# Pseudo-, Quasi-, and Real Random Numbers 

## on Linux

Oleg Goldshmidt<br>olegg@il.ibm.com

IBM Haifa Research Laboratories

## Agenda

- "Any one who considers arithmetical methods of producing random digits is, of course, in a state of sin." [J. von Neumann, 1951]
- Sinful pleasures.
- "If the numbers are not random, they are at least higgledy-piggledy." [G. Marsaglia, 1984]
- Does it look random enough to you?
- "Random numbers should not be generated with a method chosen at random." [D. Knuth, 1998]
- Pseudo-random and quasi-random.
- "Computers are very predictable devices." [T. Ts’o, probably circa 1994, but maybe as late as 1999]
- Random tricks with the Linux kernel.


## Life in Sin According to Knuth (I)

- Simulation
- sciences: just about everywhere
- operations research: workloads
- Sampling
- Numerical analysis
- Computer programming
- random inputs
- randomized algorithms
- Decision making
- strategic executive decisions
- Technion paper grades
- optimal strategies in game theory


## Life in Sin According to Knuth (II)

- Aesthetics
- Recreation (where do you think Monte Carlo comes from?)

Sins Knuth didn't consider:

- Financial markets
- How random is IBM share price?
- Cryptography and cryptanalysis
- Is "random" equivalent to "cryptographycally secure"?
- RFC 1750, "Randomness Recommendations for Security"


## Early (Biblical?) Virtues and Sins

- Intuition: dice, cards, lottery urn, census reports
- Physics: resistance noise (A. Turing, Mark I, 1951)

Disadvantage: irreproducible, difficult to debug

- A CD-ROM of random bytes (G. Marsaglia, 1995)
- output of noise-diode circuit with scrambled rap music - "white and black noise"

Early attempts, while virtuous, were cumbersome and inadequate. A radical new approach was needed.

## Von Neumann's Original Sin

- Can random numbers be produced by ordinary arithmetic?
- Von Neumann (circa 1946): take a long number (e.g., 10 digits), square it, extract the middle digits:
- $X_{n}=3756369827$
- $X_{n}{ }^{2}=14110314277196009929$
- $X_{n+1}=3142771960$
- Are these numbers random?
- No, but who cares? They appear random
- Obvious problem: 0 is stationary
- Another obvious problem: cycles
- 38 bit numbers: period of 750,000 (N. Metropolis, 1956)


## Does $\pi$ Look Random To You?

Are there any patterns in the decimal representation of $\pi$ ?
3.14159265358979323846264338327950

## Does $\pi$ Look Random To You?

Can this be considered a pattern?
3.14159265358979323846264338327950

## Does $\pi$ Look Random To You?

Can this be considered a pattern?

### 3.14159265358979323846264338327950

"The entire history of human race." [Dr. I. J. Matrix, 1965]

## What Are (Pseudo-)Random Numbers?

- Working definition of computer-generated random sequence:
- a program that generates random sequences should be different and statistically independent from every program that uses its output.
- Interpretation of the definition:
- two different generators ought to produce statistically indistinguishable results when coupled to your application.
- if they don't, at least one of them is not a good generator.


## What Are Good PRNGs?

- Pragmatic point of view: there are statistical tests that are good at filtering out correlations that are likely to be felt by applications.
- follows (to a certain extent) from the working definition coupled with insight and experience
- good generators need to pass all the tests
. or at least the user should be aware of failures to judge their impact
- How?


## $\chi^{2}$ Test

Consider a set of $n$ independent observations of a random variable with a finite number of possible values Rolling "true" dice:

| $s$ | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $p_{s}$ | $\frac{1}{36}$ | $\frac{1}{18}$ | $\frac{1}{12}$ | $\frac{1}{9}$ | $\frac{5}{36}$ | $\frac{1}{6}$ | $\frac{5}{36}$ | $\frac{1}{9}$ | $\frac{1}{12}$ | $\frac{1}{18}$ | $\frac{1}{36}$ |

Roll the dice $n=144$ times, expect to see $s$ on average $n p_{s}$ times:

| $s$ | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $E_{s}$ | 4 | 8 | 12 | 16 | 20 | 24 | 20 | 16 | 12 | 8 | 4 |
| $O_{s}$ | 2 | 4 | 10 | 12 | 22 | 29 | 21 | 15 | 14 | 9 | 6 |

What is the probability that the dice are "loaded" (i.e., the results are not random)?

## $\chi^{2}$ test (cont.)

- Compute the statistic

$$
\chi^{2}=\sum_{s=1}^{k} \frac{\left(O_{s}-E_{s}\right)^{2}}{E_{s}}=\frac{1}{n} \sum_{s=1}^{k}\left(\frac{O_{s}^{2}}{p_{s}}\right)-n
$$

- For our experiment, $\chi^{2}=7 \frac{7}{48}$ - is it improbable?
- Use $\chi^{2}$ distribution with $\nu=k-1=10$ degrees of freedom
- NB: $E_{s}, O_{s}$ are not completely independent: given $k-1$ the $k$-th value can be computed.
- the probability that the sum of the squares of $\nu$ random normal variables of zero mean and unit variance will be greater than $\chi^{2}$


## Properties of $\chi^{2}$ Distribution

- NB: independent experiments are assumed
- exercise: combine a set of $n$ experiments with itself, consider it a single set of size $2 n$ : how will $\chi^{2}$ be affected?
- depends only on $\nu$, not on $n$ or $p_{s}$
- if $\nu \gg 1$ and $n \gg 1$ the $\chi^{2}$ distribution is a good approximation
- $n$ should be large enough that all $n p_{s}$ are large (rule of thumb: more than 5)
- large $n$ will smooth out locally nonrandom behaviour: not a problem with dice but may be a problem with computer-generated numbers


## $\chi^{2}$ Test Criteria

- $\chi^{2}$ should not be too high - we do not expect too much of a deviation from "true" dice!
- $\chi^{2}$ should not be too low - if it is we cannot consider the numbers to be random!
- rules of thumb usually expressed in terms of $\chi^{2}$ probability:
- less than $1 \%$ or greater than $99 \%$ - reject
- less than 5\% or greater than $95 \%$ - suspect
- $5 \%$ to $10 \%$ or $90 \%$ to $95 \%$ - somewhat suspect
- between $10 \%$ and $90 \%$ - acceptable
- do the test several times - e.g. 2 out of 3


## Kolmogorov-Smirnov (KS) Test

- $\chi^{2}$ test applies when there is a finite number of degrees of freedom
- what about, e.g., random real numbers on $[0,1)$ ?
- yeah, in the computer representation that is finite, but really large, and we want behaviour close to "real" anyway
- KS test: compare cumulative probability distribution functions (CDF)

$$
F(x)=\operatorname{Probability}(X<x)
$$

- empirical CDF: given a sequence $X_{0}, X_{1}, X_{2}, \ldots, X_{n}$

$$
F_{n}(x)=\frac{1}{n} \sum_{j=1}^{n} 1\left(X_{j}<x\right)
$$

## KS Test Algorithm

- theoretical criterion:

$$
\begin{aligned}
& K_{n}^{+}=\sqrt{n} \max _{-\infty<x<+\infty}\left(F_{n}(x)-F(x)\right), \\
& K_{n}^{-}=\sqrt{n} \max _{-\infty<x<+\infty}\left(F(x)-F_{n}(x)\right) .
\end{aligned}
$$

- what is $\sqrt{n}$ doing there? std. dev. of $F_{n}(x)$ is proportional to $1 / \sqrt{n}$ for fixed $x$, so the factor makes the statistics (largely) independent of $n$
- practical criterion (assume sorting, but can do without)

$$
\begin{aligned}
K_{n}^{+} & =\sqrt{n} \max _{1<j<n}\left(\frac{j}{n}-F\left(X_{j}\right)\right), \\
K_{n}^{-} & =\sqrt{n} \max _{1<j<n}\left(F\left(X_{j}\right)-\frac{j-1}{n}\right) .
\end{aligned}
$$

## Practical Application of KS Test

- $n$ should be large enough so that the empirical and the theoretical CDFs are observably different
- $n$ should be small enough not to wipe out significant locally nonrandom behaviour
- apply KS to chunks of a long sequence of medium size ( $n \approx 1000$ )
- obtain a sequence of $K_{n}^{+}(m), K_{n}^{-}(m), m=1 \ldots r$
- apply KS test again to the sequence of $K_{n}^{+}(m)$ (and $\left.K_{n}^{-}(m)\right)$
- for large $n(\approx 1000)$ the distribution of $K_{n}^{+}(m)$ (and of $K_{n}^{-}(m)$ ) is closely approximated by

$$
F_{\infty}(x)=1-\exp \left(-2 x^{2}\right), \quad x \geq 0 .
$$

## KS Test Criteria

- Again, $K_{n}^{+}$and $K_{n}^{-}$should be neither too high nor too low
- There is a probability distribution associated with them, and we reject or suspect too low or too high probabilities
- Can be used in conjunction with the $\chi^{2}$ test for discreet random variables
- do $\chi^{2}$ on chunks of the sequence
- not a good policy to simply count how many $\chi^{2}$ values are too large or too small
- instead, obtain the empirical CDF of $\chi^{2}$
- use KS test to compare the empitrical CDF with the theoretical one


## $\mathbf{K S} \mathbf{v s} \chi^{2}$

- KS applies to CDFs without jumps
- $\chi^{2}$ applies to CDFs with nothing but jumps
- can be applied to continuous CDFs by binning
- sometimes KS is better, somethimes $\chi^{2}$ wins
- divide $[0,1$ ) into 100 bins
- if deviations for bins 0... 49 are positive, and for bins 50... 99 - negative, KS will indicate a bigger difference than $\chi^{2}$
- if even deviations are positive and odd ones are negative, KS will indicate a closer match than $\chi^{2}$


## Empirical Tests

- outlines of algorithms of some common tests
- theoretical basis (TAOCP)
- uniform real numbers on $[0,1)$ :

$$
\left\langle U_{n}\right\rangle=U_{0}, U_{1}, U_{2}, \ldots
$$

- auxiliary integer sequence on [0,d-1]

$$
\left\langle V_{n}\right\rangle=V_{0}, V_{1}, V_{2}, \ldots
$$

where

$$
V_{n}=\left\lfloor d U_{n}\right\rfloor
$$

- $d$ is typically a power of 2 , large enough for a meaningful test, but not too large to be practical


## Empirical Tests (I)

- Frequency test (tests uniformity)
- use KS test with $F(x)=x$ for $0 \leq x \leq 1$
- use $\left\langle V_{n}\right\rangle$, for each $r<d$ count $V_{j}=r$, apply $\chi^{2}$ test with $\nu=d-1$ and $p_{s}=1 / d$.
- Serial test: we want pairs of successive numbers to be uniformly distributed, too: "The sun comes up just as often as it goes down, in the long run, but that does not make its motion random." [D. Knuth]
- count $\left(V_{2 j}, V_{2 j+1}\right)=(q, r)$, apply $\chi^{2}$ test with $\nu=d^{2}-1$ and $p_{s}=1 / d^{2}$
- generalize to triples, quadruples, etc.


## Empirical Tests (II)

- Gap test: examine the length of gaps between occurrences of $U_{n}$ in a given range
- count number of gaps of different lengths, for lengths of $0,1, \ldots t$, and lengths $>t$, until $n$ gaps are tabulated.
- apply $\chi^{2}$ test to the counts - details in TAOCP
- Poker test:
- split $\left\langle V_{n}\right\rangle$ into "hands" (quintiples), apply $\chi^{2}$ test to "pair", "two pairs", "three", "full house", "four", "poker"
- apply $\chi^{2}$ test according to the number of distinct values in each "hand" - details in TAOCP.


## Empirical Tests (III)

- Coupon collector's test
- observe the lengths of segments of $\left\langle V_{n}\right\rangle$ that are required to collect a "complete set" of integers from 0 to $d-1$, apply $\chi^{2}$ - details in TAOCP
- Permutation test
- divide $\left\langle U_{n}\right\rangle$ into segments of length $t$
- each segment can have $t$ ! different orderings
- count occurrences of each ordering, apply $\chi^{2}$ test with $\nu=t!-1$ and $p_{s}=1 / t!$.


## Empirical Tests (IV)

- Run test: observe lengths of monotonic segments
- do not apply $\chi^{2}$ test: adjacent runs are not independent, a long runs will tend to be followed by a short one, and vice versa
- throw away the element that immediately follows a run to make runs independent - details in TAOCP
- Collision test: what to do if number of degrees of freedom is much larger than the number of observations?
- hashing: count the number of collisions
- a generator will pass the test if it does not generate too few or too many collisions - details in TAOCP


## DIEHARD I — General Description

- obtainable from http://stat.fsu.edu/~geo/diehard.html
- source code available in C, but it it obfuscated: it is "patched and jumbled" Fortran passed through f2c
- you need f 2 c to link it ( $-1 \mathrm{f} 2 \mathrm{c}-\mathrm{lm}$ )
- the original Fortran code is 30 years' worth of patches
- very uncomfortable to alter, so don't - it is not advisable anyway unless you really know what you are doing
- "seems to suit my purposes" [G. Marsaglia]
- there are also executables for DOS, Linux, and Sun


## DIEHARD II - Components

- makewhat - creates test files
- asc2bin - converts ascii (hex) to binary
- diehard - runs the tests
- diequick - a shorter version
- a number of built-in random generators to test
- makewhat prompts with a list
- a battery of tests
- diehard allows you to choose from 15 tests
- really more than 15 , since a few tests are compound
- some familiar: run test, permutations
- some custom: DNA test, parking lot test


## DIEHARD III - Procedure

- write a main() that does one of two things:
- open a binary file and write your random integers to it
- open a text file and write your random integers to it in hex
- 8 hex digits per integer, 10 integers per line, no spaces
- then run asc2bin on the text file
- the ascii file will be twice the size of the binary one
- your PRNG should produce 32-bit integers
- if 31-bit, then left-justify by left-shift: some tests favour leading bits


## (Possible) Problems with rand (3)

- often linear congruential generators $I_{j+1}=a I_{j}+c(\bmod m)$ - period no greater than $m$
- can provide quite decent random numbers with proper choice of $a, c$, and $m$, fast
- ANSI C specifies that rand (3) return an int
- RAND_MAX is no larger than Int_MAX
- ANSI C requires only that INT_MAX be greater or equal 32767 - a simulation of $10^{6}$ realizations will repeat the sequence about 30 times
- usually not a problem on 32-bit machines
- ANSI C reference implementation
- LC with a sub-optimal choice of $a, c$, and $m$
- botched by implementors who try to "improve"


## More Problems with rand (3)

- LC PRNGs are not free of sequential correlation on successive calls
- problem when generating random numbers in many dimensions:
- plot points in $k$-dimensional space (between 0 and 1 in each dimension)
- "random numbers fall mainly in the planes" [G. Marsaglia], i.e., they will lie on less than $m^{1 / k}$ ( $k-1$ )-dimensional planes
- $m=32768$ (bad), $k=3 \Rightarrow$ less than 32 planes
- $m \approx 2^{32}$ (good), $k=3 \Rightarrow$ about 1600 planes
- "We guarantee that each number is random individually, but we don't guarantee that more than one of them is random." [NR]


## So how is glibc rand (3) doing?

- not an LC generator (cf. man random)
- do read the man pages for rand (3) and random (3)!
- "The period of this random number generator is very large, approximately $16^{*}\left(\left(2^{* *} 31\right)-1\right)$ " [man random ]
- not really very large
- DIEHARD tests on rand (3) : so-so

| - | - | + | - | + | - | + | + | + |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| - | - | + | + | + | - | + | + | + |

- many (most?) other generators are no better, e.g. ran2 from NR is only a little bit better, Sun $£ 77$ (old?) is really lousy.


## Are there Any Good PRNGs?

- yes, some pass all the tests with flying colors:
- KISS
- The "Mother of all random number generators"
- Multiply-With-Carry $x_{n}=a x_{n-1}+c\left(\bmod 2^{32}\right)$
- Mersenne Twister
- do check!
- check by yourself
- generators improve
- tests get tougher
- if you are really serious, develop your own tests


## Implementation of Good PRNGs

- from
http://www.cs.yorku.ca/~oz/marsaglia-rng.htı
\#define znew (z=36969*(z\&65535)+(z>>16))
\#define wnew ( $w=18000$ ( $w \& 65535$ ) + ( $w \gg 16$ ))
\#define MWC ((znew<<16)+wnew )
\#define SHR3 (jsr^=(jsr<<17), jsr^=(jsr>>13), jsr^=(jsr<<5))
\#define CONG (jcong=69069*jcong+1234567)
\#define FIB ( $(b=a+b),(a=b-a))$
\#define KISS ((MWC^CONG) +SHR3)
- not the last word in software engineering, one can do better with little effort


## Seeding PRNGs

- fixed seed very useful for debugging
- srand(time (NULL))
- get a MOSIX cluster, run
for i in `seq 1 10`; do (./sim \&); done
- srand(clock())
- will be surprisingly similar from run to run: many runs will only use a few seeds
- call gettimeofday (2) , use low-order bits of microseconds, mix with pid, etc.
- good, but note that gettimeofday (2) is not POSIX, not guaranteed to work
- entropy - also non-portable!


## Monte Carlo Simulations I

- Applications
- throwing dice or spinning wheels (if you are into getting rich, quickly)
- modelling price fluctuations in various markets (if you are hired to help the rich keep their money)
- studying Brownian motion, diffusion, cosmic ray propagation, etc. (if getting rich is not the objective)
- designing new computers and/or algorithms for efficient management of resources under uncertain workloads (strictly for common good, of course)


## Monte Carlo Simulations II

- Technique
- generate "realizations" based on random sequences
- compute the expectation value of the result (payoff, displacement, etc.) and the "likely" deviation as an error estimate
- equivalent to integration over realizations
- example: $\int f(x) d x$ - generate random points $(x, y)$, count those for which $y<f(x)$
- example: $\int f d V$ over a complicated shape $V$ - enclose $V$ into a simple shape $W$ that can be easily sampled, compute $\int g d W$ where $g=f$ in $V, g=0$ outside of $V$


## Non-Uniform RNG: Transformations

- fundamental transformation law of probability:

$$
\left|p_{y}(y) d y\right|=\left|p_{x}(x) d x\right| \text { or } p_{y}(y)=p_{x}(x)\left|\frac{d x}{d y}\right|
$$

- for $x$ uniform on $[0,1) p_{x}(x)=1$ for $0 \leq x<1$, zero otherwise
- for $p_{y}(y)=f(y)$ we must solve $d x / d y=f(y)$ to obtain, with $F(y)$ being the CDF of $y$

$$
y(x)=F^{-1}(x)
$$

- in multiple dimensions, with Jacobian $J_{i j}=\partial x_{i} / \partial y_{j}$ :

$$
p_{y}(\vec{y}) d \vec{y}=p_{x}(\vec{x}) d \vec{x}=p_{x}(\vec{x})\left|J_{i j}\right| d \vec{y}
$$

## Normal Deviates: Box-Muller

Generate normal deviates $y_{1,2}$ from uniform (on $\left.[0,1)\right) x_{1,2}$ :

- the transformation:

$$
\begin{aligned}
& y_{1}=\sqrt{-2 \ln x_{1}} \cos 2 \pi x_{2} \\
& y_{2}=\sqrt{-2 \ln x_{1}} \sin 2 \pi x_{2}
\end{aligned}
$$

or, equivalently

$$
\begin{aligned}
& x_{1}=\exp \left[-\frac{1}{2}\left(y_{1}^{2}+y_{2}^{2}\right)\right] \\
& x_{2}=\frac{1}{2 \pi} \arctan \frac{y_{2}}{y_{1}}
\end{aligned}
$$

## Normal Deviates: Box-Muller (cont.)

- the Jacobian:

$$
|J|=-\left[\frac{1}{\sqrt{2 \pi}} \mathrm{e}^{-} y_{1}^{2} / 2\right]\left[\frac{1}{\sqrt{2 \pi}} \mathrm{e}^{-} y_{2}^{2} / 2\right]
$$

- a further trick: pick $\left(v_{1}, v_{2}\right)$ inside the unit circle (using rejection)
- $x_{1}=R^{2}=v_{1}^{2}+v_{2}^{2}, x_{2}=\frac{1}{2 \pi} \arctan \frac{v_{2}}{v_{1}}$
- $\cos 2 \pi x_{2}=v_{1} / R, \sin 2 \pi x_{2}=v_{2} / R$
- get two normal deviates

$$
\begin{aligned}
& y_{1}=2 \sqrt{-\ln R}\left(v_{1} / R\right) \\
& y_{2}=2 \sqrt{-\ln R}\left(v_{2} / R\right)
\end{aligned}
$$

- no need to compute sin or cos!


## Non-Uniform RNG: Rejection

- What if we do not know the inverse CDF?
- pick $f(x)$ such that
- $p(x)<f(x)$
- $F(x)=\int_{0}^{x} f(x) d x$ is known and analytically invertible
- $\int_{0}^{\infty} f(x) d x=A$
- generate $y_{1}$ uniform in $[0, \mathrm{~A})$
- compute $x=F^{-1}\left(y_{1}\right)$
- generate $y_{2}$ uniform on $[0, f(x))$
- accept $x$ if $y_{2} \leq p(x)$, reject if $p(x)<y_{2}$


## Variance Reduction Techniques

- complexity analysis for integration using $N$ uniformly distributed random points in an $n$-dimensional space:
- each point adds linearly to the accumulate sum that will become the function average
- it also adds linearly to the accumulated sum of squares that will become the variance
- the estimates error comes from the square root of the variance, hence $N^{-1 / 2}$ - slow convergence!
- antithetic variables
- non-uniform sampling (importance, stratification)


## Can We beat the Square Root?

- $N^{-1 / 2}$ is not inevitable
- choose points on a Cartesian grid, sample each grid point exactly once in whatever order: $N^{-1}$ or better convergence
- problem: must decide in advance how fine the grid has to be, commit to sample all the points
- can we pick sample points "at random" yet spread them out in some self-avoiding way, eliminating the "local clustering" of uniformly random points?
- another context: search an $n$-dimensional volume for a point where some locally computable condition holds
- we want to move smoothly to finer scales, and do better than random


## Quasi-Random Sequences

- sequences of $n$-tuples that fill $n$-dimensional space more uniformly than uncorrelated random points
- not random at all, "maximally avoiding" each other
- Halton sequence: algorithm
- for $H_{j}$ write $j$ as a number in base $b$, where $b$ is prime
- reverse the digits and put a radix point in front
- example: $j=17, b=3: 17$ base 3 is $122, H_{j}=0.221$ base 3
- Halton sequence: intuition
- every time the number of digits in $j$ increases, $H_{j}$ becomes finer-meshed
- the fastest-changing digit in $j$ controls the most significant digit of $H_{j}$


## Quasi-Monte Carlo

- many quasi-random (a.k.a. low-discrepancy) sequences: Halton, Faure, Sobol, Niederreiter, Antonov-Saleev (efficient variant of Sobol) - details in NR and references therein
- non-trivial mathematics involved
- complexity: $(\ln N)^{n} / N$, i.e., almost as $N^{-1}$, with a bit of curvature
- can be orders of magnitude better convergence
- tricky to implement
- beware of USPTO!


## drivers/char/random.c

- Gathering "environmental noise"
- inter-keypress timings from the keyboard
- mouse interrupt timings and position as reported by hardware
- inter-interrupt timings
- not all interrupts are suitable (consider timer)
- finishing time of block requests
- maintain an "entropy pool" mixed with a CRC-like function (fast enough to do on every interrupt)
- random bytes are obtained by taking SHA
- message of length $<2^{64}$ bits $\Rightarrow 160$-bit "digest"
- keep an estimate of "true randomness" in the pool, if zero an attacker has a chance if he cracks SHA


## /dev/random and /dev/urandom

- /dev/random
- will only return a maximum of the number of bits of randomness contained in the entropy pool
- /dev/urandom
- will return as many bytes as are requested, without giving the kernel time to replenish the pool
- acceptable for many applications
- very random, passes DIEHARD (Ts'o: suitable for one-time pads)
- void get_random_bytes(void *buf, int n);
- for use within the kernel
- not very fast, good for seeding, non-portable


## Unpredictable over Reboots

## on shutdown:

seed=/var/run/random-seed
touch \$seed; chmod 600 \$seed
pool=/proc/sys/kernel/random/poolsize
[ -r \$pool ] \&\& bytes='cat \$pool' || bytes=512 dd if=/dev/urandom of=\$seed count=1 bs=bytes on boot:
seed=/var/run/random-seed
[ -f \$seed ] \&\& cat \$seed > /dev/urandom
touch \$seed; chmod 600 \$seed pool=/proc/sys/kernel/random/poolsize
[ -r \$pool ] \&\& bytes=`cat \$pool' || bytes=512 dd if=/dev/urandom of=\$seed count=1 bs=bytes

## Other Interfaces

- sysctl(8)
\# /sbin/sysctl -A $2>/$ dev/null | grep rand kernel.random.uuid $=e 005 e 4 a 2-f d e 0-423 d-8734-0$ a kernel.random.boot_id $=68 e e d c 43-9 a 54-4 a 42-80 d e$ kernel.random.write_wakeup_threshold = 128 kernel.random.read_wakeup_threshold $=8$ kernel.random.entropy_avail = 4096 kernel.random.poolsize $=512$


## Literature

- D. E. Knuth, "The Art of Computer Programming," v. 2, Ch. 3, 3rd ed., Addison Wesley
- W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, "Numerical Recipes", Cambridge University Press
- G. Marsaglia, A. Zaman, "Some Portable Very-Long-Period Random Number Generators," Computers in Physics, v. 8, p. 117 (1994)


## Formal Definition of "Random"

Assume we generated a random sequence

$$
\left\langle U_{n}\right\rangle=U_{0}, U_{1}, \quad U_{2}, \ldots
$$

of real numbers, $0 \leq U_{n}<1$. The sequence is deteministic, but "behaves randomly". What does that mean?
Quantitative definition of "random behaviour" shall list a relatively small number of mathematical properties:

- each property shall satisfy our intuitive notion of random sequence
- the list shall be complete enough for us to agree that any sequence with these properties is "random".
(TAOCP:3.5).


## Equidistributed Sequences

- if $u$ and $v$ are real numbers, $0 \leq u<v \leq 1$, and $U$ is uniformly distributed on $[0,1)$, then $P(u \leq U<v)=v-u$.
- for sequence $\left\langle U_{j}\right\rangle, 0 \leq j<n$ let $\nu(n)$ be the number of $U_{j}$ such that $u \leq U_{j}<v$; if for all $u$ and $v, 0 \leq u<v \leq 1$ we have

$$
\lim _{n \rightarrow \infty} \frac{\nu(n)}{n}=v-u
$$

then the sequence $\left\langle U_{j}\right\rangle$ is equidistributed

- if $\nu(n)$ is the number of cases when statement $S(j)$ is true, we say that $S(n)$ is true with probability $\lambda$, $\operatorname{Pr}(S(n))=\lambda$, if

$$
\lim _{n \rightarrow \infty} \frac{\nu(n)}{n}=\lambda
$$

## Is Equidistributed Random?

No. For instance, it is easy to construct an equidistributed sequence where a number less than $1 / 2$ will always be followed by a number that is greater than $1 / 2$. Such a sequence can be constructed from two other equidistributed sequences, $\left\langle U_{n}\right\rangle$ and $\left\langle V_{n}\right\rangle$ :

$$
\left\langle W_{n}\right\rangle=\frac{1}{2} U_{0}, \frac{1}{2}\left(1+V_{0}\right), \frac{1}{2} U_{1}, \frac{1}{2}\left(1+V_{1}\right), \ldots
$$

The resulting sequence is not random by any reasonable definition (but keep your patience...)

## $k$-distributed Sequences

- 2-distributed sequence:

$$
\operatorname{Pr}\left(u_{1} \leq U_{n}<v_{1} \bigcap u_{2} \leq U_{n+1}<v_{2}\right)=\left(v_{1}-u_{1}\right)\left(v_{2}-u_{2}\right)
$$

- $k$-distributed sequence

$$
\operatorname{Pr}\left(u_{1} \leq U_{n}<v_{1} \bigcap \ldots \bigcap u_{k} \leq U_{n+k-1}<v_{k}\right)=\prod_{j=1}^{k}\left(v_{k}-u_{k}\right)
$$

- an equidistributed sequence is 1 -distributed
- a $k$-distributed sequence is $(k-1)$-distributed
- proof: set $u_{k}=0, v_{k}=1$
- a sequence is $\infty$-distributed if it is $k$-distributed for all positive integers $k$


## Integer (b-ary) Sequences

- $\left\langle X_{n}\right\rangle=X_{0}, X_{1}, \ldots$ is a $b$-ary sequence if each $X_{n}$ is one of the integers $0,1, \ldots, b-1$.
- a $k$-digit $b$-ary number is $x_{1} x_{2} \ldots x_{k}$ where $0 \leq x_{j}<b$ for $1 \leq j \leq k$.
- a $b$-ary sequence is $k$-distributed if for all $b$-ary $x_{1} x_{2} \ldots x_{k}$

$$
\operatorname{Pr}\left(X_{n} X_{n+1} \ldots X_{n+k-1}=x_{1} x_{2} \ldots x_{k}\right)=1 / b^{k}
$$

- if $\left\langle U_{n}\right\rangle$ is $k$-distributed then $\left\langle\left\lfloor b U_{n}\right\rfloor\right\rangle$ is also $k$-distributed (b-ary)
- $k$-distributed ( $b$-ary) is ( $k-1$ )-distributed ( $b$-ary)
- $\pi$ is a 10 -ary sequence: is it $\infty$-distributed? 1-distributed? No one knows...


## Properties of $b$-ary Sequences

- a 1000000-distributed binary sequence will have runs of a million zeroes in a row!
- a 1000000 -distributed $[0,1$ ) sequence will have runs of a million consecutive values less than $1 / 2$ !
- this will happen only $(1 / 2)^{1000000}$ of the time, but it will happen
- intuitively, this will also occur in any "truly random" sequence
- effect for simulations:
- if it happens, one would complain about the RNG
- if it doesn't, then the sequence is not random and will not be suitable for some other applications
- truly random sequences exhibit local non-randomness!


## Further Generalizations

A $[0,1)$ sequence $\left\langle U_{n}\right\rangle$ is $(m, k)$-distributed if
$\operatorname{Pr}\left(u_{1} \leq U_{m n+j}<v_{1} \bigcap \ldots \bigcap u_{k} \leq U_{m n+j+k-1}<v_{k}\right)=\prod_{j=1}^{k}\left(v_{k}-u_{k}\right)$
for all choices of real numbers $u_{r}, v_{r}$, such that
$0 \leq u_{r}<v_{r} \leq 1$ for $1 \leq r \leq k$, and for all integers $j$ such that
$0 \leq j<m$.

- $m=1$ : a $k$-distributed sequence
- $m=2$ : $k$-tuples starting in even positions have the same density as $k$-tuples starting in odd positions


## Further Generalizations (cont.)

- an $(m, k)$-distributed sequence is $(m, l)$-distributed for $1 \leq l \leq k$
- an $(m, k)$-distributed sequence is $(d, k)$-distributed for all divisors $d$ of $m$
- Theorem: $\mathrm{An} \infty$-distributed sequence is ( $m, k$ )-distributed for all positive integers $m$ and $k$ [proof in TAOCP].
- Corollary: An $\infty$-distributed sequence will pass all the interesting statistical tests.
- Generation: Yes, there are algorithms (including at least one by Knuth, cf. TAOCP).


## Is $\infty$-distributed Random?

- Simple definition D1: A $[0,1)$ sequence is defined to be "random" if it is $\infty$-distributed
- uncountably many realizations are not even 1-distributed
- but a random sequence is $\infty$-distributed with probabilty one
- Formal definition D2: A $[0,1)$ sequence $\left\langle U_{n}\right\rangle$ is random if, whenever property $P\left(\left\langle V_{n}\right\rangle\right)$ holds true with probability one for a sequence $\left\langle V_{n}\right\rangle$ of independent samples of a uniform random variable, then $P\left(\left\langle U_{n}\right\rangle\right)$ is also true.
- Are the two definitions equivalent?


## Analysis of D1 and D2

- D1 only deals with $n \rightarrow \infty$, the first million numbers in a $\infty$-distributed series may be zero - can such a sequence be considered random?
- With probability one, a truly random sequence contains infinitely many runs of numbers less than $\epsilon$, for any $\epsilon>0$. This can also happen at the beginning...
- Subsequence $\left\langle U_{n^{2}}\right\rangle$ should also be random. "It ain't necessarily so": if $U_{n^{2}}=0$ for all $n$, the counts $\nu(n)$ are changed by $\sqrt{n}$ at most, and $\lim _{n \rightarrow \infty} \nu(n) / n$ does not change.


## Modifications of D1

- D3: A $[0,1)$ sequence is said to be "random" if each of its infinite subsequences is $\infty$-distributed.
- does not work either: any equidistributed sequence has a monotonic subsequence $U_{s_{0}}<U_{s_{1}}<U_{s_{2}}<\ldots$
- restrict the subsequences so that they could be defined by a person who does not look at $U_{n}$ before deciding whether to include it in the subsequence
- D4: A $[0,1$ ) sequence is said to be "random" if, for every effective algorithm that specifies an infinite sequence of distinct nonnegative integers $\left\langle s_{n}\right\rangle$, the corresponding subsequence $\left\langle U_{s_{n}}\right\rangle$ is $\infty$-distributed.


## Computability Issues

- Computable rules: $\left\langle f_{n}\left(x_{1}, \ldots, x_{n}\right)\right\rangle$, can be 0 or 1 . $X_{n}$ is in subsequence if and only if $f_{n}\left(X_{0}, \ldots, X_{n-1}\right)=1$.
- Let's restrict ourselves to computable rules for generating subsequences. Computable rules don't deal well with arbitrary real inputs though — better switch to integer sequences:
- D5: A $b$-ary sequence is said to be "random" if every infinite subsequence defined by a computable rule is 1-distributed. A $\left[0,1\right.$ ) sequence $\left\langle U_{n}\right\rangle$ is said to be "random" if $\left\langle\left\lfloor b U_{n}\right\rfloor\right\rangle$ is "random" for all integers $b \geq 2$.
- NB: D5 says, 1-distributed, not $\infty$-distributed!
- $\infty$-distributivity can be derived from D5.
- Remaining problem: $\left\langle s_{n}\right\rangle$ is monotonic for computable rules - does not correspond to D4


## Mathematical Randomness - At Last

- D6: A $b$-ary sequence is said to be "random" if, for every effective algorithm that specifies an infinite sequence of distinct nonnegative integers $\left\langle s_{n}\right\rangle$ and the values $X_{s_{0}}, X_{s_{1}}, \ldots, X_{s_{n-1}}$, the corresponding subsequence $\left\langle X_{s_{n}}\right\rangle$ is "random" in the sense of D5. A $[0,1)$ sequence $\left\langle U_{n}\right\rangle$ is said to be "random" if $\left\langle\left\lfloor b U_{n}\right\rfloor\right\rangle$ is "random" for all integers $b \geq 2$.
- Knuth's conjecture: D6 "meets all reasonable philosophical requirements for randomness".
- TAOCP for more...

