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ABSTRACT
State-of-the-art smartphones can generate excessive amounts
of heat during high computational activity or long durations
of use. While throttling mechanisms ensure safe compo-
nent and outer skin level temperatures, frequent throttling
can largely degrade the user-perceived performance. This
work explores the impact of multiple different thermal con-
straints in a real-life smartphone on user experience. In
addition to high processor temperatures, which have tradi-
tionally been a major point of interest, we show that ap-
plications can also quickly elevate battery and device skin
temperatures to critical levels. We introduce and evaluate
various thermally-efficient runtime management techniques
that slow down heating under performance guarantees so as
to sustain a desirable performance for maximum durations.
Our techniques achieve up to 8x longer sustainable QoS.

1. INTRODUCTION
Generational trends in mobile system-on-chip (SoC) de-

signs have shown an increase in the peak power levels beyond
thermal design limits due to integration of aggressive mul-
ticore CPUs (i.e., out-of-order and speculative multi-issue
pipelines [17]) and high-end graphics accelerators (GPUs)
[12]. Excessive power densities can cause maximum chip
temperatures to quickly reach critical levels while running
computationally demanding applications [8, 19, 21, 22].

While CPU temperature has been a major focus of re-
search so far [10, 22], mobile devices are also constrained
by the surface temperature limits. Unlike larger scale com-
puting platforms (e.g., desktop computer, server) or mo-
bile development boards (e.g., Odroid-XU3 [4]), commercial
smartphones need to maintain touch surface (skin) temper-
atures within human comfort levels (e.g., 34 ◦C-43 ◦C [11]).
The problem becomes even more apparent and crucial for
mobile devices due to inherent limitations in cooling capabil-
ities imposed by small form-factors and power restrictions.

Vendors incorporate thermal throttling policies to limit
the maximum SoC temperature and maintain skin level tem-
peratures within human comfort levels. Such policies adap-
tively reduce CPU power via dynamic voltage and frequency
scaling (DVFS) or core offlining upon violating predefined
thermal thresholds. Thermal throttling, however, can incur
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severe degradations in user quality-of-service (QoS)1 and im-
pair overall user experience due to CPU slowdown [7, 8].

Current runtime techniques in thermally constrained mo-
bile platforms maximize performance under temperature lim-
its in case of increased computation demand. While deliver-
ing short bursts of high QoS, such an approach accelerates
heating and further magnifies the performance impacts of
thermal throttling over extended durations of application
use (e.g., as in gaming, streaming etc.) as shown by our
prior work [20, 21]. Mobile users expect consistent and ac-
ceptable QoS while using applications over longer durations.
Providing the users with longer durations of sustainable QoS
requires thermally-efficient runtime strategies, as opposed to
existing greedy approaches, to make more conservative us-
age of available thermal headroom for maximum durations.

In this paper, we demonstrate the performance impacts of
the several different thermal constraints that exist in mod-
ern mobile platforms and propose a thermally-efficient QoS
management approach to achieve longer durations of sus-
tainable performance. We quantify the QoS loss incurred
by thermal throttling for maintaining safe CPU and skin
temperatures on smartphones using a set of real-life mobile
applications. We present a number of novel observations
and runtime techniques for both homogeneous and emerg-
ing heterogeneous mobile processors. Our techniques ex-
ploit thermal time constants via fine-grained DVFS and con-
sider CPU-GPU thermal couplings and thread criticality in
scheduling decisions to improve thermal efficiency. We per-
form all experiments on state-of-the-art mobile platforms
with homogeneous and heterogeneous multicore CPUs. Our
evaluations under both CPU and skin temperature cons-
traints show up to 8x longer durations of sustainable QoS.

2. EXPERIMENTAL METHODOLOGY
Platform and Measurements: Our experiments are

based on 3 mobile platforms described in Table 1. Qual-
comm MDP8974 and Google Nexus 5 share the same chipset.
Snapdragon 800 SoC in MDP8974 and Nexus 5 implements a
homogeneous multi-core architecture with 4 Krait 400 CPU
cores. We choose Nexus 5 as a representative commercial
smartphone platform. The Exynos 5422 SoC in Odroid-XU3
mobile development platform integrates a big.LITTLE het-
erogeneous multi-core CPU with 4 high performance/power
A15 cores in addition to 4 low-power A7 cores. We measure
power and temperature using the built-in sensors. Odroid-
XU3 allows measuring CPU, GPU and DRAM power con-
sumptions individually while we can only measure the total

1
QoS refers to a metric used to quantify the performance experi-

enced by the user (e.g., frames-per-second (FPS) or response latency).
While QoS could be application specific, our techniques are not spe-
cific to metric selection and can be applied broadly.



platform power for Nexus 5 and MDP8974. FPS is mea-
sured by querying the logs generated by the SurfaceFlinger
Android system service. We sample the number of executed
instructions via Linux perf event API. For consistent tem-
perature measurements, before each experiment, we leave
the platforms idle until CPU, skin and battery temperatures
stabilize around initial idle temperature levels.

Table 1: Mobile devices used for experiments.

Device
Nexus 5 and

Qualcomm MDP8974
Odroid-XU3

SoC
Qualcomm

Snapdragon 800
Samsung

Exynos 5422
CPU Krait 400 ARM A15 + A7
Cores 4 4 + 4

CPU Freq. 2.2 GHz 2.1 GHz + 1.5 GHz
GPU Adreno 330 Mali-T628

GPU Freq. 450 MHz 543 MHz

Applications: We experiment with a diverse set of
benchmarks. We use two computing kernels, FFT and SOR,
from the Scimark Java benchmark suite [18] and H264 video
encoding application from SPEC CPU2006 [13]. For these
applications, throughput (instructions/sec) is measured as
an indicator of QoS. We also use Heartbeats [14] instru-
mented version of the bodytrack computer vision application
from the PARSEC suite [9]. Heartbeat framework allows
to monitor application-specific QoS using a standardized in-
terface and, for the bodytrack application, one heartbeat is
emitted whenever the processing of one scene is completed.
Aquarium [2], Rain [6] and Pearl Boy [5] are WebGL ani-
mations that we run within the Chrome web browser. Edge
of Tomorrow and Real Racing are two representatives high-
end gaming applications while Mx Player and Rock Player
are common video player applications for Android. We use
FPS as a measure of user experience for these applications.

Runtime Management: Google Nexus 5 smartphone
employs a threshold based hysteresis skin temperature con-
trol policy, which adjusts the maximum CPU frequency lim-
its. This policy reduces the maximum operating frequency
from 2.2 GHz to 1.9 GHz, 1.5 GHz and 1.1 GHz when
the skin temperature reaches 40 ◦C, 42 ◦C and 44 ◦C, re-
spectively. Similarly, frequency limits are scaled up at the
temperature levels of 38.5 ◦C, 40.5 ◦C and 42.5 ◦C. We im-
plement a similar skin temperature control mechanism on
MDP8974 as well. SoC temperature is controlled by a PID
controller in all platforms. Ondemand governor in Nexus 5
and MDP8974 and Interactive governor in Odroid-XU3 are
the default DVFS management mechanisms. Both governors
adjust frequency according to CPU load [1]. In our policy
implementations, we use cpufreq for DVFS management and
Linux sched setaffinity interface for enforcing thread map-
ping decisions. In Odroid-XU3, default HMP scheduler [3]
determines big or LITTLE core execution for a task depend-
ing on its weighted average CPU load.

3. THERMAL CONSTRAINTS IN MODERN
SMARTPHONES

Through experiments on real-life commercial smartphones
and development platforms, this section illustrates and quan-
tifies the potential loss in user experience due to multiple
thermal constraints. We show how different applications can
suffer from different constraints and illustrate the potential
benefit of a platform-level thermal management approach.

Demonstrating throttling and performance unsus-
tainability on real-life platforms. Figure 1 [20] shows
the QoS degradation over time for various real-life appli-
cations (involving gaming, media streaming) running on a
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Figure 1: QoS degrada-
tion over time [20].

Odroid-XU3 platform. Over
the 10 minutes of execu-
tion, CPU temperature in-
duced throttling incurs sig-
nificant QoS loss over time
for all applications, reach-
ing up to 50% degradation
for Aquarium. Figure 2
shows the actions taken by
the skin temperature control
policy on a Nexus 5 smart-
phone during a 10 minute
Edge of Tomorrow game-
play and its impact on QoS
(i.e., FPS). As the skin tem-
perature reaches 40 ◦C after
62 seconds, the policy starts to cap the maximum frequency
of the CPU DVFS governors while also reducing the screen
brightness to slowdown heating. At the end of 200 seconds
of gameplay, the maximum frequency for the CPU gover-
nors is reduced from 2.2 GHz to 1.2 GHz by 55% while the
display brightness is reduced from 100% to 70%. Due to
reduced CPU frequency, the QoS degrades by as much as
40% (i.e., from 34 FPS to 20 FPS). This example signifies
how the skin level thermal constraints (in addition to CPU
temperature) limit the user experience in current generation
smartphones under extended durations of use.

SoC vs skin temperature constraints. We demon-
strate whether thermal throttling is triggered due to skin
or chip thermal constraints depends on application’s power
profile. The average power dissipation for our applications
are indicated in Figure 4a. Two applications with the high-
est power usage, SOR and FFT kernels, exhaust CPU ther-
mal headroom before the skin temperature reaches to crit-
ical levels. This case is shown in Figure 3a for FFT. The
CPU temperature reaches to 90 ◦C critical threshold in 6
seconds and QoS starts dropping due the reduced maximum
frequency. It is around 29 seconds when the skin tempera-
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Figure 2: Thermal throttling policy in Nexus 5 reducing
screen brightness and maximum CPU frequency due to ele-
vated skin temperature while running Edge of Tomorrow.
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(a) FFT application.
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(b) MX Player application.

Figure 3: Temperature, maximum frequency and QoS traces for FFT and MX Player applications. The maximum frequency
levels are adaptively reduced when the CPU or the skin temperature temperatures reach critical thresholds (dashed lines).

ture reaches to 40 ◦C limit as well. For the MX Player video
application in Figure 3b, on the other hand, throttling starts
due to critical skin temperature level after 184 seconds.

For the cases where the frequency is scaled down aggres-
sively due to skin temperature control, CPU thermal head-
room could be inefficiently utilized. For instance, in Figure
3b, lowering the CPU frequency to reduce the skin temper-
ature (despite the CPU not being thermally constrained)
leads to as much as 30 ◦C waste in CPU thermal head-
room for a 90 ◦C maximum threshold. Thus, if we could
control the skin temperature with other knobs (than CPU
DVFS), the CPU could have utilized higher frequencies due
to the available thermal headroom. We demonstrate display
brightness as an example of such control knob. Figure 4b
illustrates the frequency residencies for a 10 minute Edge of
Tomorrow gameplay under 3 brightness levels. Lowering the
brightness slows down skin level heating and allows the CPU
to utilize its available thermal headroom and operate at
higher frequencies for a longer time. This motivates building
platform-level thermal management approaches where the
power states of major power consuming components (e.g.,
CPU, GPU, display etc.) are managed in coordination for
maximizing user experience while reducing total power dis-
sipation to reduce battery and skin temperatures.
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Figure 4: (a) Average power dissipation of Nexus 5 for dif-
ferent applications. ”IDLE” indicate the power consumption
when device is left idle. (b) Throttling and CPU frequency
residencies under different screen brightness levels for the
Edge of Tomorrow gaming application.

Table 2 summarizes the maximum temperatures, sustained
QoS durations and QoS loss on Nexus 5. The maximum
CPU temperature limit (TCPU,lim=90 ◦C) is violated in the
first 6 seconds for FFT and SOR while the other appli-
cations are primarily constrained by the skin temperature
constraints (TSKIN,lim=40 ◦C). All applications eventually
reach the skin temperature limit. MX Player achieves the
longest duration (184.1 sec) without throttling due to its
lowest power consumption (Figure 4a). We observe 21.6%
to 49% QoS loss for different applications due to thermal
throttling. We measure battery temperatures as high as
40.8 ◦C. Such high battery temperatures further accelerates
CPU and skin level heating due to thermal couplings be-
tween the battery and the other components [23].

Table 2: Summary of results on Nexus 5.

App.
Tmax

(CPU)
Tmax

(Skin)
Tmax

(Battery)
Time to
TCPU,lim

Time to
TSKIN,lim

QoS
Loss

FFT 96 ◦C 48 ◦C 40.2 ◦C 5.9 sec 29.2 sec 48.1%
SOR 98 ◦C 49 ◦C 40.8 ◦C 4.5 sec 29.4 sec 49.0%
H264 88 ◦C 44 ◦C 36.1 ◦C - 37.3 sec 48.1%

Bodytrack 85 ◦C 44 ◦C 37.7 ◦C - 53.9 sec 44.9%
Aquarium 67 ◦C 44 ◦C 37.6 ◦C - 138.6 sec 44.4%
Edge of T. 67 ◦C 44 ◦C 37.7 ◦C - 122.1 sec 44.1%

Real Racing 65 ◦C 44 ◦C 37.4 ◦C - 160.1 sec 21.6%
MX Player 71 ◦C 42 ◦C 36.5 ◦C - 184.1 sec 38.7%

4. THERMALLY-EFFICIENT QOS
MANAGEMENT

The goal behind our work is to enable thermally-efficient
QoS management for providing the mobile system users
with longer periods of acceptable performance. Rather than
greedily maximizing performance under thermal constraints,
in order to utilize the thermal headroom more efficiently, we
propose to integrate user/application QoS requirements into
thermal management [21]. We design practical runtime QoS
management techniques to deliver desired user performance
and develop several novel insights to improve the thermal-
efficiency of QoS management. This section describes these
insights and techniques. We plan to investigate, in our fu-
ture work, the use of non-CPU control knobs to further re-
duce skin temperatures for the applications that are primar-
ily constrained by skin temperature limits.
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Figure 5: A case for QoS-temperature tradeoff for achiev-
ing longer sustainable QoS for a gaming application (Real
Racing) running on a Odroid-XU3 mobile platform [20].

4.1 Managing QoS-Temperature Tradeoff
We show that users or system-level policies can proactively

trade off QoS for extra thermal headroom for an application
that is likely to suffer from thermal throttling. This ex-
tra thermal headroom allows the application to sustain the
same performance level for longer durations. The idea of
trading off the application QoS has been widely employed
for energy savings [15]. Trading off the QoS for thermal
headroom, however, is a novel insight brought by our work
[21] to address the QoS unsustainability problem in mobile
devices we have demonstrated in Section 3.

We demonstrate this intuition on a real hardware. Figure
5 [20] shows the QoS (frames-per-second (FPS)) and tem-
perature traces for a gaming application we ran with two
different DVFS governors [1] in Android. The default Inter-
active governor provides the highest QoS initially. However,
it quickly (in 40 seconds) exhausts the SoC thermal head-
room and QoS significantly drops over time due to thermal
throttling. Powersave governor, which uses the lowest avail-
able frequency of big cores, sustains the QoS above 45 FPS
for almost twice as long by mitigating the thermal throt-
tling further to 380 seconds. Thus, providing techniques to
exploit QoS-temperature tradeoff can allow users or system-
level policies to extend the durations of sustainable QoS.

We design PI-type feedback controllers [20, 21] to allow
for QoS control. These controllers tune the CPU frequency
towards achieving the target QoS levels in response to phase
variations within the applications as well as potential changes
in the target QoS levels during runtime.

4.2 Fine-grained DVFS State Scheduling
Our earlier work [21] has shown that, in addition to con-

trolling the average processor frequency to control QoS, fast

(a) (b)

Figure 6: The key idea of the thermally-efficient DVFS state
scheduler. By performing quick frequency switching and
temporally distributing the states over time (right), the peak
temperature can be reduced.

frequency switching and temporal distribution of high fre-
quency states within short intervals can improve thermal-
efficiency. We illustrate this principle in Figure 6. Due to
thermal time constants [10, 16], temperature responds grad-
ually to changes in frequency/power levels. As shown in
Figure 6b, this phenomenon implies that breaking the high
frequency operation into short intervals and temporally dis-
tributing them over time can minimize the peak temperature
while delivering the same average frequency. We implement
this observation into our platform (MDP8974) as a kernel-
level DVFS state scheduler unit with a sysfs interface to
allow user programs to easily enable/disable or assign new
target frequency levels. The target average frequency for the
DVFS state scheduler is determined by the user-level feed-
back controller as explained in Section 4.1. An analytical
proof of this technique for minimizing the peak temperature
is available in our work [21]. Prior work has explored the
benefits of quick DVFS in thermal simulation environments
[10, 16] while we have shown its effectiveness on a real sys-
tem for the first time. One critical limitation of temperature
minimization via fast DVFS switching on a real hardware

Figure 7: Performance
overhead of DVFS.

is the performance overhead as-
sociated with DVFS state tran-
sitions. This case is pointed
out in Figure 7 which shows the
measured (from the OS layer)
performance overhead over dif-
ferent switching granularities.
Performing DVFS faster than
every 5ms can incur as much as
25% performance overhead.

4.3 Exploiting HW/SW level Heterogeneity for
Thermal Efficiency on Heterogeneous CPUs

Our recent work [20] demonstrates that mobile applica-
tions are driven by a relatively few number of highly QoS-
critical threads that determine the performance. We ex-
ploit this novel observation to perform thermally-efficient
thread-to-core mappings on heterogeneous multicore mobile
processors. Specifically, as opposed to treating all threads
equally in scheduling decisions [24], we propose to restrict
the high-performance cores (HW-level heterogeneity) only
for accelerating the QoS-critical threads (SW-level hetero-
geneity) . We leverage the low-power cores in the system for
executing the other non-critical application threads. Such
criticality-driven task scheduling significantly reduces tem-
peratures due to reduced load on power-hungry cores while
still providing similar performance [20]. We detect such
QoS-critical threads via a simple offline characterization pro-
cess in which we measure the QoS improvement when an

Figure 8: Rock Player ’s
QoS-critical thread [20].

individual thread is moved
from a low-performance core
onto a high-performance core.
Consider the case in Figure
8 [20]. The figure indicates,
at two different frequencies,
the QoS improvement when
the threads of the Rock Player
multimedia player application
are incrementally moved to
high-performance A15 CPU
cluster. QoS sharply increases
to the peak level after the 57th thread is executed on a high-
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(b) Bodytrack application.

Figure 9: Power breakdown (left), temperature traces (mid-
dle) and QoS (right) for Aquarium and bodytrack under dif-
ferent big core assignments ({0,3} and {2,3}) [20].

performance core. This QoS-critical thread by itself dictates
the overall performance for this application. The default
HMP scheduler [3] for current heterogeneous mobile CPUs
disregards such information and greedily assigns the threads
with relatively high CPU usage to power-hungry cores for
performance. This results in higher CPU usage (26% for
Rock Player) on power-hungry cores without any significant
improvements in QoS and leads to quick elevation of tem-
peratures. We apply the same characterization to all appli-
cations to identify the critical threads and communicate this
information to runtime thread mapper.

4.4 CPU-GPU Thermal Coupling Aware
Selection of Thermally-Efficient Cores

Traditionally, thermal management policies have consid-
ered CPU in isolation from the other on-chip components.
As mobile SoCs integrate high-power GPUs, however, ther-
mal coupling between GPU and CPU cores have become an
emerging phenomenon [19, 20]. In our work [20], we observe
that, depending on the applications’ graphics processing de-
mand, the thermal efficiency of cores can alter significantly.
Figure 9 [20] illustrates this observation through measure-
ments on a Odroid-XU3 platform. We show the temperature
profiles of two applications with distinct CPU and GPU us-
age when their two highest utilization threads are assigned to
cores {0,3} and {2,3}. The allocation {0,3} achieves the low-
est temperature for bodytrack while it leads to the most heat-
ing among all possible allocations when the GPU is highly
utilized as in the Aquarium application. {2,3} results in the
worst peak temperature for bodytrack while achieving lower
temperature than {0,3} for Aquarium. The GPU causes
quick heating when its highly utilized and nearby CPU cores
(i.e., core 0) are used for execution. When lightly utilized,
however, GPU can act as a head spreader for the CPU cores.
We capture this interplay between the thermal efficiency of
the CPU cores and GPU usage through an exhaustive offline
characterization process using CPU and GPU microbench-
marks. Specifically, we rank the CPU cores according to
their thermal efficiency under varying levels of GPU power
dissipation. During runtime, we monitor application’s GPU
usage as a proxy for CPU-GPU thermal coupling and use the
offline information to determine the most thermally-efficient
CPU cores for executing the QoS critical threads.
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Figure 10: Normalized duration of time spent above a QoS
level by the proposed QoS tuning + DVFS state scheduler
policy for different target QoS level. “QTX%” represents the
proposed policy with X% QoS goal [21].

5. EVALUATION
In this section, we evaluate the improvements in sustained

performance durations provided by our techniques for both
homogeneous and heterogeneous mobile processors. Our
runtime management technique for homoegeneous mobile
CPUs integrates QoS tuning with DVFS state scheduling;
while our policy for heterogeneous mobile CPUs integrates
QoS tuning with CPU-GPU thermal coupling and thread
criticality awareness. We evaluate our thermally-efficient
QoS management approach under both processor and skin
temperature constraints to demonstrate its benefits under
multiple thermal constraints of modern smartphones as ex-
plained in Section 3. For experiments under CPU thermal
constraints, we use Odroid-XU3 with a big.LITTLE CPU ar-
chitecture and MDP8974 smartphone with a homogeneous
CPU. For evaluation under skin temperature constraints, we
use the MDP8974 smartphone.

Extended sustainability under CPU thermal con-
straints. Figure 10 [21] presents the improvements over
the baseline with the proposed QoS tuning policy (named
as QT) for homogeneous CPUs on a MDP8974 platform
under CPU temperature constraints. The figure shows the
duration of time spent above a QoS level (x-axis) using QT
as normalized to the baseline (ondemand governor [1]). We
experiment with two target QoS levels which are set to 90%
and 80% of the maximum QoS for an application. While
the baseline ondemand governor greedily converts the ther-
mal into performance by selecting high DVFS states, our
technique provides ‘just enough’ yet sustainable QoS by re-
stricting the short term performance to target QoS levels
and provides substantially longer execution time around the
given QoS targets. For bodytrack and h264 under 90% tar-
get QoS, QT provides 47% and 38% longer duration above
this target QoS, respectively. Relatively less (11%) gain in
sustainability is achieved for bodytrack under 80% QoS tar-
get. This is because the QoS degrades below 80% with the
baseline policy only for a short duration.

Next, we demonstrate our achievements in sustainable
QoS on a heterogeneous multi-core CPU available in Odroid-
XU3 [4] platform. Our QoS management strategy (named
as QScale) effectively minimizes the thermal density of the
high-power A15 cores by restricting their use to only highly
QoS-critical threads and selecting the most thermally-efficient
cores for execution. Figure 11 [20] plots the sustained QoS
durations for 3 policies (QScale versus two baselines) un-
der different QoS targets. The DVFS-only policy represents
the class of policies that rely only on DVFS for QoS control
(i.e., without criticality and coupling awareness). Our policy
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Figure 11: Sustained QoS durations with default manage-
ment (Android’s Interactive Governor [1] + ARM HMP
scheduler [3]), DVFS-only and our QScale policy [20].

consistently provides the longest durations of sustained QoS
for all four applications. Remarkably, while the two base-
line policies are not able to provide the peak (100%) QoS for
more than 10 seconds for the bodytrack (computer vision ap-
plication) and Rock Player (video player) applications due
to throttling, our QScale policy sustains the peak QoS for
around 2 minutes by leveraging the criticality information.

Extended sustainability under skin level thermal
constraints. We show the benefits of our thermally-efficient
QoS tuning approach under skin temperature constraints by
running two graphics applications, Aquarium and Pearl Boy,
for 15 minutes on MDP8974 with a homogeneous CPU. Fig-
ure 12 [21] plots the cumulative QoS distribution. 100% QoS
corresponds to 40 FPS for Aquarium and 60 FPS for Pearl
Boy. Sustained QoS duration improves by 9% (from 36%
to 40%) for Pearl Boy under 75% QoS limit. For Aquar-
ium, our policy with 75% target QoS (30 FPS) improves the
duration above this target by 55%, from 40% of the over-
all execution to 62%. The dashed 30 FPS line corresponds
to bare minimum user tolerable QoS [25]. Thus, managing
QoS temperature tradeoff while ensuring ‘just enough’ per-
formance can provide the user with a 55% longer duration
with an acceptable FPS level.

6. CONCLUSION
In this paper, we have shown that SoC and skin level ther-

mal constraints can incur significant QoS degradations over
extended durations as built-in power management policies
greedily maximize QoS under temperature limits. We have
discussed various practical runtime management solutions
that can slowdown SoC and skin level heating while strictly
adhering to minimum user requirements. We have shown
effectiveness of our techniques on real-life devices in terms
of mitigating thermal throttling and providing longer dura-
tions of sustainable performance.
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Figure 12: Cumulative QoS distribution for the two WebGL
applications. Dashed line (left) represents 30 FPS limit [21].
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