

New York Police Academy

College Point, New York

Technical Report 2:

Energy Consumption, Emissions & Economic Analysis

Prepared for: Professor William Bahnfleth, PhD, PE

Date: October 27th, 2010

Mechanical Option Senior Thesis 2010- 2011 John M. Scavelli The Pennsylvania State University

Master of Architectural Engineering Bachelor of Architectural Engineering

Table of Contents

Table of Contents
Executive Summary
Mechanical Systems Overview:
Building Load Estimation
Block Load Analysis
1.0 Design Load Information:
Location Information
Table 1.1: Location Information: College Point, Queens
Building Area and Zones
Figure 1.1: New York Police Academy Energy Simulation Zones (Floor 3)
Miscellaneous Internal Loads
Table 1.2: Internal Load Densities
Outdoor Ventilation Rates
Wall Construction
Figure 1.2: New York Police Academy Construction Template
Equipment Information
2.0 Energy Analysis Results
Energy Consumption and Peak Loads Summary
Table 2.1: Electricity Consumption
Table 2.2: Natural Gas Consumption 10
Table 2.3: Water Consumption
Table 2.4: Heating and Cooling Load
Table 2.5: Ventilation Results
Figure 2.1: Monthly Cooling and Heating Coil Profiles11
Figure 2.2: Monthly Cooling Equipment Consumption11
Electrical Loads
Figure 2.3: Electric Consumption NYPA East Campus13
Table 2.7: Electrical Load Calculated with TRACE 700 Simulation
Table 2.8: Electrical Load Comparison Construction Documents vs TRACE 700 Simulation
3.0 Economic Analysis Results
Energy Costs

Technical Report 2: Energy Consumption	, Emissions,	& Economic 1	Analysis
--	--------------	--------------	----------

Table 3.1: Electric Utility Costs	14
Table 3.2: NYPA East Campus Total Utility Costs	15
Figure 3.1: Monthly HVAC Energy	15
Figure 3.2: Building Electricity Monthly Costs	16
Emissions Analysis Results	16
Table 3.3:Emissions Analysis	
Table 3.4: Natural Gas Boiler CO ² Emissions	
References:	
Appendices:	
Appendix A: Building Zone Information	
Floor 1 Zones	19
Floor 2 Zones	19
Floor 3 Zones	20
Floor 4 Zones	20
Floor 5 Zones	20
Floor 6 Zones	21
Floor 7 Zones	21
Floor 8 Zones	21
Appendix B.1: Equipment Information	21
Hot Water Boiler Schedule	
Electric Water Chiller Schedule	
Cooling Tower Schedule	
AHU Circulating Pumps	23
East Campus AHU Schedule	24
Appendix B.2:East Campus Ventilation Rate Procedure Calculations	24
Appendix C: Utility Cost Information	
Average Retail Price of Electricity (DOE)	
Average Natural Gas Price (DOE)	
Appendix D: Emission Rates	27
Emission Factors for Delieverd Electricity by State	

Executive Summary

This report is intended to summarize information regarding the energy consumption of the New York Police Academy's East Campus. The NYPA is divided into an East and West Campus. The East campus houses the office and classroom space for the Academy, while the West Campus houses the central utility plant and physical training facilities. The East Campus and West Campus are physically two separate buildings, connected only by an enclosed walkway. Due to the size of the entire NYPA (nearly 1,000,000 SF) only the East Campus was chosen to be modeled for energy consumption (nearly 400,000 SF).

An energy model was developed using Trane TRACE 700 software. The information calculated from this energy model serves as the foundation for the analysis of this report. Unfortunately, the actual energy model for this building was not accessible from the team of engineers who have been working on the project. Therefore, a thorough comparison of my energy model with the model of the actual engineers was not possible. Nonetheless, this report provides an overview of the steps taken and assumption made for my energy model simulation.

After designing and running an energy simulation, the calculated loads were then used to perform an economic and emissions analysis for the NYPA's East Campus. Overall, the calculated peek cooling load of the East Campus is 1,235.5 tons and the peak heating load is 10,104.2 MBh. The electricity consumption of the building was determined to be 5,634,061 kWh/yr and the natural gas consumption was calculated as 5,530,679 kBtu/yr. Using the Department of Energy's utility costs averages for New York, the annual utility costs of the building were calculated to be \$971,429 which boils down to \$2.59/ ft²/yr. This building is not yet constructed and is scheduled to be completed at the end of 2013. Thus, actual utility costs of the building are not available for comparison.

Mechanical Systems Overview:

The air conditioning needs of the building will be met by 63 chilled water Air Handling Units (AHUs). The capacity of the AHUs range from 3,000 CFM to 30,000 CFM. The 63 Air Handling Units will be housed in different sections of the campus. 18 AHUs will reside in the Central Plant, 26 AHUs will reside in the West Campus, the final 19 AHUs will be located in the East Campus. Indoor air quality needs will also be addressed with precautions such as a no smoking policy, indoor CO2 sensors, and appropriate placement of air intakes that will limit outdoor contaminants entering the building.

There are three water tube boilers that are located in the central plant that will be responsible for introducing the hot water for the entire campus. Along with the boilers there will be (8) 1350 ton chillers that will supply all the cold water needs of the Academy. The central plant serves both the East and West Campus. The capacity of the central plant has been oversized both for redundancy and the intent for future expansion of the New York Police Academy.

Building Load Estimation

The New York Police Academy is divided into an East and West Campus. The East campus houses the office and classroom space for the Academy, while the West Campus houses the central utility plant and physical training facilities. The East Campus and West Campus are physically two separate buildings, connected only by an enclosed walkway. Due to the size of the entire NYPA (nearly 1,000,000 SF) only the East Campus was chosen to be modeled.

In order to estimate the NYPA's load and energy consumption, Trane TRACE 700 was used. The Trane TRACE 700 is a program designed to estimate the energy load of a building and is also useful for performing an economic analysis for the energy consumption of a building. TRACE 700 uses a full 8760 hours-per-year analysis and provides a detailed summary of the estimated loads of the building.

Block Load Analysis

A block load analysis was performed for the energy analysis of NYPA's East Campus. The East Campus consists of eight floors. Each floor was divided into zones based on orientation and occupancy use. In total, the building was designated into 52 different zones. A room by room analysis for this size project was deemed unnecessary for this report because of the size of this

building. By grouping similar spaces into larger zones it will allow for easier analysis and provide a similar level of accuracy.

Below is a summary of some useful information that was gathered and imported into TRACE 700 for the analysis. It summarizes information such as weather input, zone designation, power loads, and construction types.

<u>1.0 Design Load Information:</u>

Location Information

The New York Police Academy will be constructed in College Point, Queens. Its location is 1.5 miles East of LaGuardia airport. Thus, the weather information provided for New York's LaGuardia airport will be used and should provide a high level of accuracy to the actual weather conditions of the NYPA.

Table 1.1: Location Information: College Point, Queens

Station	Latitude	Longitude	Elevation	Heating DB (99.6%)	Cooling DB 0.4%	Cooling MCWB 0.4%	Evaporation WB 0.4%	Evaporation MCDB 0.4%	Dehumid. DP 0.4%	Dehumid HR 0.4%	Dehumid MCDB 0.4%
New York, LaGuardia Aprt	40.78N	73.88W	30	12.6	92.2	74.4	77.2	87.2	74.3	185.5	81.0

ASHRAE Handbook of Fundamentals

Information	Input
Air Density	0.0760 lb/ft ³
Air Specific Heat	0.244 Btu/lb •°F
Density-Specific Heat Product	1.1147 Btu/h •cfm °•F
Latent Heat Factor	4906.9 Btu •min/h• ft ³
Enthalpy Factor	4.5604 lb•min/hr • ft ³
Summer Design Dry Bulb	89°F
Summer Design Wet Bulb	73°F
Winter Design Dry Bulb	15°F
Summer/Winter Clearness Number	0.85°F
Summer/Winter Ground Reflectance	0.20°F
Carbon Dioxide Level	400 ppm

Building Area and Zones

As stated previously, in order to effectively analyze the building it was unnecessary to model each room in TRACE 700. Therefore, each floor was divided into smaller zones based on proximity, occupancy and orientation. In total the eight stories of the East Campus building was designated into 52 different zones, each floor ranging from five to seven zones. The East Campus consists of four different types of spaces which include classroom spaces, office spaces, mechanical rooms, and lobby/corridors. These different spaces were used as a templates to model each zone.

Below is an example of how Level 3 was designated into separate zones for analysis. All other zones can be found in Appendix A.

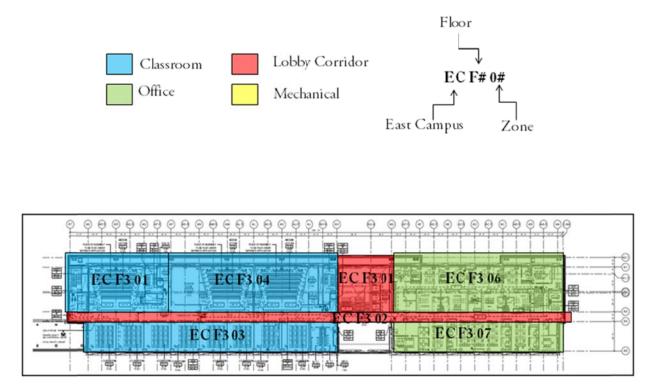


Figure 1.1: New York Police Academy Energy Simulation Zones (Floor 3)

Miscellaneous Internal Loads

All equipment and lighting loads were modeled on a watts per square foot (w/sf) basis. Lighting fixtures and office equipment schedules have not yet been released for this project at this time. Therefore, it was determined to input each space with a typical equipment and lighting load based on the occupancy. Below is a summary of the modeled equipment loads, lighting loads and occupant loads.

Space	Lighting Load	Equipment Load	Occupant Load	Sensible Load	Latent Load
Classroom	1.0 w/sf	0.22 w/sf	20 ft ² /occ	250 Btu/hr	200 Btu/hr
Office	1.0 w/sf	0.5 w/sf	143 ft ² /occ	250 Btu/hr	200 Btu/hr
Mechanical Room	0.8 w/sf	2.0 w/sf	400 ft ² /occ	275 Btu/hr	200 Btu/hr
Lobby Corridor	0.8 w/sf	0.25 w/sf	50 ft²/occ	250 Btu/hr	200 Btu/hr

Table 1.2: Internal Load Densities

Outdoor Ventilation Rates

Outdoor air ventilation rates for the New York Police Academy were not available for the NYPA's East Campus. However, the ventilation rates were calculated using ASHRAE Standard 62.1-2007 Ventilation Rate Procedure and a summary of the calculated ventilation rates can be found in the previous technical report (Technical Report 1: ASHRAE Standard 62.1 & 90.1 Compliance Analysis) also see Appendix B.2.

Wall Construction

Below is a summary of the construction values that were used for the energy simulation of the New York Police Academy. The East Campus of the academy is composed of 4" concrete slabs, the exterior walls are to be built with aluminum paneling and insulation, the interior walls were modeled as ³/₄" standard gypsum board framing. The u-factors and shading coefficient for the windows of the East Campus were input it correlation to the glazing specifications (Spec 08 44 13-1).

Construction	Templates	- Project	:				X
Alternative	Alternat	ive 1		•			Apoly
Description	NYPA	_		•			
Construction Slab	 4" LW Con				U-factor Btu/h-ft ^{e-+} F		New
Roof				•	0681057		Сдру
	4" LW Con			-			<u>D</u> elete
Wall	Metal, 3" In	-		-	C 0907574		Add Global
Partition	0.75'' Gyp F	rame		•	C387955		
Glass type Window	Sngle Clear	1/2"		¥	U-factor Btu/h-ft ^{e,} *F	Shading coeff 0.35	
Skylight	Single Clear	1/2"		•	1.04	0.88	
Door	Standard D	noc		•	C2	0	
Fir to fir	10 14 4	ft ft	u	ct wall area to nderfloor plenum oom type	Conditioned	2	
Internal	Load	l	Airflow	<u>I</u> hermo	stat	<u>Construction</u>	Boom

Technical Report 2: Energy Consumption, Emissions, & Economic Analysis

Figure 1.2: New York Police Academy Construction Template

Equipment Information

Air Handling Unit, electric water chillers, hot water boiler, circulating pump, and cooling tower schedules can be found in Appendix B. These schedules dictate information regarding the types and specifications of equipment used for the mechanical building systems. Please note that these equipment schedules to not represent the equipment solely for the East Campus. These equipment schedules represent equipment for the entire campus as well as equipment that will be used for future expansion.

2.0 Energy Analysis Results

After running the simulation for the building, some of the useful information that the program was able to determine was the annual electricity consumption, annual natural gas consumption, the peak cooling loads and the peak heating loads. The consumption and loads were based upon the site location, room types, occupancy, scheduled use, equipment efficiency and several other variables that were input into TRACE 700.

The simulation was able to determine that the total electricity consumption was 5,634,061 kWh and the total natural gas consumption was 5,530,679 kBtu. Also the peak cooling load was 1235.5 tons and the peak heating load was 10,104.2 MBh. Below is a summary of the energy

consumption and peak loads of the New York Police Academy's East Campus as simulated by TRACE 700. Actual designed document loads have not been made available, so comparison from actual design data and simulated data is not possible at this time.

Energy Consumption and Peak Loads Summary

Table 2.1: Electricity (Consumption

Source	Electricity Consumption [kWh]	Total Building Electricity
Primary Heating	10,176 (does not include gas consumption)	22.5%
Primary Cooling	1,787,982	24.7%
Auxiliary	9,964	.1%
Lighting	2,986,304	41.2%
Receptacle	839,635	11.6%
Totals	5,634,031	100%

Table 2.2: Natural Gas Consumption

Primary Heating	Natural Gas Consumption[kBtu]
Natural Gas Boilers	5,530,679

Table 2.3: Water Consumption

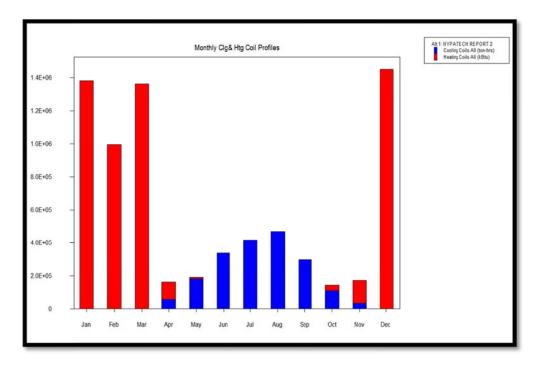

Primary Cooling	Water Consumption (1000 gallons)
Cooling Equipment	7,233

Table 2.4: Heating and Cooling Load

	Tons	ft²/ton	MBh	Btu/hr ft²
Cooling Load	1235.5	303.84	14826.4	39.49
Heating Load	-	-	-10,104.2	-26.92

Table 2.5: Ventilation Results

	[cfm]	[cfm/ft ²]
Outside Airflow	98,265	0.26
Cooling Airflow	234,422	.62
Heating Airflow	73,890	.20
Return Airflow	270,912	.72
Exhaust Airflow	134,754	.36

Technical Report 2: Energy Consumption, Emissions, & Economic Analysis

Figure 2.1: Monthly Cooling and Heating Coil Profiles

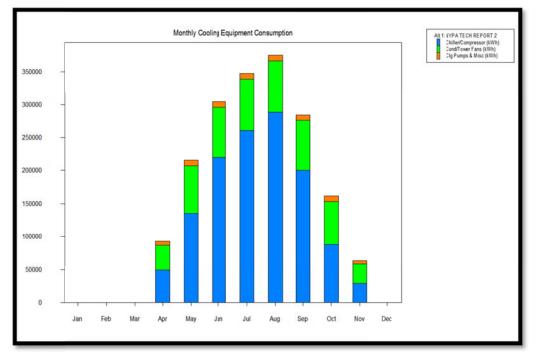


Figure 2.2: Monthly Cooling Equipment Consumption

Electrical Loads

As stated previously, there is limited information available in regards to what assumptions were made by the engineers when calculating the total loads of the building. The closest information available for the electrical loads is the total nominal kW for the East Campus. A discrepancy between the electrical loads I have calculated using TRACE 700 and the electrical loads provided are the units. The construction documents have provided the electrical load on a kW basis where as a TRACE 700 has calculated on a kWh basis. In order to convert the construction documents kW loads to kWh a schedule would need to be provided on when these electrical loads would be running.

Hypothetically, if it was assumed that electrical loads were to run 9 hours a day Monday-Friday then the construction documents would yield an electrical load of 5,891,292 kWh which is 4.6% greater than the TRACE 700 simulation. Nonetheless, it is a broad assumption to assume all electrical loads run specifically at 9 hours a day Monday- Friday. However, this broad assumption proves that the TRACE 700 model is comparable to the construction documents.

Also in order to effectively compare the construction documents with the TRACE 700 simulation, the percentage of total energy use for each category was compared with the construction documents. This analysis can be seen below. Overall, the HVAC load was responsible for almost an identical amount of electricity consumption (% of total), however the lighting and receptacle loads varied by +/- 14% of total electricity consumption.

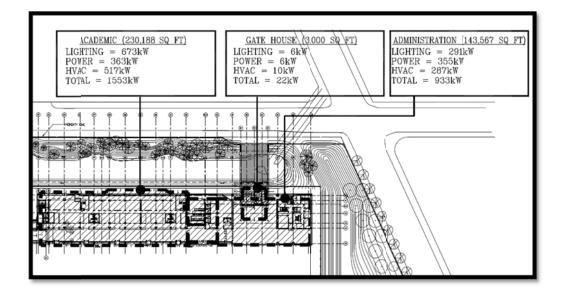


Figure 2.3: Electric Consumption NYPA East Campus

Table 2.6: Electrical Load from Construction Documents (kW)

East Campus	Electrical Load	Percentage of Total
Lighting	970 kW	39%
Power	724 kW	29%
HVAC	814 kW	32%
Total	2508 kW	100%

Table 2.7: Electrical Load Calculated with TRACE 700 Simulation

East Campus	Electrical Load	Percentage of Total
Lighting	2,986,304 kWh	53%
Receptacles	839,635 kWh	15%
HVAC	1,798,158 kWh	32%
Total	5,634,061 kWh	100%

Table 2.8: Electrical Load Comparison Construction Documents vs TRACE 700 Simulation

East Campus	Construction Documents	TRACE 700 Simulation	Difference
Lighting	39%	53%	-14%
Receptacles	29%	15%	14%
HVAC	32%	32%	0%

3.0 Economic Analysis Results

Energy Costs

In order to accurately verify the energy cost per square foot of a building it is useful to have both the typical utility rates charged to a building as well the actual energy consumption of a building. This report has been written prior to the construction of the New York Police Academy thus assumptions had to be made. Assumptions made include the cost per kWh of electricity and the cost of natural gas. These prices were gathered from the United States Department of Energy's: Energy Information Administration. New York State has one of the highest prices for electricity and natural gas in the United States. It was assumed that the price per kWh was .1611 \$/kWh and the price for natural gas was \$11.858/1000 ft³ of natural gas. The electricity price was assumed to be an average commercial electricity rate for New York State in the year 2010 and the natural gas price was an annual average from 2004-2010. See appendix for the Energy Information Administration's tables.

Source	Energy Cost	Electricity Consumption [kWh/yr]	Utility Price [\$ /yr]	Utility Price [\$/ ft ² • yr]
Primary Heating	\$.1611 /kWh	10,176	\$1,639.35	\$.0043/ ft ² • yr
Primary Cooling	\$.1611 /kWh	1,787,982	\$288,043.90	\$.767/ ft ² • yr
Auxiliary	\$.1611 /kWh	9,964	\$16,05.20	\$.0043/ ft ² • yr
Lighting	\$.1611 /kWh	2,986,304	\$481,093.57	\$1.28/ ft ² • yr
Receptacle	\$.1611 /kWh	839,635	\$135,265.20	\$0.36/ ft ² • yr
Totals	\$.1611 /kWh	5,634,031	\$907,642.39	\$2.42/ ft ² • yr

Table	3.1:	Electric	Utility	Costs
-------	------	----------	---------	-------

1 4010 9121 1 1111 2400				
Energy Cost	Energy Consumption Building Size (East		Utility Price/ ft ² • yr	
		Campus Only)		
\$.1611 /kWh	5,634,061 kWh/yr	375,405 ft ²	\$2.42 / ft ² • yr	
\$11.858/1000 ft ³ NG	5,530,679 kBtu/yr	375,405 ft ²	\$.1699/ ft ² • yr	
	\$2.59/ ft ² • yr			
		Annual Cost:	\$971,428/yr	

*High Heating Value for Natural Gas was used 1ft³=1028 Btu in accordance with specification of boiler.

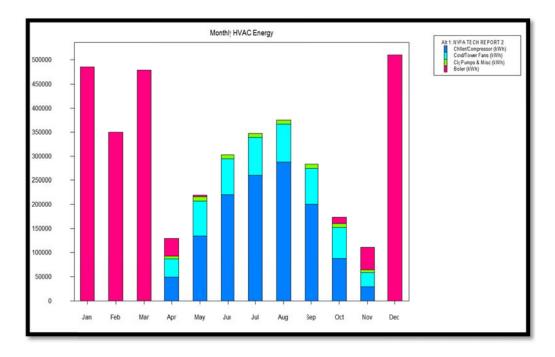


Figure 3.1: Monthly HVAC Energy

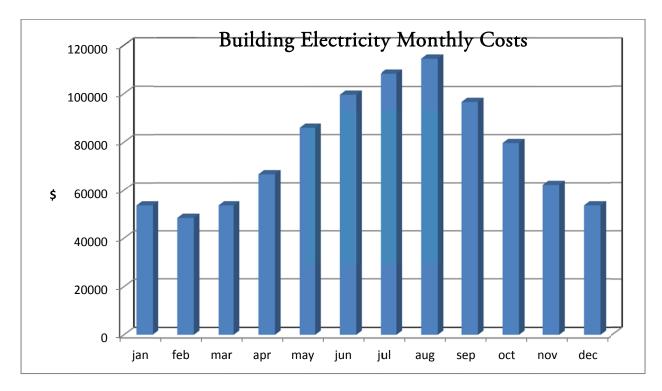


Figure 3.2: Building Electricity Monthly Costs

Emissions Analysis Results

The use of electricity in buildings can contribute pollutants into the atmosphere. Pollutant emissions for the East Campus of the New York Police Academy have been calculated using information from the National Renewable Energy Laboratory (NREL). *The Source Energy and Emissions Factors for Energy use in Buildings Table* was used from the NREL. This table allows for calculating source emissions depending on the amount of electricity consumed by a building and the location of the building. Below you can find a summary of the amount of pollutants the East Campus of the NYPA is responsible for.

Pollutant	[lb/kWh]	[kWh/yr]	[lbs of Pollutant/yr]
CO _{2e}	1.03	5,634,061	5,803,082.83
CO ₂	0.961	5,634,061	5,414,332.62
CH_4	0.00259	5,634,061	14,592.22
N0 ₂	0.00000168	5,634,061	9.47
N0 _x	0.00172	5,634,061	9,690.58
S0 _x	0.00623	5,634,061	35,100.20

Table	3.3:Emissions	Analysis
-------	---------------	----------

New York Police Academy

СО	0.00175	5,634,061	9,859.61
TNMOC	0.0000638	5,634,061	359.45
Lead	5.59E-08	5,634,061	0.31
Mercury	3.99E-08	5,634,061	0.22
PM10	0.0000687	5,634,061	387.06
Solid Waste	0.0618	5,634,061	348,184.97

Technical Report 2: Energy Consumption, Emissions, & Economic Analysis

Table 3.4: Natural Gas Boiler CO² Emissions

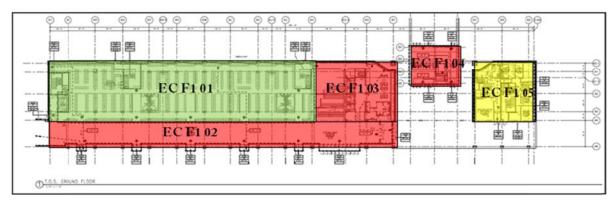
Primary Heating Source	Natural Gas Derive CO ₂ Emissions [lbs CO ₂ /year]	Electricity Derived CO ₂ Emissions [lbs CO ₂ /year]	Total CO ₂ Emissions [lbs CO ₂ /year]
Natural Gas Boilers	647,089	4,062	651,151

References:

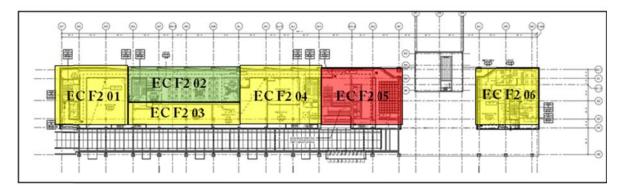
ASHRAE. (2009). *Handbook of Fundamentals*. Atlanta, GA: American Society of Heating Refrigeration and Air Conditioning Engineers, Inc.

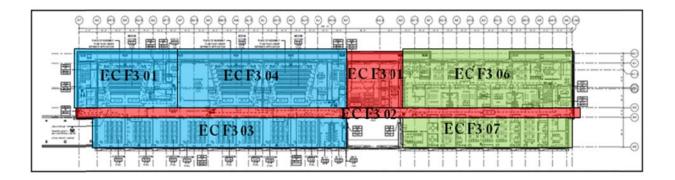
Turner Construction Company. *New York Police Academy Construction Documents*. New York, New York. (2010)

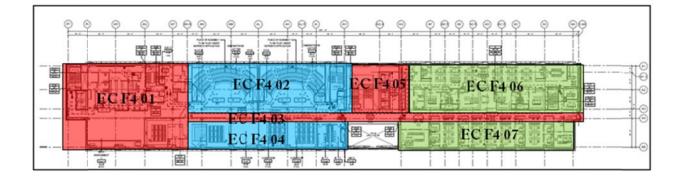
Turner Construction Company. *New York Police Academy Specifications*. New York, New York. (2010)

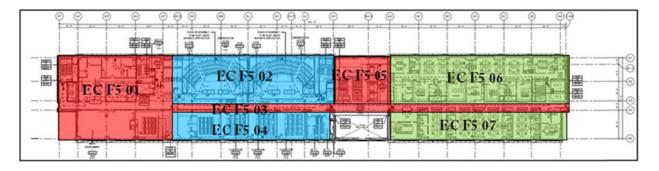

"U.S Energy Information Adminstration: *Independednt Statistcs Analysisis*" Accessed October 15, 2010. <<u>http://www.eia.doe.gov/cneaf/electricity/epa/epa_sum.html></u>

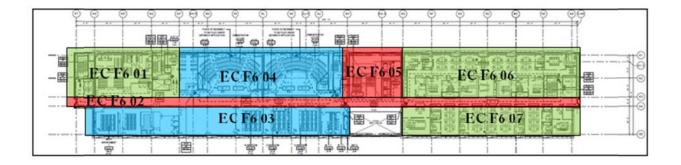
Appendices:


Appendix A: Building Zone Information

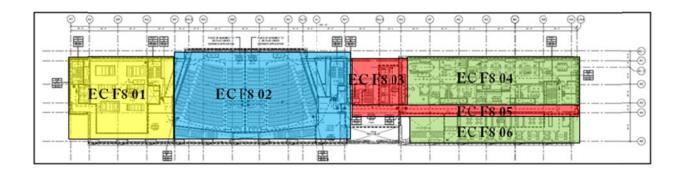

Floor 1 Zones


Floor 2 Zones


Floor 3 Zones


Floor 4 Zones

Floor 5 Zones


Floor 6 Zones

Floor 7 Zones

ECF7	01	EC F7 02	EC F7 04	EC F7 05	
		ECF7 03		EC F7 06	

Floor 8 Zones

Appendix B.1: Equipment Information

Note: Boiler Schedule, Electric Water Chiller Schedule and Cooling Tower Chiller represent equipment for both the East and West Campus of the New York Police Academy.

Hot Water Boiler Schedule

		HOT WA	TER	BOII	ER	L	OW 1	x(V			(UN	LUX	AS	STA	NDA	RD)												
					Γ	Τ				HOT WAT	R DATA		0	AS BURN	ER DATA		DRIVT BU	MER DADA				ELECTRIC	AL PONER	100	ła			
DESIGNATION	SERVE	LOCATION	BOLER HP.	NET OUTPUT	PASS	340530	ROLET VALVE SET POINT (PSIG)	BROBECY AT RATED LOND (10)	PLOW RATE USOPN 405 STCOL	(1 200 (00)	(DECHERS F)	And MEGINE	3417 SMD	REAL CONTEN (BTU/CT)	RATED LOND RATED LOND (CTH)	CAS INLET PRESSARE BORNER STATIC (POSS	LUIC OUTLY	NOTOR HP	NOLTS/PHICE	MODEL NUMEER	OPERATING INDOHT (LBS)	NORMAL PONCE	ENERGENCY POINT	UNIT/ WOC/ LODGE WOUNTED STURFER	STARTER PROVIDED	STAKTOR THE	WHALE SPED	REMARKS
8-311-3-1	HO! WATER	CENTRAL PLAN 3RD FLOOR		2511	5	250	150	94.0	2010	165	190	3	NG	1000	30000	10	30	30	460/3	3729009-1-20/250	38,000	YES	YES	UNT	NECH	VFD	YES	DUAL FUEL
8-311-3-2	HO' MATER	CENTRAL PLAN 3RD FLOOR	750	2511	5	250	190	94.0	2010	165	190	3	NG	1000	30000	10	30	30	460/3	8 29000-+-200/250	38,000	YES	YES	UNT	NECH	VFD	YES	DUAL FUEL
8-311-3-3	HO' MATER	CENTRAL PLAN 3RD FLOOR		2511	5	250	190	54.0	2010	165	190	0	NG	1000	30000	10	30	30	460/3	372900++-290/250	38,000	YES	NO	UNT	NECH	VFD	YES	DUAL FUEL
8-311-3-4	HOT MATER	CENTRAL PLAN 3RD FLOOR	750	2511	5	250	190	94.0	2010	165	190	3	NG	1000	30000	10	30	30	460/3	072000++-201/200	38,000	TES	NQ	UNT	NECH	VFD	TES	DUAL FUEL (IVTURE)
8-311-3-5	HO' MATER	CENTRAL PLAN 3RD FLOOR	750	2511	5	250	TEO	B4.0	2018	165	190	3	NG	1080	30000	10	30	30	460/3	3729001-1-250/250	38,000	YES	NO	UNT	NECH	VFD	YES	DUAL FUEL (FUTURE)
LOW NOX ON	GAS ARING < 30	PPM																										
	INPUT, TOTAL HEA																											

Electric Water Chiller Schedule

	E	LECTRIC	WAT	ER (THIL	ER						(YOF	K 'Y	D" .	AS S	TAN	DAR	D)										
						EVAID	RATOR SI	ε			COND	diser 9	DC .						COMPS	ESSOR E	LECTRIC	DATA				OL PL ELICT	NP RC DATA	
DESCRIMICA	SORVICE	LOCATION	NOMINAL TONS	CHLED WAER FLOW RATE (GPM)	Discontage	LVG. WATER TEMPERATURE (SCONCES 7)	PT. OF WARP	NUMBER OF PASSES	FOULING	100	DIFFERENCES	Disection ()	CORD. WATER PRESS DROP 07. OF WATER	NUMBUR OF PASSES	FACTOR	NUMBER OF COMPRESSORS	KW (EACH NOTOR)	SHIFT HP EACH MOTOR	KW TOTAL	UNIT KUV /TON	UNTI NPLV	FLA (EACH NOTOR)	URA (EACH MOTOR)	SARAA HELIABA	VOLS /PHAC	R.A.	AUTS / PAKE	OP(RATHIC MCONT
CH-311-3-1	CHILLED WATER	CENTRAL PLANT 3RD FLOOR	1350	2125	58	42	14	2	6,00010	2760	85	100	12	2	6.00025	1	826	1823	826	0.612	6.38	1152	7014	1165	480/3		460/3	63,29
DH-311-3-2	CHILLED WATER	CENTRAL PLANT 3RD FLOOR	1350	2025	58	42	14	2	0.00010	2700	85	100	12	2	6.00025	1	826	1823	826	0.612	6.38	1152	7014	1165	480/3		460/3	63,29
0H-311-3-3	CHILLED WATER	CENTRAL PLANT 3RD FLOOR	1350	2025	58	42	14	2	0.00010	2700	85	100	12	2	6.00025	1	826	1823	826	0.612	6.38	1152	7014	1165	480/3	-	460/3	63,2
DH-311-3-4	CHILLED WATER	CENTRAL PLANT 3RD FLOOR	1350	2025	58	42	14	2	6.00010	2700	85	100	12	2	6.00025	1	826	1823	826	0.612	6.38	1152	7014	1165	480/3	-	+60/3	63,29
DH-311-3-5	CHILLED WATER	CENTRAL PLANT 3RD PLOOR	1350	2025	58	42	14	2	0.00010	2700	85	100	12	2	6.00025	1	826	1023	826	0.612	0.38	1152	7014	1165	480/3	-	460/3	63,29
H-311-3-6	CHILLED WATER	CENTRAL PLANT 3RD FLOOR	1350	2825	58	42	14	2	6.00010	2700	85	100	12	2	6.00025	1	826	1623	826	0.612	6.38	1152	7014	1165	480/3	-	460/3	63,2
NO CHILLER	nill be under ene	RCY POWER BUTO	NLY ONE	WLL RU	N.																							

Cooling Tower Schedule

	(COOLING TO	TERS						(MAR	LEY	AS	STD)										
						40		s		FAN MOT	OR DAT					VER/	ATION	ELECT	TRICAL IR		ы	16	1
DESIGNATION	LOCATION	1.NPE	TOTAL FLOW RATE (GPW)	ENT. WATER TEMPORATURE (DECREES F)	LUC. WATER TEMPERATURE (DECREES F)	AMBENT AR TEMP (DECREES F. W.B.)	OPM PER CELL	STED JO JOBWIN	NUMBER OF FAN MOTORS	HP FER FAN MOTOR	N-SH	VOLTS/PHASE	NODEL NUMBER	OPERATING NEIGHT W/O STEEL SUPPORT	BASH HEATER NO. & KW	SPECFICATION TIPE	STATIC DEFLECTION (INCHES)	NORMAL POWER	ENERCENCY PONER	VARIABLE SPEED	UNIT / MCC / LOOSE MOUNTED STARTER	STARTER PRONDED	STARIER LYPE
CT-311-R-1	ROOF LEVEL	INDUCED DRAFT COUNTER FLOW	2700	100	85	78	2700	1	1	60	1800	460/3	NC8414VAN1	53,070	24	-	-	YES	YES	234	10058	MECH	VFD
CT-311-R-2	ROOF LEVEL	INDUCED DRAFT COUNTER FLOW	2700	100	85	78	2700	1	1	60	1800	460/3	NC8414VAN1	53,070	24	-	-	YES	YES	YES	LOOSE	MECH	VFU
CT-311-R-3	ROOF LEVEL	INDUCED DRAFT COUNTER FLOW	2700	100	85	78	2700	1	1	60	1800	460/3	NC8414VAN1	53,070	24			YES	NO	YES	LOOSE	MECH	VF
CT-311-R-4	ROOF LEVEL	INDUCED DRAFT COUNTER FLOW	2700	100	85	78	2700	1	1	60	1800	460/3	NC8414VAN1	53,070	24	100	1.00	YES	NO	YES	LOOSE	MECH	VF
CT-311-R-5	ROOF LEVEL	INDUCED DRAFT COUNTER FLOW	2700	100	85	78	2700	1	1	60	1800	460/3	NC8414VAN1	53,070	24	-	-	YES	NO	YES	LOOSE	MECH	VF
CT-311-R-6	ROOF LEVEL	INDUCED DRAFT COUNTER FLOW	2700	100	85	78	2700	1	1	60	1800	460/3	NC8414VAN1	53,070	24	-	-	YES	NO	YES	LOOSE	MECH	VF
CT-311-R-7	ROOF LEVEL	INDUCED DRAFT COUNTER FLOW	2700	100	85	78	2700	1	1	60	1800	460/3	NC8414VAN1	53,070	24		-	YES	NO	YES	LOOSE	MECH	V

Page 22#-

AHU Circulating Pumps

						AHU	HE	ATIN	GC	OIL	CIRC	ULATIN	G PU	MPS				
									HOTOR	DATA					VER	ation Ation		
JE STGMT ID1	SERVICE	LOCATION	FLOV RATE (GPN)	TDTAL PUMP HEAD (FT. OF VATOR)	STATIC HEAD GTI. OF VATORI	CASING PRESSURE (PSIG)	KENDINUM PUMP EFFICIENCY (2)	BRMCE HP	Konjaun Hotor HP	RPM	VIL TS/PHASE	MODEL Number	34/L dana	MANUFACTURER	SPECUFICATION TYPE	STATIC DEFLECTION CINCHESD	RDMARKS	DRAVING HIL
CP-JU-8-1	A4U-111-8-1	8TH FLOOR NER	54,5	20	-	150	61,27	.47	.75	1900	460/3	JAG 244 Series 10	INLINE	JELL & GDSSETT	-	-	-	-
07-111-8-2	MJ-111-8-2	STH FLOOR MOR	652	20	-	150	635	.54	.75	1800	460/3	NAG 2AA Series 90	INLINE	JELL & GOSSETT	-	-	-	-
0P-111-8-3	AU-111-8-3	STH FLOOR NER	108.3	20	-	150	6818	8	11	1900	460/3	1/4 2:5:5 2:4E Di 231332	INLINE	LTBE BELL &	-	-	-	-
0°-11-8-4	АЦ-Ш-8-4	8TH FLOOR MER	868	50	-	150	6553	54	.75	1800	460/3	445 240 Dr 230332	INLINE	JELL & GOSSETI	-	-	-	-
CP-ป1-8-5	MU-111-8-5	STH FLOOR NER	1402	20	-	150	62,0	L17	15	1900	460/3	BNG 3x3x78 SERIES 80	INLINE	JELL & GOSSETT	-	-	-	-
CP-111-8-6	ANU-111-8-6	STH FLOOR NER	1402	20	-	150	62,0	L17	15	1800	460/3	BNG 3x3x78 Series X0	INLINE	JELL & IT32200	-	-	-	-
CP-111-PH-1	ANJ-111-PH-1	vest penthouse Ner	1402	20	-	150	62.01	L17	15	1900	460/3	BNG 3x3x78 SERIES 80	INLINE	JELL & GOSSETT	-	-	-	-
CP-111-P1+2	AU-UI-PH-2	vest penthouse Ner	1402	20	-	150	6510	L17	15	1800	460/3	BLG 3x3x78 SERIES 80	INLINE	1 LL1 DISSETT	-	-	-	-
CP-111-PH+3	AU-U1-PH-3	vest penthouse Ner	1402	50	-	150	62.01	L17	15	1900	460/3	BLG 3x3x7B SERIES 80	INLINE	JELL & GOSSETT	-	-	-	-
CP-UL-PH-4	AU-UL-PH-4	vest penthouse Ner	682	20	-	150	64.06	.55	.75	1900	460/3	NAS 341 Series 70	INLINE	1ELL & GESSETT	-	-	-	-
CP-111-PH-5	ARU-LUI-PH-5	VEST PENTHOUSE NER	682	50	-	150	64.06	-55	.75	1800	460/3	AKS GAN Dr 230732	INLINE	JELL & IT32200	-	-	-	-
CP-111-PH-6	AU-U1-PH-6	vest penthouse Ner	118.3	20	-	150	67.48	.89	15	1900	460/3)NG 20205 1/4 SERIES 60	INLINE	JELL & GOSSETT	-	-	-	-
CP-131-PH-1	AU-131-FH-1	east penthouse Ner	1183	80	-	150	67.48	.89	15	1900	460/3	841 2555 JAC 84 231322	INLINE	JELL & GUSSETT	-	-	-	-
CP-131-PH-2	AHU-131-PH-2	east penthouse Ner	108.3	20	-	150	6818	8	11	1900	460/3	146 20205 1/4 SERIES 60	INLINE	JELL & GOSSETT	-	-	-	-
CP-131-PH-3	AHJ-131-PH-3	east penthouse Ner	108.3	50	-	150	6818	8	IJ	1800	460/3	345 2x2x5 1/4 SERIES KI	INLINE	1011 1 UDSSETT	-	-	-	-
09-131-98-4	AHU-131-PH-4	east penthouse Mer	108.3	20	-	150	6818	8	11	1800	460/3	146 2x2x5 1/4 SERIES KI	NLDE	HELL & GOSSETT	-	-	-	-
CP-131-PH-5	AHU-131-PH-5	east penthouse Mer	108.3	50	-	150	6818	.8	11	1900	460/3	11.6 2x2x5 1/4 SEKIES W	NLDE	HELL & GOSSETT	-	-	-	-
09-131-98-6	AHU-131-PH-6	east penthouse Mer	83.4	50	-	150	6553	.54	35	1900	460/3	445 244 SERIES 90	NLDE	HELL & GOSSETT	-	-	-	-
CP-131-PH-7	AHU-131-PH-7	east penthouse Mer	83.4	50	-	150	65.53	.54	.75	1800	460/3	NG 244 Series 10	NLDE	HELL & GOSSETT	-	-	-	-

East Campus AHU Schedule

		FACTORY	ASS	EMBLE	DE	VAC S	YST	BMS	- ((HIL	LBD	WAT	ER)																								
							FILTER									(mine	con.											HEAT	NG COL							
												AIR SCHO	:			VATER	SIDE							A	ê			AJR DD	E .		VATER	3062					A
							AR F	VAILED	134	ENT. 1	DP.	LVG	TDIP.						È	Ě				E al	CAPACIT		DNT. TEXP.	LVG TEN,									2 GPD
ñ	SERVICE	LOCATION	5	E .	SECREATEN				8	2	_£	2	_6	ANDON ADR FRETTON ON. OF VALLOC	۲	<u>.</u>	<u>ہ</u> ۔	PRESS, 1800 OT. OF VALCO	THE CONCUS	1 R			VD.DCTIY	Xan Jan	TUTAL HEATDIG 0060	ē	۵_	۵_	ANDAN AR FREIDA ON OF VATER	ы.	. C	<u>.</u>	6	-		FACE VILIERY	SENTES SUBFACE
LESSANTER			1 Teres	100	8.	NDNIN 1	NIM	10 Mai	TUTAL FACE COL FTJ	DEY JUB	VET RU DORES P	DEY JULD	VET BUU	SE-	RUN RATE	ENT. TEP. ODJATES P.	LVG. TDP. CLUGETS P)	ž,	-Že		SCIDS P	FACE MEA	20	XDUES SJATI	보	ING STORE	DEY NUB	DRY JULB	출연님	RDV RATE	CAL TOP.	LVG. TDP. CICURTS F)	ST-D VOI	SCIDING PL	FACE MERA GOL FTJ	20	100
12			Þě 2	262	SE.	₫Ľ	Z	₽.	₽8	28	28	28	28	200 a	58	28	28	326	B 18	688	200	38	RE	82	Eŝ	질문	28	문용	269	59	28	28	205	ž	38	₹6	88
ARU-111-0-1	200 FLIDR OFFIC	STH FLOOR HOR	15,000	2.55	•	•	25	10	•	77,A	64.5	49,7	495	0,83	88.9	42	56	12.66	624.6	4422	S	30	500	8-8	3004,5	-	0	536	611	828	190	165	19.7	s	361	498.3	1-10
AHD-00-5	7 FL ADON OFFIC	STH FLOOR HOR	7,500	1.30	-	•	25	w	•	78.3	653	581	49.9	6.76	461	42	56	646	323.9	224.9	2	16	4668	8-8	498.9	-	0	532	630	41	150	165	98.0	5	16	468.8	1-10
A-U-111-8-3	PEDESTRAN	STH FLOOR HOR	29,500	5,001	-		25	10		77 <i>A</i>	64.5	50.2	49.9	6.75	170.2	42	56	811	1196	8561	2	63	466.3	6-0	2024,4	-	0	543	630	138.8	150	160	6.63	5	54	468.3	1-10
AHU-111-0-4	LICKOS	ITH FLOOR HOR	15,000	2,55	•		25	10	•	76,0	634	5L7	512	0.54	122.3	42	56	12,86	85%0	6492	s	54	4650	8-8	992.3	-	0	52)	608	818	150	165	32	S	35	428.6	1-9
AHJ-111-8-5	CLASSRIDH	SITH FLOOR HOR	30,009	11,80	-	-	25	10	•	83,0	691	50,5	50,2	0,90	234	42	56	1074	1645,2	1030,7	s	63	4762	н	8043,6	-	0	565	630	140,2	190	160	6,75	s	63	476.2	1-10
AHU-111-8-6	CLASSREDH	STH FLOOR HOR	30,000	20,000	•		æ	ນ	•	834	691	50.5	50.2	6.90	RCS	42	56	14.74	16452	1030.7	2	63	4762	ы	2043.6	-	0	545	633	1402	150	168	675	5	ຜ	4762	1-10
									_																												
AHU-111-PH-1	CORREDOR	vest penthouse Ner	30,000	5.00	·	•	25	10	•	85.0	70,8	52.0	51,8	0.90	243,3	42	56	-	1710.0	1041,8	s	63	4762	8-8	36436	-	0	565	630	1402	150	160	6.75	s	63	4762	1-10
4HJ-111-PH-2	CLASSREDM	VEST PENTHELSE MER	30,000	2.00	·	•	ø	10	·	85,0	70,8	52,0	51,8	0,90	243,3	42	56	10,7	1710,0	1041,8	S	63	4762	8-8	2043,6	-	0	505	610	1405	190	160	6,75	s	63	476,2	1-10
#U-03-PH-3		VEST PENTHELSE NER	30,000	4.80	·	•	25	u	•	776	64.7	50.3	50.0	6.77	174.9	42	56		1228.7	873.6	5	හ	4762	9-8	2043.6	-	0	545	630	1402	150	160	6.75	5	ഒ	4762	1-10
AHU-100-PH-4	AUDITORIUM	VEST PENTHELSE MER	15,000	4,80	·	•	25	u	·	885	737	563	52	0.98	147.6	42	56	_		583,8	2	30	50	9-6	829.4	-	0	535	611	82.7	150	165	29	s	30	500	1-10
4HU-101-PH-5	AUDITORUM	VEST PENTHELSE MER	15,000	5,40	·	•	25	u	•	88.5	73.7	5143	512	0,98	147,6	42	56		1036,6	583,8	S	30	500	9-8	829,4	-	0	535	611	82,7	150	165	29	S	30	500	1-10
44U-03-PH-6	ATREA	vest penthouse Mer	25,000	8,00	·	•	25	10	•	823	68.6	50.3	501	0.77	190	42	56	11.40	13365	8450	s	54	4610	8-8	1724.2	-	1	552	610	1183	190	160	53	S	54	463	1-10
		EAST PENTHOUSE		6.41					_												<u> </u>					-											
AHU-131-PH-1	ATREA	MER EAST PENTHOUSE	25,000	6.40	· ·	•	25	10	•	82.3	68.6	50.3	503	0.77	190	42	56		-	8450	-	54	4650	9-8	17242	-	0	552	610	183	150	160	53 438	2	54 54	463	1-10
440-131-PH-2	ADMIN, DIFTIE	MER EAST PENTHELISE	25,000	5,40		•	25	10	-	79,0 79,0	65.8 65.8	502	50.0	075 075	158.4	42	56 56	813	1113.3 1113.3	764,8	S	54	4610	8-8	1578	-	•	585 585	0,09	198.3	150	360	434	5	54 54	463 463	1-9
ARJ-131-PH-3	ADHON OFFICE ADHON OFFICE	MER	25,000 25,000	6,40	· ·		8 8	10		79.0	65.8	502	50.0	6.75	158.4	42	56	813 813	113.3	764.8	2	54	4610	9-0 9-0	1578	-	0	505	0.09	1003	150	260 260	4.91	e 2	54 54	463	1-9
ARJ-131-PH-4 ARJ-131-PH-5	ADMIN OF THE	EAST PENTHDUSE MER EAST PENTHDUSE	25,000	6,40			20	10		790	628	502	50.0	875	158.4	42	36 56	813	1133	764.8	2	54	4653	9-0 9-0	1578	-		505	0.09	1063	150	360	4.91	2	54	463	1-9
ABJ-131-PH-6		MER EAST PENTHEUSE	16,000	6.00			23	10		0.58	68.5	502	502	0.65	1255	42	56	5.52	8,588	556.0	5	40	4125	84	1013.3	-		49;	0.05	83,4	150	165	10.94	s	44.1	40.5	1-9
ARJ-131-PH-7	LORARY	MER EAST PENTHELISE MER	16,000	5,00			25	10		0.58	685	501	50.0	0.65	1255	42	56	5.52	832.8	556.0	2	40	4125	8-8	1013.3	-	1	49:	0.06	83.4	150	165	10.94	2 2	401	411.4	1-8
		MER		¥.,000	-			-	-						2,000	~						-					· ·										
· ·			-					-		-	-		-		-	-		-	-		-	-	1.	-		-	-	-	-		-	-	•	-	-	-	-
		•	-		•		•	-	•	-	-		-		-	-		-	-		-	-	•	-		-	-	-	-	•	-	-	•	-	-	-	-
· ·	-	•	-		•		•	-	•	-	-	•	-		-	-	•	-	-		-	-	•	-	•	-	-	-	-	•	-	-	•	-		-	-
· ·	-	•	-	•	•	•	•	-	•	-	-	•	-	•	-	-	•	-	-	•	-	-	•	-	-	-	-	-	-	-	-	-	•	-	•	•	-
•		•	-	•	•	•	-	-	•	-	-	•	-	•	-	-	•	-	-	•	-	-	•	-	-	-	-	-	-	-	-	-	•	-	•	-	-
•		•	-	•	•	•	-	-	•	-	-		-		-	-		-	-	•	-	•	•	-	-	-	-	-	-	•	-	-	•	-		-	-

Appendix B.2: East Campus Ventilation Rate Procedure Calculations

	Space Descriptio	'n	Az	Rp	Ra	Occupant Load	Occupants	Rp* Pz	Ra*Az	Vbz	Ez	Voz	Zp	Srvc.	Air Flow
Level	Space Type	ASHRAE Category	ft²	Cfm /occ	cfm/ ft ²	Occ/ 100sf	Occ.	cfm	cfm	cfm		cfm	%	-	cfm
East G	Office	Office Space	18951	5	6%	5	94.755	473.775	1137	1610.8	1	1610.8	N/a	N/a	N/a
East G	Atrium Lobby	Lobbies	22187	5	6%	150	3328.05	16640.25	1331	17971	1	17971	N/a	N/a	N/a
East G	North Entrance	Lobbies	2475	5	6%	150	371.25	1856.25	148.5	2004.8	1	2004.8	N/a	N/a	N/a
East G	East Entrance	Lobbies	4454	5	6%	150	668.1	3340.5	267.2	3607.7	1	3607.7	N/a	N/a	N/a
East 2	Server/ Electrical Rooms (RA-207)	Equipment Rooms	14650	0	6%	0	0	0	879	879	1	879	N/a	N/a	N/a
East 2	Offices (RA-217)	Office Space	4200	5	6%	5	21	105	252	357	1	357	N/a	N/a	N/a
East 2	Passenger Elevator Lobby (RA-231)	Lobbies	1512	5	6%	150	226.8	1134	90.72	1224.7	1	1224.7	N/a	N/a	N/a
East 2	East Offices (RA- 235)	Office Space	4454	5	6%	5	22.27	111.35	267.2	378.59	1	378.59	N/a	N/a	N/a
East 3	Medium Lecture (RA-317)	Classroom (age 9 Plus)	7700	10	12%	35	269.5	2695	924	3619	1	3619	N/a	N/a	N/a
East 3	Medium Lecture (RA-323)	Classroom (age 9 Plus)	8250	10	12%	35	288.75	2887.5	990	3877.5	1	3877.5	N/a	N/a	N/a
East 3	Corridor (RA- 309)	Corridors	4288	0	6%	0	0	0	257.3	257.28	1	257.28	N/a	N/a	N/a
East 3	Classroom (RA- 314)	Classroom (age 9 Plus)	3704	10	12%	35	129.64	1296.4	444.5	1740.9	1	1740.9	N/a	N/a	N/a
East 3	Classroom (RA- 308)	Classroom (age 9 Plus)	4229	10	12%	35	148.015	1480.15	507.5	1987.6	1	1987.6	N/a	N/a	N/a

The Pennsylvania State UniversityPage 24#John M. ScavelliDepartment of Architectural EngineeringM.A.E/B.A.E. Senior Thesis 2010-2011

East 3	Passenger	Lobbies	395	5	6%	150	59.25	296.25	23.7	319.95	1	319.95	N/a	N/a	N/a
East 3	Elevator Lobby (RA-331) Large Conference	Office Space	8359	5	6%	5	41.795	208.975	501.5	710.52	1	710.52	N/a	N/a	N/a
	North (RA-334)	-											N/a	N/a	N/a
East 3	Large Conference South (RA-372)	Office Space	7430	5	6%	5	37.15	185.75	445.8	631.55	1	631.55			
East 4	Medium Lecture (RA-421)	Classroom (age 9 Plus)	7700	10	12%	35	269.5	2695	924	3619	1	3619	N/a	N/a	N/a
East 4	Medium Lecture (RA-423)	Classroom (age 9 Plus)	8250	10	12%	35	288.75	2887.5	990	3877.5	1	3877.5	N/a	N/a	N/a
East 4	Corridor (RA- 401)	Corridors	4288	0	6%	0	0	0	257.3	257.28	1	257.28	N/a	N/a	N/a
East 4	Classroom (RA- 411)	Classroom (age 9 Plus)	3704	5	6%	5	18.52	92.6	222.2	314.84	1	314.84	N/a	N/a	N/a
East 4	Classroom (RA- 407)	Classroom (age 9 Plus)	4229	5	6%	5	21.145	105.725	253.7	359.47	1	359.47	N/a	N/a	N/a
East 4	Passenger Elevator Lobby (RA-428)	Lobbies	395	5	6%	150	59.25	296.25	23.7	319.95	1	319.95	N/a	N/a	N/a
East 4	Large Conference North (RA-433)	Office Space	8359	5	6%	5	41.795	208.975	501.5	710.52	1	710.52	N/a	N/a	N/a
East 4	Large Conference South (RA-465)	Office Space	7430	5	6%	5	37.15	185.75	445.8	631.55	1	631.55	N/a	N/a	N/a
East 5	Medium Lecture (RA-517)	Classroom (age 9 Plus)	7700	10	12%	35	269.5	2695	924	3619	1	3619	N/a	N/a	N/a
East 5	Medium Lecture (RA-522)	Classroom (age 9 Plus)	8250	10	12%	35	288.75	2887.5	990	3877.5	1	3877.5	N/a	N/a	N/a
East 5	Corridor (RA- 501)	Corridors	4288	0	6%	0	0	0	257.3	257.28	1	257.28	N/a	N/a	N/a
East 5	Classroom (RA- 512)	Classroom (age 9 Plus)	3704	10	12%	35	129.64	1296.4	444.5	1740.9	1	1740.9	N/a	N/a	N/a
East 5	Classroom (RA- 507)	Classroom (age 9 Plus)	4229	10	12%	35	148.015	1480.15	507.5	1987.6	1	1987.6	N/a	N/a	N/a
East 5	Passenger Elevator Lobby (RA-526)	Lobbies	395	5	6%	150	59.25	296.25	23.7	319.95	1	319.95	N/a	N/a	N/a
East 5	Large Conference North (RA-533)	Office Space	8359	5	6%	5	41.795	208.975	501.5	710.52	1	710.52	N/a	N/a	N/a
East 5	Large Conference South (RA-563)	Office Space	7430	5	6%	5	37.15	185.75	445.8	631.55	1	631.55	N/a	N/a	N/a
East 6	Medium Lecture (RA-618)	Classroom (age 9 Plus)	7700	10	12%	35	269.5	2695	924	3619	1	3619	N/a	N/a	N/a
East 6	Medium Lecture (RA-623)	Classroom (age 9 Plus)	8250	10	12%	35	288.75	2887.5	990	3877.5	1	3877.5	N/a	N/a	N/a
East 6	Corridor (RA- 601)	Corridors	4288	0	6%	0	0	0	257.3	257.28	1	257.28	N/a	N/a	N/a
East 6	Classroom (RA- 611)	Classroom (age 9 Plus)	3704	10	12%	35	129.64	1296.4	444.5	1740.9	1	1740.9	N/a	N/a	N/a
East 6	Classroom (RA- 607)	Classroom (age 9 Plus)	4229	10	12%	35	148.015	1480.15	507.5	1987.6	1	1987.6	N/a	N/a	N/a
East 6	Passenger Elevator Lobby (RA-627)	Lobbies	395	5	6%	150	59.25	296.25	23.7	319.95	1	319.95	N/a	N/a	N/a
East 6	Large Conference North (RA-632)	Office Space	8359	10	12%	35	292.565	2925.65	1003	3928.7	1	3928.7	N/a	N/a	N/a
East 6	Large Conference South (RA-664)	Office Space	7430	10	12%	35	260.05	2600.5	891.6	3492.1	1	3492.1	N/a	N/a	N/a
East 7	Demonstration Lecture (RA-709)	Classroom (age 9 Plus)	7000	10	12%	35	245	2450	840	3290	1	3290	N/a	N/a	N/a
East 7	Lobby (RA-701)	Lobbies	6334	5	6%	150	950.1	4750.5	380	5130.5	1	5130.5	N/a	N/a	N/a
East 7	Assembly (RA- 808)	Multi Use Assembly	5873	7.5	6%	100	587.3	4404.75	352.4	4757.1	1	4757.1	N/a	N/a	N/a
East 7	Passenger Elevator Lobby (RA-728)	Lobbies	895	5	6%	150	134.25	671.25	53.7	724.95	1	724.95	N/a	N/a	N/a
East 7	Computer Classrooms (RA- 731)	Computer Lab	12074	10	12%	25	301.85	3018.5	1449	4467.4	1	4467.4	N/a	N/a	N/a
East 7	Library (RA-758)	Library	5573	5	12%	10	55.73	278.65	668.8	947.41	1	947.41	N/a	N/a	N/a
East 8	Mechanical Room (RA-806)	Equipment Rooms	7000	0	6%	0	0	0	420	420	1	420	N/a	N/a	N/a
East 8	Lobby (RA-802)	Lobbies	6334	5	6%	150	950.1	4750.5	380	5130.5	1	5130.5	N/a	N/a	N/a
East 8	Passenger Elevator Lobby (RA-813)	Lobbies	895	5	6%	150	134.25	671.25	53.7	724.95	1	724.95	N/a	N/a	N/a
East 8	Conference Rooms (RA-816)	Office Space	12074	5	6%	5	60.37	301.85	724.4	1026.3	1	1026.3	N/a	N/a	N/a
East 8	Library (RA-833)	Library	5573	5	12%	10	55.73	278.65	668.8	947.41	1	947.41	N/a	N/a	N/a

Page 25#-

Appendix C: Utility Cost Information

Average Retail Price of Electricity (DOE)

Census Division	Reside	ntial	Comme	rcial ¹	Indust	rial ¹	Transporta	ation[1]	All Sec	tors
and State	2010	2009	2010	2009	2010	2009	2010	2009	2010	2009
New England	16.5	17.86	14.87	16.44	12.76	12.06	8.81	8.58	15	15.93
Connecticut	1935	20.37	16.54	16.89	14.78	16.51	12.17	12.06	17.52	18.28
Maine	1544	15.48	12.38	12.82	9.19	10.23			12.62	13.12
Massachusetts	1526	17.71	14.99	18.25	13.34	11.39	6.96	6.72	14.54	15.87
New Hampshire	1598	16.54	13.99	15.31	12.6	14.08			14.57	15.61
Rhode sland	1582	16.13	13	13.75	13.51	12.72	13.37		14.19	14.47
Vermort	1534	14.78	13.32	12.78	9.38	9.27			13.08	12.67
Middle Atlantic	1567	14.78	13.86	13.36	8.56	8.34	13.12	13	13.57	12.97
New Je'sey	1639	16.44	13.99	14.6	11.68	11.33	13.83	14.3	14.68	14.92
New York	1855	17.52	16.11	15.09	9.71	10.09	14.71	14.42	16.35	15.44
Pennsyvania	1271	11.55	10.14	9.56	7.66	7.25	7.75	7.77	10.34	9.61

Average Natural Gas Price (DOE)

Area: New York - P	eriod: Annual	•					
Download Series History	s, Sources & Note	s					
Show Data By:	2004	2005	2006	2007	2008	2009	View History
Wellhead Price	6.98	7.78	7.13	8.85	8.94		1967-2008
Imports Price	6.44	9.11	7.50	7.43	9.36		1989-2008
Exports Price	6.99			12.07			1999-2008
Pipeline and Distribution Use Price	-						1967-2005
Citygate Price	6.36	8.22	9.22	9.02	10.07	7.35	1984-2009
Residential Price	12.50	14.89	15.35	15.73	16.75	15.08	1967-2009
Percentage of Total Residential Deliveries	100.00	100.00	100.00	100.00	100.00		1989-2008
Commercial Price	10.11	11.80	11.91	11.82	12.86	10.90	1967-2009
Percentage of Total Commercial Deliveries	100.0	100.0	100.0	100.0	100.0	100.0	1990-2009
Industrial Price	8.05	10.76	10.56	11.43	12.30	10.82	1997-2009
Percentage of Total Industrial Deliveries	10.7	14.7	11.7	12.3	11.4	9.9	1997-2009
Vehicle Fuel Price	8.45	11.52	13.10	13.45	18.55		1990-2008
Electric Power Price	6.65	9.24	7.75	8.09	10.85	5.24	1997-2009

Page 26#-

Release Date: 9/29/2010 Next Release Date: 10/29/2010

CO2 Emissions from Natura	al Gas Consumed by Boilers		
Fuel Type	CO2 Emissions Factor [lbs CO2/KBTU]	Boiler Energy Consumption [KBTU/Yr}	CO2 Emissions [lbs CO2/year]
Natural Gas	0.12	5,530,679	647,089

CO2 Emissions from Electri	city Consumed by Boilers		
Fuel Type	CO2 Emissions Factor [lbs CO2/kWh]	Primary Heating Energy Consumption [kWh/Yr}	CO2 Emissions [lbs CO2/year]
Natural Gas	0.40	10,176	4,062

Primary Heating Source	Natural Gas Derive CO2 Emissions [lbs CO2/year]	Electricity Derived CO2 Emissions [lbs CO2/year]	Total CO2 Emissions [lbs CO2/year]
Natural Gas Boiler	647,089	4,062	651,151

Appendix D: Emission Rates

Emission Factors for Delieverd Electricity by State

Pollutant (lb)	MT	NC	ND	NE	NH	NJ	NM	NV	NY	ОН	OK	OR	PA
CO _{2e}	1.99E+00	1.47E+00	2.68E+00	1.81E+00	8.60E-01	9.31E-01	2.43E+00	1.88E+00	1.03E+00	2.20E+00	2.08E+00	4.85E-01	1.55E+00
CO ₂	1.87E+00	1.41E+00	2.61E+00	1.71E+00	8.05E-01	8.61E-01	2.29E+00	1.76E+00	9.61E-01	2.10E+00	1.93E+00	4.40E-01	1.48E+00
CH4	4.17E-03	2.37E-03	2.41E-03	3.70E-03	2.19E-03	2.79E-03	5.38E-03	4.81E-03	2.59E-03	3.71E-03	5.67E-03	1.83E-03	2.70E-03
N ₂ O	5.29E-05	3.11E-05	5.92E-05	4.94E-05	1.53E-05	1.76E-05	6.50E-05	3.75E-05	1.68E-05	4.73E-05	5.09E-05	1.04E-05	3.22E-05
NOx	3.33E-03	2.83E-03	3.71E-03	3.09E-03	1.44E-03	1.32E-03	4.00E-03	2.89E-03	1.72E-03	4.14E-03	3.02E-03	5.21E-04	2.91E-03
SOx	5.88E-03	8.26E-03	1.00E-02	4.79E-03	5.47E-03	6.34E-03	7.30E-03	1.21E-02	6.23E-03	1.19E-02	8.88E-03	3.03E-03	8.83E-03
co	7.40E-04	4.31E-04	1.07E-03	6.09E-04	1.13E-03	6.69E-04	8.66E-04	7.39E-04	1.75E-03	6.38E-04	8.67E-04	2.72E-04	6.01E-04
TNMOC	6.02E-05	5.25E-05	5.34E-05	5.23E-05	8.62E-05	6.92E-05	7.27E-05	6.23E-05	6.38E-05	5.41E-05	8.01E-05	3.90E-05	5.46E-05
Lead	1.99E-07	1.16E-07	4.23E-07	1.87E-07	4.57E-08	4.27E-08	2.37E-07	1.09E-07	5.59E-08	1.76E-07	1.61E-07	2.05E-08	1.17E-07
Mercury	4.08E-08	2.40E-08	7.52E-08	3.73E-08	2.60E-08	1.44E-08	4.75E-08	2.27E-08	3.99E-08	3.59E-08	3.27E-08	4.59E-09	2.70E-08
PM10	1.14E-04	6.55E-05	3.03E-04	1.01E-04	5.47E-05	5.14E-05	1.36E-04	8.97E-05	6.87E-05	9.87E-05	1.16E-04	2.87E-05	7.14E-05
Solid Waste	3.01E-01	1.78E-01	3.33E-01	2.88E-01	5.65E-02	6.23E-02	3.65E-01	1.68E-01	6.18E-02	2.71E-01	2.49E-01	3.25E-02	1.78E-01
													_
Pollutant (lb)	RI	SC	SD	TN	ТХ	UT	VA	VT	WA	WI	w	WY	
CO _{2e}	1.18E+00	1.00E+00	1.45E+00	1.46E+00	1.99E+00	2.62E+00	1.40E+00	1.88E-02	4.11E-01	2.03E+00	2.41E+00	2.67E+00	
CO ₂	1.04E+00	9.57E-01	1.36E+00	1.40E+00	1.85E+00	2.51E+00	1.33E+00	1.78E-02	3.82E-01	1.92E+00	2.31E+00	2.52E+00	
CH₄	5.65E-03	1.72E-03	3.02E-03	2.43E-03	5.80E-03	4.21E-03	2.52E-03	2.25E-05	1.13E-03	4.13E-03	3.85E-03	5.42E-03	
N ₂ O	2.04E-05	2.12E-05	3.91E-05	3.28E-05	4.37E-05	5.53E-05	2.81E-05	1.70E-06	1.05E-05	5.32E-05	5.08E-05	7.30E-05	
NOx	7.91E-04	1.90E-03	2.45E-03	2.77E-03	2.42E-03	5.00E-03	2.67E-03	1.38E-04	6.13E-04	3.51E-03	4.62E-03	4.58E-03	
SOx	9.90E-03	5.73E-03	3.97E-03	7.32E-03	1.05E-02	1.47E-02	8.04E-03	1.13E-04	1.70E-03	6.60E-03	1.35E-02	7.05E-03	
co	8.52E-04	3.22E-04	5.26E-04	4.14E-04	9.77E-04	6.89E-04	9.74E-04	5.90E-05	1.80E-04	7.13E-04	6.50E-04	9.00E-04	
TNMOC	9.92E-05	4.89E-05	4.12E-05	4.17E-05	8.22E-05	5.78E-05	8.77E-05	1.02E-04	3.74E-05	8.26E-05	5.26E-05	7.43E-05	
	6.87E-09	7.66E-08	1.47E-07	1.24E-07	1.49E-07	2.08E-07	1.02E-07	6.33E-10	3.21E-08	1.97E-07	1.92E-07	2.77E-07	
	4 005 00	1.62E-08	3.01E-08	2.50E-08	2.96E-08	4.15E-08	3.24E-08	1.03E-09	6.62E-09	4.01E-08	3.87E-08	5.54E-08	
Lead	4.09E-09				4 075 04	4.445.04	7.25E-05	7.67E-06	2.46E-05	1.11E-04	1.05E-04	1.49E-04	
Lead Mercury PM10	4.09E-09 7.02E-05	4.61E-05	8.12E-05	6.75E-05	1.37E-04	1.14E-04	7.20E-00	1.0/E-00	2.400-00	1.116-04	1.000-04	1.432-04	

Table from the National Renewable Energy Laboratory: Source Energy and Emission Factors for Energy use in Buildings.