
Pros & Cons of Java 8 Parallel Streams

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science

Institute for Software

Integrated Systems

Vanderbilt University

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Lesson
• Evaluate the pros & cons of Java 8

parallel streams

3

Pros of Java 8
Parallel Streams

4

• The Java 8 streams framework simplifies
parallel programming by shielding
developers from details of splitting,
applying, & combining results

join join

join

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

InputString1.1 InputString1.2 InputString2.1 InputString2.2

InputString1 InputString2

trySplit()

InputString

trySplit() trySplit()

Pros of Java 8 Parallel Streams

5

• Parallel stream implementations are often
(much) faster & more scalable than sequential
(stream & loops) implementations

Pros of Java 8 Parallel Streams

Starting SearchStreamGangTest
PARALLEL_SPLITERATOR executed in 409 msecs
COMPLETABLE_FUTURES_INPUTS executed in 426 msecs
COMPLETABLE_FUTURES_PHASES executed in 427 msecs
PARALLEL_STREAMS executed in 437 msecs
PARALLEL_STREAM_PHASES executed in 440 msecs
RXJAVA_PHASES executed in 485 msecs
PARALLEL_STREAM_INPUTS executed in 802 msecs
RXJAVA_INPUTS executed in 866 msecs
SEQUENTIAL_LOOPS executed in 1638 msecs
SEQUENTIAL_STREAM executed in 1958 msecs
Ending SearchStreamGangTest

45,000+ phrases

Search Phrases

Input Strings to Search

…

6

• The performance speedup is a largely a
function of the partitioning strategy for
the input (N), the amount of work
performed (Q), & the # of cores

The NQ model

• N is the # of data elements
to process per thread

• Q quantifies how CPU-
intensive the processing is

N

hilo

lo

hi

Q

Ideal

Pros of Java 8 Parallel Streams

7

• Apps often don’t need explicit synchronization or threading

Pros of Java 8 Parallel Streams

Alleviates many accidental & inherent complexities of concurrency/parallelism

8Java class library handles locking needed to protect shared mutable state

• Apps often don’t need explicit synchronization or threading

Pros of Java 8 Parallel Streams

9

• Streams ensures that the structure of sequential & parallel code is the same

Pros of Java 8 Parallel Streams

List<List<SearchResults>>

processStream() {

return getInput()

.stream()

.map(this::processInput)

.collect(toList());

}

List<List<SearchResults>>

processStream() {

return getInput()

.parallelStream()

.map(this::processInput)

.collect(toList());

}

Converting sequential to parallel streams only require minuscule changes!

10

• Streams ensures that the structure of sequential & parallel code is the same

List<SearchResults> results =

mPhrasesToFind

.parallelStream()

.map(phase ->

searchForPhrase(...,

false))

.filter(not(SearchResults

::isEmpty))

.collect(toList());

List<SearchResults> results =

mPhrasesToFind

.parallelStream()

.map(phase ->

searchForPhrase(...,

true))

.filter(not(SearchResults

::isEmpty))

.collect(toList());

Pros of Java 8 Parallel Streams

Converting sequential to parallel streams only require minuscule changes!

11

• Examples show synergies between functional & object-oriented programming

e.g., Prolog
e.g., ML,
Haskell

e.g., C#,
Java, C++

e.g., C, FORTRAN
Java

8

Pros of Java 8 Parallel Streams

12

Pros of Java 8 Parallel Streams
• Object-oriented design & programming

features simplify understanding,
reuse, & extensibility

13

• Implementing object-oriented hook
methods with functional programming
features helps to close gap between
domain intent & computations

Pros of Java 8 Parallel Streams

getInput()

.parallelStream()

.map(this::processInput)

.collect(toList());

return mPhrasesToFind

.parallelStream()

.map(phrase -> searchForPhrase(phrase, input, title, false))

.filter(not(SearchResults::isEmpty)

.collect(toList());

14

Cons of Java 8
Parallel Streams

15

• There are some limitations with Java 8 parallel streams

Cons of Java 8 Parallel Streams

The Java 8 parallel streams framework is not all unicorns & rainbows!!

16

• There are some limitations with Java 8 parallel streams, e.g.

• Some problems can’t be expressed
via the “split-apply-combine” model

See dzone.com/articles/whats-wrong-java-8-part-iii

join join

join

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

DataSource1.1 DataSource1.2 DataSource2.1 DataSource2.2

DataSource1 DataSource2

DataSource

trySplit()

trySplit() trySplit()

Cons of Java 8 Parallel Streams

https://dzone.com/articles/whats-wrong-java-8-part-iii

17

• There are some limitations with Java 8 parallel streams, e.g.

• Some problems can’t be expressed
via the “split-apply-combine” model

• If behaviors aren’t thread-safe
race conditions may occur

See en.wikipedia.org/wiki/Race_condition#Software

Thread1

Thread2

Shared State

Cons of Java 8 Parallel Streams

Race conditions occur when a program
depends on the sequence or timing
of threads for it to operate properly

https://en.wikipedia.org/wiki/Race_condition#Software

18

• There are some limitations with Java 8 parallel streams, e.g.

• Some problems can’t be expressed
via the “split-apply-combine” model

• If behaviors aren’t thread-safe
race conditions may occur

• Parallel spliterators may be tricky…

Cons of Java 8 Parallel Streams

19

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

accumulate() accumulate()

accumulate()

Concurrent
Result Container

• There are some limitations with Java 8 parallel streams, e.g.

• Some problems can’t be expressed
via the “split-apply-combine” model

• If behaviors aren’t thread-safe
race conditions may occur

• Parallel spliterators may be tricky…

• Concurrent collectors are easier

Cons of Java 8 Parallel Streams

InputSource1.1 InputSource1.2 InputSource2.1 InputSource2.2

InputSource1 InputSource2

trySplit()

InputSource

trySplit() trySplit()

20

• There are some limitations with Java 8 parallel streams, e.g.

• Some problems can’t be expressed
via the “split-apply-combine” model

• If behaviors aren’t thread-safe
race conditions may occur

• Parallel spliterators may be tricky…

• All parallel streams share a
common fork-join pool

See dzone.com/articles/think-twice-using-java-8

Cons of Java 8 Parallel Streams

https://dzone.com/articles/think-twice-using-java-8

21

• There are some limitations with Java 8 parallel streams, e.g.

• Some problems can’t be expressed
via the “split-apply-combine” model

• If behaviors aren’t thread-safe
race conditions may occur

• Parallel spliterators may be tricky…

• All parallel streams share a
common fork-join pool

• Java 8 completable futures
don’t have this limitation

See dzone.com/articles/think-twice-using-java-8

Cons of Java 8 Parallel Streams

https://dzone.com/articles/think-twice-using-java-8

22See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.ManagedBlocker.html

• There are some limitations with Java 8 parallel streams, e.g.

• Some problems can’t be expressed
via the “split-apply-combine” model

• If behaviors aren’t thread-safe
race conditions may occur

• Parallel spliterators may be tricky…

• All parallel streams share a
common fork-join pool

• Java 8 completable futures
don’t have this limitation

• It’s important to know how to
apply ManagedBlockers

Cons of Java 8 Parallel Streams

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.ManagedBlocker.html

23

• There are some limitations with Java 8 parallel streams, e.g.

• Some problems can’t be expressed
via the “split-apply-combine” model

• If behaviors aren’t thread-safe
race conditions may occur

• Parallel spliterators may be tricky…

• All parallel streams share a
common fork-join pool

• Some overhead occurs from use of
spliterators & fork-join framework

See coopsoft.com/dl/Blunder.pdf

Cons of Java 8 Parallel Streams

http://coopsoft.com/dl/Blunder.pdf

24

Printing results for input 1 from fastest to slowest
COMPLETABLE_FUTURES_2 executed in 276 msecs
COMPLETABLE_FUTURES_1 executed in 285 msecs
PARALLEL_STREAM executed in 383 msecs
SEQUENTIAL_STREAM executed in 1288 msecs

Printing results for input 2 from fastest to slowest
COMPLETABLE_FUTURES_1 executed in 137 msecs
COMPLETABLE_FUTURES_2 executed in 138 msecs
PARALLEL_STREAM executed in 170 msecs
SEQUENTIAL_STREAM executed in 393 msecs

• There are some limitations with Java 8 parallel streams, e.g.

• Some problems can’t be expressed
via the “split-apply-combine” model

• If behaviors aren’t thread-safe
race conditions may occur

• Parallel spliterators may be tricky…

• All parallel streams share a
common fork-join pool

• Some overhead occurs from use of
spliterators & fork-join framework

• Java 8 completable futures may
be more efficient & scalable

Cons of Java 8 Parallel Streams

25

• There are some limitations with Java 8 parallel streams, e.g.

• Some problems can’t be expressed
via the “split-apply-combine” model

• If behaviors aren’t thread-safe
race conditions may occur

• Parallel spliterators may be tricky…

• All parallel streams share a
common fork-join pool

• Some overhead occurs from use of
spliterators & fork-join framework

• Java 8 completable futures may
be more efficient & scalable

Cons of Java 8 Parallel Streams

• Naturally, your mileage may vary..

26

• There are some limitations with Java 8 parallel streams, e.g.

• Some problems can’t be expressed
via the “split-apply-combine” model

• If behaviors aren’t thread-safe
race conditions may occur

• Parallel spliterators may be tricky…

• All parallel streams share a
common fork-join pool

• Some overhead occurs from use of
spliterators & fork-join framework

• There’s no substitute for benchmarking!

Cons of Java 8 Parallel Streams

See java-performance.info/jmh

http://java-performance.info/jmh

27

• In general, there's a tradeoff between computing performance & programmer
productivity when choosing amongst these frameworks

• i.e., completable futures are more efficient
& scalable, but are harder to program

Cons of Java 8 Parallel Streams

Performance

Productivity

28See www.ibm.com/developerworks/library/j-jvmc2

Pros

Cons

Cons of Java 8 Parallel Streams
• In general, however, the pros of Java 8 parallel streams far outweigh the

cons in many use cases!!

http://www.ibm.com/developerworks/library/j-jvmc2

29

• Good coverage of Java 8 parallel streams
appears in the book “Java 8 in Action”

See www.manning.com/books/java-8-in-action

Cons of Java 8 Parallel Streams

http://www.manning.com/books/java-8-in-action

30

End of Pros & Cons of
Java 8 Parallel Streams

