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Introduction 

Clinical neuropsychologists make a unique contribution to the assessment of 

clients with neurological or psychiatric disorders.  Firstly, they can call on their 

specialised knowledge of sophisticated models of the human cognitive architecture when 

arriving at a formulation.  Secondly, they have expertise in quantitative methods for both 

the measurement of cognitive and behavioural functioning and for the interpretation of 

resultant findings.  This chapter will set out the basics of these quantitative methods. 

Among the topics covered will be the pros and cons of the various metrics for 

expressing test scores, the use of reliability information in assessment, the distinction 

between the reliability and the abnormality of test scores and test score differences, and 

the measurement of change in the individual case.  Finally, the role of measures of 

intelligence in neuropsychological assessment will be considered, as will methods for 

estimating premorbid intelligence. 

 

Metrics for expressing test scores 

 In constructing a neuropsychological profile of a client’s strengths and 

weaknesses most clinicians use instruments drawn from diverse sources.  These 

instruments will differ from each other in the metric used to express test scores (in 

extreme cases no formal metric will have been applied so that clinicians will be working 

from the means and SDs of the raw scores from normative samples).  The process of 

assimilating the information from these tests is greatly eased if the scores are all 

converted to a common metric (Crawford et al., 1998c; Lezak, 1995).   

 Converting all scores to percentiles has the important advantage that percentiles 

directly express the rarity or abnormality of an individual's score.  In addition, percentiles 

are easily comprehended by other health workers.  However, because such a conversion 

involves an area (i.e. non-linear) transformation they are not ideally suited for the rapid 
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and accurate assimilation of information from a client’s profile.  For example, as scores 

on most standardized tests are normally distributed, the difference between a percentile 

score of 10 and 20 does not reflect the same underlying raw score (or standard score) 

difference as that between 40 and 50.  In addition, percentiles are not a suitable metric for 

use with most inferential statistical methods.  Expressing scores as percentiles can 

however be a useful fall-back option when raw scores depart markedly from a normal 

distribution and a normalising transformation cannot be found (such as when skew is 

acute and there is a limited number of scale points). 

Z scores are a simple method of expressing scores and do not suffer from the 

limitations outlined above.  However, they have the disadvantage of including negative 

values and decimal places which makes them awkward to work with and can cause 

problems in communication.  It is also important to be aware that simply converting raw 

scores to standard or z scores has no effect on the shape of the distribution.  If the raw 

scores are normally distributed (as will normally be the case with standardized tests) then 

so will the resultant z scores.  However, if raw scores are skewed (i.e., the distribution is 

asymmetric), as may be the case when working with raw scores from a non-standardized 

measure, then the z scores will be equally skewed.  In contrast, normalized z scores, as 

the term suggests, are normally distributed.  There are a number of methods employed to 

normalize distributions; a common method is to convert raw scores to percentiles then 

convert the percentiles to normalized z scores by referring to a table of the areas under the 

normal curve (or using a computer package to the same effect).  For example, if a raw 

score corresponds to the 5th percentile then the corresponding normalized z score is -1.64. 

 McKinlay (1992) suggested converting all scores to have a mean of 100 and SD 

of 15 as tests commonly forming a part of the neuropsychologist’s armamentarium are 

already expressed on this metric; e.g., IQs and Indexes on the Wechsler Adult 

Intelligence Scale-3rd Edition (WAIS-III; Wechsler, 1997a), memory indices from the 
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Wechsler Memory Scale-3rd Edition (WMS-III; Wechsler, 1997b) and estimates of 

premorbid ability such as the National Adult Reading Test (NART; Nelson & Willison, 

1991).  A common alternative is to use T scores (mean=50, SD=10) which have much to 

recommend them.  The gradation between T scores is neither too coarse, so that 

potentially meaningful differences between raw scores are obscured (such as would 

commonly be the case with sten scores in which a difference of one unit corresponds to 

0.5 of a SD), nor too finely graded, so as to lend a spurious air of precision (for T scores, 

a difference of one unit corresponds to 0.1 of a SD).  The meaning of T scores is also easy 

to communicate and are free of the conceptual baggage associated with IQs (Lezak, 

1995). 

 With the exception of percentiles (which, as noted, involves a non-linear 

transformation) conversion of scores expressed on any of these different metrics can be 

achieved using a simple formula (the formula is generic in that it can be used to convert 

scores having any particular mean and SD to scores having any other desired mean and 

SD): 

 � �new
new old old new

old

,sX X X
s

� � � X  (1) 

where  = the transformed score,  = the original score, newX oldX olds  = the standard 

deviation of the original scale, news  = the standard deviation of the metric you wish to 

convert to, oldX  = the mean of the original scale, and newX  = the mean of the metric you 

wish to convert to.  Much of the time this formula is superfluous as the mapping of one 

metric on to another is straightforward (e.g., no thought is required to transform an IQ of 

115 to a T score of 60).  However, if a clinician is regularly converting large numbers of 

test scores, then entering the formula into a spreadsheet can save time and reduce the 

chance of clerical errors. 
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 Regardless of which method is used to express score on a common metric, the 

clinician must be aware that the validity of any inferences regarding relative strengths 

and weaknesses in the resultant profile of scores is heavily dependent on the degree of 

equivalence of the normative samples involved.  Although the quality of normative data 

for neuropsychological tests has improved markedly, there are still tests used in clinical 

practice that are normed on small samples of convenience.  Thus, discrepancies in an 

individual’s profile may in some cases be more a reflection of differences between 

normative samples than differences in the individual’s relative level of functioning in the 

domains covered by the tests. 

 

Reliability 

 Adequate reliability is a fundamental requirement for any instrument used in 

neuropsychology regardless of purpose.  However, when the concern is with assessing 

the cognitive status of an individual its importance is magnified; particularly as clinicians 

frequently need to arrive at a formulation based on information from single 

administrations of each instrument (Crawford et al., 1998c). 

 The reliability coefficient represents the proportion of variance in test scores that 

is true variance.  Thus, if a test has a reliability of 0.90, 90% of the variance reflects real 

differences between individuals and 10% reflects measurement error.  Information on test 

reliability is used to quantify the degree of confidence that can be placed in test scores 

e.g., when comparing an individual’s scores with appropriate normative data, or assessing 

whether discrepancies between scores on different tests represent genuine differences in 

the functioning of the underlying components of the cognitive system, as opposed to 

simply reflecting measurement error in the tests employed to measure the functioning of 

these components.  In the latter case, i.e. where evidence for a dissociation or differential 

deficit is being evaluated, it is important to consider the extent to which the tests are 
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matched for reliability; an apparent deficit in function A with relative sparing of 

function B may simply reflect the fact that the measure of function B is less reliable. 

This point was well made in a classic paper by Chapman & Chapman (1973) in 

which the performance of a schizophrenic sample on two parallel reasoning tests was 

examined.  By manipulating the number of test items, and hence the reliability of the 

tests, the schizophrenic sample could be made to appear to have a large differential 

deficit on either of the tests.  Particular care should be taken in comparing test scores 

when one of the measures is not a simple score but a difference (or ratio score).  Such 

measures will typically have modest reliability (the measurement error in the individual 

components that are used to form the difference score is additive).  

The standard error of measurement (SEM) is the vehicle used to convert a test's 

reliability coefficient into information that is directly relevant to the assessment of 

individuals.  The SEM can be conceived of as the standard deviation of obtained scores 

around an individual's hypothetical true score that would result from administering an 

infinite number of parallel tests.  The formula for the SEM is 

 SEM 1x xxs r� � , (2) 

where xs = the standard deviation of scores on test X, and  is the test's reliability 

coefficient.  As noted, the reliability coefficient is the proportion of variance that is true 

variance; therefore subtracting this from unity gives us the proportion of variance that is 

error variance (i.e., measurement error).  But we want to obtain the standard deviation of 

errors (rather than the variance) on the metric used to express the obtained scores.  

Therefore we take the square root of this quantity and multiply it by the SD of obtained 

scores.  

xxr

 The SEM allows us to form a confidence interval (CI) on a score.  Most authorities 

on psychological measurement stress the use of these intervals (e.g., Nunnally & 
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Bernstein, 1994); they serve the general purpose of reminding us that all test scores are 

fallible and serve the specific purpose of allowing us to quantify the effects of this 

fallibility.  Confidence intervals are formed by multiplying the SEM by the standard 

normal deviate corresponding to the desired level of confidence.  Therefore, for a 95% 

CI, the SEM is multiplied by 1.96.  To illustrate, if an individual obtained a score of 80 

on a test and the SEM was 5.0, then the (rounded) confidence interval would be 80+10; 

i.e., the interval would range from 70 to 90. 

 There is however a slight complication: many authorities on measurement have 

argued that the confidence interval should be centred round the individual's estimated 

true score rather than their obtained score (e.g., Nunnally & Bernstein, 1994; Stanley, 

1971).  The estimated true score is obtained by multiplying the obtained score, in 

deviation form, by the reliability of the test, 

 � �Estimated true score xxr X X X� � � , (3) 

where X is the obtained score and X  is the mean for the test.  The estimated true score 

represents a compromise between plumping for an individual being at the mean (which is 

our best guess if we had no information) and plumping for them being as extreme as the 

score they obtained on the particular version of the test on the particular occasion on 

which they were tested.  The more reliable the test, the more we can trust the score and 

therefore the less the estimated true score is regressed to the mean. 

 To extend the previous example, suppose that the mean of the test in question was 

100 and the reliability coefficient was 0.7.  Therefore the estimated true score is 84 and, 

using this to centre the CI, we find that it ranges from 74 to 94.  Before leaving this topic 

it can be noted that this confidence interval does not encompass the mean of the test; 

therefore it can be concluded that the individual's level of ability on the test is reliably 

below the mean level of ability. 
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As noted, a central aim in neuropsychological assessment is to identify relative 

strengths and weaknesses in a client's cognitive profile; as a result clinicians will 

commonly be concerned with evaluating test score differences.  One question that can be 

asked of any difference is whether it is reliable, i.e., whether it is unlikely to simply 

reflect measurement error.  To answer this question requires the standard error of 

measurement of the difference.  When we are only concerned with comparing a pair of 

test scores then one formula for this quantity is as follows 

 2SEM SEM SEMX Y X Y�

� �
2 . (4) 

To use this formula the two scores must already be expressed on the same metric or 

transformed so that they are.  The SE can be multiplied by a standard normal 

deviate corresponding to the required level of significance to obtain a critical value (i.e., 

multiplying by 1.96 gives the critical value for a reliable difference at the 0.05 level, 

two-tailed).  If the difference between a client's scores exceeds this critical value it can be 

concluded that the scores are reliably different.  This is the method usually employed in 

test manuals.  Alternatively, the difference between the client's scores can be divided by 

the S to yield a standard normal deviate and the precise probability determined 

using a table of areas under the normal curve.  To illustrate both methods, suppose that 

the SEM for Tests X and Y are 3.0 and 4.0 respectively; therefore the S is 5.0 and 

the critical value is 9.8.  Further suppose that a client's scores on Tests X and Y were 104 

and 92 respectively.  The difference (12) exceeds the critical value; therefore the scores 

are reliably different (p< .05).  Alternatively, dividing the difference by the  

yields a z of 2.4 and reference to a table of the normal curve reveals that the precise (two-

tailed) probability that this difference occurred by chance is 0.016.  

M X Y�

EMX Y�

EMX Y�

SEMX Y�

The method outlined is concerned with testing for a difference between a client's 

obtained scores.  An alternative (but less common) method is to test for a reliable 
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difference between estimated true scores; see Silverstein (1989) and Crawford et al. 

(2003) for examples of this latter approach.  

Formula (4) is for comparing a client's scores on a single pair of tests.  However, 

in a typical neuropsychological assessment many tests will have been administered.  This 

leads to a large number of potential pairwise comparisons.  For example, if 12 tests have 

been administered then there are 66 potential pairwise comparisons.  Even with a 

relatively modest number of tests the process of assimilating this information on 

differences is formidable (particularly when it has to be integrated with all the other data 

available to the clinician).  It can be also be readily appreciated that, when a large number 

of comparisons are involved, there will be an increase in the probability of making Type I 

errors (in this context a Type I error would occur if we concluded that there was a 

difference between a client's scores when there is not).  Limiting the number of pairwise 

comparisons does not get round this problem, unless the decision as to which tests will be 

compared is made prior to obtaining the test results; if the clinician selects the 

comparisons to be made post-hoc on the basis of the magnitude of the observed 

differences then this is equivalent to having conducted all possible comparisons. 

A useful solution to these problems was proposed independently by Silverstein 

(1982) and Knight and Godfrey (1984).  In their approach a patient's score on each of k 

individual tests is compared with the patient's mean score on the k tests (just as is the case 

when comparing a pair of tests, all the tests must be expressed on the same metric or 

transformed so that they are).  It can be seen that with 12 tests there are 12 comparisons 

rather than the 66 involved in a full pairwise comparison.  Another feature of this 

approach is that a Bonferroni correction is applied to maintain the overall Type I error 

rate at the desired level.  This approach has been applied to the analysis of strengths and 

weaknesses on the subtests of the Wechsler intelligence scales, including the WAIS-III 

(see Table B.3 of the WAIS-III manual).  It has also been applied to various other tests; 
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e.g., Crawford et al. (1997b) have applied it to the Test of Everyday Attention 

(Robertson et al., 1994).  

 

Reliability versus abnormality of test scores and test score differences 

 The distinction between the reliability and the abnormality of test scores and test 

score differences is an important one in clinical neuropsychology.  As noted, if the 

confidence interval on a client's score does not encompass the mean of the test then we 

can consider it to be reliably different from the mean (i.e., a difference of this magnitude 

is unlikely to have arisen from measurement error).  However, it does not follow from 

this that the score is necessarily unusually low (i.e., rare or abnormal), nor that the score 

reflects an acquired impairment. 

Provided that the normative sample for a test is large (see next section), 

estimating the abnormality of a test score is straightforward.  If scores are expressed as 

percentiles then we immediately have the required information; e.g., if a client's score is 

at the 5th percentile then we know that 5% of the population would be expected to obtain 

lower scores.  If scores are expressed on other metrics we need only refer to a table of the 

normal curve.  For example, a T score of 30 or an IQ score of 70 are exactly 2 SDs below 

the mean (i.e., z = -2.0) and therefore only 2.3% of the population would be expected to 

obtain lower scores (experienced clinicians will have internalised such information and 

so will rarely need to consult a table).   

Most of the confusion around the distinction between the reliability and 

abnormality of test scores seems to arise when the focus is on differences between an 

individual's scores.  Methods of testing for reliable differences between test scores were 

covered in the previous section.  However, establishing if a difference is reliable is only 

the first step in neuropsychological profile analysis.  There is considerable intra-

individual variability in cognitive abilities in the general population such that reliable 
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differences between tests of different abilities are common; indeed, if the reliabilities of 

the tests involved are very high, then such differences may be very common.  Therefore, 

when evaluating the possibility that a difference between scores reflects acquired 

impairment, evidence on the reliability of the difference should be supplemented with 

information on the abnormality or rarity of the difference.  That is, we need to ask the 

question "what percentage of the healthy population would be expected to exhibit a 

discrepancy larger than that exhibited by my client?" 

 To highlight the distinction between the reliability and abnormality of a difference 

take the example of a discrepancy between the Verbal and Perceptual Organization 

Indexes of the WAIS-III.  Consulting Table B.1 of the WAIS-III manual it can be seen 

that a discrepancy of 10 points would be necessary for a reliable difference (p<0.05).  

However, such a discrepancy is by no means unusual; from Table B.2 we can see that 

42% of the general population would be expected to exhibit a discrepancy of this 

magnitude.  If we define an abnormal discrepancy as one that would occur in less than 

5% of the general population, then a 26 point discrepancy would be required to fulfill this 

criterion. 

 Base rate data on differences between test scores such as that contained in Table 

B.2 of the WAIS-III manual are available for a number of tests used in neuropsychology.  

An alternative to this empirical approach is to estimate the degree of abnormality of a 

discrepancy using a formula provided by Payne and Jones (1957).  This formula will be 

described briefly below so that clinicians understand it when they encounter it in the 

literature and can use it themselves when the necessary summary statistics are available 

for a healthy sample.  The method can be employed when it is reasonable to assume that 

the scores are normally distributed and requires only the means and SDs of the two tests 
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plus their intercorrelation ( ).  The first step is to convert the individual's scores on 

the two tasks to z scores and then enter them into the formula, 

xyr

 
2 2
X Y

D
xy

z zz
r

�

�

�

 (5) 

This formula is very straightforward.  The denominator is the standard deviation of the 

difference between scores when the scores are expressed as z scores.  The numerator 

instructs us to subtract the individual's z score on Test X from their z score on Test Y.  In 

the numerator the difference between the individual's z scores are subtracted from the 

mean difference in controls.  However, the mean difference between z scores in the 

controls is necessarily zero and therefore need not appear.  In summary, the difference 

between z scores is divided by the standard deviation of the difference to obtain a z score 

for the difference. 

This z score ( Dz ) can then be referred to a table of the areas under the normal 

curve to provide an estimate of the proportion or percentage of the population that would 

exhibit a difference more extreme than the patient.  For example, suppose scores on tests 

of verbal and spatial short-term memory were expressed as T scores, further suppose that 

the correlation between the tasks is 0.6 and that a patient obtained scores of 55 and 36 

respectively.  Therefore the patient's z scores on the tasks are 0.50 and –1.40, the 

difference is 1.90, the SD for the difference is 0.894, and so Dz = 2.13.  Referring to a 

table of the normal curve reveals that only 3.32% of the population would be expected to 

exhibit a difference larger than that exhibited by the patient (1.66% if we concern 

ourselves only with a difference in the same direction as the patient’s). 

It is also possible to assess the abnormality of discrepancies between a client's 

mean score on k tests and her/his scores on each of the tests contributing to that mean 

(Silverstein, 1984).  This method complements the method discussed in the previous 
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section that was concerned with the reliability of such discrepancies; it has the same 

advantage of reducing the comparisons to a manageable proportion.  Silverstein’s 

formula estimates the degree of abnormality from the statistics of a normative sample, an 

alternative is to generate the base rate data empirically (this latter approach is used for the 

WAIS-III). 

 The importance of evaluating the abnormality of discrepancies through the use of 

base rate data or methods such as the Payne and Jones formula cannot be overstressed.  

Most clinical neuropsychologists have not had the opportunity to administer 

neuropsychological measures to significant numbers of individuals drawn from the 

general population.  It is possible therefore to form a distorted impression of the degree of 

intra-individual variability found in the general population; the indications are that 

clinicians commonly underestimate the degree of normal variability leading to a danger 

of over-interference when working with clinical populations (Crawford et al., 1998c). 

 

Assessing the abnormality of test scores and test score differences when normative or 

control samples are small. 

In the procedures just described for assessing the abnormality of scores and score 

differences the normative sample against which a patient is compared is treated as if it 

were a population; i.e., the means and SDs are used as if they were population parameters 

rather than sample statistics.  When the normative sample is large (e.g., such as when a 

patient's score or score difference is compared against normative data from the WAIS-III 

or WMS-III) this is not a problem as the sample provides very good estimates of these 

parameters.  

However, there are a number of reasons why the neuropsychologists may wish to 

compare the test scores of an individual with norms derived from a small sample.  For 

example, although the quality of normative data has improved in recent years, there are 
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still many useful neuropsychological instruments that have modest normative data.  

This is not surprising; advances in neuropsychological theory occur at a rapid rate 

whereas the process of devising practical measures of new constructs and obtaining 

norms from a large and representative sample is a time-consuming and arduous process.  

Furthermore, even when the overall N for a normative sample is reasonably large, the size 

of the actual sample (n) against which an individual’s score is compared can be small if 

the normative data have been broken down by demographic characteristics (e.g., age 

and/or gender). 

 Therefore, there is a need for methods that are suitable for use with small 

normative samples.  This need is perhaps most apparent when one considers single-case 

research in neuropsychology.  The resurgence of interest in single-case studies has led to 

significant advances in our understanding of normal and pathological cognitive function 

(e.g., see Ellis & Young, 1996).  However, in the typical single-case study the sample 

size of the control or normative sample recruited for comparison purposes is often < 10 or 

even < 5; it is inadvisable to treat samples of this size as though they were a population 

yet this is what is commonly done (Crawford & Howell, 1998a).  The most common 

method of comparing a patient against such samples is to convert the patient's score to a z 

score and refer it to a table of the normal curve.  This gives an estimate of the 

abnormality of the score but is also used as an inferential statistical method, i.e., if the z 

score exceeds a specified critical value then the patient's score is considered to be 

significantly different from controls.  However, because this approach treats the control 

sample statistics as parameters, it overestimates the abnormality of the score and 

increases Type I errors. 

The solution is to use a modified t-test to conduct such comparisons as this 

method treats the control sample as a sample (Crawford & Howell, 1998a).  Crawford et 

al. (1998a) extended this approach to allow neuropsychologists to estimate the 
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abnormality of the difference between a patient's scores on a pair of tests and to test 

whether the patient’s difference is significantly different from the differences observed in 

a control or normative sample (this method is the equivalent of the Payne and Jones 

method but is not constrained by the need for a large normative sample). 

This test can be used to provide an operational definition of a dissociation.  The 

typical existing definitions of a classical dissociation are not stringent as they require 

only that a patient is “impaired” on Task X and “normal” or “within normal limits” on 

Task Y.  One half of this typical definition requires us to prove the null hypothesis (we 

must demonstrate that a patient is not different from the controls), whereas, as is well 

known, we can only fail to reject it.  Further, a patient’s score on the impaired task could 

lie just below the critical value for defining impairment and the performance on the other 

test lie just above it.  That is, the difference between the patient’s relative standing on the 

two tasks of interest could be very trivial.  A test on the difference between scores 

overcomes both these problems. 

Crawford and Garthwaite (2002) have further extended these methods by 

providing a means of establishing confidence intervals on the abnormality of a score or 

score difference.  These intervals quantify the uncertainty arising from using sample 

statistics to estimate population parameters and, in combination with the methods 

discussed above, provide clinicians or researchers with information of the form “the 

estimated percentage of the healthy population that would obtain a score (or score 

difference) lower than the patient is 2.1% and the 95% CI on the percentage is from 0.2% 

to 6.7%”.  Computer programs that implement all of the methods covered in this section 

are available; see Crawford & Garthwaite (2002) for details. 

 

Detecting change in neuropsychological functioning in the individual case 
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 There are many situations in which the neuropsychologist needs to measure 

potential changes in cognitive functioning.  Common examples would be to determine 

whether cognitive decline has occurred in an individual in whom a degenerative 

neurological process is suspected, or to determine the extent of recovery of function 

following a stroke or traumatic brain injury.  In both these cases neuropsychological 

assessment will provide useful information to assist clients, relatives and other health 

professionals to plan for the future.  Monitoring the cognitive effects of surgical, 

pharmacological or cognitive interventions in the individual case is also an important role 

for the neuropsychologist.  Although the aim here is most commonly to determine if there 

has been any improvement, the possibility of detrimental effects can also often be an 

issue.  For example, many drugs can potentially impair cognitive functioning, particularly 

in the elderly.  

 In assessing the effectiveness of a rehabilitation effort it is often possible to obtain 

multiple repeated measures of an individual’s performance before, during and after 

intervention (see Wilson, 1987).  A number of inferential statistical techniques can be 

used in this situation because there are multiple data points for the different phases.  

However, in general clinical practice the neuropsychologist often must come to 

conclusions about change from only a single retesting.  This situation will also arise in 

rehabilitation settings; although multiple measures may have been obtained on the 

training task(s), the issue of the generalisability of any improvement is often addressed by 

comparing single before-and-after scores on related but separate tests. 

 Monitoring change on the basis of a single retesting is a formidable task except in 

cases where the level of change has been dramatic. It is rendered more formidable by the 

fact that many of the standard instruments currently used in clinical neuropsychology do 

not have parallel or analogue versions.  This is a particular problem for tests of executive 

function, which often depend on novelty for their effectiveness. 
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The clinician must differentiate changes resulting from systematic practice 

effects and random measurement error from change reflecting genuine improvement or 

deterioration.  Amongst other complications are the fact that (1) the magnitude of practice 

effects vary with the nature of the task; for example tasks with a psychomotor component 

tend to have larger practice effects than tasks that do not, (2) the length of time that has 

elapsed between test and retest is liable to influence the magnitude of effects, and (3) a 

diminution of practice effects is to be expected in neurological populations (given the 

high prevalence of memory and learning deficits) but the expected diminution is difficult 

to estimate for individuals. 

 One approach to dealing with some, although not all, of these considerable 

interpretive problems is to use regression to predict scores at retest from scores on initial 

testing.  An individual's predicted score is compared with the retest score actually 

obtained to assess whether the observed gain or decline significantly exceeds that 

expected by chance.  This can be achieved by dividing the difference between predicted 

and obtained scores by the equation's standard error of estimate to obtain a z for the 

difference1. 

The utility of this approach is determined by the extent and nature of retest studies 

available for a particular test.  For example, the test-retest scores on memory tasks for an 

elderly client with suspected dementia could be compared with estimated retest scores 

derived from a healthy, elderly sample retested after a similar period to gauge how 

atypical any decline may be.  For some questions equations derived from a clinical 

sample may be used.  For example, a head-injured client's scores on measures of attention 

or speed of processing could be compared with estimated retest scores from a 

head-injured sample if the clinician suspects that the extent of recovery is atypical. 
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 An excellent example of the regression-based approach is provided by Temkin 

et al. (1999).  Using a healthy sample (N=384), these authors built regression equations to 

predict performance at retest for a large number of tests commonly used in clinical 

neuropsychology.  The regression-based approach compared favourably with alternative 

approaches (e.g., Jacobson, 1991).  This study also serves to illustrate a further point; if 

other variables (e.g., age or years of education) moderate the relationship between initial 

performance and performance at retest, these variables can simply be incorporated into 

the equations to improve the accuracy of prediction. 

It is not necessary for the clinician to have access to existing equations to make 

use of regression to assess change.  If basic summary data are available from a sample 

retested on a neuropsychological measure then an equation can be built with relative 

ease; all that is required is the correlation between scores at test and retest and the means 

and SDs of these scores.  The relevant formulae for obtaining a regression equation and 

its associated standard error of estimate can be found in most statistics textbooks (e.g., 

Howell, 2002).   

 

The role of measures of intelligence in neuropsychological assessment 

Lezak (1988) has described the Wechsler intelligence scales as the "the workhorse 

of neuropsychological assessment" and noted that it is the single most utilized component 

of the neuropsychological repertory" (p. 53).  In the UK, the British Psychological 

Society proposed that Wechsler IQ cut-off scores should be used as the sole formal 

criteria for the legal definition of mental impairment (Alves et al., 1991). 

The most recent incarnation of these scales is the WAIS-III and its UK edition 

(WAIS-IIIUK; Wechsler et al., 1998).  The WAIS-III has many of the strengths of its 

                                                                                                                                                                             
1 This method is used widely in clinical neuropsychology but provides only an approximation to the 
technically correct method.  However, in practice, the approximation is adequate unless the sample used to 
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predecessors, including a large and highly representative standardisation sample, and 

very impressive levels of reliability.  For example, the reliability of the WAIS-III Full 

Scale IQ is 0.98 (therefore only 2% of the variance in scores is error variance); this 

compares very favourably with the reliability of most medical testing procedures.  

The WAIS-III also has a number of advantages over earlier editions.  These 

include an upward extension of the age range (norms are available to cover ages 16 to 89) 

and an increased ability to differentiate at the lower end of ability (i.e., there has been a 

downward extension of measurable IQ to 54).  In addition, the inclusion of the Matrix 

Reasoning subtest has bolstered the measurement of fluid ability and contributes to the 

lesser emphasis on timed performance in determining scores (there are also lesser time 

bonuses on some existing subtests).  A minor but welcome change is that subtest scaled 

scores are age-corrected (previously the clinician had to convert to scaled scores to derive 

IQs and age-graded scaled scores if they wanted to examine strengths and weaknesses at 

the subtest level). 

Perhaps the most significant improvement is the inclusion of factor-based 

composite measures (i.e., the Indexes) as alternatives to IQs.  Two of these indexes also 

represent attempts to measure constructs that are of great theoretical importance in 

neuropsychology and cognitive psychology, namely working memory (Baddeley & 

Hitch, 1994) and speed-of-processing (e.g. Salthouse, 1991).   

One limitation of earlier versions of the Wechsler scales was that they did not 

have parallel versions.  Although a full parallel version is still not available for the 

WAIS-III, the development of the Wechsler Abbreviated Scale of Intelligence (WASI; 

Wechsler, 1999) means that there are now parallel versions for four of the subtests 

(Vocabulary, Similarities, Block Design, and Matrix Reasoning).  The WASI is also 

 
generate the equation is very small; see Crawford & Howell (1998b) for details. 
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useful in its own right as a short-form when clinical considerations rule out use of a full 

WAIS-III. 

Given that the WAIS-III performance can be analysed at the level of IQs, Indexes 

and subtests, it is appropriate to consider what the primary level of analysis should be.  

Lezak (1988) argued that IQs obscure clinically important strengths and weaknesses and 

suggested that the solution was to focus on the subtest profile.  Few clinical 

neuropsychologists would disagree with the first half of this position but issue could be 

taken with the proposed solution.  A number of authors have argued that the primary 

level of analysis should be at the level of factorially derived indexes (e.g., Atkinson, 

1991; Crawford et al., 1997a). 

In the present author's view the arguments in favour of Indexes are compelling.  

The indexes are empirically derived, whereas the subtests comprising the Verbal and 

Performance IQs were allocated to these scales on intuitive grounds.  Factor analysis of 

the WAIS-III and its predecessors have consistently found that the ability dimensions 

underlying the Wechsler fail to map on to the VIQ and PIQ scales; three factors emerge 

on the WAIS-R (subtests from both the VIQ and PIQ scales load on the third factor).  

Four factors emerge on the WAIS-III, reflecting the addition of an additional speeded 

measure (Symbol Search) to accompany Digit Symbol.  Furthermore, the factor structure 

has proven itself to be surprisingly robust; the same factors emerge across cultures and 

across healthy versus clinical populations (Atkinson, 1991). 

Evidence of the superior clinical utility of factor-based indexes over IQs is 

provided by Crawford et al's. (1997a) study of WAIS-R performance following head-

injury.  Their head-injured (HI) sample (N=233) exhibited highly significant and broadly 

equivalent deficits on VIQ and PIQ.  In contrast to this uninformative pattern, 

examination of the indexes revealed that the HI sample did not differ significantly from 

controls on the Verbal Index (despite high statistical power) but exhibited a very 



 20
substantial deficit on the attention/concentration index (now termed Working Memory 

in the WAIS-III).  This pattern of spared and severely compromised abilities was hidden 

within the VIQ scale because it represents an amalgam of variance reflecting well 

consolidated verbal abilities (as indexed by the Verbal index), and attention/concentration 

or working memory (Arithmetic and Digit Span contribute strongly to this index).  

Furthermore, discriminant function analysis revealed that VIQ and PIQ did not improve 

differentiation of the HI sample from healthy controls (N=356) over that achieved by 

FSIQ alone (i.e., the VIQ/PIQ discrepancy was not useful).  In contrast, the factor-based 

indexes achieved significantly better discrimination than the IQ scales.   

The primary advantage of the Indexes over individual subtests is that they have 

superior reliability.  The reliability of a composite will normally substantially exceed that 

of its individual components (i.e., the subtests) if these components are correlated with 

each other.  Substantial difference among individual subtests is not uncommon in the 

healthy unimpaired population because of measurement error and also because each 

subtest has a proportion of unique (but not necessarily clinically important) variance 

associated with it in addition to variance that reflects the common underlying factor.  

Such extreme differences in normals are less likely at the level of Indexes (because they 

are composites); therefore, when large differences are observed, they are more likely to 

be of clinical significance.  Empirical evidence of this was provided by Crawford et al's 

(1997a) study of HI; the factor-based indexes achieved vastly superior discrimination 

between healthy and HI cases than indexes of subtest scatter (these latter indexes 

quantified the overall level of intra-individual variability in subtest scores).  Indeed, 

counter to expectations, the head-injured sample exhibited no more subtest scatter than 

healthy controls. 

The arguments and evidence reviewed above suggest that clinical interpretation of 

strengths and weaknesses on the WAIS-III should primarily be conducted at the level of 
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the Indexes.  As previously noted, Table B.1. of the manual allows clinicians to 

examine the reliability of differences between Indexes and Table B.2 allows them to 

assess the abnormality of the differences.  In addition, a fundamental role for the 

WAIS-III in neuropsychological assessment is to provide context for interpretation of 

other tests results.  As Crawford et al. (1997a) note, the Wechsler provides “broad 

indicators of current functioning against which more specific neuropsychological 

measures are compared” (p. 352).  The evidence and arguments reviewed above also 

suggests that Indexes, rather than the IQs, should fulfill this role.  

 

Methods for estimating premorbid ability 

The detection and quantification of cognitive impairment in the individual case is 

problematic because of the wide variability in cognitive abilities in the general adult 

population.  Scores on cognitive measures that are average, or even above average, can still 

represent a significant impairment for an individual of high premorbid ability.  Conversely, 

for individuals with modest premorbid resources, test scores that fall well below the mean 

may be entirely consistent with their prior level of functioning.  Because of this, simple 

normative comparison standards are of limited utility in the detection of impairment, and 

are supplemented with individual comparison standards when attempting to assess acquired 

deficits (Crawford et al., 1998c; Lezak, 1995; O'Carroll, 1995).  Ideally, these individual 

standards would be obtained from cognitive test scores obtained in the premorbid period.  

However, this is rarely a viable option as most individuals have had no prior formal testing 

and even where they have, it is difficult or impossible to obtain the results.  Because of 

these difficulties, clinicians and researchers normally have to settle for some means of 

estimating an individual’s premorbid ability.  

The most common means of obtaining such an estimate is to use a measure of 

present ability that is relatively unaffected by neurological or psychiatric disorder.  
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Currently, the test most widely used for this purpose is the National Adult Reading Test 

(NART; Nelson & Willison, 1991).  The NART is a 50 item single word reading test of 

graded difficulty.  It is argued that the NART makes minimal demands on current cognitive 

capacity because it requires only oral reading of short, single words (Nelson & O'Connell, 

1978).  In addition, all the words are irregular; i.e. they violate grapheme–phoneme 

correspondence rules (e.g., ache, thyme, topiary).  The supposition is that, as a result, the 

test depends on prior or premorbid ability because a testee must have prior knowledge of a 

word’s pronunciation; deployment of current cognitive resources (e.g., the intelligent 

application of grapheme-phoneme correspondence rules) will not result in a correct 

pronunciation. 

To be considered valid, any putative measure of premorbid intelligence must fulfil 

three criteria (Crawford, 1992).  Firstly, like any psychological test, it must possess 

adequate reliability.  Secondly, it must have adequate criterion validity, that is, it must 

correlate highly with measures of psychometric intelligence.  Thirdly, performance on the 

measure must be largely impervious to the effects of neurological or psychiatric disorder.  

The NART fulfils the first criterion in that it possesses high internal consistency, test-retest 

reliability, and inter-rater reliability (Crawford, 1992; O'Carroll, 1995).   

The results from studies that have addressed the criterion validity of the NART have 

also been generally positive.  For example, in UK studies the NART predicted between 55% 

and 72% of the variance in FSIQ as measured by the WAIS and WAIS-R (see Crawford, 

1992; O'Carroll, 1995).  The NART also predicts a substantial proportion of the variance in 

most of the IQs and Indexes of the WAIS-III (Crawford et al., submitted). 

A feature of all these studies is that, although the NART is intended to measure 

prior or premorbid intelligence, the criterion validity information they provide is based 

solely on concurrent administration of the NART and an IQ measure.  Therefore, it is 

important to know whether the criterion validity of the NART is equally impressive when it 
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is compared against a criterion that genuinely represents prior ability.  Crawford et al. 

(2001a) administered the NART to a sample of 77 year olds (N = 197) and reported that it 

retrospectively accounted for 53% of the variance in the IQ scores obtained by this sample 

at age 11 (i.e., 66 years previously).  Furthermore, the NART’s correlation with prior IQ 

was higher than its correlation with IQ measured concurrently and was also higher than the 

correlation between the two IQ tests.  This remarkable pattern of results lends support to the 

validity of the notion that the NART primarily indexes prior rather than current ability.  

Using a North American variant of the NART, Smith et al. (1997) conducted an 

important longitudinal study, that simultaneously assessed the issue of criterion validity and 

the question of the robustness of NART performance (further evidence on this latter issue is 

reviewed below).  Smith et al. reported that, in a sample of participants with cognitive 

impairment, the NART provided accurate predictions of Verbal IQs obtained 5 years earlier 

when the sample had been cognitively normal. 

 The final criterion for a putative measure of premorbid ability is that test 

performance be resistant to neurological or psychiatric disorder.  NART performance 

appears to be largely resistant to the effects of many neurological and psychiatric disorder 

(e.g., depression, acute schizophrenia, alcoholic dementia, and Parkinson’s disease (see 

Crawford, 1992; Franzen et al., 1997 for reviews; O'Carroll, 1995).  The results for head-

injury have generally been positive (e.g., Watt & O'Carroll, 1999) although there are 

indications of impaired performance in a minority of cases (Freeman et al., 2001); the 

available evidence also suggests that the NART "holds" following focal frontal lesions 

(Bright et al., 2002; Crawford & Warrington, 2002).  

The findings from early studies have been most mixed in the case of dementia of 

the Alzheimer type (DAT); see aforementioned reviews.  Subsequent studies have 

continued to produce conflicting results in DAT, some reporting clear evidence of 

impairment (e.g., Cockburn et al., 2000; Patterson et al., 1994), others finding that NART 
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performance "held" (Bright et al., 2002; Sharpe & O'Carroll, 1991).  However, it has 

become increasingly clear that NART performance is impaired in many cases of severe 

and even moderate dementia. 

Any findings of impaired NART performance pose a threat to the validity of this 

approach.  However, the practical implications of impaired performance in cases of 

severe neurological disorder are not as serious as they may appear; in such cases the 

presence of deficits is unfortunately only too obvious, thereby largely obviating the need 

for the NART or similar instrument to assist in its detection and quantification (Crawford 

et al., 1998c).  Nevertheless, given the accumulating evidence that NART performance 

can be impaired in some conditions, it would be useful to have a means of evaluating the 

likely validity of the premorbid estimate provided by the NART in the individual case. 

To address this need, Crawford, et al. (1990a) built a regression equation in a 

healthy sample (N =659) to predict NART scores from demographic variables (e.g., years 

of education and occupational classification); an obtained NART score that was 

significantly lower than the demographically predicted NART score would indicate that 

the NART is unlikely to provide a valid estimate of premorbid ability for the individual 

concerned.  

It has been suggested (Crawford et al., 1990b) that the NART should fulfill a 

fourth criterion that is more concerned with its clinical utility than its validity.  It could be 

that, contrary to the assumptions underlying the use of the NART, simply using obtained 

scores alone, rather than the discrepancy between NART estimates of premorbid scores 

and obtained scores, would be just as effective a means of detecting impairment.  

This basic issue has received little empirical scrutiny.  Crawford et al. (1990b) 

used hierarchical discriminant function analysis to examine the ability of the NART in 

combination with WAIS IQ to correctly classify a sample consisting of healthy 

participants and patients with Alzheimer’s disease (AD).  The inclusion of the NART 
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significantly improved the accuracy of classification over that achieved by WAIS IQs 

alone; 85% of cases were correctly classified by IQ scores and this rose to 96% for the 

combination of IQs and NART scores.  An analogous result was obtained by Crawford 

and Warrington (2002) who reported that the use of the NART significantly improved the 

ability of a verbal fluency task (homophone meaning generation) to discriminate between 

the performance of healthy participants and patients with focal anterior lesions. 

 Most research on the NART’s ability to estimate premorbid ability has used 

scores on IQ tests as the criterion variable.  Although this is in keeping with the notion of 

obtaining an estimate of an individual’s general level of premorbid functioning, the 

NART also has the potential to provide estimates of premorbid functioning for more 

specific neuropsychological tests.  For example, Crawford et al. (1992) built a regression 

equation which can be used to estimate premorbid performance on the FAS verbal 

fluency test; an equation is also available for the Homophone Meaning Generation Test 

(Crawford & Warrington, 2002).  Similarly, Crawford et al. (1998b) have provided an 

equation which uses NART and age to estimate premorbid scores on the PASAT 

(Gronwall, 1977), a measure that is sensitive to the presence of attentional dysfunction 

following head injury (McMillan & Glucksman, 1987).  

 A proposed modification to the NART is the Cambridge Contextual Reading Test 

(Beardsall & Huppert, 1994).  As its name suggests, the NART words are embedded in 

sentences to provide context for the examinee.  Baddeley et al. (1993) developed another 

alternative reading test which they termed the Spot TheWord Test (STW).  STW is a 

lexical decision task in which the examinee has to identify the legitimate words from a 

series word / pseudo-word pairs (e.g. stamen / floxid); see Law and O'Carroll (1998) for 

an evaluation.  Finally, the Wechsler Test of Adult Reading (WTAR; Holdnack, 2001) is 

based on the same rationale as the NART (it requires the reading of single, irregular 

words).  All of these tests have considerable potential as alternatives to the NART but 
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have a relatively modest research base at present.  Space limitations means that they 

cannot be considered in any further detail in the present work. 

 An entirely different approach uses regression equations to estimate premorbid 

ability from demographic variables (e.g. years of education, occupational classification 

etc).  This approach can be seen as a formalisation of clinical "guesstimates" based on the 

same information, but one that is more accurate and free from demonstrable clinical 

biases (Crawford et al., 2001b).  The advantage of the demographic approach over the 

use of tests such as the NART is that the estimate it provides is entirely independent of a 

client's current level of functioning.  As evidence of impaired NART performance in 

various clinical conditions accumulates, the demographic approach offers an alternative 

method in cases where use of the NART would be inappropriate.  However, the obvious 

disadvantage of the demographic approach is its modest criterion validity.  Where 

Wechsler IQs have been used as the criterion variables, regression equations based solely 

on demographic variables account for between only 36% and 54% of FSIQ variance (e.g., 

Barona et al., 1984; Crawford & Allan, 1997).  This compares unfavorably with the 

corresponding figures for the NART and its variants.  Finally, regression equations have 

been developed that use both the NART and demographic variables as predictors; see 

O'Carroll (1995) for an evaluation. 

 

Conclusion 

This chapter has covered basic quantitative methods for analyzing test scores.  A solid 

grounding in these methods and associated issues (i.e. the distinction between the 

reliability and abnormality of differences) is fundamental to the practice of clinical 

neuropsychology and, as noted, is an important part of what makes the clinical 

neuropsychologist unique among health professionals.   
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