

Public Investments in R&D

The ROI of Federal Investments in R&D

D. Drew Bond

Vice President, Public Policy / Co-Chair, Battelle Commercialization Council Battelle Memorial Institute

bondd@battelle.org / 202-646-5041

Battelle's Beginnings

Founded in 1920 by Will of Gordon
Battelle as a non-profit, charitable trust
to provide "the greatest good to
humanity"

STRATEGIC INTENT

To be a major force in scientific discovery and technology development

and in the translation of knowledge into innovative applications

that have significant societal and economic impact

in order to be a benefactor for **education** and charitable enterprises.

Purposes outlined in the Will:

- "Creative and research work"
- "Making of discoveries and inventions"
- Better education for employment
- Societal and economic impact



Battelle Today

Battelle is 20,000 people strong, spanning the globe in 130 locations and together managing \$6.5 Billion annually in R&D.

We apply science and technology through Global Businesses

National Security

- Chemical and biological defense
- Advanced materials
- Undersea technology
- Cybersecurity

Health and Life Sciences

- Public health
- Medical devices
- Next-generation diagnostics and therapeutics
- Bio-preparedness
- Crop sciences

Energy, Environment and Material Sciences

- Bio-energy and fuel cells
- Nuclear power and energy infrastructure
- Oil and gas processing

Battelle The Business of Innovation

We're driven to deliver scientific outcomes AND economic impact

Pacific Northwest National Laboratory Richland, Washington – 1965

Brookhaven National Laboratory Long Island, New York – 1997

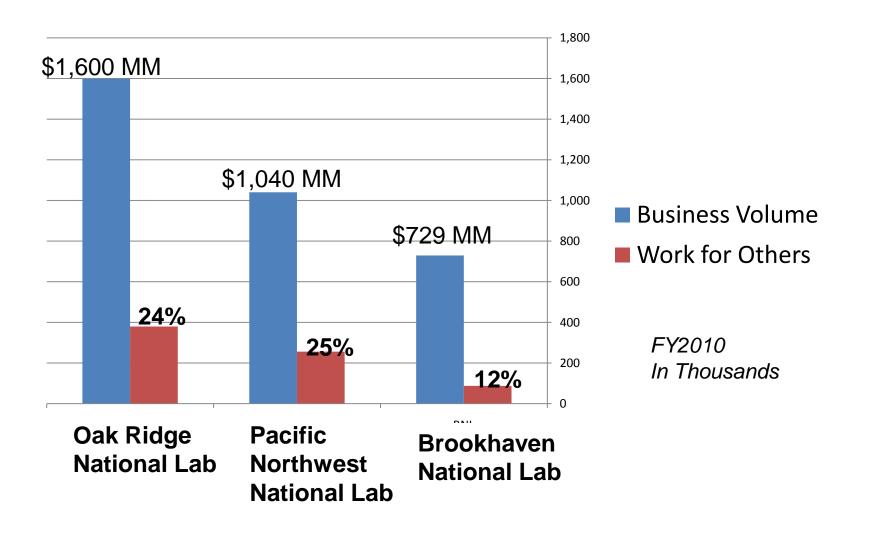
National Renewable Energy Laboratory Golden, Colorado – 1998

Oak Ridge National Laboratory Oak Ridge, Tennessee – 1999

Idaho National Laboratory Idaho Falls, Idaho – 2004

National Biodefense Analysis/Countermeasures Frederick, Maryland – 2006

Lawrence Livermore National Laboratory Livermore, California – 2007


United Kingdom National Nuclear Laboratory Sellafield, United Kingdom – 2009

Battelle Memorial Institute Columbus, Ohio

Battelle-managed National Labs seek to provide value to multiple partners

Battelle's National Labs are leading innovators in technology transfer

Engaging with Industry

Igniting Entrepreneurship and Start ups

Promoting Systemic Innovation

Translational Initiatives & Proof-of-Concept Centers

- Agreements for Commercializing Technology (ACT)
- Building relationships with key partners (e.g. DuPont, GE)
- Core Capabilities Catalogue

- Kieretsu partnership
- "America's Next Top Energy Innovator"
- Energy Innovation Portal
- "Accelerating Innovation" Webinars
- Entrepreneurship programs

- Support of Tech Transfer Coordinator
- National Labs Licensing Guide
- Collaborate with other federal agencies (e.g. Commerce, NIST, USPTO, ARPA-e)
- ORNL's Carbon Fiber Technology Center & Mfg Demonstration Facility
 - NREL Process
 Development &

 Integration Laboratory
- LLNL Open Campus

The economic impact from the research we manage provides substantial ROI

- ➤ Together with our labs, we represent about 5% of total Federal spending on R&D
- \$300 Million in commercial R&D transactions annually
- 250 patents issued annually to Battelle institutions
- Over 100 spin-off companies in the last 10 years from Battelle-managed labs

Overall, the annual economic impact of technologies licensed from Battelle and our labs is about \$500 MM

The financial ROI of the Human Genome Project is significant and ongoing.

Total Federal Investment: \$3.8 Billion

(1988 - 2003)

➤ Total Economic Impact: \$796 Billion

Total Personal Income: \$244 Million

➤ <u>In 2010 alone</u>:

\$67 Billion in U.S. economic output

Supported 310,000 jobs

Produced \$20 Billion in personal income

\$3.7 Billion in federal taxes

Economic Impact of the Human Genome Project TET CAT A ATG A TITT DA GC

"... a return on investment (ROI) to the U.S. economy of 141 to 1"

The societal ROI of the HGP is expansive and virtually immeasurable.

Regenerative medicine/ Stem cells Molecular diagnostics

Pharmacogenomics and Drug Discovery

Human Health

Human Remains Identification

Biosecurity (Pathogen ID/Detection)

Gene therapy

Animal Models/
Comparative Genomics

Tissue/Organ
Donor Matching

Vaccines

Zoonotic Disease ID and Characterization

Forensics,
Justice &
Security

Paternity Testing

DNA Fingerprinting

Illegal/Endangered
Animal Parts ID

Biodiversity Studies/ Metagenomics

Carbon Dioxide Capture

Pollution Control and Mitigation

Impact Areas and Animal Improvement

Pedigree Establishment

Livestock Improvement and Health

Functional Foods and Nutraceuticals

Veterinary Medicine

Improved Crops (Input and Output Traits)

Plant Disease Diagnostics

Environment

Mineral and Enhanced
Oil Recovery

Biobased Chemicals and Biomaterials

Biofuels and Bioenergy

Ag and Food

Food Processing Technologies

Industrial Biotech

National DNA Databank (CODIS)

Industrial Enzymes/ Biocatalysis Drugs and Biologics
Production

BioPharming

Tech transfer at DOE labs has multiple modes

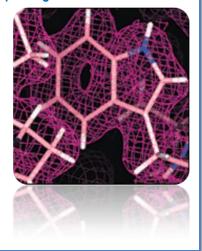
and strong record of successes that Battelle seeks to replicate

Serendipitous technology transfer from mission-driven research

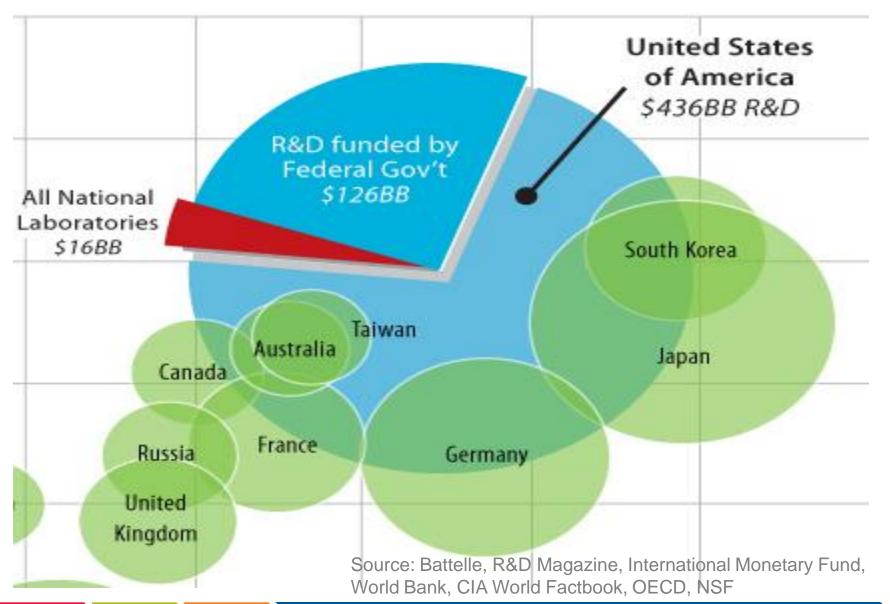
- Micropower Impulse RADAR
- Outgrowth of the world's fastest solid-state digitizer, designed to measure subnanosecond events generated by fusion experiments on the LLNL's Nova laser
- 11 licensees, e.g., GE

Basic & applied research oriented toward eventual tech transfer

- Advanced alloys and materials
- "Fills a critical gap in private sector R&D capacity"
 - Carpenter Steel
- Licensees include Caterpillar and DuPont
- A hallmark of DOE National Laboratory capabilities

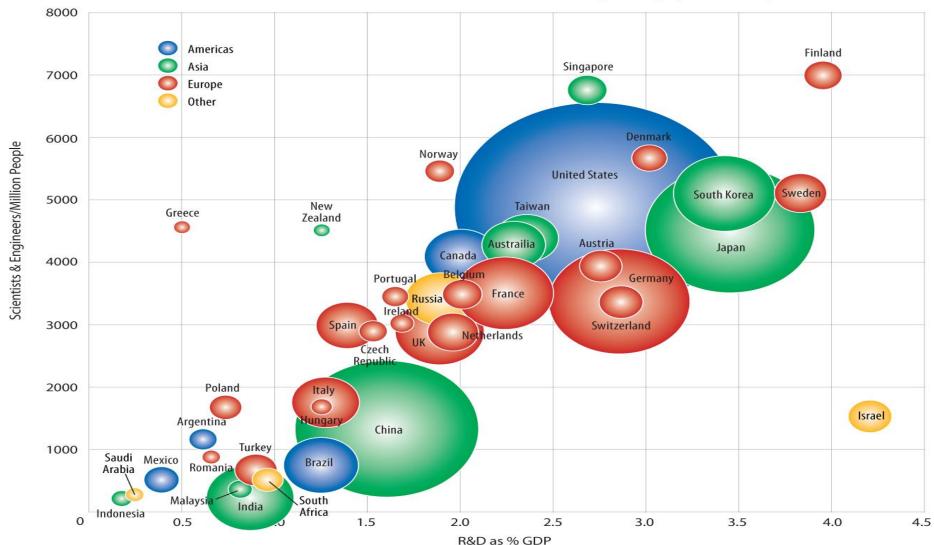

Technology transfer with large economic return on research

- Efficient Oil Burner Systems
- Award-winning industry collaboration for tech transfer (Honeywell, B&W, ConEdison, etc)
- Since 1980, this research has resulted in estimated savings of over \$25 billion in fuel costs to U.S. consumers


Technology transfer directly from unique "big science" user facilities

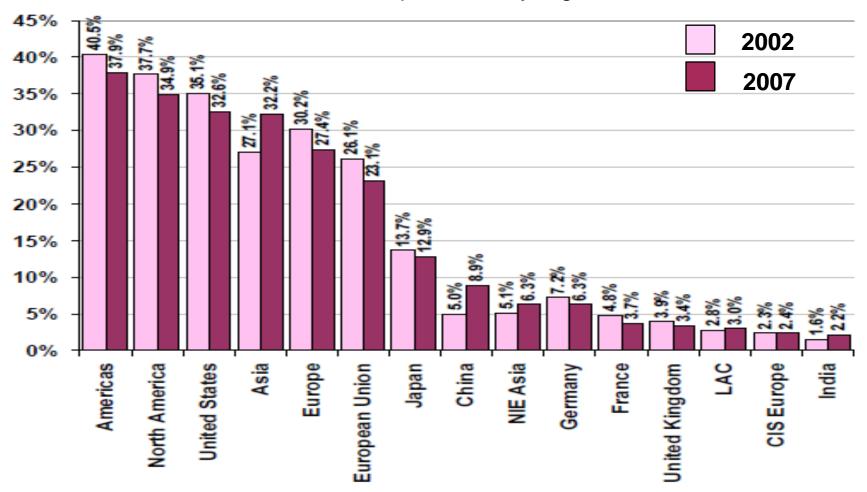
- Drug target characterization
- Protein structures determined at National Synchrotron Light Source and Spallation Neutron Source provide bases for design of new drugs
- Large commercial & societal value from machines only accessible at national scale (also doing basic science)

U.S. global lead in R&D is a strong basis for economic growth



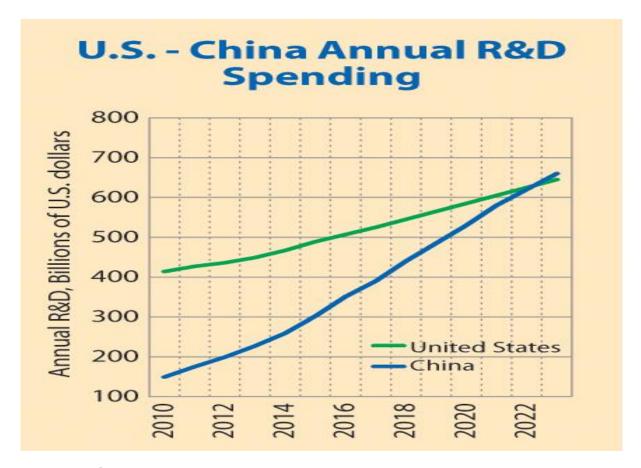
China, for one, is gaining ground on our R&D competitive advantage

World of R&D 2011


Size of circle reflects the relative amount of annual R&D spending by the country noted.

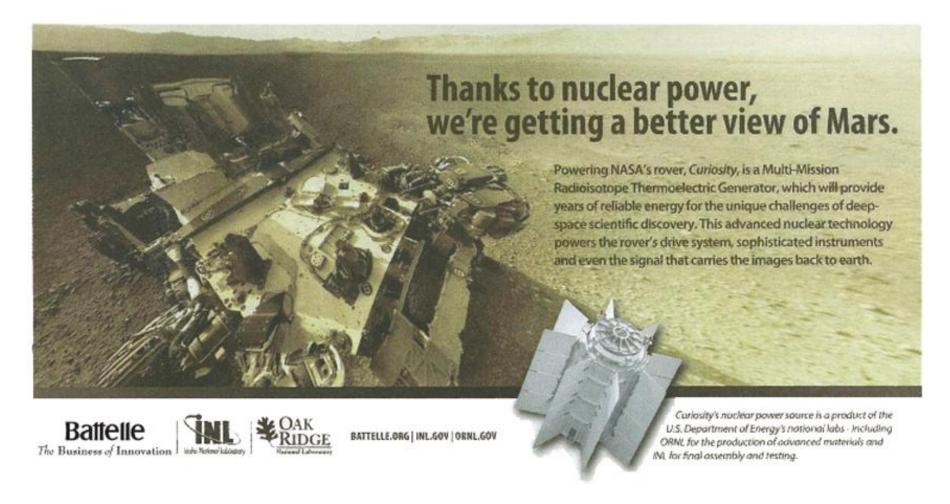
Battelle The Business of Innovation

ROI should also be a measure of "Risk Of Ignoring" the competitive trends


Shares of world R&D expenditure by regions/countries

Source: UNESCO Institute for Statistics estimates, August 2010

China is projected to surpass the U.S. in R&D investments just more than 10 years from today


Source: Battelle, R&D Magazine, International Monetary Fund, World Bank, CIA World Factbook, OECD, NSF

Limited-edition commercialization enabling the next generation of scientific exploration

OUR FUTURE IN SPACE

