springsource.com/

	1 Object Protocols
	1.1 This Dissertation
	1.2 Research Contributions and Expectations

	2 Software Frameworks
	2.1 An architectural definition of software frameworks
	2.2 The essential complexity of software frameworks
	2.3 An added twist: declarative artifacts

	3 Object Collaborations
	3.1 Why examine forums?
	3.2 ASP.NET Forum Study
	3.3 Properties of Collaboration Constraints

	4 Relationship Specifications
	4.1 Specifying constraints in Fusion
	4.2 Analyzing Programs
	4.3 Other kinds of specifications
	4.4 Achievement of solution goals

	5 Aliasing and Declarative Files
	5.1 Binding specification variables
	5.2 Creating effects
	5.3 Points-to analysis
	5.4 Getting relationships from declarative artifacts
	5.5 Impact of more labels
	5.6 The restrict predicate

	6 Case Study: Spring Framework
	6.1 Why Spring
	6.2 Methodology for gathering examples
	6.3 Quantitative Results
	6.4 Detailed Examples
	6.5 Generalizable properties of Fusion

	7 Adoptability
	7.1 Reducing specification burden
	7.2 Scalability and Performance
	7.3 Precision
	7.4 Usable error reports
	7.5 Future work for adoptability

	8 Related Work
	8.1 Tutorial-based framework assistance
	8.2 Formal specifications of frameworks
	8.3 Logical analyses
	8.4 Typestates, Tracematches, and Session types

	9 Conclusion
	9.1 Frameworks and Collaboration Constraints
	9.2 Relationships
	9.3 Future work
	9.4 Tradeoffs, tradeoffs, tradeoffs...

	A Extended Case Study
	A.1 Returning a ModelAndView with the errors map
	A.2 Using Web Flow Actions
	A.3 Serializing Flow Objects
	A.4 The FormAction lifecycle

	B Formalism
	B.1 Abstract Grammar
	B.2 Operations on lattices
	B.3 Operations on specifications
	B.4 Points-to Operations
	B.5 The Boolean Constant Propagation lattice
	B.6 Functions
	B.7 Rules

	C Proofs of Soundness and Completeness
	C.1 Soundness
	C.2 Completeness
	C.3 Consistency
	C.4 Function Lemmas
	C.5 Operator Lemmas

	Bibliography

