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For any given number of factors, Minimum Rank Factor Analysis yields optimal communalifies for 
an observed covaxiance matrix in the sense that the unexplained common variance with that number of 
factors is minimized, subject to the constraint that both the diagonal matrix of unique variances and the 
observed covariance matrix minus that diagonal matrix are positive semidefinite. As a result, it becomes 
possible to distinguish the explained common variance from the total common variance. The percentage 
of explained common variance is similar in meaning to the percentage of explained observed variance in 
Principal Component Analysis, but typically the former is much closer to 100 than the latter. So fax, no 
statistical theory of MRFA has been developed. The present paper is a first start. It yields closed-form ex- 
pressions for the asymptotic bias of the explained common variance, or, more precisely, of the unexplained 
common variance, under the assumption of multivariate normality. Also, the asymptotic variance of this 
bias is derived, and also the asymptotic covaxiance matrix of the unique variances that define a MRFA 
solution. The presented asymptotic statistical inference is based on a recently developed perturbation the- 
ory of semidefinite programming. A numerical example is also offered to demonstrate the accuracy of the 
expressions. 

Key words: factor analysis, communalities, proper solutions, explained common variance, semidefinite 
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1. Introduction 

Factor analysis is based on the notion that given a set of  variables Zl . . . . .  zp,  each variable 
z j  can be decomposed into a common part cj  and a unique part u j ,  assumed to be uncorrelated 
with any variable except z j ,  j = 1 . . . . .  p .  Upon writing 

z j  = cj  + u j ,  (1) 

j = 1 . . . . .  p, and using the assumption on u j ,  we have 

= ]~c + air, (2) 

where ~ is the covariance matrix of  the variables, ~ is the diagonal matrix of  unique variances, 
and £ c  is the variance-covariance matrix of  the common parts c j ,  j = 1 . . . . .  p, of  the vari- 
ables. The variances of  these common parts are in the diagonal of  ]~c. They are the so-called 
communalities of  the variables. 

The ideal of  factor analysis is to find a decomposition (2) with £ c  of  low rank r, which 
can be factored as Zc = FF I, with F a p × r matrix. To accomplish this, communalities are 
required that reduce the rank of ~ - ~ to some small value. Although the early days of  factor 
analysis were characterized by great optimism in this respect (Ledermann, 1937), the ideal of 
low reduced rank will  never be attained in practice, see Guttman (1958) and Shapiro (1982). A 
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historical overview of how the ideal of low reduced rank was shattered can be found in ten Berge 
(1998). 

For practical purposes, there is no choice other than trying to approximate the ideal low 
rank situation by using the eigendecomposition £c = £1 + £2, of the covariance matrix of the 
common parts, where both matrices £1 and £2 are positive semidefinite, matrix £1 has rank r 
(for some small value of r), and r nonzero eigenvalues of £1 coincide with r largest eigenvalues 
of ]~c. This leads to the following decomposition of 1~, 

£ = FF'  + (£c - FF') + Rt. (3) 

This means that the variances of the variables (diagonal elements of ~) are decomposed into ex- 
plained common variances (diagonal elements of FF~), unexplained common variances (diagonal 
elements of £c - FF~), and unique variances (diagonal elements of Rt). 

It is essential to note that a proper solution for (3) requires that both matrices £c and Rt 
should be positive semidefinite (denoted £c _> 0 and Rt _> 0, respectively). Negative elements 
in Rt, known as Heywood cases, have drawn a lot of attention, and are usually not tolerated. 
However, when £c, the covariance matrix for the common parts of the variables, would appear 
to be indefinite, that would be no less embarrassing than having a negative unique variance in Rt. 
Nevertheless, popular methods of common factor analysis generally ignore the constraint that 
£c - FF ~ must be positive semidefinite. The only exception seems to be Minimum Rank Fac- 
tor Analysis (MRFA). This method was originally proposed by ten Berge and Kiers (1991) as 
AMRFA, but the "A" of approximate has worn oft" in the meantime. MRFA offers a decomposi- 
tion of ~ that satisfies (3), with both Rt and £c - FF ~ positive semidefinite. Subject to these two 
constraints, MRFA constructs the solution that minimizes the unexplained common variance for 
anyfixed number offactors r. In other words, MRFA approximates the ideal of low reduced rank 
by minimizing the amount of common variance that is left unexplained when as few as r factors 
are maintained. 

For a p x p symmetric matrix S we denote by )Vl (S) _> .. • _> )vp (S) its eigenvalues arranged 
in decreasing order. Formally, MRFA minimizes, for fixed r, the function 

p 

fmrfa(Rt) := Z )vi(£ - Rt) (4) 
i=r+l 

subject to £ - a I  t _> 0 and aI t _> O. This is very similar to MINRES/IPFA/ULS, where the function 

p 
fmin~es0I') := ~ )'2(X -- 'I ') (5) 

i=r+l 

is minimized, without any constraint on the sign of these eigenvalues (Harman & Jones, 1966, 
JOreskog, 1967). A similar eigenvalue interpretation of Maximum Likelihood Factor Analysis 
has been given by JOreskog (1967, p. 449), also see ten Berge (1998) for a discussion. 

A key feature of (3) is the distinction between communalities as variances "to be explained" 
on the one hand, and the explained variances of the variables, the diagonal elements of FF I on 
the other. The difference rests in the unexplained parts of the communalities, in the diagonal of 
£c - FF I. When this distinction is preserved, it is possible to evaluate to what extent the com- 
mon variance is accounted for by the common factors. This can be expressed as "the percentage 
of explained common variance", analogous to the percentage of explained observed variance in 
Principal Component Analysis. So far, MRFA is the only method that solves (3) subject to its 
constraints. Hence it is the only method so far that yields a percentage of explained common 
variance, to guide decisions about the number of factors to retain. Consider, for instance, the 
situation where only one common factor is hypothesized to account for the correlations between 
variables. MRFA will give the smallest possible percentage of common variance that is left unex- 
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plained under the one-factor hypothesis. This means that MRFA evaluates the extent to which a 
one factor hypothesis is untenable, under the most favorable conditions for the that very hypoth- 
esis, namely, the MRFA communalit i tes with r = 1. The same logic applies to r hypothesized 
factors in general. 

In practical applications, MRFA decomposes the sample analog of  1~. A key question, there- 
fore, is the extent to which the sample statistics in general, and the explained common variance 
in particular, are reliable. The present paper deals with the bias of  the explained common vari- 
ance (ECV) with MRFA, or, more precisely, with the bias of its counterpart, the "unexplained 
common variance" (UCV). 

The organization of  this paper is as follows. First, an example of  MRFA is given, to demon- 
strate the concept of  explained common variance. Next, the algorithm of  MRFA is explained in 
some detail, to set the stage for asymptotic theory. Then the asymptotic theory for the bias of  
UCV is developed. It is shown, in particular, that the UCV is asymptotically unbiased when the 
r-factor  hypothesis is correct. In addition, however, the asymptotic bias is also established under 
misspecification of the number of  factors. Also, the asymptotic covariance matrix of  the unique 
variances is derived. Finally, some numerical  results are given which demonstrate the accuracy 
of  the asymptotics.  We start with an example. 

Example 1: The Schutz data. The covariance matrix 1~ for nine tests (Schutz, 1958; also see 
Carroll, 1993, p. 94) is given in Table 1. The 9 eigenvalues of  the reduced correlation matrix, 
from MRFA, are given in Table 2, when the number r of  common factors is 2, 3, and 4, respec- 
tively. Note that in this example we assume that the corresponding variables are standardized to 
have variance one, that is, the matrix ~ is in fact a correlation matrix. Note, however, that the 
sample covariance matrix S, used in the asymptotic theory of  section 3, is the usual unbiased 
estimate of  1~ and its diagonal entries may be different from one. 

Let  us first look at the solution for r = 2. MRFA minimizes the UCV, defined as )~3 + " • 
+ )~9, and the minimum value is 1.1741. This means that, among all solutions for ~It such that ~It 
and 1~ - ~It are positive semidefinite, there is no solution with lower UCV than 1.1741. Because 
the total common variance (the sum of  communalitites, and also the sum of  the nine reduced 
eigenvalues) is 6.2730, the percentage of UCV is 100 x 1.1741/6.2730 = 18.72%. Hence the 
explained common variance is 81.28%. 

Next, consider the solution with r = 3. Now the UCV is ,~4 q- " ' "  q- "~9 and its minimum 
is .4296. This amounts to a percentage ECV of  93.16%. The solution with 4 factors reaches an 
ECV as high as 99.1%. Carroll (1993) went to considerable length explaining why, for these data, 
a four factor solution was needed to fully account for the data. The ECV of 99.1%, compared 
to the 93.16 per cent when r = 3, fully supports his decision. To demonstrate the difference 
between MRFA, see (4), and MINRES,  see (5), we also report  Varimax rotated factor loadings 
and "communali t ies" for both methods for the two factor solutions. Table 3 gives these values 
for the MRFA solution. 

TABLE 1. 
The correlation matrix for the Schutz data 

1.00 0.80 0.28 0.29 0.41 0.38 0.44 0.40 0.41 
0.80 1.00 0.31 0.33 0.49 0.44 0.50 0.44 0.46 
0.28 0.31 1.00 0.71 0.32 0.34 0.41 0.41 0.30 
0.29 0.33 0.71 1.00 0.32 0.36 0.42 0.41 0.31 
0.41 0.49 0.32 0.32 1.00 0.77 0.50 0.39 0.37 
0.38 0.44 0.34 0.36 0.77 1.00 0.48 0.35 0.37 
0.44 0.50 0.41 0.42 0.50 0.48 1.00 0.56 0.48 
0.40 0.44 0.41 0.41 0.39 0.35 0.56 1.00 0.46 
0.41 0.46 0.30 0.31 0.37 0.37 0.48 0.46 1.00 
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TABLE 2. 
Reduced MRFA eigenvalues for the 2, 3, and 4 factors solution 

Eigenvalues of ]~ - xI* r = 2 r = 3 r = 4 

~1 4.1550 4.1563 4.1572 
~2 0.9439 0.9425 0.9481 
~3 0.7417 0.7500 0.7472 
~4 0.3726 0.3709 0.3751 
~5 0.0457 0.0458 0.0442 
~6 0.0142 0.0129 0.0125 
~7 0.0000 0.0000 0.0000 
~8 0.0000 -0 .0000 -0 .0000 
~9 --0.0000 --0.0000 --0.0000 

Common Vafiance 6.2731 6.2785 6.2843 

Unexplmned 1.1741 .4296 .0567 

%Explained 81.28 93.16 99.10 

TABLE3. 
Thetwofactorsolutionfor MRFA 

MRFA loadings (rotated) ECV communalities 

.7446 .1389 .5737 .6769 

.8918 .1283 .8117 .9752 

.1728 .7680 .6197 .6472 

.1571 .8460 .7404 .7946 

.6677 .3112 .5426 .7749 

.6268 .3552 .5190 .8250 

.5543 .4536 .5130 .5844 

.4619 .4675 .4319 .5736 

.4988 .3129 .3467 .4213 

5.0987 6.2731 

It is clear that, for each variable, the communality exceeds the explained part ECV, and 
the percentage ECV of 81.28 shows up in this table as the sum of the nine ECV values 5.0987 
divided by the sum of the nine communalities 6.2731. For Minres, the loadings, sums of squared 
loadings per variable, and reduced eigenvalues are given in Table 4. 

Table 4 reveals that the MINRES loadings are very similar to those of MRFA. The real 
difference rests in the communalities. In common factor analysis, it is customary to call the sum 
of squared loadings per variable "the communality" of the variable. This is correct in cases of 
perfect fit, but leads to paradoxical results in cases of less than perfect fit. Specifically, the reduced 
eigenvalues are partly negative, when sums of squared loadings are inserted in the diagonal of the 
correlation matrix. In particular, when r factors are maintained, the last p - r eigenvalues sum to 
zero (Harman, 1967, p. 195) also see the last column of Table 4. This implies that some of these 
are negative, unless they are all zero (perfect fit). It follows that the sum of squared loadings is 
not the communality of a variable, consistent with (3). But neither is it the explained variance 
of that variable: If we sums the sums of squared loadings over variables, we get the same as the 
sum of the sum of squared loadings per factor, implying that, for any number of factors, 100% 
of common variance would be explained, also see ten Berge (2000). It can be concluded that the 
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The two factor solution for MINRES 
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Minres loadings (rotated) ssq reduced eigenvalues 

0.7334 0.1443 0.5587 3.9812 
0.8129 0.1706 0.6899 0.8372 
0.1702 0.8067 0.6798 0.4553 
0.1904 0.7982 0.6733 0.2368 
0.6321 0.2931 0.4854 -0.0327 
0.5832 0.3245 0.4454 -0.0568 
0.5829 0.4221 0.5180 -0.1125 
0.4834 0.4228 0.4124 -0.1794 
0.5219 0.2882 0.3554 -0.3106 

ssq = 2.8494 ssq = 1.9690 sum= 4.8184 ~ 1 + ~ 2  = 3.9812 + .8372 

main difference between MRFA and MINRES is the property of  the former to yield meaningful 
communalities,  allowing an evaluation of the (percentage of) ECV. 

1.1. The Computational Solution of MRFA 

A first description of  the computations that produce the MRFA solution can be found in 
ten Berge and Kiers (1991). Here, some more detail is added, to set the stage for asymptotic 
theory. Minimizing the sum of the last p - r eigenvalues of  1~ - air can be written equivalently 
as minimizing the trace function 

g(aIt, E) : =  tr [E'(]~ - air)E] 

subject to £ - xIt _~ 0, xIt _~ 0, and EIE = Ip-r. For any given xIt, the best choice for 
E is a columnwise orthonormal matrix of  eigenvectors of  £ - xIt, which correspond to the 
p - r smallest eigenvalues. Conversely, for any given E, the best choice for ~ is to minimize 
-tr(E1XItE) = -tr(DXP),  where D :=  diag(EE~). Equivalently, xIt has to yield the minimum of 
tr (D1/2£D 1/2 - D1/2XItD 1/2) subject to £ - x I t  _~ 0 and xIt _~ 0. The latter problem is a weighted 

CMTFA problem, which can be solved by an iterative algorithm (Bentler & Woodward, 1980; 
ten Berge, Snijders and Zegers, 1981). The MRFA algorithm consists of alternatively updating 
xIt by solving this weighted CMTFA problem, and E by taking the last eigenvectors of  ~ - xIt 

Upon convergence of  the MRFA algorithm, and assuming that the constraint ~ _~ 0 is 
inactive, we have a solution W = D1/2XItD 1/2 for the weighted CMTFA problem, and a p x p 
matrix T with rows sums of  squares equal to 1, spanning the null-space of  (D1/2£D 1/2 - W).  
It follows that (£  - xIt)D1/2T = 0. Let f~ be defined as f~ :=  DV2TT~D 1/2, with the same 
diagonal as D. 

Upon convergence, we also have an eigenvector matrix E such that d iag(EE ~) = D. For 
future reference, it is important to notice that, when ~ - ~ has precisely rank p - r,  E E  ~ and f~ 
are equal. Otherwise, these matrices only share their diagonal elements. 

2. Semidefinite Programming 

In this section we discuss some general results from the theory of  so-called semidefinite 
programming problems. For  a thorough discussion of  that topic and rigorous derivations of  the 
following results the interested reader is referred to the recently published books: Saigal, Van- 
denberghe and Wolkowicz (2000) and Bonnans and Shapiro (2000). 
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We use the following notation throughout the paper. By A t we denote the Moore-Penrose 
pseudo-inverse of matrix A, A • B denotes the Hadamard (i.e., term by term) product of matrices 
A and B, AGB denotes the Kronecker product of matrices A and B, Ip denotes the p x p identity 
matrix, vec(A) denotes vector obtained by stacking columns of matrix A, diag(H) denotes the 
vector formed by diagonal elements of matrix H, tr(H) denotes the trace of matrix H. 

Let us consider the following optimization problem: 

Min f(x)  subject to G(x) _> 0. 
xE/~ m 

(6) 

Here f(x)  is a real valued function of x E Nm, G(x) is a mapping from Nm into the space S p 
of p x p symmetric matrices, and 

m {x E fl~m ,m} N + : =  : x i > O , i = l  . . . . .  

Problems of the form (6) are called (nonlinear) semidefinite programming problems. For the sake 
of simplicity we consider the case where the constraint mapping G(x) is affine, i.e., G(x) := 

m A0 q- ~i=1 xiAi with A0, A1 . . . . .  Am being given p x p symmetric matrices. MRFA can be 
considered in that framework if we use the objective function fmrfa (') and the constraint mapping 
G(x) := Z - X, where X is a diagonal matrix and x := diag(X). We refer to such mapping G(x) 
as FA-mapping. 

Consider the set )/fs of p x p symmetric matrices of rank s. The set )/fs forms a smooth 
manifold in the linear space S p. We denote by TW~ (A) the tangent space to )/fs at A E )/Vs. 
A point 2 E Nm is said to be a feasible point of problem (6) if it satisfies the corresponding 
constraints, i.e., G(2) _~ 0 and 2 E N~.  It is said that a feasible point 2 is nondegenerate if 

m 

£(~) + TW, (A) = S p, (7) 

where s := rankG(2), A := G(~), I(~) := {i : xi = 0, i = 1 . . . . .  m} and 

/~(X) : =  Z E S p : Z = x i A i ,  x i  = O, i E I(~) . 

i = 1  

Note that both £(~) and Tws (A) are linear subspaces of SP, and that if I(2) is empty, i.e., all 
components of vector 2 are positive, then £(~) = DG(~)/7~ m. Here DG(~)h = ~i=lm hiAi is the 
differential of the mapping G and DG(~)]~ m is the image of the mapping DG(~) : ]~m __+ Sp" 

It is known that 

rw,  (X) = {z e sp  : ~.'z~. = 0}, (8) 

where ~ = [~s+l . . . . .  ~p] is a p x (p - s) matrix whose column vectors ~s+l . . . . .  ~p form a 

basis of the null space of the matrix A = G(~). We refer to = as a complement of the matrix 
A. Note that although the complement matrix ~ is not unique, the space given in the right hand 
side of the equation (8) is defined uniquely. In particular, one can take ~s+l . . . . .  ~p to be a set 

of orthonormal eigenvectors of A corresponding to its zero eigenvalue. 
By using this description of the tangent space it can be shown that condition (7) is equivalent 

to the following condition. For s + 1 < k < ~ < p consider the (m - II (~)b-dimensional vectors 
with components ~ A i ~  . . . .  i E { 1,. m} \ I (~). Then ~ is nondegenerate iff these vectors are 
linearly independent. Note that the total number of such vectors is (p - s) (p - s + 1)/2. Therefore 
a necessary condition for 2 to be nondegenerate is that 

( p -  s ) ( p - s + l )  
~ m - I I ( ~ ) l ,  (9) 

where II (~) I denotes the number of elements in the set I (2). 
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m 

In particular, let G(x) be the FA-mapping, and hence G(2) = X - X. Suppose that 
rank(X - X) = s. Then ~s+l . . . . .  ~p can be any set of  linearly independent vectors such that 

(X - X)~i = 0, i = s + 1 . . . . .  p. We have then that R is nondegenerate iff vectors ~k * ~e, 
s + 1 < k < g < p, with components corresponding to I (2) deleted, are linearly independent. 
Therefore a necessary condition for the nondegeneracy is that 

( p -  s ) ( p - s + l )  
p - II(~)1. (10) 

If  the set I (~) is empty, and hence II (~)1 = 0, then (10) is equivalent to 

2p + 1 - (8p + 1) 1/2 
< s. (11) 

The above lower bound for the rank s is called the Ledermann bound. 
Consider the Lagrangian function 

L(x, 1~) :=  f (x )  -- tr [I~G(x)] (12) 

associated with the problem (6). We have that if x is a locally optimal solution of  (6), and a 
constraint qualification holds, then the following first-order necessary conditions are satisfied: 
there exists a matrix 1"1 E SP such that 

m 

OL(R, ~)  

OXi 
- -  0 ,  i E {1 . . . . .  m}  \ I ( ~ ) ,  

m 

OL(R, ~)  

OXi 
_>0, i E I (R) ,  

m m 

~ G ( ~ ) = 0 ,  ~ _ ~ 0 .  

(13) 

(14) 

(15) 

m 

We refer to a matrix 1"1 satisfying the above conditions (13)-(15) as a Lagrange multipliers matrix 
and denote by A (3) the set of all such matrices. If  the so-called Slater constraint qualification is 
satisfied, that is, there exists x E N ~  such that the matrix G(x) is positive definite, then the set 
A (2) of  Lagrange multipliers matrices is nonempty and bounded. 

Let us remark that if G(x) is the FA-mapping, then 

OL(x, ~"~)/OXi = Of (x)/OXi + ~2ii, i = 1 . . . . .  p. (16) 

Moreover, if the corresponding matrix 1~ is positive definite, then the Slater constraint qualifica- 
tion holds, and hence A (2) is nonempty and bounded. Also if the index set I (R) is empty, then 
conditions (13)-(14) become V f (2 )  = - d iag(~) .  

It is said that the strict complementarity condition holds at 2 if, for some ~ E A(~), the 
following two conditions are satisfied: 

rank(~)  + rank(G(~)) = p, and (17) 

OL(~, [2) 
- -  ¢ 0 ,  i E I ( ~ ) .  (18)  

Oxi 

m 

Note that because of  (14), Condition (18) is equivalent to OL(~, ~)/Oxi > 0, i E I (~). Also, if 
I (~) is empty, then only Condition (17) in the above definition is needed. 

We have that if ~ is nondegenerate, then A (~) is a singleton, that is, the corresponding 
Lagrange multipliers matrix is unique. Conversely, if A (~) is a singleton and the strict comple- 
mentarity condition holds, then the point ~ is nondegenerate. 
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Let us discuss now second-order optimality conditions. For the sake of simplicity we con- 
sider only the case where the set I (R) is empty, that is, xi > 0 for all i = 1 . . . . .  m. Let I1 E A (~) 
be a Lagrange multipliers matrix. Because of the complementarity condition (15), the matrix I1 
can be written in the form I1 = ~q~,~, where ~,1 is a matrix of full column rank equal to the 

rank of f~ and such that G(~)~q = 0. If the strict complementarity condition (17) holds, then 
rank(O) = p - s, and hence in that case ~,1 forms a complement of G(~). Otherwise one can 
choose a complement matrix ~, (of the matrix G(~)) in such a way that I1 = ~q~,~, where 
[N~, N2] is a partition of N. 

With the point ~ is associated the so-called critical cone C (~), which can be written as 
follows 

~i=1 ~,2 0, ~i=1 ~-1 o, = hi~lAi  = h i~ lAi  
C ( R ) =  h E IN m:  m 

~ i = l  ~t hi ~2Ai ~,2 _~ 0 
(19) 

In particular, if the strict complementarity Condition (17) holds, then 

(20) 

and hence in that case C (2) is a linear space. 
Consider the m x m matrix H(~, f~) with typical elements 

[H(R, a ) ] i j  := 2 t r [ a A i X  ?Aj],  i, j = 1 . . . . .  m, (21) 

m 

where A := G(R). Under the Slater constraint qualification, the conditions 

sup h ' (V2f(~)  + H(~, f~))h _> 0, for all h E C(~), (22) 

are necessary, and conditions 

sup hz(V2f(x) ÷ H(~, f~))h > 0, for all h E C(~) \ {0}, (23) 

are sufficient for local optimality of R. Note that the only difference between the second-order 
necessary conditions (22) and the corresponding sufficient conditions (23) is that the strict in- 
equality sign is used in (23). The above second-order conditions can be also applied in cases 
where the constraint mapping G(x) is not necessarily linear. In such cases the function f (~)  in 
(22) and (23) should be replaced by the Lagrangian L(R, f~). 

Recall that if the nondegeneracy and strict complementarity conditions hold, then A (2) = 
{I1} is a singleton and C (2) is a linear space. In that case the second-order sufficient conditions 
(23) mean that the matrix V 2 f  (~) + H(~, f~) is positive definite over the space C (~). In the case 
of the FA-mapping, the matrix H(2, f~) becomes 

H(~, f~) = 2 f~ • A?. (24) 

Consider the MRFA function 

fmrfa (X):= 
P 

E 
i=r+l 

~i ( :~ -x ) .  (25) 
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This function is differentiable at ~ if and only if 

k~(~ -N)  > k~+~(~ -N),  (26) 

in which case 

V f m r f a ( X )  = - diag e i e  = - -  e i  * e l ,  

\ i = r + l  / i = r + l  

(27) 

and 

V2fmrfa(K) = 2 E (el * ej)(ei * e j )  I 
( i , j ) c Z  "~j - -  "~i ' 

(28) 

m 

where el, . . . ,  ep is a set of orthonormal eigenvectors of  1~ - X corresponding to the eigenvalues 

ki = ki (1~ - X), and 

f : = { ( i , j ) : i = l  . . . . .  r , j  = r  + l . . . . .  1)}. (29) 

Note that the function fmrfa(') is concave and the Hessian matrix V2 fmrfa(2) is negative semidef- 
inite. 

3. Asymptotics of  Factor Analysis Models 

Consider the following optimization problem: 

Min ~b (x, z) subject to Z - X _> O, (30) 
xE/~ m 

where X is a p x p diagonal matrix, x :=  diag(X), Z is a p x p symmetric matrix, z :=  vec(Z) and 
~b (x, z) is a continuous real valued function. We denote o- :=  vec(Z) and assume that for Z = 
the function ~b (., o-) coincides with the function f ( . )  used in the previous section. Consequently, 
for Z = Z and the FA-mapping the above problem (30) coincides with the problem (6). By O(z) 
and ~(z) we denote the optimal value and an optimal solution, respectively, of  problem (30). 

Now let S be the sample covariance matrix based on a sample of  size n, and s :=  vec S. For 
Z = S we refer to (30) as the sample FA-problem, and we refer to (6) as the true (or population) 
FA-problem. In particular, for the function 

P 

qSmrfa(X,Z) :=  E ) ~ i ( Z - X )  (31) 
i = r + l  

we refer to (30) as the true (or population) MRFA problem for Z = Z, and the sample MRFA 
problem for Z = S. The optimal value 0 = O(s) and an optimal solution ~ = 2(s) of the sample 
problem give estimators of  their true (population) counterparts ~0 = 0(o-) and q~0 = ~(o-), 
respectively. 

In this section we investigate asymptotic properties of  O = 0 (s) and + = 2(s). We assume 
throughout the paper that the population covariance matrix Z is nonJngular and hence is positive 
definite. Clearly the asymptotic properties of  the sample estimators 0 and qs are closely related to 
the continuity and differentiablity properties of the functions 0(.) and 2(.). We refer to Bonnans 
and Shapiro (2000) for a rigorous derivation of  the following properties of  0 (.) and ~(.). 

Since for all S in a neighborhood of  Z the set of  feasible x of  the problem (30) is bounded 
and ~b (., .) is continuous, we have that the optimal value function 0(.)  is continuous at o-. Since 
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S is a consistent estimator of  1~, it follows that O is a consistent estimator of  00. Moreover, if 
too = 2(0-) is the unique optimal solution of  the true problem (6), then 2(z) converges to 2(0-) as 

z --+ or, and hence t} is a consistent estimator of  too. By ~ and g 0  we denote the corresponding 

diagonal matrices, that is, ~b = d iag(~)  and too = diag(~0).  

Proposition 1. Suppose that the true problem has a unique optimal solution too = 2(0-) 
to which corresponds a unique Lagrange multipliers matrix 1"1, and that the function ~b (., .) is 
continuously differentiable in a neighborhood of  (too, 0% Then the optimal value function 0 (.) 
is differentiable at or and 

m 

VO(o-) = VzL(to0 , or, f~), 

where L(x, z, f~) :=  qS(x, z) - tr [ f~G(x)] .  

(32) 

Note that for the FA-mapping G(x) we have that 

VzL(x, or, f~) = Vzq5 (x, or) - vec(f~). (33) 

Moreover, consider the MRFA function defined in (31) and suppose that Condition (26) holds. 
Then qSmrfa is continuously differentiable in a neighborhood of  (too, or) and 

Vz~,bmrfa(too, or) = vec eie , 
\ i = r + l  / 

(34) 

where el, • • •, ep is a set of  orthonormal eigenvectors of ]~ - air0. 
Suppose now that the population distribution has fourth order moments, and hence by the 

Central Limit Theorem n 1/2 (s - or) converges in distribution to multivariate normal N (0, F), 
denoted nl/2(s - or) ~ N(0, F). Note that since s has at most p(p + 1)/2 distinct elements, the 
rank of  the p2 x p2 covariance matrix F is less than or equal to p(p + 1)/2. In particular, if the 
population distribution is normal, then F = 2Mp (1~ ® 1~), where Mp is a symmetric idempotent 
matrix of  rank p(p + 1)/2 with element in row ij and column kl given by 

Mp (i j, kl) = 1 ((~ike~j I _}_ (~il(~jk), (35) 

where 3ik = 1 if i = k, and 3ik = 0 if i ¢ k (Browne, 1974). 
By using the Delta method (e.g., Rao, 1973) and employing Proposition 1 we obtain the 

following result. 

Proposition 2. Suppose that the true problem has unique optimal solution tOo = diag(~0)  
to which corresponds a unique Lagrange multipliers matrix 1"1, the function ~b(., .) is con- 

1/2 tinuously differentiable in a neighborhood of  (too, or), and n (s - or) converges in distri- 
1/2 bution to N(0, F). Then n [5  - 00] converges in distribution to N(0, oN), where oN = 

[VO(~r)]T[VO(~r)]. In particular, in the case of MRFA and if the population distribution is 
normal and condition (26) holds, then 

r( )1 a 2=2tr  Z eieli-- ~ 1~ Z eieli-- ~ 1~ ' 
[_ \ i = r + l  \ i = r + l  

(36) 

where el, • • •, ep is a set of  orthonormal eigenvectors of 1~ - air0. 

Let us discuss now second-order derivatives of  the optimal value function 0(.).  It turns 
out that first-order asymptotics of t~ are closely related to a second-order analysis of  0 (.). For 
the sake of  simplicity we assume in the remainder of  this section that all components of the 



ALEXANDER SHAPIRO AND JOS M.F. TEN BERGE 89 

optimal solution too = 7(o-), of  the true problem, are positive. Suppose that the function q5 (., .) 
is twice continuously differentiable in a neighborhood of (~(o-), o-), and the nondegeneracy and 
strict complementarity conditions (for the true problem) hold at the point 2(~r). Consider the 
following optimization problem 

subject to NIAN - N ~ H N  = 0, 

depending on p x p symmetric matrix A Here 1t is p x p diagonal matrix, h = diag(lt)  is the 
corresponding vector, ~ = vec(A), N is a complement of  the matrix ~ - g 0 ,  and 

l h t v / 2  ,6 t 2 1NtV/2 ~ x(h,  ~) := ~ . . .xx . r ( too ,  o r ) h + h V x z ~ ( t o o ,  Or)~+ ~ .zz.r(too, Or)~. (38) 

Note that although the complement matrix ~ is not unique, the corresponding equations in (37) 
do not depend on a particular choice of  ~ .  For example, one can use a complement matrix formed 
from the eigenvectors of  ~ - g 0  corresponding to its zero eigenvalue. 

The objective function of the above optimization problem (37) is quadratic and the con- 
straints are linear in h. Therefore, the optimal value of (37), considered as a function of 8, can be 
written as the quadratic form 6IQ6 for some p2 x p2 symmetric matrix Q It follows then that 
V20(or) = 2 Q  

Moreover, let h(6)  be the optimal solution of (37). We have that h(6)  is linear, and hence 
can be written as h(6)  = J 6  for some p x p2 matrix J. It follows then that the Jacobian matrix 

Proposition 3. Suppose that the true problem has a unique optimal solution too = diag(XIt0), 
with all diagonal elements of xIt0 being positive, the nondegeneracy and strict complementarity 
conditions (for the true problem) hold at the point 2(o-), the function q5 (., .) is twice continu- 
ously differentiable in a neighborhood of (too, o-), and nl/2(s  - o') converges in distribution to 
N (0, F). 

Then n l / 2 ( ~  - too) converges in distribution to N(0,  JFJI ) ,  where J = V2(o-). 

It is possible to use the above results in order to derive asymptotics of individual eigenvalues 

,~k = )~k(S -- ~ )  viewed as estimators of )~k = )~k(Z -- g 0 ) .  Consider the p2 x p matrix 

Kp := [aqlaq~ . . . . .  aqpaq~]', (39) 

where aqi is the i-th column vector of  the p x p identity matrix. Note that for any p x p diagonal 
matrix H the equation 

vec(H) = Kp [diag(H)] 

holds. Let s be the rank of the matrix I~ - g 0 .  Then )~s+l . . . . .  Lp = 0. We say that the 
eigenvalue )~k has multiplicity one if )~k-1 > )~k > )~k+l. 

Proposition 4. Suppose that the true problem has a unique optimal solution tOo = diag(XIt0), 
with all diagonal elements of xIt0 being positive, the nondegeneracy and strict complementarity 
conditions (for the true problem) hold at the point 2(o-), the function q5 (., .) is twice continuously 
differentiable in a neighborhood of (too, o-), nl/2(s  - o') converges in distribution to N(0,  F), 
and let s be the rank of the matrix Z - g 0 .  

Then ~s+l . . . . .  ,~p = 0 for all S in a neighborhood of Z Moreover, if an eigenvalue )~k 

of Z -- g 0  has multiplicity one, then nl/2(~k -- )~k) converges in distribution to N(0,  o-if), where 

c~ff = [vec(eke~)]' [Ip2 - KpJ ]  F [Ip2 - J ' K ~ ]  [vec(eke~)]. (40) 
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Now let us calculate the matrices Q and J in the case of  MRFA. For the MRFA problem 
we have that under the condition (26) the function q5 (., .) is twice continuously differentiable at 
(2(o-), or), and 

x(h, ~) = Z [e~i(A- H)ej]2 (41) 

( i , j ) c Z  , ~ j  - -  ,~i ' 

where ]7 is defined in (29),)vl _> . . .  _> )Vp are the eigenvalues and el . . . . .  ep is a set of  orthonor- 
mal eigenvectors of £ - Rt0, respectively. 

Let us consider the following matrices. Let N be such that NN~ = [1. Note that since by 
the first-order optimality condition (15) we have that [1(~  - Rt0) = 0, and because of the strict 
complementarity condition (17), it follows that N is a complement of  ~ - R%. Note, however, 
that N is not an arbitrary complement of  ~ - Rt0 since it should satisfy the equation NNI = [1. 
Define • :=  (~ - Rt0)*, B :=  (N~ ® ~t )Kp and N is a complement of  the matrix B, i.e., N is a 
p2 x [p2 _ (p _ s)2] matrix such that BN = 0, 

Y:= Z (ei®ej)(ei®ej) I 
( i , j ) E Z  L j  - -  L i ' 

m 

and C :=  (K~YKp + • • ~ ) .  
Then, after some lengthy algebra, the Jacobian matrix J can be written in the form 

J = B~(~ ' ® ~ ' )  - N ( N ' C N ) - I N ' [ C B ~ ( ~  ' ® ~ ' )  - K~ ((I) × ~ )  - K~Y], (42) 

and the matrix Q as 

Q = (KpJ  - Ip2)' (Y + • ® ~ )  (KpJ  - Ip2). (43) 

The above derivations are similar to derivations related to MTFA presented in Shapiro and ten 
Berge (2000). 

Let us give a brief summary of the developed (asymptotic) statistical inference of  the MRFA. 
The result of  Proposition 2 shows that asymptotically (under the corresponding regularity con- 
ditions) O has a normal distribution with mean O0 and variance n - l c @  where o-g is given in 
(36). This result is based on the first-order expansion of  the optimal value function 0 (.) at or. By 
considering the second-order Taylor expansion 

O(s)  = o ( o - )  + W ~ ( o - ) ] 1 ( s  - o-) + ~ ( s  - o - ) 1 W 2 ~ ( o - ) ] ( s  - o-) + o( l l s  - oII 2) (44)  

of the optimal value function, the bias o f O  = O(s) can be approximated. Since s is an unbiased 
estimator of  or, that is, the expected value of  s - or is 0, we have that (under the regularity 
conditions of  Proposition 3) the bias of 0 = 0 (s) is approximated by 

½n-ltr[FVeO(o-)] = n - l t r [FQ] .  (45) 

The result of  Proposition 4 shows that (under the corresponding regularity conditions, and 
in particular the nondegeneracy condition) the eigenvalues ,~s+l . . . . .  2p of  the sample reduced 
matrix are zeros for all S sufficiently close to Z Therefore, if r = s, then 0 (s) is zero for all s 
sufficiently close to or, and hence the asymptotic bias of  0 is zero. 

We have that (under the assumptions of Proposition 3) the diagonal elements of  the sample 

MRFA solution ~ asymptotically have a multivariate normal distribution with the covariance 
matrix n -  1JFJ ' .  
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3.1. A Numerical Example 

Example 2: Seven intelligence tests. To gain an impression of the accuracy of  the asymptotic 

theory in finite samples, we have analyzed an empirical correlation matrix of  seven intelligence 

tests, treated as the population covariance matrix. Under the hypothesis of  multivariate normality, 

500 simulation runs of  the MRFA procedure were performed with sample sizes n = 500, n = 

1000, and n = 5000, respectively. Each of  the sample covariance matrices (obtained in the 1500 

simulation runs) was analyzed with MRFA, using one, two, and three factors. The results are 

reported in Tables 5, 6, 7, and 8. 

The first row in each subtable refers to population values for the proportion of  explained 

common variance (ECV), the amount of  unexplained common variance (UCV), and the asymp- 

totic sample bias of  UCV and its asymptotic variance calculated by the theoretical formulas. The 

second row always refers to the respective average values over 500 simulation runs. The first two 

elements are the average of the 500 ECV proportions, and of the 500 ECV values, respectively. 

The third element is the average of  500 asymptotic bias values, when each sample is treated as if  

it were the population. The fourth element is the sampling variance of  the UCV, and hence of  the 

TABLE 5. 
Simulation results for r = 1 

n = 500, r = 1 ECV UCV Bias Variance 
Population .8336 .7713 .0636 .0104 
Sample .8207 .8516 .0591 .0076 
Sampling bias -0.0129 .0802 

n = 1000, r = 1 ECV UCV Bias Variance 
Population .8336 .7713 .0318 .0052 
Sample .8266 .8129 .0361 .0040 
Sampling bias -0.0070 .0416 

n = 5000, r = 1 ECV UCV Bias Variance 
Population .8336 .7713 .0064 .0010 
Sample .8325 .7789 .0075 .0010 
Sampling bias -.0010 .0076 

TABLE 6. 
Simulation results for r = 2 

n = 500, r = 2 ECV UCV Bias Variance 
Population .9248 .3489 .0177 .0062 
S ample .9164 .3956 .0490 .0033 
Sampling bias -.0084 .0467 

n = 1000, r = 2 Ecv UCV Bias Variance 
Population .9248 .3489 .0088 .0031 
Sample .9219 .3667 .0235 .0017 
Sampling bias -.0029 .0178 

n = 5000, r = 2 ECV UCV Bias Variance 
Population .9248 .3489 .0018 .0006 
Sample .9247 .3505 .0038 .0006 
Sampling bias -.0001 .0016 
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TABLE 7. 
Simulation results for r = 3 

n = 500, r = 3 ECV UCV Bias Variance 
Population .9940 .0286 -.0055 .0023 
Sample .9863 .0662 .0230 .0008 
Sampling bias -.0076 .0377 

n = 1000, r = 3 ECV UCV Bias Variance 
Population .9940 .0286 -.0027 .0011 
Sample .9895 .0506 .0242 .0005 
Sampling bias -.0045 .0220 

n = 5000, r = 3 ECV UCV Bias Variance 
Population .9940 .0286 -.0005 .0002 
Sample .9925 .0355 .0017 .0002 
Sampling bias -.0015 .0070 

TABLE 8. 
Simulation results for r = 4 

n = 500, r = 4 ECV UCV Bias Variance 
Population 1.0000 .0000 .0000 .0000 
Sample .9985 .0078 .0095 .0002 
Sampling bias -.0015 .0078 

n = 1000, r = 4 ECV UCV Bias Variance 
Population 1.0000 .0000 .0000 .0000 
Sample .9989 .0059 -.0025 .0001 
Sampling bias -.0011 .0059 

n = 5000, r = 4 ECV UCV Bias Variance 
Population 1.0000 .0000 .0000 .0000 
S ample .9994 .0031 .0012 .0000 
Sampling bias -.0006 .0031 

UCV bias. The third row gives the differences between the ECV and UCV values of  rows two 

(sample averages) and those of  row 1 (population values). 

It is clear that UCV will decrease as r, the number of factors extracted, increases. In fact, 

when r = 4, UCV reaches zero for the first time, which means that the population minimal 

reduced rank is 4. Because this is a case above the Ledermann bound, the solution (unique vari- 

ances) is non-unique (Shapiro, 1985). Also, the asymptotic bias is zero in this case, see Proposi- 

tion 4. 

It is obvious that the asymptotic bias (elements 1,3 of  the subtables) will decrease with in- 

creasing sample size n. Comparing the theoretical asymptotic bias with the average bias found 

by the simulation runs (elements (3,2) of  the tables), it can be seen that the theoretical asymp- 

totic bias tends to slightly underestimate the bias encountered in simulations. The latter bias is 

consistently positive (for r = 4 this is necessarily the case). The size of  the bias, however, is re- 

markably small. Specifically, the counterpart of the UCV, the ECV, expressed as a proportion of  

the common variance, has a small negative bias in samples, usually of  less than one percent. For 

this data set, it seems that UCV bias is hardly a problem at all. It can be noted that the theoretical 

asymptotic bias seems reasonably accurate in samples sizes of 5000, when r = 1 or r = 2, but 
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TABLE 9. 
The theoretical asymptotic covariance matrix of the sample unique variances (r = 2, n = 5000) 

93 

0.00019 --0.00001 - -0 .00003 - -0 .00001 - -0 .00006 - -0 .00008 0.00001 

--0 .00001 0.00042 - -0 .00008 - -0 .00027 - -0 .00066 0.00013 0.00047 

- -0 .00003 - -0 .00008 0.00028 0.00012 0 .00004 - -0 .00009 0.00001 

--0 .00001 - -0 .00027 0 .00012 0.00040 0.00063 - -0 .00010  - -0 .00039 

- -0 .00006 - -0 .00066 0 .00004 0.00063 0.00277 - -0 .00005 - -0 .00169 

- -0 .00008 0.00013 - -0 .00009 - -0 .00010  - -0 .00005 0 .00030 0.00007 

0.00001 0.00047 0.00001 - -0 .00039 - -0 .00169 0.00007 0.00131 

TABLE 10. 
The estimated by simulation asymptotic covaxiance matrix of the sample unique 
samples of size n = 5000) 

variances (r = 2, 500 runs of 

0.00021 - 0 . 0 0 0 0 1  - 0 . 0 0 0 0 5  - 0 . 0 0 0 0 2  - 0 . 0 0 0 0 4  - 0 . 0 0 0 0 9  - 0 . 0 0 0 0 4  

- 0 . 0 0 0 0 1  0.00059 - 0 . 0 0 0 0 5  - 0 . 0 0 0 3 3  - 0 . 0 0 0 7 9  0.00013 0.00049 

- 0 . 0 0 0 0 5  - 0 . 0 0 0 0 5  0 .00022 0.00006 0.00008 - 0 . 0 0 0 0 5  - 0 . 0 0 0 0 2  

- 0 . 0 0 0 0 2  - 0 . 0 0 0 3 3  0.00006 0.00040 0 .00072 - 0 . 0 0 0 0 7  - 0 . 0 0 0 3 9  

- 0 . 0 0 0 0 4  - 0 . 0 0 0 7 9  0.00008 0.00072 0.00398 - 0 . 0 0 0 1 3  - 0 . 0 0 2 0 6  

- 0 . 0 0 0 0 9  0.00013 - 0 . 0 0 0 0 5  - 0 . 0 0 0 0 7  - 0 . 0 0 0 1 3  0.00027 0.00013 

- 0 . 0 0 0 0 4  0.00049 - 0 . 0 0 0 0 2  - 0 . 0 0 0 3 9  - 0 . 0 0 2 0 6  0.00013 0.00143 

not with r = 3 or r = 4. The theoretical asymptotic variance estimate (elements 1,4 compared 
to elements 2,4) seems fully accurate throughout the samples with size 5000. 

The theoretical asymptotic covariance matrix of the sample unique variance has also been 
compared to its simulation estimate. Again, for r = 1 or 2, and n = 5000, the theoretical values 
of  the asymptotic covariances of  the sample unique variances were quite accurate. Tables 9 and 
10 give the corresponding theoretical and simulation results for r = 2 and n = 5000. However, 
for r = 3 and r = 4, much larger samples were needed to reach the same degree of  accuracy. 

For r = 4, the poor accuracy of the theoretical asymptotic estimates is not surprising, be- 
cause the assumption of  a unique solution is violated. It is yet to be clarified why the estimate was 
so inaccurate when r = 3, where the population solution does appear to be unique. A possible 
explanation may rest in the fact that the sample solutions for r = 3 often display Heywood cases 
(the population solution does not). Heywood cases in samples do not invalidate the asymptotic 
theory but they do detract from the accuracy of  the MRFA program we  have used. This remains 
a matter of  further investigation. 
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