PubH 7405:
REGRESSION ANALYSIS

, BN

REGRESSION IN MATRIX TERMS



A “matrix” is a display of numbers or numerical
guantities laid out in a rectangular array of rows
and columns. The array, or two-way table of
numbers, could be rectangular or square — could
be just one row (a row matrix or row vector) or one
column (a column matrix or column vector). When
It IS square, it could be symmetric or a “diagonal
matrix” (non-zero entries are on the main
diagonal). The numbers of rows and of columns
form the “dimension” of a matrix; for example, a
“3x2” matrix has three rows and two columns.




An “entry” or “element” of a matrix need two
subscripts for identification; the first for the
row number and the second for the column

number:
A = [aij]

For example, in the following matrix we have
a,; = 16,000 and a,, = 35.

16,000 23
A =|33,000 47
21,000 35




BASIC SL REGRESSION MATRICES

Y, 1 X
v _ Y, % — 1 X
M M

Y, 1l X,

XIs special, called “Design Matrix”



X: the “Design Matrix” for MLR:

1 Xll X21 Xkl
1 X12 X22 " Xk2
_1 Xln X2n " an .

First subscript: Variable, one column for
each predictor; Second subscript: Subject,
one row for each subject



The dimension of “Design Matrix” X is
changed to handle more predictors: one
column for each predictor (the number of
rows Is still the sample size. The first column
(filled with “1”) is still “optional”; not included
when doing “Regression through the origin”
(I.e. no intercept).




X 1s called the Design Matrix.
There are two reasons for the name:

(1) By the model, the values of X’s (columns)
are under the controlled of investigators:
entries are fixed/designed,

(2) The design/choice is consequential: the
larger the variation in x’s in each column the
more precise the estimate of the slope.



TRANSPOSE

The transpose of a matrix A is another matrix, denoted
by A’ (or AT), that is obtained by interchanging the
columns and the rows of the matrix A; that is:

If A=

A3x2 —

==
7 10

;A|2x3 :|:

:aij]then A = [aji]

2 [ 3
5 10 4

The roles of rows and columns are swapped: if Ais a
a., we have A=A’

symmetric matrix, a; =

"




The transpose of a column vector is a row vector

C= C' =[3 -2 0 12]




MULTIPLICATION by a Scalar

 Again, “scalar” is an (ordinary) number

 In multiplying a matrix by a scalar, every element
of the matrix is multiplied by that scalar

e The resultis a new matrix with the same
dimension

A:[aij]
kA = [ka;]



MULTIPLICATION of Matrices

 Multiplication of a matrix by another matrix is much
more complicated.

 First, the “order” is important; “AxB” is said to be
“AIs post-multiplied by B” or “B is pre-multiplied by
A”; In general: AxB # BxA

« There is a strong requirement on the dimensions:
AXxB Is defined only if “the number of columns of A
IS equal to the number of rows of B”.

« The product AxB has, as its dimension, the number
of rows of A and the number of columns of B.



MULTIPLICATION FORMULA

A FxXc B CXS — AB IFXs

[aij ]rxc [bij ]st — [Z aikbkj]rxs
k=1

For entry (i,)) of AxB, we multiply row “i” of A by
column “j” of B; That's why the number of columns of
A should be the same as the number of rows of B.




EXAMPLES

4 2| a | |4a +2a,
5 8|a,| |5a +8a,

2
[2 3 5] 3|=[2%+32+5%=238]
5

2 5|4 6] [33 52
4 1|5 8| |21 32




OPERATION ON SLR
BASIC DATA MATRICES

YY=[y, vy, L Vol [ =[> vyl

S MR A P

“Order” Is important; cannot form YX’




OPERATION ON MLR
BASIC DATA MATRICES

_yl_
: Yy
YY=[y, y, L Yl L2 :[Zyiz]
| Yn |
11 1 . 1wl | 2
X1 X X3 . Xin Yo lei Yi

X.Y: =
M M M M M M

| Xz X2 Xz - X [ L Yn Zxkiyi




MORE REGRESSION EXAMPLE

5 £

Again, X is referred to as the “Design Matrix”



1 1 L 1 1 x,, L X4
X.X: Xll X12 L Xln 1 X12 L Xk2
M M L MM M L M
_Xkl Xk2 L an__l Xln L an_

1 > % Lo x|

Tk X L S,

M M L M
D X D XX Lo D> oxg |

X'X Is a square matrix filled with sums of squares
and sums of products; we can form XX’ but it is a
different n-by-n matrix which we do not need.




SIMPLE LINEAR
REGRESSION MODEL

Y. =0, + X, +&;1=12,..., n
Y, | [1 X, ] =
Y, _ 1 X, |:ﬁo:|_|_ &2
M M M| £ M
Y.l [1 X, &, |
Ynxl — an252xl + Snxl; or

Y =XpP+¢



MULTIPLE LINEAR
REGRESSION MODEL

Y. =L+ Xy + L X+ + L. X +&:1=12,...,n

Y1 1 Xy Xpy - Xy || Bo &

Y, _ 1 X, X - X || B N 2
M M M M M| M M
Yol [ X Xen o X | Al LEn_




MLR MODEL
IN MATRIX TERMS

Yn—by—l — Xn—by—(k+1)B(k+1)—by—1 =+ 8n—by—l

E(Y) n—by—1 — XB
62 (Y) Nn—by—n — JZI



Nnx1

Nnx1

OBSERVATIONS & ERRORS




B: Regression Coefficient
(a column vector of parameters)

Fo
o
B(k+l) x1 M

ep




LINEAR DEPENDENCE

Consider a set of c column vectors C;, C,, ..., C.In
a rxc matrix. If we can find c scalars ki, k,, ..., k. —
not all zero — so that:

k,C, +Kk,C, + ... +k.C.=0

the c column vectors are said to be “linearly
dependent”. If the only set of scalars for which the
above equation holds is all zero (k; = ... =k, =0),
the c column vectors is linearly independent.



EXAMPLE

1 2 5 1]
A=|2 2 10 6
'3 4 15 1
Since
N 22 [ 5 ] (1| [O]
G)N2(+0)2|+(-D|10|+O)|6|=|0
| 3| 4 15 | e 0

The four column vec tors are linearly dependent



RANK OF A MATRIX

* In the previous example, the ran

e Since the first, second and fourt
are linearly independent (no sca

K of A<4
N columns

ars can be

found so that k,C, + k,C, + k,C, = 0); the

rank of that matrix A iIs 3.

e The rank of a matrix i1s defined as “the

maximum number of linearly ind
columns in the matrix.

ependent



SINGULAR/NON-SINGULAR MATRICES

o If the rank of a squarer x r matrix A is r then
matrix A Is said to be nonsingular or of “full
rank”

« Anr xr matrix with rank less than r is said to be
singular or not of full rank.



INVERSE OF A MATRIX

The inverse of a matrix A is another matrix A-1such
that: AtA = AAl=1where | is the identity or unit matrix.

An inverse of a matrix is defined only for square
matrices.

Many matrices do not have an inverse; a singular matrix
does not have an inverse.

If a square matrix has an inverse, the inverse is unique,
the inverse of a nonsingular or full rank matrix is also
nonsingular and has same rank.



INVERSE OF A 2x2 MATRICE

d —-b

AT — D D
—¢c a

D D

D = (ad —bc) is the "determinan t" of A;or | A|



A singular matrix does not have an inverse
because iIts “determinants” IS zero:

2 6
A =
7 2

We have :

of2]-af2]-[2

and : D = (2)(21) - (6)(7) = O




A SYSTEM OF EQUATIONS

It Is extremely simple to write a system of equations
In the matrix form — especially with many equations

3X+4y—-10z=0
—2X—5y+21z=14
X+29y -2z =-3
3 4 —-10 |[x]| [ O
—2 —5 21| vy|=|14
1 29 -2 | zZ —3




A SIMPLE APPLICATION

Consider a system of two equations :
2y, +4y, =20

Solution:

y:=2&Yy,=4

J

Y1

which Is written In matrix notation :

en

Y1

s

3y, +Yy, =10
20
|10
2 477720

'3 1] |10

—.1 .4 |20
3 —.2]10




ANOTHER EXAMPLE

3 4 —-10 | x
—2 —5 21||vy|=
1 29 -2 |z
x| [ 3 4 —10 |
yi|i=|—2 -5 21
z| |1 29 -2




REGRESSION EXAMPLE

x| N >'x

22X 20X
D=n>x" - x x)
=n>» (x—x)?




We can easily see that (D#0) . This property
would not be true if X has more columns
(Multiple Regression) and columns are not
linearly independent. If “columns” (i.e.
predictors/factors) are highly related, Design

Matrix approaching “singular”: Regression
failed!




REGRESSION EXAMPLE

g E

2% 2%
D=n> (x—x)?
s S ]
(X X)) = nZi(%—XX) nZ(>r<]—x)
N> (x—=x)* n> (x—x)?
T % L
. - -
_ n D (x=x)* D> (x—X)
— X 1
D (x—x)? D (X—X)




FOUR IMPORTANT MATRICES
IN REGRESSION ANALYSIS

YY:[Zyiz]
i Zyi :|
XY =
D> XY,
[ n > x,
S ZXJ
1 >_<2 — X
__I_ ~ ~
(X X)~ = T3 x=-x7 D (x—x)?
— X 1
D (x—x)? D (x—Xx)




LEAST SQUARE METHOD SLR

Data : {(X;,Y;)},

Q :i(yi _ﬁo _/lei)z

X N R
5,80 T 2|Z:1:(yl /80 ﬁlxl) O
0

50, :_Ziz_ll)(i(yi _,Bo—ﬁlxi)zo




LEAST SQUARE METHOD MLR

Data : {(X,;, X;,

Q= Z(y.

We solve equatlons :

5@) Z(y.
5,81 — _22 Xi (yl
R = _Zzn: Xii (i

5P,

Xicr Yi) iy
/81 1i ﬂZXZi"'_ﬂkai)z
— Xy — o Xgi— PiXq) =0
— Xy — o Xgi— PiXq) =0
— o — Xy — Bo X — i %) =0



NORMAL EQUATIONS

R _ R _,
B, OB,
Normal Equations :
>y, =nb, +b > x
inyi = bOZXi +blzxi2

INn matrix notations :

s, Exle)-[E]

X X2x2b2x1 = X' Y2x1




NORMAL EQUATIONS IN MLR

gi? :_Z_Zn:(yi _/80 _/81X1i _ﬁzxzi"'_ﬂkxki) :_Zn:ei =0
;&; :_Zi Xli(yi _ﬁo _/81X1i _ﬁZXZi"'_ﬁkai) :_anxliei =0
X

) = —ZiZ:l: Xi (Vi — o — Xy — LoXoivoo— B X ) = ;inei -0



In MLR, these normal equations look more
complicated but will lead to the same
result in matrix terms:

(X’X)b = XY



LEAST SQUARE ESTIMATES

Normal Equations :
Zyi — r]bo +blzxi
inyi = bOZXi +blzxi2

INn matrix notations :

s Exe)- &

(X' X)b = X'Y
b = (X' X)(X"Y)



SUMMARY REGRESSION RESULTS

Normal Equations :
X" X)b =X"Y
| east Square Estimates
b=CX"X)"(X"Y)



WE PROVE THE SAME RESULTS

. i ZYi }
XY =
D XY
1 >_<2 — X
_+ ~ -
x| 20T (=)
— X 1

1% _%
"N =02 S (x=x) [Zyi J
— X 1 2%y




MORE DIRECT APPROACH

Instead of normal equations, we could start
earlier with the Sum of Squared Errors (SSE)

Sum of squared errors :
Q — 2 ,(yi _/30 _181X1i _182X2i"'_18kxki)2
=1

INn matrix notation :

Q = (Y —XB) (Y — XB)
=YY -2BXY+BXXB



Normal Equations

Q = (Y —XB) (Y — XB)
=YY -2BXY+BXXp

SO

5p,

5 oy =| 5

Y R ?—,6’1
R

0L _
— _2X'Y +2X'XB

— 0= XXb=XY




We can prove the “normal equations” by taking
derivative of SSE:

SSE = Y'Y-2B' X' Y+B'X'XB

To do that, we need to learn:
(1) Derivative of B'[X'Y] Is X'Y
(2) Derivative of B'[X'X]B is 2[X'X]B



Putting together :
Q = (Y —XB) (Y —XB)
= (Y'-B' X")(Y — XB)
=YY -2BXY+BXXPB

X
K _| o5
| Of
=-2XY + 2X'XB
Note :

—0 <= (X X)b=X"Y



LEAST SQUARE ESTIMATE

(X' X)b = X'Y
b =(X"X)1(X"Y)

Note the error in equation (6.25) of the text



THE HAT MATRIX

VAN

Y = Xb
= X[(X' X)™" X"Y]
=[XCX" X))t X"']Y
= HY
H = X(X" X)™ X"is called the "Hat Matrix"



IDEMPOTENCY

the ""Hat Matrix'' :
H=XX" X)*X"
IS ""iIdempotent "':
HH =H



RANDOM VECTORS & MATRICES

A random vector or a random matrix contains
elements which are random variables.



RANDOM VECTORS IN SLR

Y, &,

Y oy

Y =| “ and £=| °
M M
_Yn B En




EXPECTED VALUES

Y = E(Y) +¢€
TE(Y)
E(Y

() =| 02
ECY,).

, E(€)




VARIANCE-COVARIANCE MATRIX

The variances (of elements of a random matrix)
and the covariance between any two elements
(of elements of a random matrix) are assembled
In the variance-covariance matrix — denoted by
either Var(Y) or o%(Y) —or > 2



EXAMPLE: (BIVARIATE) VECTOR

i Y,
Variable : Y = v

2
Mean : p = [’ul}
y 22

2
. i . O O.
Variance — Covariance Matrix : X :[ 1 122}
012 02



We have for random variables:
E(a.Y) = a.E(Y)
Var(a.Y) = azvar(Y)

What about random vectors? Say:

A |2 aiz}
_a21 a22

Y = _Yl}
Y2




AY =

Pcha aﬂ}[n}

_a21 a22 Y2
PEhaGSEAE }

_a21Y1 + a22Y2

i E(a'_l_lYl + a12Y2):|
_E(a21Y1 + a22Y2)

- a E(Y)+a,E(Y,)
_a21E(Y)1 + azzE(Yz)
AE(Y)

|



Ay | B alez}
_a21Y1 + a,,Y,
o2 (AY) = o’ (a,,Y; +a,,Y) o(a, Y, +a,Y,a,Y; + azzY):|

_G(allYl +a,,Y,a,,Y; + azzY) o’ (a21Y1 + azzY)

=L

_ [an a, }[ ?(Yy) a(Yl,Yz)}[aﬂ am}

Ay, Ay, O_(Y1’Y2) o’ (Yz) a, a,
= Ac? (A’

Can verify backward too, starting with Acg?(Y)A’



REGRESSION EXAMPLES

I GZ(Yl) o(Y,Y,) L G(Y1’Yn)_
o(Y,,Y;) O-Z(Yz) L o (Y,,Y,)
M M M M
_J(Yn’Y1) o(Y,,Y,) L GZ(Yn) .




FITTED VALUES



RESIDUALS

Model :
Yoa = XoBoxi €0
Fitted Value :
Y = Xb
Residuals :
e=Y —-Y
=Y — Xb
=Y —HY
= —-—H)Y

Like the Hat Matrix H, (I-H) is symmetric & idempotent



VARIANCE OF RESIDUALS

e=(1—H)Y
¢’ (e)=(1—-H)e> M —H)’
=1 —H)(a*D({ — H)"
=o’(1—H)( —H)'
=o?(1 —H)(I —H)
=o’(1 —H)

N\

=MSE (I — H)



REGRESSION COEFFICIENTS

S . .
g(Q) = 2X'Y +2X XB

—0< XY =XXb
b=(XX)'XY
=[(X'X)'X'TY
= AY
A=(XX)'X
A= X(X X))



VARIANCE OF
REGRESSION COEFFICIENTS

b=[(XX)*'X]Y
=AY
o’ (b) = Ac?(Y)A"
= Ac’IA"
= (X' X)X ?IX(X'X)™
= o (X X)™
s?(b) = MSE(X' X)™



b=[(XX)'X1Y
— (X' X)H(XY)

2

£+ X — X
" S0 S (x—x%)?
— X 1

D (x—x)? D (x—=x)? |
b,
:_bj

EXAMPLE:
SL REGRESSION

ZYi
2. %Y,

|

Can verify :same results, eg.

e —XD> Y+ D Xy
D (x—x)?
_ D (x=x)(y—y)

D (x—x)?




s2(b) = MSE (X' X) ™

2

1 X

i
x| 2T (=)

— X

D> (x—x)? Z(x—i)z_

£+ X — X

2y = Msg| (X007 (=%’
— X 1

> (x—x)? > (x—x)?




2

1 X

+
N N2
s2(b) = MSE Z(i‘ =,

— X

D (x—x)?
s?(b,) = MSE| L4 X
n Z(X_)—()z
s (b= MSE
D (x—x)?
(b, b,) = —MSEC)

> (k=%

|

Same results for Variances:

Covariance is new - Only
need Mean & Variance of X




THE MEAN RESPONSE

Let X = x,, denote the level of X for which we wish
to estimate the mean response, I.e. E(Y|X=X,. The
only thing new is that X and x,, are vector; X, =
(X1hs Xop,---5 Xipy)- The point estimate of the
response Is:

E(Y | X=X,)=Yn
=b, +b,x,, +b,%X,, +...+b X,



In matrix terms:
Y =X, b
o’(Y) =X, 6’ (b)X,
= o’ X, (X" X)X,

52(\?) = MSE (X, (X" X)™"X,)



PREDICTION OF NEW OBSERVATION

Let X = x,, denote the level of X under
Investigation, at which the mean response is
E(Y|X=Xx,). Let Y newy D€ the value of the new
Individual response of interest. The point estimate
IS still the same E(Y|X=x,):

N\

Y hnewy = by + b, X, + 0, %, +...+ Db X,
_ XD



Var (Y niew ) = o {1+ X, (X" X)X, }

S (Y hnewy) = MSE{1+ X, (X" X)X, }



The matrix notation and derivations may be
deceilving because they hide enormous
computational complexities. To find the inverse
of a 10x10 matrix, for example X’X with k =9,
requires tremendous amount of computation.
However, the actual computations will be done by
computer; hence it does not matter to us whether
X’ X represents a 2x2 or a 6x6 matrix.




Age (X)  SBP (v) X-Sq y-sq Xy
42 130 1764 16900 5460
46 115 2116 13225 5290
42 148 1764 21904 6216
71 100 5041 10000 7100
80 156 6400 24336 12480
EX am D I e: 74 162 5476 26244 11988
. 70 151 4900 22801 10570
80 156 6400 24336 12480
85 162 7225 26244 13770
S BP VEIrsus 72 158 5184 24964 11376
A G E 64 155 4096 24025 9920
81 160 6561 25600 12960
41 125 1681 15625 5125
61 150 3721 22500 9150
75 165 5625 27225 12375
Totals 084 2193 67954 325929 146260



Sheet1

		x (oz)		y (%)		x-sq		y-sq		xy

		112		63		12544		3969		7056

		111		66		12321		4356		7326

		107		72		11449		5184		7704

		119		52		14161		2704		6188

		92		75		8464		5625		6900

		80		118		6400		13924		9440

		81		120		6561		14400		9720

		84		114		7056		12996		9576

		118		42		13924		1764		4956

		106		72		11236		5184		7632

		103		90		10609		8100		9270

		94		91		8836		8281		8554

		1207		975		123561		86487		94322
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y (%)

birth weight

increase in weight
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		Age (x)		SBP (y)		x-sq		y-sq		xy

		42		130		1764		16900		5460

		46		115		2116		13225		5290

		42		148		1764		21904		6216

		71		100		5041		10000		7100

		80		156		6400		24336		12480

		74		162		5476		26244		11988

		70		151		4900		22801		10570

		80		156		6400		24336		12480

		85		162		7225		26244		13770

		72		158		5184		24964		11376

		64		155		4096		24025		9920

		81		160		6561		25600		12960

		41		125		1681		15625		5125

		61		150		3721		22500		9150

		75		165		5625		27225		12375

		984		2193		67954		325929		146260
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SBP (y)

Age

SBP
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ZZXXZ } B [ 15 984

984 67,954

(15)(67,954) — (984)? = 51,054

67,954

—984 |

{

51,064
— 984

51,064

1.3310
—.0193

51,064
15

51,064 |
—.0193

.
.0003 |

|



" 15 984
X' X =
1984 67,954

1.3310 —.0193

(X' X)™ =
' —.0193 .0003
sy | 2193
| 146,260

b=(X"X)?(X"Y)
[1.3310 —.0193
| —.0193 .0003

|
|

2,193
146,260

|



VARIANCE OF
REGRESSION COEFFICIENTS

b=(XX)"(XY)
s?(b) = MSE(X X)™
1.3310 —.0193
' —.0193 .0003

= MSE




SUMMARIES

e All results can be put in the matrix forms

e If we can inverse a matrix and can multiply two
matrices, we can get all numerical results — even
without a packaged computer program.

* In matrix their forms, results can be easier
generalized; the only change needed is the Design

Matrix ( & its dimension) so as to handle more than
one predictors.



Readings & Exercises

« Readings: A thorough reading of the text’s sections
5.1-5.13 (pp.176-209) and sections 6.2-6.9 (pp.222-247)
IS highly recommended.

« EXercises: The following exercises are good for
practice, all from chapter 5 of text: 5.1,5.2, 5.7-5.11 and
5.24-5.26; plus these from chapter 6 of text: 6.5(b-d),
6.7, 6.10(a-d), and 6.15(a-f).




Due As Homework

X y
24 38.8
28 39.5
32 40.3
36 40.7
40 41.0
a4 41.1
48 41.4
52 41.6
56 41.8
60 41.9

#12.1 The following data were collected
during an experiment in which 10
laboratory animals were inoculated with
a pathogen. The variables are Time after
inoculation (X, in minutes) and
Temperature (Y, in Celsius degrees).

For the regression of Y (as dependent
variable) on X (as sole predictor), form
these matrices:

Y'Y, XY, and X'X

#12.2 Solve the following system of equations:

/X—06y =12
3X+9y =25



Sheet1

		X		y

		24		38.8

		28		39.5

		32		40.3

		36		40.7

		40		41.0

		44		41.1

		48		41.4

		52		41.6

		56		41.8

		60		41.9
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