CS 2740 Knowledge Representation Lecture 6

Propositional logic: Horn clauses

Milos Hauskrecht

milos@cs.pitt.edu 5329 Sennott Square

CS 2740 Knowledge Representation

M. Hauskrecht

Administration

- Homework assignment 2
 - Propositional logic exercises
 - Programming a resolution solver

CS 2740 Knowledge Representation

Logical inference problem

Logical inference problem:

- · Given:
 - a knowledge base KB (a set of sentences) and
 - a sentence α (called a theorem),
- Does a KB semantically entail α ? $KB = \alpha$?

In other words: In all interpretations in which sentences in the KB are true, is also α true?

CS 2740 Knowledge Representation

M. Hauskrecht

Solving logical inference problem

In the following:

How to design the procedure that answers:

$$KB = \alpha$$
?

Three approaches:

- Truth-table approach
- Inference rules
- Conversion to the inverse SAT problem
 - Resolution-refutation

CS 2740 Knowledge Representation

KB in restricted forms

If the sentences in the KB are restricted to some special forms some of the sound inference rules may become complete

Example:

Horn form (Horn normal form)

$$(A \lor \neg B) \land (\neg A \lor \neg C \lor D)$$

Can be written also as: $(B \Rightarrow A) \land ((A \land C) \Rightarrow D)$

- Two inference rules that are sound and <u>complete with</u> <u>respect to propositional symbols</u> for KBs in the Horn normal form:
 - Resolution (positive unit resolution)
 - Modus ponens

CS 2740 Knowledge Representation

M. Hauskrecht

KB in Horn form

Horn form: a clause with at most one positive literal

$$(A \lor \neg B) \land (\neg A \lor \neg C \lor D)$$

- Not all sentences in propositional logic can be converted into the Horn form
- KB in Horn normal form:
 - Three types of propositional statements:

• Rules
$$(\neg B_1 \lor \neg B_2 \lor \dots \neg B_k \lor A)$$

$$(\neg (B_1 \land B_2 \land \dots B_k) \lor A) \quad (B_1 \land B_2 \land \dots B_k \Rightarrow A)$$

- Facts B
- Integrity constraints $(\neg B_1 \lor \neg B_2 \lor ... \neg B_k)$

$$(B_1 \wedge B_2 \wedge \dots B_k \Rightarrow False)$$

CS 2740 Knowledge Representation

KB in Horn form

Horn form: a clause with at most one positive literal

$$(A \lor \neg B) \land (\neg A \lor \neg C \lor D)$$

- Not all sentences in propositional logic can be converted into the Horn form
- KB in Horn normal form:
 - Three types of propositional statements:
 - Rules $(\neg B_1 \lor \neg B_2 \lor \dots \neg B_k \lor A)$

$$(\neg (B_1 \land B_2 \land \dots B_k) \lor A) \quad (B_1 \land B_2 \land \dots B_k \Rightarrow A)$$

- Facts B
- Integrity constraints $(\neg B_1 \lor \neg B_2 \lor ... \neg B_k)$

$$(B_1 \wedge B_2 \wedge \dots B_k \Rightarrow False)$$

CS 2740 Knowledge Representation

M. Hauskrecht

KB in Horn form

Modus ponens:

$$\frac{B \Rightarrow A, \quad B}{A}$$

- More general version of the rule:

$$\frac{(B_1 \wedge B_2 \wedge \dots B_k \Rightarrow A), B_1, B_2, \dots B_k}{A}$$

- Modus ponens is sound and complete with respect to propositional symbols for the KBs in the Horn normal form
- We assume only logical inference problems for which the theorem α is a **propositional symbol**:
 - Note: no negation of a propositional symbol is allowed

CS 2740 Knowledge Representation

KB in Horn form

- Inferences:
 - Resolution rule:

$$\frac{A \vee B, \quad \neg B \vee C}{A \vee C}$$

 Resolution is sound and complete with respect to <u>propositional symbols</u> for the KBs in the Horn normal form

CS 2740 Knowledge Representation

M. Hauskrecht

Complexity of inferences for KBs in HNF

Question:

How efficient the inferences in the HNF wrt propositional symbols can be?

Answer:

Procedures linear in the size of the KB in the Horn form exist.

- Size of a clause: the number of literals it contains.
- Size of the KB in the HNF: the sum of the sizes of its elements.

Example:

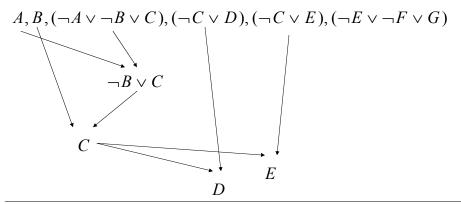
$$A, B, (A \land B \Rightarrow C), (C \Rightarrow D), (C \Rightarrow E), (E \land F \Rightarrow G)$$
 or

$$A, B, (\neg A \lor \neg B \lor C), (\neg C \lor D), (\neg C \lor E), (\neg E \lor \neg F \lor G)$$

The size is: 12

CS 2740 Knowledge Representation

How to do the inference? If the HNF (is in clausal form) we can apply resolution.



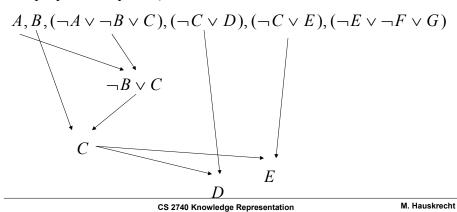
CS 2740 Knowledge Representation

M. Hauskrecht

Complexity of inferences for KBs in HNF

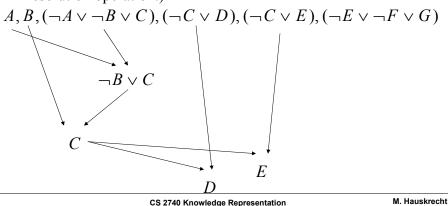
Features:

• Every resolution is a **positive unit resolution**; that is, a resolution in which **one clause is a positive unit clause** (i.e., a proposition symbol).



Features:

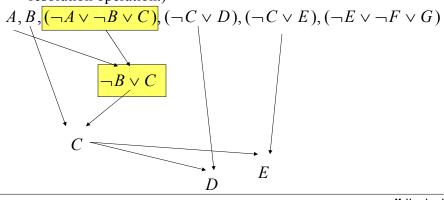
• At each resolution, the input clause which is not a unit clause is a logical consequence of the result of the resolution. (Thus, the input clause may be deleted upon completion of the resolution operation.)



Complexity of inferences for KBs in HNF

Features:

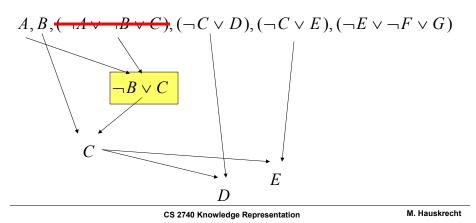
• At each resolution, the input clause which is not a unit clause is a logical consequence of the result of the resolution. (Thus, the input clause may be deleted upon completion of the resolution operation.)



CS 2740 Knowledge Representation

Features:

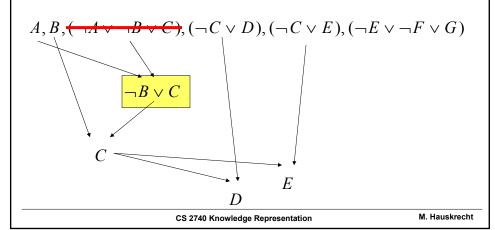
• Following this deletion, the size of the KB (the sum of the lengths of the remaining clauses) is one less than it was before the operation.)



Complexity of inferences for KBs in HNF

Features:

• If n is the size of the KB, then at most n positive unit resolutions may be performed on it.



A linear time resolution algorithm:

- The number of positive unit resolutions is limited to the size of the formula (n)
- But to assure overall linear time we need to access each proposition in a constant time:
- Data structures indexed by proposition names may be accessed in constant time. (This is possible if the proposition names are number in a range (e.g., 1..n), so that array lookup is the access operation.
- If propositions are accessed by name, then a symbol table is necessary, and the algorithm will run in time $O(n \cdot log(n))$.

CS 2740 Knowledge Representation

M. Hauskrecht

Forward and backward chaining

Two inference procedures based on **modus ponens** for **Horn KBs**:

Forward chaining

Idea: Whenever the premises of a rule are satisfied, infer the conclusion. Continue with rules that became satisfied.

Backward chaining (goal reduction)

Idea: To prove the fact that appears in the conclusion of a rule prove the premises of the rule. Continue recursively.

Both procedures are complete for KBs in the Horn form !!!

CS 2740 Knowledge Representation

Forward chaining example

Forward chaining

Idea: Whenever the premises of a rule are satisfied, infer the conclusion. Continue with rules that became satisfied.

Assume the KB with the following rules and facts:

KB: R1: $A \wedge B \Rightarrow C$

R2: $C \wedge D \Rightarrow E$

R3: $C \wedge F \Rightarrow G$

F1: *A* F2: *B*

F3: \bar{D}

Theorem: E

CS 2740 Knowledge Representation

M. Hauskrecht

Forward chaining example

Theorem: E

KB: R1: $A \wedge B \Rightarrow C$

R2: $C \wedge D \Rightarrow E$

R3: $C \wedge F \Rightarrow G$

F1: A

F2: *B*

F3: *D*

CS 2740 Knowledge Representation

Forward chaining example

Theorem: E

KB: R1: $A \wedge B \Rightarrow C$

R2: $C \wedge D \Rightarrow E$

R3: $C \wedge F \Rightarrow G$

F1: A

F2: *B*

F3: *D*

Rule R1 is satisfied.

F4: *C*

CS 2740 Knowledge Representation

M. Hauskrecht

Forward chaining example

Theorem: E

KB: R1: $A \wedge B \Rightarrow C$

R2: $C \wedge D \Rightarrow E$

R3: $C \wedge F \Rightarrow G$

F1: A

F2: *B*

F3: *D*

Rule R1 is satisfied.

F4: *C*

Rule R2 is satisfied.

F5: *E*

V

CS 2740 Knowledge Representation

Forward chaining

- Efficient implementation: linear in the size of the KB
- Example:

$$P \Rightarrow Q$$

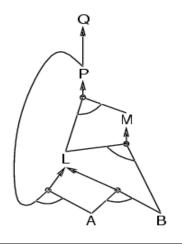
$$L \land M \Rightarrow P$$

$$B \land L \Rightarrow M$$

$$A \land P \Rightarrow L$$

$$A \land B \Rightarrow L$$

$$A$$



CS 2740 Knowledge Representation

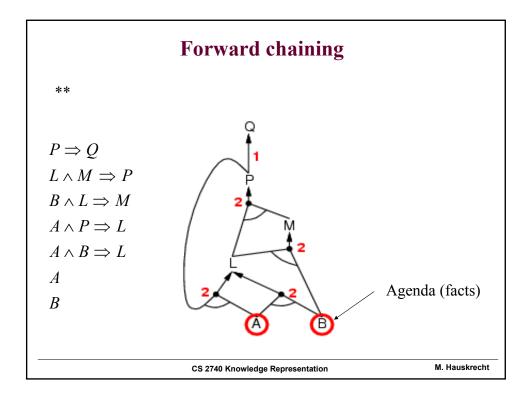
M. Hauskrecht

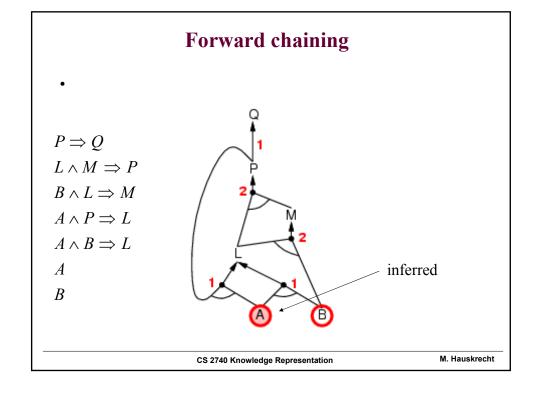
Forward chaining

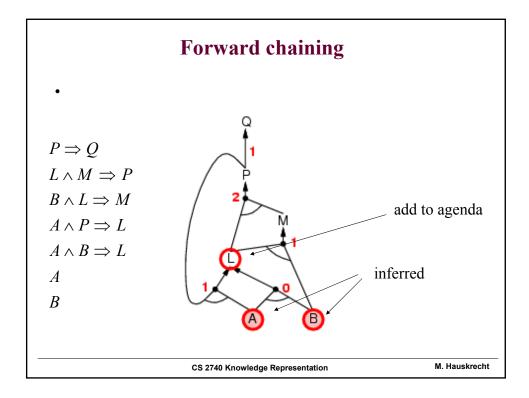
Runs in time linear in the number of literals in the Horn formulae

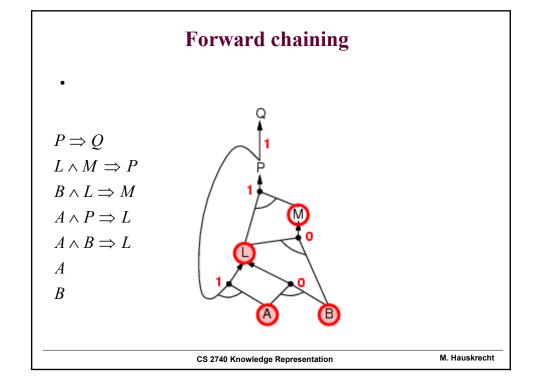
```
function PL-FC-Entalls?(KB,q) returns true or false
local variables: count, a table, indexed by clause, initially the number of premises inferred, a table, indexed by symbol, each entry initially false agenda, a list of symbols, initially the symbols known to be true while agenda is not empty do p \leftarrow \text{POP}(agenda) unless inferred[p] do inferred[p] \leftarrow true for each Horn clause c in whose premise p appears do decrement count[c] if count[c] = 0 then do if \text{Head}[c] = q then return true \text{PUSH}(\text{Head}[c], agenda) return false
```

CS 2740 Knowledge Representation









•

$$P \Rightarrow Q$$
$$L \wedge M \Rightarrow P$$

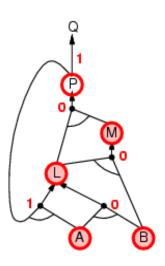
$$B \wedge L \Longrightarrow M$$

$$A \wedge P \Rightarrow L$$

$$A \wedge B \Rightarrow L$$

 \boldsymbol{A}

B



CS 2740 Knowledge Representation

M. Hauskrecht

Forward chaining

$$P \Rightarrow Q$$

$$L \wedge M \Rightarrow P$$

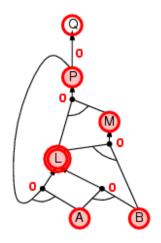
$$B \wedge L \Rightarrow M$$

$$A \wedge P \Longrightarrow L$$

$$A \wedge B \Longrightarrow L$$

 \boldsymbol{A}

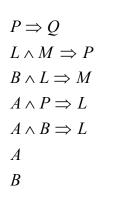
В

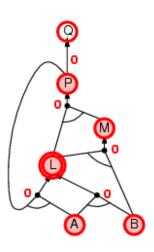


CS 2740 Knowledge Representation

Forward chaining

•





CS 2740 Knowledge Representation

M. Hauskrecht

Backward chaining example

Problem: KB: R1: $A \land B \Rightarrow C$

R2· $C \wedge D \Rightarrow E$

R3: $C \wedge F \Rightarrow G$

F1: A

F2: *B*

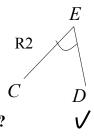
F3: *D*

Theorem: E

• Goal: prove the theorem, try to be more theorem driven

CS 2740 Knowledge Representation

Backward chaining example



KB: R1: $A \wedge B \Rightarrow C$

R2: $C \wedge D \Rightarrow E$

R3: $C \wedge F \Rightarrow G$

F1: A

F2: *B*

F3: *D*

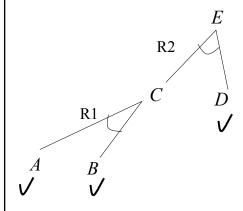
- Backward chaining tries to prove a theorem Procedure idea:
- Theorem: E

- Checks if the theorem is true
- If not, find the rule with the theorem in its conclusion and try to prove its premises

CS 2740 Knowledge Representation

M. Hauskrecht

Backward chaining example



KB: R1: $A \wedge B \Rightarrow C$

R2: $C \wedge D \Rightarrow E$

R3: $C \wedge F \Rightarrow G$

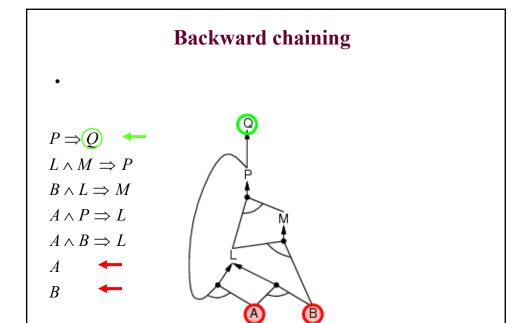
F1: A

F2: *B*

F3: *D*

• Backward chaining is theorem driven

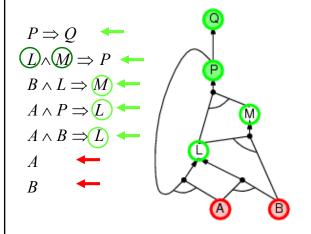
CS 2740 Knowledge Representation



CS 2740 Knowledge Representation

M. Hauskrecht

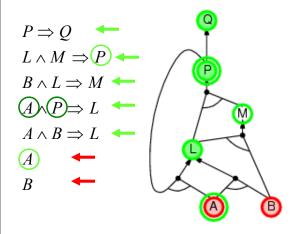
Backward chaining $P \Rightarrow Q$ $L \land M \Rightarrow P$ $B \land L \Rightarrow M$ $A \land P \Rightarrow L$ $A \land B \Rightarrow L$ A B CS 2740 Knowledge RepresentationM. Hauskrecht



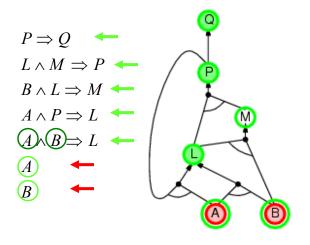
CS 2740 Knowledge Representation

M. Hauskrecht

Backward chaining



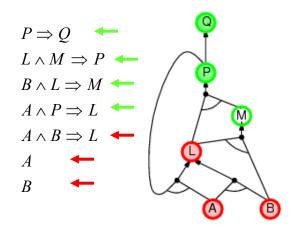
CS 2740 Knowledge Representation



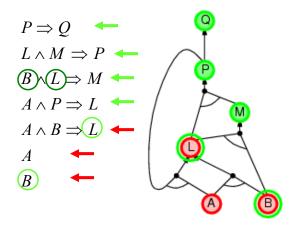
CS 2740 Knowledge Representation

M. Hauskrecht

Backward chaining



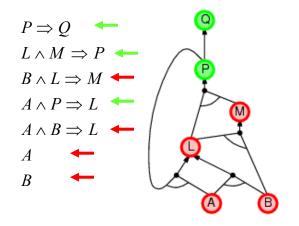
CS 2740 Knowledge Representation



CS 2740 Knowledge Representation

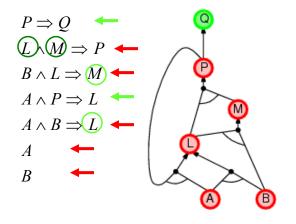
M. Hauskrecht

Backward chaining



CS 2740 Knowledge Representation

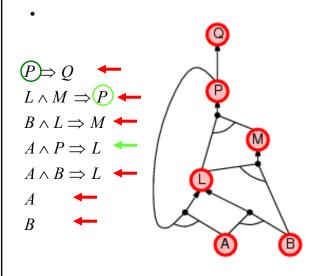
•



CS 2740 Knowledge Representation

M. Hauskrecht

Backward chaining



CS 2740 Knowledge Representation

Forward vs Backward chaining

- FC is data-driven, automatic, unconscious processing,
 - e.g., object recognition, routine decisions
- May do lots of work that is irrelevant to the goal
- BC is goal-driven, appropriate for problem-solving,
 - e.g., Where are my keys? How do I get into a PhD program?
- Complexity of BC can be **much less** than **linear in size of KB**

CS 2740 Knowledge Representation

M. Hauskrecht

KB agents based on propositional logic

- Propositional logic allows us to build knowledge-based agents capable of answering queries about the world by infering new facts from the known ones
- Example: an agent for diagnosis of a bacterial disease

Facts: The stain of the organism is gram-positive

The growth conformation of the organism is chains

Rules: (If) The stain of the organism is gram-positive \land

The morphology of the organism is coccus \triangle

The growth conformation of the organism is chains

(Then) ⇒ The identity of the organism is streptococcus

CS 2740 Knowledge Representation

Limitations of the HNF

The HNF works with propositional symbols:

- Only non-negated propositional symbols may occur in the premise and the conclusion of the rule
- Only non-negated propositions can be used as facts

Dilemma:

- how to represent the negation so that we can express sentences like:
 - If it is not raining we will go swimming

Solution 1: make an explicit proposition for Not_Raining

Solution 2: negation as the failure

• The negation of the propositional symbol will become true if we fail to prove it is true

CS 2740 Knowledge Representation

M. Hauskrecht

Negation as the failure

The negation of the propositional symbol will become true if we fail to prove it is true

Caveats:

not $Q \rightarrow P$

In terms of logic we have possibilities:

- P=True,
- or Q=True

Problem is if we use the failure to prove idea: Q is never on the right hand side of the rule so how we can prove it is not true

Solution: stable models

• Each atom (proposition) has a rule

CS 2740 Knowledge Representation

Example. Animal identification system.

- I1. If the animal has hair then it is a mammal
- I2. If the animal gives milk then it is a mammal
- I3. If the animal has feathers then it is a bird
- I4. If the animal flies and it lays eggs then it is a bird
- 15. If the animal is a mammal and it eats meat then it is a carnivore
- 16. If the animal is a mammal and it has pointed teeth and it has claws and its eyes point forward then it is a carnivore
- 17. If the animal is a mammal and it has hoofs then it is an ungulate
- 18. If the animal is a mammal and it chews cud then it is an ungulate and it is even-toed
- 19. If the animal is a carnivore and it has a tawny color and it has dark spots then it is a cheetah
- I10. If the animal is a carnivore and it has a tawny color and it has black strips then it is a tiger
- III. If the animal is an ungulate and it has long legs and it has a long neck and it has a tawny color and it has dark spots then it is a giraffe
- 112. If the animal is an ungulate and it has a white color and it has black stripes then it is a zebra
- II3. If the animal is a bird and it does not fly and it has long legs and it has a long neck and it is black and white then it is an ostrich,
- Il4. If the animal is a bird and it does not fly and it swims and it is black and white then it is a penguin
- Il5. If the animal is a bird and it is a good flyer then it is an albatross.

CS 2740 Knowledge Representation