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INTRODUCTION

Molecular recognition and binding performed by proteins are the back-

ground of all biochemical processes in a living cell. In particular, the usual

mechanism of drug function is effective binding and inhibition of activity of a

target protein. Direct modeling of molecular interactions in protein-inhibitor

complexes is the basis of modern computational drug design but is an

extremely complicated and far from solved problem.1–5 Methods that use sim-

ple atom–atom scores for estimation of molecular interaction energy often fail

to provide adequate accuracy required by drug design,6,7 whereas methods

based on more adequate physical models including force fields and molecular

dynamics are restricted by their computational complexity.5 Fortunately, mod-

eling of binding can be supported by the wealth of known structural data on

protein–ligand complexes available, for example, from the Protein Data Bank,8

taking advantage of the similarity between the protein features responsible for

binding. The fact that protein function is related to specific binding regions

rather than overall fold or amino acid sequence9,10 makes the analysis of local

similarity of binding sites a basic tool for functional annotation and classifica-

tion of novel proteins, for development of targeted protein inhibitors in drug

design, and for analysis of potential side-effect of developed drugs.11,12

In the current paradigm, site similarity is recognized by the existence of

chemically and spatially analogous regions from binding sites. The existing

programs aim to find maximal regions of this kind.13–20 However, the

assessment of results produced by existing tools raises the fundamental ques-

tion about the biological significance of observed matches. The reliable inter-

pretation of detected similarity is possible when the region of similarity

comprises the complete binding site or a complete environment of a ligand

part (e.g., nucleotide base) in one protein. But this region may have a bizarre

configuration, for example, consist of small unconnected parts. As a conse-

quence, the interaction of the whole molecule, its fragments, or even single
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ABSTRACT

We present a novel notion of binding site

local similarity based on the analysis of

complete protein environments of ligand

fragments. Comparison of a query pro-

tein binding site (target) against the 3D

structure of another protein (analog) in

complex with a ligand enables ligand

fragments from the analog complex to be

transferred to positions in the target site,

so that the complete protein environ-

ments of the fragment and its image are

similar. The revealed environments are

similarity regions and the fragments

transferred to the target site are consid-

ered as binding patterns. The set of such

binding patterns derived from a data-

base of analog complexes forms a cloud-

like structure (fragment cloud), which is

a powerful tool for computational drug

design. It has been shown on independ-

ent test sets that the combined use of a

traditional energy-based score together

with the cloud-based score responsible

for the quality of embedding of a ligand

into the fragment cloud improves the

self-docking and screening results dra-

matically. The usage of a fragment cloud

as a source of positioned molecular

fragments fitting the binding protein

environment has been validated by

reproduction of experimental ligand

optimization results.
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atoms with the protein is not determined by their inter-

action with the region of similarity. An established simi-

larity therefore ‘‘does not necessary imply similarity in

the binding partners and in the biological functions.’’12

We present here a novel notion of binding site local simi-

larity based on analysis of complete protein environments

of ligand fragments, and evaluate its applications to com-

putational drug design problems.

In computational drug design, protein–ligand interac-

tion patterns are used within the framework of the

so-called knowledge-based approach based on analysis of

relative positions of different types of ligand atoms and

protein atoms, active groups, or amino acid residues. An

observed density of relative positions can be converted

into a one-dimensional atom–atom potential21 or spatial

atom-residue potential.22 As another option, the analysis

of relative positions reveals template points where a ligand

can form hydrogen bonds or hydrophobic interactions

with a particular active group23 or residue22 of a target

protein. Docking of a ligand or its fragments is thus

reduced to embedding into the cloud of template points.

The main weakness of the knowledge-based method is its

independent accounting of interactions between various

ligand and protein elements with neglected cooperative

effects. Suppose for example that a hypothetical type of

ligand atom is frequently bound by either of two different

protein active groups, but never by both of them simulta-

neously. If both groups are found close to the possible

position of such an atom in a particular binding site, this

position will be erroneously favorable with knowledge-

based score or template points. The key to correct use of

analogy-derived information is therefore analysis of com-

plete environments of ligand atom or fragments, which is

the main idea of the method proposed here.

When the structures of other ligands co-crystallized with

the target protein are already known, one may avoid the

problem of site comparison, as implemented in the dock-

ing program SDOCKER.24 It minimizes a combined score

which is a sum of a traditional energy-based score and a

similarity-based score reflecting the distances between

positions of ligand atoms and the nearest atoms of co-crys-

tallized ligands. This improves docking results, but requires

a series of crystallographic data for a particular protein.

The method presented here is based on a similar approach

to ligand positioning, but instead of co-crystallized ligands

it uses the ligand fragments from other complexes placed

in the target site with the help of site similarity found.

MATERIALS AND METHODS

Novel approach to local site
similarity—fragment clouds

Our notion of local site similarity is based on applica-

tion of the natural idea that similar protein environments

will bind the same ligand fragment in similar positions.

More precisely, local site similarity is defined as follows.

One of two compared sites of known X-ray crystallo-

graphic structure (the analog) is specified together with a

bound ligand; the structure of this complex also needs to

be known, whereas the existence of the ligand in the other

site (target) is not required. Local similarity of the two

binding sites is observed if there exists a connected frag-

ment (not known beforehand) of the ligand bound by the

analog that can be transformed by a rigid motion into the

target site so that the protein environments of the frag-

ment in the analog and its image in the target are chemi-

cally and spatially similar, as further defined below. When

these conditions are satisfied, we expect that the similarity

region of the target protein has affinity for the ligand frag-

ment in the image position. We consider this positioned

fragment as a binding pattern for the target protein site.

As a negative example, suppose that a ligand contacts two

sides of a cleft in the analog protein and that there exists a

region on the surface of the target site that is similar to

one side of the cleft. The definition above does not con-

sider this as similarity. Depending on the degree of simi-

larity between the environments of a ligand atom in the

analog protein and its image in the target, we assign a so-

called reliability values R to the atom of the image frag-

ment, such that 0 < R � 1, see definition below.

A comparison of a target site against a database of

protein–ligand complexes creates a ‘‘cloud’’ of binding

patterns in the target site (Fig. 1). When a site of a

known complex is chosen as a target, one may see that

its native ligand is usually completely covered by cloud

fragments that are chemically and spatially similar to the

target ligand parts. This important feature suggests that

the clouds can be used in the following applications.

Ligand scoring

Cloud fragments represent binding patterns, but do

not carry information about their contribution to binding

energy. Hence, it is necessary to combine a traditional

energy-based score with the cloud score representing the

quality of embedding of a ligand into the cloud. The lat-

ter is maximal if a ligand is completely covered by atoms

of cloud fragments that are chemically and spatially simi-

lar to the respective covered ligand atoms and have high

reliability values. To this end, one can use a two-term

score as in Ref. 24. Alternatively, for a simple overall

scoring function, one can use another method of com-

bining scores: if a binding energy score of the protein–

ligand complex is a sum of energy scores of individual

ligand atoms (e.g. atom–atom scores), the energy score

of each atom can be weighted by its cloud score. The

cloud score of a ligand atom is maximal if there exists a

nearby cloud atom with the same chemical type and high

reliability value. The mixed score function introduced

this way (see more details in the corresponding section)

accounts for atom positions rather than complete frag-
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ments but has two essential advantages. First, it can be

represented in the grid form, what is important for rapid

computation. Second, unlike the combined score men-

tioned earlier,24 a high score of the whole ligand is

attained only if atoms with high contribution to the

binding energy (e.g., donors or acceptors of hydrogen

bonds) also have high cloud scores, that is, are properly

positioned from the cloud point of view. This mixed

energy/cloud score is an improvement of the traditional

energy-based score and can replace it in all applicable

computational drug design tasks, for example, in ligand

screening and de novo design, as supported below for the

docking problem.

A more complicated score (directed mixed score)

accounts not only for atom positions, but also for direc-

tions from an atom to its covalently linked neighbors.

The directed mixed score can not be represented in the

3D-grid form, so it is not computationally efficient and

is currently used only for rescoring of ligand positions

generated with mixed score.

Ligand block positioning

Different computational methods of ligand docking

include a stage of searching for a diverse set of positions

of known ligand rigid blocks.3,5 The next stage consists

of a search for the optimal set of properly positioned

blocks forming the whole ligand (fragment-based

approach) or for the optimal ligand conformation with

one positioned block chosen as the fixed anchor. A frag-

ment cloud can help to perform the first stage. Let the

star of a molecular atom be the atom set including the

atom itself and all its covalently linked neighbors. If a

star from a given ligand block is chemically equivalent to

a star from a cloud fragment and includes at least three

atoms, we can find a rigid motion that relates the stars

and determines the position of the block. If the mixed

score of the block in this position is satisfactory, the

position is accepted.

Search for positioned molecular fragments

In de novo ligand design, techniques similar to the

fragment-based approach used for ligand docking are

applied, but with the molecular fragments not known in

advance.3 Ligand construction here is reduced to a search

for a diverse set of positioned molecular fragments and

linking of these fragments to each other. Similarly, in the

case of so-called ligand optimization, one needs to find

an appropriate molecular fragment to replace a given

Figure 1
The fragment cloud for the influenza A subtype N2 neuraminidase. The protein (also known as sialidase; PDB entry 1IVE25) is represented by its surface. (A) The

aromatic inhibitor BANA108 (4-(acetylamino)-3-aminobenzoic acid) in the binding site. (B) The fragment cloud built for the binding site. Atoms are colored according

to CPK convention. The cloud contains 4838 atoms in 3416 fragments.
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chemical group of a positioned ligand to improve ligand

characteristics.5,26,27 A fragment cloud built for the

binding site can serve as a source of molecular fragments.

Every cloud fragment is extended to comprise a complete

rigid fragment from its source ligand together with all

potential covalent bonds that serve as linkage handles.

An example of a complete fragment is a ring structure or

atoms connected by a double bond. For example, if a

cloud fragment contains three atoms from an aromatic

carbon ring, it will be extended to a full ring with six

hydrogen atoms, each of which is considered as a poten-

tial covalent linkage site. The extended fragments from

the cloud can be filtered leaving only the fragments with

good mixed score. Unlike optimization methods which

use a precompiled database of pairs of interchangeable

fragments (bioisosteric replacements),28 the set of replacing

fragments depends on the binding protein environment

of a replaced ligand fragment and not on the fragment

itself.

Site comparison and fragment cloud
construction

Protein atoms are assigned 43 chemical types similar

to those from the Merck Molecular Force Field classifica-

tion29 (Supplementary Table I online). For ligand atoms,

10 chemical types described in Ref. 21 are used (Supple-

mentary Table II). Hydrogen atoms are used only for cor-

rect type assignment.

First, consider the protein 5 Å-environment A ¼ {a1,

a2, . . . aN} of one ligand atom X in the analog protein,

that is, all atoms from the binding site that are in the 5

Å-neighborhood of X. Suppose that the complete target

binding site T consists of N0 atoms: T ¼ {t1, t2, . . . tN0}

and there exists a subset T0 ( T of size n (N0 � n � 4)

such that n atoms from T0 are similar to n atoms A0 ¼
{ai1, ai2, . . . ain} ( A in their chemical types and spatial

arrangement. The search for A0 and T0 is performed

using a standard clique detection technique in the graph

whose nodes represent pairs (ai, tj) of chemically equiva-

lent atoms and edges reflect similarity of corresponding

pairwise distances.12 If the search is successful, the opti-

mal rigid motion superimposing matched protein

atoms30 is applied both to the initial ligand atom X and

its complete environment A [Fig. 2(a)]. The atoms are

thus transferred to the target binding site. Then we

extend the matching between A0 and T0 by such atom

pairs (ai, ti) that ai and ti have the same chemical atom

type in the coarser 10-type typification mentioned above,

and the distance between ti and the image ai
0 of atom ai

is below a threshold.

Next, a reliability value R, with 0 �R �1, is assigned

to the image X0 of X in the target site and reflects the

similarity between the environments of X and its image

X0. If the environments are highly similar (R � 1) we

expect that the position of X0 is the place where an atom

with chemical type identical to X can be bound by the

target, since the environment of X0 contains only atoms

required for binding with no ‘‘alien’’ atoms. However, as

illustrated in Figure 2(a), the analog site may contain

extra binding atoms (shown on the lower side) that

decrease the reliability value. In a simple form, the reli-

ability R can be defined as the sum of the number of

matched atoms divided by the total number of analog

and target atoms in the 5 Å-environments of X and X0,
respectively [Fig. 2(b)]: R ¼ 2n/(N þ N0), using the

notation presented above. In fact, we use a somewhat

more complicated definition that accounts for the quality

of spatial superposition of matched atoms and their dis-

tance from X0.
Finally, if the calculated reliability of atom X0 is above

the threshold Rmin ¼ 0.7, we try to extend the transferred

part of the ligand. The determined rigid motion is

applied to all atoms of the ligand and their local environ-

ments, and the calculation of reliability is done for every

ligand atom image. The extended fragment includes co-

valently linked atoms with reliability above the threshold.

After the extension, the initial rigid transformation is

adjusted to provide the best superposition for all

matched protein atoms. This results in a ligand fragment

transferred to the target binding site.

Database of ligand-site complexes

The database of ligand-site complexes is used for con-

struction of fragment clouds. Complexes are extracted

Figure 2
Transfer of ligand atom X from the analog to the target binding site and

calculation of corresponding reliability value. Grey areas denote protein binding

regions; circles: protein atoms; squares: ligand atom X and its image X0. (a)
Superposition of matched atoms (four grey circles) determines the rigid motion

that is applied both to the ligand atom X and its complete protein 5 Å-

environment A in the analog. (b) The reliability R assigned to X0 reflects the
similarity between the environments of X and its image X0 in the target site.

Atom images are denoted by dashed circles; matched atoms are grey, differing

atoms are white. In the simplest form, R can be defined as the sum of matched

atoms divided by the total number of target and transferred analog protein

atoms in the 5-Å-environment of X0: R ¼ (4 þ 4)/(5 þ 7) ¼ 0.66.

V. Ramensky et al.

352 PROTEINS DOI 10.1002/prot



from PDB structures8 and contain bound protein ligands

and their binding sites. The selected PDB entries are X-

ray structures with assigned structural classification from

SCOP,31 resolution no worse than 3 Å, and ASTRAL

SPACI score32 no less than 0.2. Any allowed ligand

should have at least six heavy atoms of chemical types

(C, O, N, P, S, F, Cl, Br, I) and can be a short (no longer

than 10-mer) polymeric chain of amino acid residues,

nucleotide bases or other moieties from the PDB Dic-

tionary of heterogroups. A binding site here is defined as

a set of protein atoms with distances no greater than 5 Å

from ligand atoms.

The current database of ligand-site complexes contains

11,605 complexes from 8650 PDB entries. The database

is made non-redundant by keeping only one ligand-site

complex from a set of complexes with the same ligand

and SCOP family identifier. This database non-redundant

at the SCOP family level (‘‘nr_family’’) contains 6129

complexes with 4043 different ligands from 5271 PDB

entries representing 1208 SCOP families from 463 SCOP

folds.

Mixed score

The mixed score S is the sum over all ligand atoms:

S ¼ P
iEiCi. Here, the energy-based score value of the i-th

ligand atom Ei is weighted with a cloud score Ci (0 � Ci

�1) that serves to evaluate ligand atom positioning. The

cloud score for a ligand atom ai equals 1 if there exists a

spatially close cloud atom bj with the same chemical type

as ai and R(ai) ¼ 1. More precisely, Ci is defined as the

maximum of the product R(bj) 3 M(ai, bj) 3 W(d(ai,

bj)) over all spatially close cloud atoms bj with reliability

R(bj) � Rmin. M denotes the chemical type similarity ma-

trix; W(d) weights interatomic distance d(ai, bj) and

equals 1 for 0 � d � D0, Wmin for d � D1, and linearly

decreases in the interval D0 � d � D1. The parameters

D0 and D1 are usually set to 0.5 and 1.0 Å, respectively.

For ligand atoms with positive energy score Ei > 0, the

cloud score Ci is set to 1 to penalize atom clashes. Pen-

alty terms are also introduced for ligand atoms located

out of the cloud. The chemical type similarity matrix M

is diagonal except for CA–C2 terms equal to 0.9 and C2–

C3, CA–C3, NI–C* terms equal to 0.7.

RESULTS

Ligand docking with fragment clouds

The cloud-based docking method has been imple-

mented in the in-house software AlgoComb, which uses

fragment clouds both for initial ligand anchoring and

subsequent calculation of the mixed score. The Algo-

Comb docking procedure starts with decomposition of a

ligand into rigid blocks, for example, rings or atoms

linked by double bonds. The procedure then proceeds in

two stages: positioning of ligand rigid blocks, or anchor-

ing, followed by search for the optimal combination of

torsion angles connecting the blocks, see Ref. 33. For

anchoring the generated positions are clustered, and the

representative with the best mixed score is kept for every

cluster. Every such representative serves as an anchor

position. The subsequent search for optimal conforma-

tion of the ligand is performed by stepwise changes of

torsion angles at bonds linking the blocks. The search

aims at minimization of the mixed score function, whose

energy component is itself obtained from a combination

of knowledge-based and empirical approaches, as previ-

ously described in Ref. 34.

AlgoComb performance with the mixed score was

tested on the self-docking test with 100 protein–ligand

complexes35 that have been used before for the extensive

comparative evaluation of eight widely used and readily

available docking tools.7 Descriptions of the complexes

are given in the Supplementary Table III online. The pro-

grams compared in Ref. 7 are DOCK,36 FLEXX,37

FRED,38 GLIDE,39 GOLD,40 SLIDE,23 SURFLEX,41 and

QXP.42 Within the course of the evaluation, the ligands

are docked into binding sites defined as 12 Å neighbor-

hoods of the native ligands. The performance of a dock-

ing program is measured by the percentage of cases in

which the RMSD of the best scored position of the

ligand does not exceed 2 Å from the X-ray determined

native position. FLEXX, GLIDE, SURFLEX, and GOLD

show similar results and succeed in docking 50–55% of

all cases, whereas the success rate of DOCK, FRED,

SLIDE, and QXP is below 40%. AlgoComb has shown

comparable 52% performance when run with the energy-

based scoring function without cloud usage (Table I).

Table I
Docking Success Rate of Eight Programs Reviewed in Kellenberger7 and

AlgoComb Evaluated on a Set of 100 Protein–Ligand Complexes From Paul34

Method Success rate (%)

AlgoComb with clouds
Clouds not used 52
Complete clouds with the query complex removed 73
Reduced clouds, Set1: removed species-level and
closer layers 69

Reduced clouds, Set 2: removed protein-level and
closer layers 68

Reduced clouds, Set 3: removed family-level and
closer layers 60

Clouds after the layered filtering 78
Clouds after the layered filtering, results rescored
with directed mixed score 82

Removed protein-level and closer layers, atom types
are randomly permuted 40

Other docking tools
FLEXX, GLIDE, SURFLEX, GOLD 50–55
DOCK, FRED, SLIDE, QXP <40

Success rate measures the number of cases in which the spatial position of the

best scored ligand deviates not greater than 2 Å from the native position as meas-

ured by RMSD.
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When fragment clouds are used as described above,

AlgoComb succeeds in 73% of all cases (Table I). This

significant improvement is explained by the fact that the

cloud-based approach effectively utilizes the structural in-

formation from PDB complexes. The whole database of

ligand–protein complexes except for the query complex

itself has been used here for cloud construction. For 87

entries from this test set the database includes complexes

of the same target protein co-crystallized with other

ligands. The results of the proposed approach improve

with the presence of such complexes or complexes with

structural neighbors of the target protein in the database.

To evaluate the contribution of structural neighbors of a

protein to the docking accuracy and model the situation

of docking into a structural ‘‘orphan’’, we prepared three

sets of reduced fragment clouds with varying degree of

filtration based on SCOP classification of protein struc-

tural similarity.31

In the first set, the clouds do not include fragments

from exactly the same protein co-crystallized with other

ligands. This reduces the success rate to 69% (Table I, Set

1) and corresponds to the case when no inhibitors for a

drug design target are yet discovered and co-crystallized,

but protein–ligand complexes of orthologous proteins

from other species are available. When the latter are

removed, too, the success rate is 68% (Table I, Set 2).

Finally, at the strongest (i.e., most exclusive) family-level

filtration, the clouds do not include fragments from ana-

logs that have the same SCOP structural family identifier

as the query protein for which the cloud is constructed

(Table I, Set 3). The AlgoComb docking success rate for

such clouds is 60% (Table I, Set 3).

The experiments with the reduced clouds show that

the cloud fragments derived from proteins structurally

similar to the target one are very important for docking

accuracy, although they form a relatively small cloud

fraction (see Supplementary Table IV online). We define

a cloud layer as a collection of fragments from analog

proteins structurally similar to the target protein at a cer-

tain level of SCOP hierarchy (e.g., ‘‘family’’, ‘‘fold’’,

‘‘other’’). To increase the impact of these layers, we

perform a procedure of layered cloud filtering, where all

levels except for the ‘‘domain’’ one (the query complex

itself) are used and the reliabilities of atoms in the i-th

layer are changed by DRi, where DRi equals �0.2 for the

‘‘other’’ layer (proteins from other structural classes than

the target), �0.1 for the same SCOP class-layer, 0 for

fold and superfamily layers, and 0.3 for family, protein

and species layers, respectively. The same reliability

threshold Rmin ¼ 0.7 is used, so more atoms from the

structurally similar layers contribute to the mixed score

and their weight increases. On the other hand, in the

structurally remote layers only atoms with high reliability

remain. That is, either ‘‘good’’ atoms from structural

neighbors or only the ‘‘best’’ from the remote proteins

are accepted. Supplementary Table IV online describes

the layer sizes before and after the layered filtering proce-

dure. The fraction of atoms from structurally close ana-

logs (species, protein, and family layers) increases from

4.3 to 14.4% after filtration. At the same time, even in

the filtered clouds the structurally remote proteins

(‘‘other’’ layer) provide more than one half of all atoms

with high reliability. This observation supports the fact

the clouds can effectively utilize the binding patterns

from various proteins. The AlgoComb success rate with

these filtered clouds is 78%. Rescoring with the directed

mixed score of the position set generated by AlgoComb

with the filtered clouds improves the success rate to

82%.

To estimate the non-randomness of fragment clouds

and their contribution to the docking process, we ran-

domly permuted the atom types in the cloud and per-

formed the calculations for the filtered clouds from Set

2. As a result, the docking performance was decreased

from 68 to 40%, clearly worse than if no clouds are used.

This test provides strong evidence of high specificity and

non-randomness of cloud composition.

Virtual screening with fragment clouds

The performance of fragment cloud-assisted virtual

ligand screening was tested on the HSV-1 thymidine

kinase (TK, PDB ID 1kim43) used as a target for the

database of 990 drug-like molecules and 10 known TK

inhibitors.44 Thymidine kinase is known to be a relevant

yet difficult drug design target.44,45 The success rate in

virtual screening experiments is determined by a number

of real inhibitors in a certain top fraction of the energy

scores assigned to all tested compounds. Out of the eight

docking tools tested in Ref. 7 the best performance was

shown by the SURFLEX software41 with eight true hits

among the 50 top-scored compounds. The screening pro-

cedure by AlgoComb consisted of docking with the fil-

tered fragment cloud and subsequent rescoring of the

generated positions with directed mixed score, as

described above for the self-docking test. The obtained

ranks of the 10 true TK inhibitors (see Supplementary

Table V online) are in the range 4–24, thus showing the

clear improvement over the best results yet attained. The

best ranks (4, 5, and 6) are observed for chemically simi-

lar mct, dT, and idu, respectively, two of which are

known to display a submicromolar binding constant (dT

and idu) whereas all others bind to TK with micromolar

binding constants.44

Ligand optimization with fragment clouds

The binding affinity of an already-known ligand can be

substantially increased by replacement of certain chemical

groups. This procedure is called ligand, or lead, optimiza-

tion.5,26,27 More precisely, the problem of optimization
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may be defined as follows: given a known ligand, its posi-

tion in the binding site (known from X-ray crystallogra-

phy or predicted by docking), and a ligand functional

group (fragment) to be replaced, find a small number

(�10–100) of replacement side groups aimed at improv-

ing (a) binding affinity, or (b) synthesizability, (c) solubil-

ity, (d) side effects, and so forth. A fragment cloud built

for the binding site may serve as a source of molecular

fragments able to replace the optimized ligand part, keep-

ing in mind the feature to be optimized. Extended molec-

ular fragments are constructed as described above. All

their potential bonds are then checked to find those

whose spatial position and orientation is close to the

bond connecting the optimized part to the rest of the

ligand. The fragments are filtered by linkage quality and

sorted by mixed score, leaving only the fragments that

improve the mixed score of the bound ligand.

The cloud-based optimization algorithm was tested on

five known, experimentally verified examples of optimi-

zation of inhibitors of human protein tyrosine phospha-

tase-1B (PTP1B),46 bovine adenosine deaminase,47 and

bovine trypsin.48 For the purpose of ligand optimization,

the complete ligand-site database containing 11,605 com-

plexes has been used. For PTP1B, there are three inde-

pendent examples of optimization by replacement of two

different hydrogen atoms. In all cases, the structure and

position of the initial (nonoptimized) ligand bound

by the protein is known from the PDB. The question

is, whether the computational optimization is able to

reproduce the results of in vitro experiments, that is, sug-

gest for replacement of the initial ligand fragment F1 the

optimizing fragment F2 described in the original publica-

tion with satisfactory linkage and binding quality among

the pool of other replacing fragments. In each case, the de-

sired fragment F2 was in fact found, as shown in Table II.

We checked the number of different replacing fragments

suggested by the optimization algorithm, rank of F2

among the other fragments, and diversity of SCOP fami-

lies of proteins that are the sources of replacing frag-

ments. The rank of a fragment is based on its mixed

score calculated as described in the previous section.

More details including the chemical structures of the ini-

tial ligand and F2, binding affinities, and so forth, are

given in Supplementary Table VI online.

As seen from Table II, the number of suggested replac-

ing fragments varies from 26 to 185, with the maximum

attained for the bovine trypsin inhibitor. The number of

different SCOP families providing the fragments roughly

correlates with the total number of fragments. The

observed structural diversity of proteins that provide the

replacing fragments emphasizes the fact that the site sim-

ilarity detected by the method is highly local and does

not depend on sequence or overall structural similarity of

corresponding proteins. The rank values of F2 vary in

the range 2–21, with the other high-scoring replacing

fragments being candidates for in vitro validation of

binding improvement—some of these may turn out to

be better than F2 when tested experimentally.

DISCUSSION

We have developed a novel approach to analysis of

interaction of proteins and small molecules utilizing the

wealth of structural data on protein–ligand complexes.

The approach operates on complete environments of

ligand fragments in the complexes, in contrast to existing

knowledge-based techniques that account for interactions

of a ligand atom with different environment regions of

the protein independently. This feature presumably

accounts for the advantage of the cloud method over

previous knowledge-based approaches, and shows that

the knowledge-based functions have not extracted all the

available information from the available structural data.

We have shown that the combined use of the cloud score

function with a particular energy score34 essentially

improves scoring selectivity. However, it is worth noting

that the cloud score is independent of the energy score

and can be combined with any traditional energy scoring

function and then implemented in various drug design

methods.

The performance level of 82% by AlgoComb for the inde-

pendent Rognan’s self-docking test set35 substantially

exceeds the plateau of 50–55% reached by a number of other

docking programs.7 In the virtual screening experiment

Table II
Results of the Test of Cloud-Based Optimization Algorithm on Five Examples of Known Optimization of Inhibitors of Three Proteins

Protein
Initial ligand
(PDB id)

Initial
fragment (F1)

Optimizing
fragment (F2)

Number of
suggested fragments

Rank
of F2

Number of
SCOP families

PTP1B 2bge_T2D Hydrogen Phenyl 43 3 80
PTP1B 2bge_T2D Hydrogen Methoxy 26 13 46
PTP1B 2bge_T2D Hydrogen Methyl 26 17 46
Deaminase 1ndw_FR2 Phenyl 1-Naphthyl 43 2 106
Trypsin 1c5p_BAM Phenyl 2-Benzothiophenyl 185 21 233

The columns contain the protein name, PDB identifier of initial (non-optimized) protein-ligand complex, names of the initial and optimizing fragments F1 and F2, total

number of replacing fragments suggested by our method, mixed score-based rank of F2 among all fragments, and number of SCOP families that provide the replacing

fragments.
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with 10 known inhibitors of HSV-1 thymidine kinase

and 990 random drug-like molecules,44 the method has

also substantially improved the best ranks of the real

binders.7 The successful usage of cloud fragments for

ligand optimization has been shown on known inhibitors

of human protein tyrosine phosphatase-1B, bovine tryp-

sin and bovine adenosine deaminase.

The experiments with reduced clouds show that the

benefits of the suggested approach depend on the num-

ber of complexes with different ligands and structural rel-

atives of the target protein in the complexes database.

Note that the results described above have been obtained

for the proteins that belong to the diverse families thor-

oughly represented in the PDB. As a result, approxi-

mately one half of cloud fragments after the layered

filtering procedure originate from the structurally similar

proteins (see Supplementary Table IV online). So we can

expect similar results only for widely presented targets.

However, the advance of the structural genomics proj-

ects49 and the limited number of protein folds50 means

that in the future there will be fewer and fewer ‘‘orphan’’

target proteins.

The important advantage of the cloud-based approach

to optimization and de novo ligand design over tradi-

tional methods is in the usage of the molecular fragments

matching the binding protein environment instead of

precompiled fragment databases.

The notion of local site similarity presented here along

with the method for its detection can be applied to other

areas, such as functional annotation and classification of

novel proteins. Fragment clouds are also a powerful tool

for analysis of site selectivity, protein–protein interac-

tions, and side effects of developed drugs.
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