
PubH 7405: 
REGRESSION ANALYSIS

REGRESSION IN MATRIX TERMS



A “matrix” is a display of numbers or numerical 
quantities laid out in a rectangular array of rows 
and columns. The array, or two-way table of 
numbers, could be rectangular or square – could 
be just one row (a row matrix or row vector) or one 
column (a column matrix or column vector). When 
it is square, it could be symmetric or a “diagonal 
matrix” (non-zero entries are on the main 
diagonal). The numbers of rows and of columns 
form the “dimension” of a matrix; for example, a 
“3x2” matrix has three rows and two columns.



An “entry” or “element” of a matrix need two 
subscripts for identification; the first for the 
row number and the second for the column 
number: ][ ija=A
For example, in the following matrix we have 
a11 = 16,000 and a32 = 35.
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35   21,000
47   33,000
23   16,000
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BASIC SL REGRESSION MATRICES
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X is special, called “Design Matrix”



X: the “Design Matrix” for  MLR: 
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First subscript: Variable, one column for 
each predictor; Second subscript: Subject, 
one row for each subject



The dimension of “Design Matrix” X is 
changed to handle more predictors: one 
column for each predictor (the number of 
rows is still the sample size. The first column 
(filled with “1”) is still “optional”; not included 
when doing “Regression through the origin”
(i.e. no intercept).



X is called the Design Matrix.                      
There are two reasons for the name:

(1) By the model, the values of X’s (columns)  
are under the controlled of investigators: 
entries are fixed/designed,

(2) The design/choice is consequential: the 
larger the variation in x’s in each column the 
more precise the estimate of the slope.



TRANSPOSE
The transpose of a matrix A is another matrix, denoted 
by A’ (or AT), that is obtained by interchanging the 
columns and the rows of the matrix A; that is:
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The roles of rows and columns are swapped; if A is a 
symmetric matrix, aij = aji, we have A = A’



The transpose of a column vector is a row vector
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MULTIPLICATION by a Scalar
• Again, “scalar” is an (ordinary) number
• In multiplying a matrix by a scalar, every element 

of the matrix is multiplied by that scalar
• The result is a new matrix with the same 

dimension
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MULTIPLICATION of Matrices
• Multiplication of a matrix by another matrix is much 

more complicated.
• First, the “order” is important; “AxB” is said to be 

“A is post-multiplied by B” or “B is pre-multiplied by 
A”; In general: AxB ≠ BxA

• There is a strong requirement on the dimensions: 
AxB is defined only if “the number of columns of A 
is equal to the number of rows of B”.

• The product AxB has, as its dimension, the number 
of rows of A and the number of columns of B.



MULTIPLICATION FORMULA
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For entry (i,j) of AxB, we multiply row “i” of A by 
column “j” of B; That’s why the number of columns of 
A should be the same as the number of rows of B.



EXAMPLES
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OPERATION ON SLR
BASIC DATA MATRICES
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“Order” is important; cannot form YX’



OPERATION ON MLR
BASIC DATA MATRICES
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MORE REGRESSION EXAMPLE
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Again, X is referred to as the “Design Matrix”
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X’X is a square matrix filled with sums of squares 
and sums of products; we can form XX’ but it is a 
different  n-by-n matrix which we do not need.



SIMPLE LINEAR 
REGRESSION MODEL

εXβY
εβXY

+=
+=



















+


























=



















=++=

or ;
1

1
1

,...,2,1;

11221

2

1

1

02

1

2

1

10

nxxnxnx

nnn

iii

X

X
X

Y

Y
Y

niXY

ε

ε
ε

β
β

εββ

MMMM



MULTIPLE LINEAR 
REGRESSION MODEL
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MLR MODEL
IN MATRIX TERMS



OBSERVATIONS & ERRORS
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β: Regression Coefficient
(a column vector of parameters)
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LINEAR DEPENDENCE
Consider a set of c column vectors C1, C2, …, Cc in 
a rxc matrix. If we can find c scalars k1, k2, …, kc –
not all zero – so that:

k1C1 + k2C2 + … + kcCc = 0

the c column vectors are said to be “linearly 
dependent”.  If the only set of scalars  for which the 
above equation holds is all zero (k1 = … = kc = 0), 
the c column vectors is linearly independent.



EXAMPLE
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RANK OF A MATRIX
• In the previous example, the rank of A<4
• Since the first, second and fourth columns 

are linearly independent (no scalars can be 
found so that k1C1 + k2C2 + k4C4 = 0); the 
rank of that matrix A is 3.

• The rank of a matrix is defined as “the 
maximum number of linearly independent 
columns in the matrix.



SINGULAR/NON-SINGULAR MATRICES

• If the rank of a square r x r matrix A is r then 
matrix A is said to be nonsingular or of “full 
rank”

• An r x r matrix with rank less than r is said to be 
singular or not of full rank.



INVERSE OF A MATRIX
• The inverse of a matrix A is another matrix A-1 such 

that: A-1A = AA-1 = I where I is the identity or unit matrix.
• An inverse of a matrix is defined only for square 

matrices.
• Many matrices do not have an inverse; a singular matrix 

does not have an inverse.
• If a square matrix has an inverse, the inverse is unique; 

the inverse of a nonsingular or full rank matrix is also 
nonsingular and has same rank.



INVERSE OF A 2x2 MATRICE
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A singular matrix does not have an inverse 
because its “determinants” is zero:
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A SYSTEM OF EQUATIONS

It is extremely simple to write a system of equations 
in the matrix form – especially with many equations
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A SIMPLE APPLICATION
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Solution:

y1 = 2 & y2 = 4



ANOTHER EXAMPLE
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REGRESSION EXAMPLE
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We can easily see that (D≠0) . This property 
would not be true if X has more columns 
(Multiple Regression) and columns are not 
linearly independent. If “columns” (i.e. 
predictors/factors) are highly related, Design 
Matrix approaching “singular”: Regression 
failed!



REGRESSION EXAMPLE
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FOUR IMPORTANT MATRICES
IN REGRESSION ANALYSIS
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LEAST SQUARE METHOD SLR
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LEAST SQUARE METHOD MLR

{ }

0)...(2

...

0)...(2

0)...(2

:equations solve We

)...(

),,...,,(  :Data

22110
1

22110
1

1
1

22110
10

2
22110

1

121

=−−−−−=

=−−−−−=

=−−−−−=

−−−−=

∑

∑

∑

∑

=

=

=

=

=

kikii

n

i
iki

k

kikii

n

i
ii

kikii

n

i
i

kikii

n

i
i

n
iiikii

xxxyxQ

xxxyxQ

xxxyQ

xxxyQ

yxxx

ββββ
δβ
δ

ββββ
δβ
δ

ββββ
δβ
δ

ββββ



NORMAL EQUATIONS
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NORMAL EQUATIONS IN MLR 
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In MLR, these normal equations look more 
complicated but will lead to the same 
result in matrix terms:

(X’X)b = X’Y



LEAST SQUARE ESTIMATES
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SUMMARY REGRESSION RESULTS
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WE PROVE THE SAME RESULTS
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MORE DIRECT APPROACH
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Instead of normal equations, we could start 
earlier with the Sum of Squared Errors (SSE)
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We can prove the “normal equations” by taking 
derivative of SSE:

SSE = Y’Y-2β’X’Y+β’X’Xβ

To do that, we need to learn:                                   
(1) Derivative of β’[X’Y] is X’Y                                                          
(2) Derivative of β’[X’X]β is 2[X’X]β
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LEAST SQUARE ESTIMATE
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THE HAT MATRIX
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IDEMPOTENCY
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RANDOM VECTORS & MATRICES

A random vector or a random matrix contains 
elements which are random variables.



RANDOM VECTORS IN SLR
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EXPECTED VALUES
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VARIANCE-COVARIANCE MATRIX

The variances (of elements of a random matrix) 
and the covariance between any two elements 
(of elements of a random matrix) are assembled 
in the variance-covariance matrix – denoted by 
either Var(Y) or σ2(Y) – or ∑2



EXAMPLE: (BIVARIATE) VECTOR
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We have for random variables:

E(a*Y) = a*E(Y) 

Var(a*Y) = a2
*var(Y)

What about random vectors? Say:
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REGRESSION EXAMPLES
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FITTED VALUES
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RESIDUALS
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VARIANCE OF RESIDUALS
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REGRESSION COEFFICIENTS
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VARIANCE OF 
REGRESSION COEFFICIENTS

1

12

121

2

1

)(
)(

)()(

])[(

−

−

−−

−

=

=

=

=

=

=
=

XX(b)s
XX

XXIXXXX
IA'A
(Y)A'Aσ(b)σ

AY
YXXXb

'2

'

'''

22

''

MSE
σ

σ
σ











=


































−−

−

−

−

−
+

=

=

=

∑
∑

∑∑

∑∑

−

−

1

0

2
_

2
_

_

2
_

_

2
_

2_

1

1

)(

1

)(

)()(

1

)()(
])[(

b
b

yx
y

xxxx

x

xx

x

xx

x
n

ii

i

YXXX
YXXXb

''

''

∑
∑
∑
∑ ∑

−

−−
=

−

+−
=

2
_

__

2
_

_

1

)(

))((

)(
b

eg. results, same :Can verify

xx

yyxx

xx

xyyx

EXAMPLE:                
SL REGRESSION



























−−

−

−

−

−
+

=

























−−

−

−

−

−
+

=

=

∑∑

∑∑

∑∑

∑∑−

−

2
_

2
_

_

2
_

_

2
_

2_

2
_

2
_

_

2
_

_

2
_

2_

1

1

)(

1

)(

)()(

1

)(

1

)(

)()(

1

)(

)(

xxxx

x

xx

x

xx

x
n

MSE

xxxx

x

xx

x

xx

x
n

MSE

(b)s

XX'

XX(b)s

2

'2



∑

∑

∑

∑∑

∑∑

−

−
=

−
=

















−
+=

























−−

−

−

−

−
+

=

2
_

_

10

2
_1

2

2
_

2_

0
2

2
_

2
_

_

2
_

_

2
_

2_

)(

)(),(

)(
)(

)(

1)(

)(

1

)(

)()(

1

xx

xMSEbbs

xx

MSEbs

xx

x
n

MSEbs

xxxx

x

xx

x

xx

x
n

MSE(b)s2

Same results for Variances;

Covariance is new - Only 
need Mean & Variance of X



THE MEAN RESPONSE

Let X = xh denote the level of X for which we wish 
to estimate the mean response, i.e. E(Y|X=xh). The 
only thing new is that X and xh are vector; xh = 
(x1h, x2h,…, xkh). The point estimate of the 
response is:
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In matrix terms:
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PREDICTION OF NEW OBSERVATION

Let X = xh denote the level of X under 
investigation, at which the mean response  is 
E(Y|X=xh). Let Yh(new) be the value of the new 
individual response of interest. The point estimate 
is still the same E(Y|X=xh):
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The matrix notation and derivations may be 
deceiving because they hide enormous 
computational complexities. To find the inverse 
of a 10x10 matrix, for example X’X with k = 9, 
requires tremendous amount of computation. 
However, the actual computations will be done by 
computer; hence it does not matter to us whether 
X’X represents a 2x2 or a 6x6 matrix.



Example:
SBP versus 
AGE

Age (x) SBP (y) x-sq y-sq xy
42 130 1764 16900 5460
46 115 2116 13225 5290
42 148 1764 21904 6216
71 100 5041 10000 7100
80 156 6400 24336 12480
74 162 5476 26244 11988
70 151 4900 22801 10570
80 156 6400 24336 12480
85 162 7225 26244 13770
72 158 5184 24964 11376
64 155 4096 24025 9920
81 160 6561 25600 12960
41 125 1681 15625 5125
61 150 3721 22500 9150
75 165 5625 27225 12375

984 2193 67954 325929 146260Totals


Sheet1

		x (oz)		y (%)		x-sq		y-sq		xy

		112		63		12544		3969		7056

		111		66		12321		4356		7326

		107		72		11449		5184		7704

		119		52		14161		2704		6188

		92		75		8464		5625		6900

		80		118		6400		13924		9440

		81		120		6561		14400		9720

		84		114		7056		12996		9576

		118		42		13924		1764		4956

		106		72		11236		5184		7632

		103		90		10609		8100		9270

		94		91		8836		8281		8554

		1207		975		123561		86487		94322
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y (%)

birth weight

increase in weight



Sheet2

		

		Age (x)		SBP (y)		x-sq		y-sq		xy

		42		130		1764		16900		5460

		46		115		2116		13225		5290

		42		148		1764		21904		6216

		71		100		5041		10000		7100

		80		156		6400		24336		12480

		74		162		5476		26244		11988

		70		151		4900		22801		10570

		80		156		6400		24336		12480

		85		162		7225		26244		13770

		72		158		5184		24964		11376

		64		155		4096		24025		9920

		81		160		6561		25600		12960

		41		125		1681		15625		5125

		61		150		3721		22500		9150

		75		165		5625		27225		12375

		984		2193		67954		325929		146260
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VARIANCE OF 
REGRESSION COEFFICIENTS
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SUMMARIES

• All results can be put in the matrix forms
• If we can inverse a matrix and can multiply two 

matrices, we can get all numerical results – even 
without a packaged computer program.

• In matrix their forms, results can be easier 
generalized; the only change needed is the Design 
Matrix ( & its dimension) so as to handle more than 
one predictors.



Readings & Exercises
• Readings: A thorough reading of the text’s sections 

5.1-5.13 (pp.176-209) and sections 6.2-6.9 (pp.222-247) 
is highly recommended.

• Exercises: The following exercises are good for 
practice, all from chapter 5 of text: 5.1,5.2, 5.7-5.11 and 
5.24-5.26; plus these from chapter 6 of text: 6.5(b-d), 
6.7, 6.10(a-d), and 6.15(a-f).



Due As Homework
#12.1 The following data were collected 

during an experiment in which 10 
laboratory animals were inoculated with 
a pathogen. The variables are Time after 
inoculation (X, in minutes) and 
Temperature (Y, in Celsius degrees).
For the regression of Y (as dependent 
variable) on X (as sole predictor), form 
these matrices:
Y’Y, X’Y, and X’X

X y
24 38.8
28 39.5
32 40.3
36 40.7
40 41.0
44 41.1
48 41.4
52 41.6
56 41.8
60 41.9

#12.2 Solve the following system of equations:

259y3x
126y7x

=+
=−


Sheet1

		X		y

		24		38.8

		28		39.5

		32		40.3

		36		40.7

		40		41.0

		44		41.1

		48		41.4

		52		41.6

		56		41.8

		60		41.9
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