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Propositional logic: 
Horn clauses   
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Administration

• Homework assignment 2
– Propositional logic exercises
– Programming a resolution solver
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Logical inference problem

Logical inference problem:
• Given:

– a knowledge base KB (a set of sentences) and 
– a sentence        (called a theorem), 

• Does a KB semantically entail ?
In other words:  In all interpretations in which sentences in the 

KB are true, is also        true?

α=|KB ?
α

α

α
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Solving logical inference problem

In the following:
How to design the procedure that answers: 

Three approaches:
• Truth-table approach
• Inference rules
• Conversion to the inverse SAT problem

– Resolution-refutation 

α=|KB ?
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KB in restricted forms
If the sentences in the KB are restricted to some special forms 

some of the sound inference rules may become complete
Example:
• Horn form (Horn normal form)

• Two inference rules that are sound and complete with 
respect to propositional symbols for KBs in the Horn 
normal form:
– Resolution (positive unit resolution)
– Modus ponens

)()( DCABA ∨¬∨¬∧¬∨

))(()( DCAAB ⇒∧∧⇒Can be written also as:
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KB in Horn form
• Horn form: a clause with at most one positive literal

• Not all sentences in propositional logic can be converted 
into the Horn form

• KB in Horn normal form:
– Three types of propositional statements:

• Rules 

• Facts
• Integrity constraints

)()( DCABA ∨¬∨¬∧¬∨

)( 21 ABBB k ⇒∧∧ K

B

)( 21 ABBB k ∨¬∨¬∨¬ K

))(( 21 ABBB k ∨∧∧¬ K

)( 21 kBBB ¬∨¬∨¬ K

)( 21 FalseBBB k ⇒∧∧ K
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KB in Horn form
• Horn form: a clause with at most one positive literal

• Not all sentences in propositional logic can be converted 
into the Horn form

• KB in Horn normal form:
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• Facts
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KB in Horn form
• Modus ponens:

– More general version of the rule: 

– Modus ponens is sound and complete with respect to 
propositional symbols for the KBs in the Horn normal 
form 

– We assume only logical inference problems for which the 
theorem α is a propositional symbol:

• Note: no negation of a propositional symbol is allowed

A
BAB ,⇒

A
BBBABBB kk KK ,,,)( 2121 ⇒∧∧
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KB in Horn form
• Inferences:

– Resolution rule:

– Resolution is sound and complete with respect to 
propositional symbols for the KBs in the Horn normal 
form 

CA
CBBA

∨
∨¬∨ ,
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Complexity of inferences for KBs in HNF

Question:
How efficient the  inferences in the HNF wrt propositional 

symbols can be?  
Answer:
Procedures linear in the size of the KB  in the Horn form exist.
• Size of a clause: the number of literals it contains. 
• Size of the KB in the HNF: the sum of the sizes of its elements.
Example: 

)(),(),(),(,, GFEECDCCBABA ∨¬∨¬∨¬∨¬∨¬∨¬

)(),(),(),(,, GFEECDCCBABA ⇒∧⇒⇒⇒∧

The size is: 12

or
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Complexity of inferences for KBs in HNF

How to do the inference?  If the HNF (is in clausal form) we can
apply resolution. 

)(),(),(),(,, GFEECDCCBABA ∨¬∨¬∨¬∨¬∨¬∨¬

CB ∨¬

C

D
E
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Complexity of inferences for KBs in HNF

Features:
• Every resolution is a positive unit resolution; that is, a 

resolution in which one clause is a positive unit clause (i.e., a 
proposition symbol).

)(),(),(),(,, GFEECDCCBABA ∨¬∨¬∨¬∨¬∨¬∨¬

CB ∨¬

C

D
E
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Complexity of inferences for KBs in HNF
Features:
• At each resolution, the input clause which is not a unit clause 

is a logical consequence of the result of the resolution. (Thus,
the input clause may be deleted upon completion of the 
resolution operation.)

)(),(),(),(,, GFEECDCCBABA ∨¬∨¬∨¬∨¬∨¬∨¬

CB ∨¬

C

D
E
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Complexity of inferences for KBs in HNF
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is a logical consequence of the result of the resolution. (Thus,
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Complexity of inferences for KBs in HNF
Features:
• Following this deletion, the size of the KB  (the sum of the 

lengths of the remaining clauses) is one less than it was before
the operation.)

)(),(),(),(,, GFEECDCCBABA ∨¬∨¬∨¬∨¬∨¬∨¬

CB ∨¬

C

D
E
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Complexity of inferences for KBs in HNF
Features:
• If  n is the size of the KB, then at most n positive unit 

resolutions may be performed on it.

)(),(),(),(,, GFEECDCCBABA ∨¬∨¬∨¬∨¬∨¬∨¬

CB ∨¬

C

D
E
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Complexity of inferences for KBs in HNF

A linear time resolution algorithm:
• The number of positive unit resolutions is limited to the 

size of the formula (n)

• But to assure overall linear time we need to access each 
proposition in a constant time:

• Data structures indexed by proposition names may be accessed 
in constant time. (This is possible if the proposition names are
number in a range (e.g., 1..n), so that array lookup is the access 
operation.

• If propositions are accessed by name, then a symbol table is 
necessary, and the algorithm will run in time O(n · log(n)).
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Forward and backward chaining

Two inference procedures based on modus ponens for Horn 
KBs:

• Forward chaining
Idea: Whenever the premises of a rule are satisfied, infer 
the conclusion. Continue with rules that became satisfied.

• Backward chaining (goal reduction)
Idea: To prove the fact that appears in the conclusion of a 
rule prove the premises of the rule. Continue recursively.

Both procedures are complete for KBs in the Horn form !!!
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Forward chaining example

• Forward chaining
Idea: Whenever the premises of a rule are satisfied, infer the 
conclusion. Continue with rules that became satisfied.

GFC ⇒∧

KB: R1:

R2:

R3:

Assume the KB with the following rules and facts:
CBA ⇒∧

EDC ⇒∧

F1:
F2:
F3:

A
B
D

ETheorem: ? 
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Forward chaining example

KB: R1:

R2:

R3: GFC ⇒∧

CBA ⇒∧

EDC ⇒∧

Theorem:

F1:
F2:
F3:

A
B
D

E
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Forward chaining example

KB: R1:

R2:

R3: GFC ⇒∧

CBA ⇒∧

EDC ⇒∧

Theorem:

F4: C

F1:
F2:
F3:

A
B
D

Rule R1 is satisfied.

E
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Forward chaining example

KB: R1:

R2:

R3: GFC ⇒∧

CBA ⇒∧

EDC ⇒∧

Theorem:

F4: C

F1:
F2:
F3:

A
B
D

Rule R1 is satisfied.

Rule R2 is satisfied.
F5: E

E
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Forward chaining

• Efficient implementation: linear in the size of the KB
• Example:

B
A

LBA
LPA
MLB
PML

QP

⇒∧
⇒∧
⇒∧
⇒∧

⇒
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Forward chaining

• Runs in time linear in the number of literals in the Horn 
formulae
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Forward chaining

** 

B
A

LBA
LPA
MLB
PML

QP

⇒∧
⇒∧
⇒∧
⇒∧

⇒

Agenda (facts)
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Forward chaining

•

B
A

LBA
LPA
MLB
PML

QP

⇒∧
⇒∧
⇒∧
⇒∧

⇒

inferred
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Forward chaining

•

B
A

LBA
LPA
MLB
PML

QP

⇒∧
⇒∧
⇒∧
⇒∧

⇒

inferred

add to agenda
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Forward chaining

•

B
A

LBA
LPA
MLB
PML

QP

⇒∧
⇒∧
⇒∧
⇒∧

⇒
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Forward chaining

•

B
A

LBA
LPA
MLB
PML

QP

⇒∧
⇒∧
⇒∧
⇒∧

⇒
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Forward chaining

•

B
A

LBA
LPA
MLB
PML

QP

⇒∧
⇒∧
⇒∧
⇒∧

⇒
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Forward chaining

•

B
A

LBA
LPA
MLB
PML

QP

⇒∧
⇒∧
⇒∧
⇒∧

⇒
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Backward chaining example

• Goal: prove the theorem, try to be more theorem driven

KB: R1:

R2:

R3: GFC ⇒∧

CBA ⇒∧

EDC ⇒∧

F1:
F2:
F3:

A
B
D

Theorem: E

Problem: 
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Backward chaining example

• Backward chaining tries to prove a theorem 
Procedure idea: 
– Checks if the theorem is true
– If not, find the rule with the theorem in its 

conclusion and try to prove its premises    

C

R2

E

D

KB: R1:

R2:

R3: GFC ⇒∧

CBA ⇒∧

EDC ⇒∧

F1:
F2:
F3:

A
B
D

?

Theorem: E
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Backward chaining example

• Backward chaining is theorem driven

C

A

R1

B

R2

E

D

KB: R1:

R2:

R3: GFC ⇒∧

CBA ⇒∧

EDC ⇒∧

F1:
F2:
F3:

A
B
D
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Backward chaining

•

B
A

LBA
LPA
MLB
PML

QP

⇒∧
⇒∧
⇒∧
⇒∧

⇒
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Backward chaining

•

B
A

LBA
LPA
MLB
PML

QP

⇒∧
⇒∧
⇒∧
⇒∧

⇒
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Backward chaining

B
A

LBA
LPA
MLB
PML

QP

⇒∧
⇒∧
⇒∧
⇒∧

⇒
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Backward chaining

B
A

LBA
LPA
MLB
PML

QP

⇒∧
⇒∧
⇒∧
⇒∧

⇒
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Backward chaining

B
A

LBA
LPA
MLB
PML

QP

⇒∧
⇒∧
⇒∧
⇒∧

⇒
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Backward chaining

B
A

LBA
LPA
MLB
PML

QP

⇒∧
⇒∧
⇒∧
⇒∧

⇒
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Backward chaining

B
A

LBA
LPA
MLB
PML

QP

⇒∧
⇒∧
⇒∧
⇒∧

⇒
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Backward chaining

B
A

LBA
LPA
MLB
PML

QP

⇒∧
⇒∧
⇒∧
⇒∧

⇒
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Backward chaining

•

B
A

LBA
LPA
MLB
PML

QP

⇒∧
⇒∧
⇒∧
⇒∧

⇒
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Backward chaining

•

B
A

LBA
LPA
MLB
PML

QP

⇒∧
⇒∧
⇒∧
⇒∧

⇒
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Forward vs Backward chaining

• FC is data-driven, automatic, unconscious processing,
– e.g., object recognition, routine decisions

• May do lots of work that is irrelevant to the goal 

• BC is goal-driven, appropriate for problem-solving,
– e.g., Where are my keys? How do I get into a PhD 

program?
• Complexity of BC can be much less than linear in size of KB
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KB agents based on propositional logic

• Propositional logic allows us to build knowledge-based
agents capable of answering queries about the world by 
infering new facts from the known ones

• Example: an agent for diagnosis of a bacterial disease

The stain of the organism is gram-positive
The morphology of the organism is coccus
The growth conformation of the organism is chains

The identity of the organism is streptococcus

(If)

(Then)

Facts: The stain of the organism is gram-positive
The growth conformation of the organism is chains

Rules: ∧
∧

⇒
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Limitations of the HNF

The HNF works with propositional symbols:
• Only non-negated propositional symbols may occur in the 

premise and the conclusion of the rule
• Only non-negated propositions can be used as facts
Dilemma:
• how to represent the negation so that we can express sentences 

like:
– If it is not raining we will go swimming

Solution 1: make an explicit proposition for Not_Raining
Solution 2: negation as the failure
• The negation of the propositional symbol will become true if 

we fail to prove it is true
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Negation as the failure

The negation of the propositional symbol will become true if we 
fail to prove it is true

Caveats:
not Q P
In terms of logic we have possibilities:
• P=True, 
• or Q=True
Problem is if we use the failure to prove idea: Q is never on the 

right hand side of the rule so how we can prove it is not true
Solution: stable models
• Each atom (proposition) has a rule 
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Example. Animal identification system.

I1.  If the animal has hair  then it is a mammal 
I2.  If the animal gives milk then it is a mammal 
I3.  If the animal has feathers then it is a bird 
I4. If the animal flies and it lays eggs then it is a bird 
I5. If the animal is a mammal and  it eats meat  then it is a carnivore 
I6. If the animal is a mammal and  it has pointed teeth and it has claws and  its eyes point forward 

then it is a carnivore  
I7. If the animal is a mammal and it has hoofs then it is an ungulate 
18. If the animal is a mammal and it chews cud  then it is an ungulate and it is even-toed 
I9. If the animal is a carnivore and it has a tawny color and it has dark spots then it is a cheetah 
I10. If the animal is a carnivore and it has a tawny color and it has black strips then it is a tiger 
I11. If the animal is an ungulate and it has long legs and it has a long neck and it has a tawny color 

and it has dark spots then it is a giraffe 
I12. If the animal is an ungulate and it has a white color and it has black stripes then it is a zebra 
Il3. If the animal is a bird and it does not fly and it has long legs and it has a long neck and it is black 

and white then it is an ostrich, 
Il4. If the animal is a bird and it does not fly and it swims and  it is black and white then it is a 

penguin 
Il5. If the animal is a bird and it is a good flyer then it is an albatross. 


