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Course Summary

So far, we have discussed
• Group sequential procedures for two-sided tests
• Group sequential procedures for one-sided tests
• Group sequential procedures for two-sided tests with an

inner-wedge
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Course Summary

Some patterns have emerged
• We specify the general shape of the stopping boundaries and

solve to identify boundaries that achieve the desired type-I and
type-II error rates

• The maximum sample size must be increased relative to the
fixed-sample size in order to achieve the desired power

• There is a trade-off between expected sample size and
maximum sample size



Limitation

• To this point, we have assumed that interim analyses are equally
spaced throughout the study

• This implicitly assumes that information accrues uniformly
throughout the study

• Similar approaches can be used to develop stopping boundaries
if the information available at each interim analysis is known a
priori



Information accrual in practice

• In practice, it is often the case that the final information is known
but the information available at the interim analyses is not
• If subject accrual is uneven throughout the study
• Information is proportional to the number of events in a survival

analysis

• How do we develop stopping boundaries when the amount of
information at the interim analyses is unknown?



The Error Spending Approach

• Slud and Wei (1982) introduced an error spending approach that
guarantees the desired type-I error rate
• Consider a two-sided test of δ = µx − µy in the setting of a two arm

trial of two normally distributed random variables with known
variance

• Test the null hypothesis H0 : δ = 0
• Assume that we will have K analyses
• Let α be the overall type-I error rate



The Error Spending Approach: Stopping
Boundaries

• Define critical values ck for k = 1, . . . ,K
• For k = 1, . . . ,K − 1

• If |Zk | > ck , stop and reject H0

• otherwise, continue to group k + 1
• For k = K

• If |ZK | > cK , stop and reject H0

• otherwise, stop and fail to reject H0



The Error Spending Approach: Critical Values

• The error spending approach partitions α into probabilities
π1, . . . , πK that sum to α

• Let I1, . . . , IK be a general sequence of information
• The critical values c1, . . . , cK are defined such that

P (|Z1| > c1|δ = 0, I1) = π1

and

P (|Z1| < c1, . . . , |Zk−1| < ck−1, |Zk | > ck |δ = 0, I1, . . . , Ik ) = πk

for k = 2, . . . ,K



Error Spending Example

• Consider a group sequential design with:
• α = 0.05
• K = 5
• Fixed-sample size of n = 100/group
• 80% power



Error Spending Example 1

• Consider the following sequence of probabilities
• π1 = 0.01
• π2 = 0.01
• π3 = 0.01
• π4 = 0.01
• π5 = 0.01

• Assume that stopping times are evenly spaced throughout the
study (i.e. after n = 20/group, n = 40/group, etc.)



Error Spending Example 1: Critical Values

• This results in the following critical values
• c1 = 2.58
• c2 = 2.49
• c3 = 2.41
• c4 = 2.34
• c5 = 2.28

• The maximum sample size must be inflated to n = 115/group to
achieve 80% power



Error Spending Example 1: Critical Values

Normal test statistics at bounds
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Error Spending Example 2

• Consider the same sequence of probabilities as before
• Assume that stopping times are evenly spaced throughout the

second half of the study (i.e. after n = 60/group, n = 70/group,
etc.)



Error Spending Example 2: Critical Values

• This results in the following critical values
• c1 = 2.58
• c2 = 2.38
• c3 = 2.27
• c4 = 2.20
• c5 = 2.14

• The maximum sample size must be inflated to n = 106/group to
achieve 80% power



Error Spending Example 2: Critical Values

Normal test statistics at bounds
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Error Spending Example 3

• Finally, consider the situation were a small amount of error is
spent at the first interim analyses and a large amount at the final
analysis
• π1 = 0.0025
• π2 = 0.0025
• π3 = 0.0025
• π4 = 0.0025
• π5 = 0.04

• Assume that stopping times are evenly spaced throughout the
study (i.e. after n = 20/group, n = 40/group, etc.)



Error Spending Example 2: Critical Values

• This results in the following critical values
• c1 = 3.02
• c2 = 2.97
• c3 = 2.91
• c4 = 2.86
• c5 = 1.99

• The maximum sample size must be inflated to n = 102/group to
achieve 80% power



Error Spending Example 3: Critical Values

Normal test statistics at bounds
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Properties of Slud and Wei’s approach

• It is clear that the overall type-1 error rate is α
• The first critical value is c1 = Φ−1

(
1− π1

2

)
• Additional critical values are found numerically
• A critical value ck depends on the information available at the

first k analyses but not the unobserved information Ik+1, . . . , IK



Limitations of Slud and Wei’s approach

• The number of analyses, K , must be fixed in advance
• We might want flexibility in the amount of error spent at each

interim analysis depending on the amount of information accrued
since the previous analysis



An alternate approach

• An alternate approach is the maximum information trial proposed
by Lan and DeMets (1983)

• In this case, subjects are enrolled until a maximum information
level is reached

• Error is spent according to an error spending function



Error Spending Function

• In the maximum information trial approach, information is
partitioned using an error spending function

• Error spending functions have the following properties
• non-decreasing
• f (0) = 0
• f (1) = α, where α is the desired type 1 error rate



Error Spending Function: Example
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Error Spending Function: Calculating critical
values

• Let Imax be the target maximum information level
• Let I1, I2, . . . , Ik be a sequence of information values for the first k

stopping times
• The error spending function is first translated into probabilities as

in Slud and Wei’s method
• π1 = f (I1/Imax )
• πk = f (Ik/Imax )− f (Ik−1/Imax ) for k = 2, 3, . . .

• π1, π2, . . . are translated into c1, c2, . . . as in Slud and Wei’s
method



Error Spending Function: Critical values example

• Consider the simple error spending function f (t) = αt with
α = 0.05

• Recall for our two sample case, that Ik = 2∗nk
σ2

• Let the target maximum information level be Imax = 2∗100
σ2



Error Spending Function: Critical values example

• Let’s assume that the first interim analysis is at n = 20/group
• π1 = f (I1/Imax = .2) = 0.01
• This corresponds to a critical value of

c1 = Φ (1− 0.01/2)−1 = 2.58
• Let’s assume the second interim analysis is at n = 50/group

• π2 = f (I2/Imax )− f (I1/Imax ) = f (.5)− f (.2) = 0.015
• This corresponds to a critical value of c2 = 2.38

• We’ll consider two scenarios for the remainder of the trial



Error Spending Function: Scenario 1

• No additional interim analyses before study completion
• π3 = f (I3/Imax )− f (I2/Imax ) = f (1)− f (.5) = 0.025
• This corresponds to a critical value of c3 = 2.14

• What if there is an additional interim analysis?



Error Spending Function: Scenario 2

• Add an additional interim analysis at n = 75/group
• π3 = f (I3/Imax )− f (I2/Imax ) = f (.75)− f (.5) = 0.0125
• This corresponds to a critical value of c3 = 2.32

• Final analysis at study completion
• π4 = f (I4/Imax )− f (I3/Imax ) = f (1)− f (.75) = 0.0125
• This corresponds to a critical value of c4 = 2.24

• The critical value is larger than before (2.24vs.2.14)

• The additional interim analysis spent an additional amount of
type-1 error leaving less available for the final analysis



Properties of Error Spending Functions

• We need not specifying the number or timing of interim analyses
in advance

• Critical values depend on the number of previous interim
analyses

• Critical values depend on the sequence of information available
at previous interim analyses

• Critical values do not depend on the number of interim analyses
or sequence of information for the remainder of the trial



Properties of Error Spending Functions

• We need not specifying the number or timing of interim analyses
in advance

• Critical values depend on the number of previous interim
analyses

• Critical values depend on the sequence of information available
at previous interim analyses

• Critical values do not depend on the number of interim analyses
or sequence of information for the remainder of the trial



Error Spending Function: Example 1

Lan and DeMets (1983) show that the following error spending
function results in critical values similar to the O’Brien-Fleming
boundaries

f (t) = min
[
2− 2Φ

(
Z1−α/2/

√
t
)
, α
]



Error Spending Function: Example 1
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Error Spending Function: Example 2

Lan and DeMets (1983) also show that the following error spending
function results in critical values similar to the Pocock boundaries

f (t) = min [αlog (1 + (e − 1) t) , α]



Error Spending Function: Example 2
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Error Spending Function: Example 3

Hwang, Shih and DeCani (1990) introduce a family of error spending
functions indexed by a parameter γ

f (t) =

{
α
(
1− e−γt

)
(1− e−γ) if γ 6= 0

αt if γ = 0.



Error Spending Function: Example 3
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Error Spending Function: Example 4

Kim and DeMets (1987) present the following error spending function

f (t) = αtρ

for ρ > 0



Error Spending Function: Example 4
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Stopping Boundaries for Error Spending Function

• We will focus on the error spending functions proposed by
Hwang-Shih and Decani and Kim and DeMets

• We will consider a two-sided test with α = 0.05
• While the number of interim analyses need not be specified

when using the error spending approach, we will consider
designs with K = 5 to illustrate the shape of the boundaries



Hwang, Shih and DeCani: Equally spaced
stopping times

• First consider the Hwang, Shih and DeCani error spending
function

• Consider 5, equally spaced interim analyses

k γ = −6 γ = 0 γ = 10
1 3.63 2.58 2.02
2 3.28 2.49 2.53
3 2.90 2.41 3.01
4 2.48 2.34 3.47
5 1.99 2.28 3.90



Equally-spaced Hwang, Shih and DeCanni
Boundaries with γ = −6

Normal test statistics at bounds

Information relative to fixed sample design

N
or

m
al

 c
rit

ic
al

 v
al

ue

−4

−2

0

2

−3.63
−3.28

−2.9

−2.48

−1.99

3.63
3.28

2.9

2.48

1.99

r=0.202 r=0.404 r=0.606 r=0.808 r=1.01

0.2 0.4 0.6 0.8 1.0

Bound

Lower

Upper



Equally-spaced Hwang, Shih and DeCanni
Boundaries with γ = 0

Normal test statistics at bounds

Information relative to fixed sample design
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Equally-spaced Hwang, Shih and DeCanni
Boundaries with γ = 10

Normal test statistics at bounds

Information relative to fixed sample design
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Hwang, Shih and DeCani: Unequally spaced
stopping times

• What if interim analyses are clustered towards the end of the trial
• Interim analyses at n = 60, 70, 80, 90and100

k equal unequal
1 3.63 2.85
2 3.28 2.71
3 2.90 2.50
4 2.48 2.27
5 1.99 2.01



Comparing equal and unequally spaced interim
analyses
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Hwang, Shih and DeCanni spending function:
summary

• Increasing γ implies that more error is spent early in the trial and
less is available late in the trial

• Larger values of γ lead to smaller critical values early on but
larger critical values late in the trial

• Equally spaced increments spend small amount of error early,
saving more for later in the trial



Kim and DeMets: Equally spaced stopping times

• First consider the Kim and DeMets error spending function
• Consider 5, equally spaced interim analyses

k ρ = 0.5 ρ = 1 ρ = 4
1 2.28 2.58 3.94
2 2.46 2.49 3.23
3 2.48 2.41 2.75
4 2.48 2.34 2.36
5 2.47 2.28 2.01



Equally-spaced Kim and DeMets Boundaries with
ρ = 0.5

Normal test statistics at bounds
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Equally-spaced Kim and DeMets Boundaries with
ρ = 1

Normal test statistics at bounds
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Equally-spaced Kim and DeMets Boundaries with
ρ = 10

Normal test statistics at bounds
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Kim and DeMetsi: Unequally spaced stopping
times

• What if interim analyses are clustered towards the end of the trial
• Interim analyses at n = 60, 70, 80, 90and100

k equal unequal
1 3.94 2.72
2 3.23 2.58
3 2.75 2.40
4 2.36 2.22
5 2.01 2.05



Comparing equal and unequally spaced interim
analyses
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Kim and DeMets spending function: summary

• Increasing ρ implies that less error is spent early in the trial and
more is available late in the trial

• Smaller values of ρ lead to smaller critical values early on but
larger critical values late in the trial

• Equally spaced increments spend small amount of error early,
saving more for later in the trial



Error Spending Functions and Power

• We have seen that using a groups sequential stopping rule
results in decreased power compared to a fixed-sample design

• We must increase the maximum sample size of a clinical trial in
order to achieve the same power as a fixed-sample design

• The power of a group sequential design will depend on the
number and timing of the interim analyses

• How should we proceed when the point of error spending
functions is that we need not specify the number and timing of
interim analyses?



Error Spending Functions and Power

• In practice, the number and timing of interim analyses is
specified in advance for a clinical trial
• DSMB meetings scheduled yearly or every six months for length of

trial

• What is unknown is the information available at each interim
analysis?

• The simplest approach is to assume uniform information growth
when design the study



Error Spending Functions and Power: Example

• Consider a two-sided test monitored using an error-spending
function
• α = 0.05
• We will power the study to detect an effect size of 0.2 ∗ σ
• We would need a sample size of 393/group to achieve 80% power
• We would need a sample size of 526/group to achieve 90% power

• The sample size inflation factor will depend on the error spending
function and parameter values



Sample Size Inflation Factor: Hwang, Shih and
DeCanni

Hwang, Shih and DeCanni spending function with 80% power

K γ = −3 γ = 0 γ = 3
2 1.017 1.082 1.233
3 1.028 1.117 1.32
4 1.036 1.137 1.366
5 1.041 1.15 1.394
8 1.05 1.17 1.436
10 1.054 1.178 1.45



Sample Size Inflation Factor: Hwang, Shih and
DeCanni

Kim and DeMets spending function with 90% power

K γ = −3 γ = 0 γ = 3
2 1.016 1.075 1.211
3 1.026 1.107 1.289
4 1.033 1.124 1.329
5 1.038 1.136 1.354
8 1.046 1.155 1.392
10 1.05 1.162 1.405



Sample Size Inflation Factor: Kim and DeMets

Kim and DeMets spending function with 80% power

K ρ = .5 ρ = 1 ρ = 3
2 1.162 1.082 1.01
3 1.222 1.117 1.02
4 1.254 1.137 1.027
5 1.274 1.15 1.032
8 1.306 1.17 1.041
10 1.317 1.178 1.045



Sample Size Inflation Factor: Kim and DeMets

Kim and DeMets spending function with 90% power

K ρ = .5 ρ = 1 ρ = 3
1.146 1.075 1.009

1.2 1.107 1.018
1.229 1.124 1.025
1.247 1.136 1.03
1.275 1.155 1.039
1.285 1.162 1.042



What if the interim analyses are not equally
spaced?

• The above sample size inflation factors assume equally spaced
interim analyses

• What if the interim analyses are not evenly spaced?
• Assume, instead, that interim analyses are planned at

approximately:
• 60% of the information
• 70% of the information
• 80% of the information
• 90% of the information
• 100% of the information



Unevenly Spaced Interim Analyses: Hwang, Shih
and DeCanni

Consider stopping boundaries developed using the Hwang, Shih and
DeCanni error spending function with K = 5 and 80% power

γ Even Uneven
-3 1.041 1.045
0 1.15 1.136
3 1.394 1.304



Unevenly Spaced Interim Analyses: Kim and
DeMets

Consider stopping boundaries developed using the Kim and DeMets
error spending functions with K = 5 and 80% power

γ Even Uneven
0.5 1.274 1.212
1 1.15 1.136
3 1.032 1.042



Sample Size Inflation for Error Spending
Functions: Summary

• Sample size inflation increased as γ increased for the Hwang,
Shih and DeCanni Error spending function and as ρ decreased
for the Kim and DeMets error spending function

• More generally, a large sample size inflation is required when
more error is spent early in the trial

• The unevenly spaced stopping times required a smaller sample
size inflation when more error was spent early in the trial and a
larger inflation when more error was available at the end of the
trial



Sample Size Inflation for Error Spending
Functions: A final thought

• Initially, we discussed planning the study assuming equally
spaced interim analysis

• We then noted that changing the timing of the interim analyses
would change the power/sample size inflation factor

• You have to make assumptions about the timing of interim
analysis (whether equal or not) to identify the correct sample size

• We’ll see you the effect of being wrong on the next homework
• Remember, though, that the type-I error rate will be controlled

regardless of the timing of interim analyses



Expected Sample Size for Error Spending
Functions

• As with standard group sequential designs, we’ll evaluate the
savings due to an error spending function by considering the
expected sample size

• The expected sample size will depend on several parameters
• α
• β
• K
• Error spending function and parameter
• True difference between groups



Expected Sample Size for Error Spending Function

Expected sample size as percentage of fixed sample size for Hwang,
Shih and DeCanni error spending function for varies values of γ with
• α = 0.05
• K = 5
• equally spaced interim analyses
• 80% power to detect an effect size of δ

γ 0 ∗ δ .5 ∗ δ δ 1.5 ∗ δ
-3 103.1 98.3 79.7 56.3
0 112.7 104.8 78.5 51
3 135.1 122.8 84.1 50.2



Expected Sample Size for Error Spending Function

Expected sample size as percentage of fixed sample size for Hwang,
Shih and DeCanni error spending function for varies values of K with
• α = 0.05
• γ = −3
• equally spaced interim analyses
• 80% power to detect an effect size of δ

γ 0 ∗ δ .5 ∗ δ δ 1.5 ∗ δ
2 101.3 99 87.9 68.6
3 102.1 98.5 83.3 61.6
4 102.7 98.4 81.1 58.2
5 103.1 98.3 79.7 56.3
8 103.9 98.3 77.8 53.4

10 104.2 98.3 77.2 52.5



Expected Sample Size for Error Spending Function

Expected sample size as percentage of fixed sample size for Hwang,
Shih and DeCanni error spending function for varies values of K with
• α = 0.05
• γ = 3
• equally spaced interim analyses
• 80% power to detect an effect size of δ

γ 0 ∗ δ .5 ∗ δ δ 1.5 ∗ δ
2 120.8 112.6 88.7 68.1
3 128.6 118 85.8 57.3
4 132.6 121 84.6 52.6
5 135.1 122.8 84.1 50.2
8 138.9 125.7 83.4 47

10 140.2 126.7 83.2 46



Expected Sample Size for Error Spending Function

Expected sample size as percentage of fixed sample size for Kim and
DeMets error spending function for varies values of ρ with
• α = 0.05
• K = 5
• equally spaced interim analyses
• 80% power to detect an effect size of δ

ρ 0 ∗ δ .5 ∗ δ δ 1.5 ∗ δ
0.5 123.9 114.1 81.6 49.9
1 112.7 104.8 78.5 51
3 102.4 97.9 80.6 58.8



Expected Sample Size for Error Spending Function

Expected sample size as percentage of fixed sample size for Kim and
DeMets error spending function for varies values of K with
• α = 0.05
• ρ = 0.5
• equally spaced interim analyses
• 80% power to detect an effect size of δ

γ 0 ∗ δ .5 ∗ δ δ 1.5 ∗ δ
2 114.1 107.4 86.4 66
3 119.4 110.8 83.3 56
4 122.2 112.8 82.2 52
5 123.9 114.1 81.6 49.9
8 126.7 116.2 81.1 47.4

10 127.7 117 81 46.7



Expected Sample Size for Error Spending Function

Expected sample size as percentage of fixed sample size for Kim and
DeMets error spending function for varies values of K with
• α = 0.05
• ρ = 3
• equally spaced interim analyses
• 80% power to detect an effect size of δ

γ 0 ∗ δ .5 ∗ δ δ 1.5 ∗ δ
2 100.7 98.9 89.5 70.7
3 101.4 98.3 84.6 64.7
4 102 98 82.1 61
5 102.4 97.9 80.6 58.8
8 103.1 97.9 78.5 55.6

10 103.4 97.9 77.8 54.6



Expected Sample Size for Error Spending
Function: Summary

• Error spending functions that spend less error early have a
smaller expected sample size with smaller differences but a
larger expected sample size if the difference is large
• The difference under the alternative is modest compared to the

difference under the null



Expected Sample Size for Error Spending
Function: Summary

• For error spending functions that spend a large amount of error
early
• Expected sample size increases with K for small or no difference
• Expected sample size decreases with K for larger differences



Expected Sample Size for Error Spending
Function: Summary

• For error spending functions that spend a smaller amount of
error early
• Expected sample size increases with K only under the null
• Expected sample size decreases with K otherwise



Sequential monitoring of SBP using an error
spending function

Consider sequential monitoring of SBP at 24 months in the Mr Fit
study using the error spending approach

• α = 0.05
• n = 400/group
• Assume that σ is known and equal to 14
• We will use the Kim and DeMets error spending function with
ρ = 3

f (t) = αt3

• We need not specify the timing of interim analyses in advance



Sequential monitoring of SBP: first interim
analysis

Let’s assume that the first interim analysis occurs with 80 subjects
per group

• I1/Imax = 80/400 = .2
• f (.2) = 0.0004
• This corresponds to a critical value of c1 = 3.54
• Z1 = .875
• Continue the trial



Sequential monitoring of SBP: second interim
analysis

The second interim analysis occurs with 140 subjects per group

• I2/Imax = 140/400 = .35
• f (.35) = 0.0021
• f (.35)− f (.2) = 0.0017
• This corresponds to a critical value of c2 = 3.11
• Z2 = 2.86
• Continue the trial



Sequential monitoring of SBP: third interim
analysis

The second interim analysis occurs with 280 subjects per group

• I3/Imax = 280/400 = .70
• f (.70) = 0.0150
• f (.70)− f (.35) = 0.0017
• This corresponds to a critical value of c3 = 2.41
• Z3 = 5.82
• Stop and reject the null hypothesis



Sequential monitoring of SBP: Summary

• The trial stops at the third interim analysis
• We reject the null hypothesis and conclude that subjects in the

control group have a significantly higher SBP than subjects in the
experimental condition

• We use a sample size of 280 subjects per group, which is a
savings of 120 subjects per group compared to the fixed-sample
design



Sequential monitoring of DBP using an error
spending function

Consider sequential monitoring of DBP at 24 months in the Mr Fit
study using the error spending approach

• α = 0.05
• n = 400/group
• Assume that σ is known and equal to 8
• We will use the Kim and DeMets error spending function with
ρ = .9

f (t) = αt .9

• This will spend more error early in the trial than when ρ = 3



Sequential monitoring of DBP: first interim
analysis

Let’s assume that the first interim analysis occurs with 40 subjects
per group

• I1/Imax = 40/400 = .1
• f (.1) = 0.0063
• This corresponds to a critical value of c1 = 2.73
• Z1 = 1.44
• Continue the trial



Sequential monitoring of SBP: second interim
analysis

The second interim analysis occurs with 160 subjects per group

• I2/Imax = 160/400 = .40
• f (.40) = 0.0219
• f (.40)− f (.1) = 0.0156
• This corresponds to a critical value of c2 = 2.39
• Z2 = 3.60
• Stop and reject the null hypothesis



Sequential monitoring of DBP: Summary

• The trial stops at the second interim analysis
• We reject the null hypothesis and conclude that subjects in the

control group have a significantly higher DBP than subjects in the
experimental condition

• We use a sample size of 160 subjects per group, which is a
savings of 240 subjects per group compared to the fixed-sample
design



Error Spending for One-sided Test or Two-sided
Tests with an Inner Wedge

• To this point, we have only consider error spending in the context
of two-sided tests with no inner-wedge

• Error spending functions can be easily extended to the case of a
one-sided test or two-sided test with an inner wedge

• In this case, an error spending function is specified for both α
and β



Error Spending for a One-sided Test

• For simplicity, we will only consider one-sided tests as two-sided
tests with an inner wedge are very similar

• We now must specify an error spending function for both the type
I and type II error
• f (t)
• g (t)



Error Spending for a One-sided Test

• f and g must both meet the requirement for an error spending
function
• f (0) = g (0) = 0
• f and g are non-decreasing
• f (t) = α and g (1) = β



Partitioning the Type I error

Type I error is partitioned as before

• π1,1 = f (I1/Imax )

• π1,k = f (Ik/Imax )− f (Ik−1/Imax ) for k = 2,3, . . .



Partitioning the Type II error

Type II error is partitioned in an identical fashion

• π2,1 = g (I1/Imax )

• π2,k = g (Ik/Imax )− g (Ik−1/Imax ) for k = 2,3, . . .



Critical Values

Critical Values are now specified as follows:

• The first critical values, a1 and b1 are defined as a1 and b1, such
that:

P (Z1 > b1|δ = 0, I1) = π1,1

and
P (Z1 < a1|δ = δa, I1) = π2,1

where δa is the pre-specified alternative hypothesis



Critical Values

• Subsequent critical values are defined as, ak and bk are defined
as ak and bk , such that:

P (a1 < Z1 < b1, . . . , ak−1 < Zk−1 < bk−1,Zk > bk |δ = 0, I1, . . . , Ik ) = π1,k

and

P (a1 < Z1 < b1, . . . , ak−1 < Zk−1 < bk−1,Zk < ak |δ = δa, I1, . . . , Ik ) = π2,k

where δa is the pre-specified alternative hypothesis



Critical Values

Intuitively, critical values are defined such that the correct amount of
error is spent at each interim analysis conditional on continuing after
the first k − 1 interim analysis



One-sided Error Spending Functions and Power

• One-sided group sequential tests are designed to detect a
specific power to detect a pre-determined alternative

• You must make assumptions about the number and timing of
interim analyses in order to determine sample size/power for
sequential tests using error spending functions

• These will likely change when conducting the trial
• In this case, it is usually not possible to determine aK = bK that

achieve the desired type-I and type-II error
• It is best to find bK that achieves the desired type-I error rate and

set aK = bK realizing that the power will be a little off



Critical Values: Example

• Consider a two-sided test with the following properties
• α = 0.05
• 90% power (i.e. β = 0.10) to detect an effect size of 0.20
• This would require a fixed-sample size of 215
• f (t) = αt3

• g (t) = αt3

• Assuming 5 equally spaced stopping times, we would require a
maximum sample size of 226



Critical Value Example: First Interim Analysis

• The first interim analysis occurs after 23 subjects have been
enrolled

• Upper boundary
• f (23/226) = f (0.102) = α0.1023 = 0.00005
• π1,1 = 0.00005
• b1 = Φ (1− π1,1)−1 = 3.88

• Lower boundary
• g (23/226) = f (0.102) = β0.1023 = 0.0001
• π2,1 = 0.0001
• a1 = −2.75
• Note: ak 6= Φ (1− π1,1)−1



Critical Value Example: Second Interim Analysis

• The second interim analysis occurs after 80 subjects have been
enrolled

• Upper boundary
• f (80/226) = f (0.354) = α0.3543 = 0.0022
• π1,2 = 0.0022− 0.00005 = 0.00215
• b2 = 2.85

• Lower boundary
• g (80/226) = f (0.354) = β0.3543 = 0.0044
• π2,2 = 0.0044− 0.0001 = 0.0043
• a2 = −0.84



Critical Value Example: Third Interim Analysis

• The third interim analysis occurs after 136 subjects have been
enrolled

• Upper boundary
• f (136/226) = f (0.602) = α0.6023 = 0.0109
• π1,3 = 0.0109− 0.0022 = 0.0087
• b3 = 2.33

• Lower boundary
• g (136/226) = f (0.602) = β0.6023 = 0.0218
• π2,3 = 0.0218− 0.0044 = 0.0174
• a3 = 0.27



Critical Value Example: Fourth Interim Analysis

• The fourth interim analysis occurs after 204 subjects have been
enrolled

• Upper boundary
• f (204/226) = f (0.903) = α0.9033 = 0.0368
• π1,4 = 0.0368− 0.0109 = 0.0259
• b4 = 1.83

• Lower boundary
• g (204/226) = f (0.903) = β0.9033 = 0.0736
• π2,4 = 0.0736− 0.0218 = 0.0518
• a4 = 1.36



Critical Value Example: Final Analysis

• The final analysis includes 226 subjects
• Upper boundary

• f (1) = 0.05
• π1,5 = 0.05− 0.0368 = 0.0132
• b5 = 1.69

• Lower boundary
• a5 = 1.69
• Final power is 90.01/



One-sided sequential monitoring of SBP using an
error spending function

Consider one-sided sequential monitoring of SBP at 24 months in the
Mr Fit study using the error spending approach

• α = 0.05
• Assume that σ is known and equal to 14
• We would like 90% power to detect a significant difference of 5

mmHg
• This will require a fixed-sample size of 135 subjects per group



One-sided sequential monitoring of SBP using an
error spending function

• We will use the Kim and DeMets error spending function with
ρ = 3 for both α and β spending

f (t) = αt3

and
g (t) = βt3

• A sample size of 142 subjects per group is required to achieve
90% assuming five equally spaced interim analyses



Sequential monitoring of SBP: first interim
analysis

The first interim analysis uses the first 15 subjects per group

• Upper boundary
• f (15/142) = f (0.106) = 0.00005
• π1,1 = 0.00005
• b1 = 3.85

• Lower boundary
• g (15/142) = g (0.106) = 0.0001
• π2,1 = 0.0001
• a1 = −2.70

• Z1 = .365
• Continue the trial



Sequential monitoring of SBP: second interim
analysis

The second interim analysis uses the first 45 subjects per group

• Upper boundary
• f (45/142) = f (0.317) = 0.0016
• π1,2 = 0.0016 - 0.00005 = 0.00155
• b2 = 2.95

• Lower boundary
• g (45/142) = g (0.317) = 0.0032
• π2,2 = 0.0032 - 0.0001 = 0.0031
• a2 = −1.04

• Z2 = 1.71
• Continue the trial



Sequential monitoring of SBP: third interim
analysis

The third interim analysis uses the first 45 subjects per group

• Upper boundary
• f (70/142) = f (0.493) = 0.0060
• π1,3 = 0.0060 - 0.0016 = 0.0044
• b3 = 2.56

• Lower boundary
• g (70/142) = g (0.493) = 0.0120
• π2,3 = 0.0120 - 0.0032 = 0.0088
• a3 = −0.19

• Z3 = 0.73
• Continue the trial



Sequential monitoring of SBP: fourth interim
analysis

The fourth interim analysis uses the first 115 subjects per group

• Upper boundary
• f (115/142) = f (0.810) = 0.0266
• π1,4 = 0.0266 - 0.0060 = 0.0206
• b4 = 1.97

• Lower boundary
• g (115/142) = g (0.810) = 0.0531
• π2,4 = 0.0531 - 0.0120 = 0.0411
• a4 = 1.06

• Z4 = 2.38
• Stop and reject the null hypothesis



Sequential monitoring of SBP: Summary

• The trial stops at the fourth interim analysis
• We reject the null hypothesis and conclude that subjects in the

control group have a significantly higher SBP than subjects in the
experimental condition

• We use a sample size of 115 subjects per group, which is a
savings of 10 subjects per group compared to the fixed-sample
design

• Had the trial reached full enrollment, we would have had slightly
more than 90% power (90.13%)



One-sided sequential monitoring of DBP using an
error spending function

Consider one-sided sequential monitoring of DBP at 24 months in the
Mr Fit study using the error spending approach

• α = 0.05
• Assume that σ is known and equal to 8
• We would like 90% power to detect a significant difference of 2

mmHg
• This will require a fixed-sample size of 275 subjects per group



One-sided sequential monitoring of DBP using an
error spending function

• We will use the Kim and DeMets error spending function with
ρ = 3 for both α and ρ = 2 for β spending

f (t) = αt3

and
g (t) = βt2

• A sample size of 296 subjects per group is required to achieve
90% assuming five equally spaced interim analyses



Sequential monitoring of SBP: first interim
analysis

The first interim analysis uses the first 15 subjects per group

• Upper boundary
• f (150/296) = f (0.507) = 0.0065
• π1,1 = 0.0065
• b1 = 2.48

• Lower boundary
• g (150/296) = g (0.507) = 0.0257
• π2,1 = 0.0257
• a1 = 0.21

• Z1 = 3.25
• Stop and reject the null hypothesis



Sequential monitoring of DBP: Summary

• The trial stops at the first interim analysis
• We reject the null hypothesis and conclude that subjects in the

control group have a significantly higher DBP than subjects in the
experimental condition

• We use a sample size of 150 subjects per group, which is a
savings of 146 subjects per group compared to the fixed-sample
design

• Had the trial reached full enrollment, we would have had slightly
more than 90% power (91%)


