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ABSTRACT

This paper attempts to broaden the foundations of public-
key cryptography. We construct new public-key encryption
schemes based on new hardness-on-average assumptions for
natural combinatorial NP-hard optimization problems. We
consider the following assumptions:

1. It is infeasible to solve a random set of sparse linear
equations mod 2, of which a small fraction is noisy.

2. It is infeasible to distinguish between a random unbal-
anced bipartite graph, and such a graph in which we
“plant” at random in the large side a set S with only
|S]/3 neighbors.

3. There is a pseudorandom generator in NC® where ev-
ery output depends on a random constant-size subset
of the inputs.

‘We obtain semantically secure public-key encryption schemes

based on several combinations of these assumptions with
different parameters. In particular we obtain public-key en-
cryption from Assumption 1 on its own, yielding the first
noisy-equations type public-key scheme in which the noise
rate is higher than one over the square root of the number
of equations. We also obtain public-key encryption based
on a combination of Assumptions 2 and 3. These are ar-
guably of more “combinatorial”/“private-key” nature than
any assumptions used before for public-key cryptography.
Our proof involves novel “search to decision” and “search to
prediction” reductions for sparse noisy linear equations.
The strength of our assumptions raise new algorithmic
and pseudorandomness questions (and new parameters for
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old ones). We give some evidence for these assumptions
by studying their resistance to certain classes of natural al-
gorithms, including semi-definite programs, ACP° circuits,
low-degree polynomials, and cycle counting. We also relate
our assumptions to other problems such as planted clique
and learning juntas.

Categories and Subject Descriptors

E.3 [Data Encryption|: Public key cryptosystems; F.2.2
[Nonnumerical Algorithms and Problems]: Computa-
tions on discrete structures

General Terms
Algorithms, Security, Theory

Keywords

3LIN, Densest Subgraph Problem, Expander Graphs, Learn-
ing Juntas, Learning Parity with Noise, NCO, Public Key
Cryptography

1. INTRODUCTION

Public key encryption (PKE) is a central notion in cryp-
tography, and many of the exciting cryptographic applica-
tions in theory and practice are based on it. But despite 30+
years of research, very few candidates for such encryptions
are known, and these are based on a handful of computa-
tional problems of a very structured algebraic or geometric
nature, from the areas of number theory, lattices, and error-
correcting codes (e.g., [19, 52, 40, 3]). This leaves open
the troublesome possibility that a new mathematical break-
through could render them insecure.

In this aspect public-key cryptography (“cryptomania” in
the language of Impagliazzo [29]) seems very different from
private key cryptography (“minicrypt”) where many different
candidates exist, and can be based on seemingly much less
structured combinatorial problems including natural average-
case variants of NP-complete problems such as random 3-
SAT [1], planted clique [32], and learning parity with noise [26,
11].1 Thus a major goal of cryptography is to base public-

! Learning parity with noise (LPN), as well as the related
mod p variant of “learning with errors” (LWE), have been
used for public key cryptography as well [4, 51, 47]. How-
ever, the known public key schemes require noise levels much
lower than those needed for private-key cryptography. In
particular all of these schemes inherently require noise of
magnitude € < 1/y/m, where m is the number of equations.



key encryption on assumptions that are weaker, or at least
different, than those currently used.

A complete solution to this problem would be obtained
by constructing public key encryption based solely on the
existence of one-way functions. This is a longstanding open

problem, and cannot be achieved via black-box reductions [30].

Short of that, we believe that major progress would be made
by a construction of public key encryption based on a natu-
ral and well-studied average-case variant of an NP-complete
problem. This paper is a step in this direction.

In this work we give constructions of a public key encryp-
tion based on different assumptions about the hardness of
combinatorial problems (e.g., satisfying random local con-
straints and detecting graph expansion). The proposed sys-
tems are not as efficient as some known candidate construc-
tions, and are based on assumptions that are not as well-
studied as, say, the hardness of factoring. For this reason
we initiate here a study of the algorithmic and pseudoran-
domness questions which arise, relate them to known results,
and obtain some preliminary new ones.

The main advantage of the new schemes is the relatively
general and unstructured nature of the new assumptions.
These include a variant of the planted densest subgraph prob-
lem, a pseudorandom generator based on the expander-based
one-way function of Goldreich [24] (a private-key primitive),
and the 3LIN problem which can be seen as a sparse vari-
ant of the learning parity with noise problem with noise level
much higher than those used before in public-key cryptogra-
phy (in particular larger than 1/y/m, see Footnote 1). These
seem qualitatively different than previous assumptions.

Structure of the paper.

Section 2 contain somewhat informal statements of our
results and some discussion on their implications and rela-
tion to prior works. Section 3 contains a description of our
scheme and a high level overview of the proofs of our main
results. Section 4 contains formal statements of the main
results as well as some proof outlines. A preliminary full
version of this paper is available on the authors’ home page.

2. OUR RESULTS AND RELATED WORK

2.1 New cryptosystems

We say that a bipartite graph G is an (m, n, d)-graph, if it
has m vertices on one side (which we call the “top” side), n
vertices on the other side (called the “bottom”), and every
top vertex has degree d. Similarly, an (m,n, d)-matriz is an
m X n matrix over GF(2), in which every row has d entries
of value 1. Roughly speaking, we consider the following
assumptions (see Section 4 for precise statements):

Assumption dLIN(m,e) It is infeasible to recover z from
(A, Az +e), where A is a random (m, n, d) matrix, = is
chosen randomly from GF(2)", and e € GF(2)™ is cho-
sen such that e; = 1 with probability € independently
for every i.

Assumption DUE(m, ¢,d) (Decisional Unbalanced Expan-
sion) It is infeasible to distinguish between: (a) a ran-

This seems to make a qualitative difference. Some evidence
for this is the fact that for € < 1/4/m LWE can be solved in
SZK [25] and even (a suitable promise problem variant of)
NP N coNP [2], while in the worst-case these problems are
NP-hard for sufficiently large noise [6, 20].

dom (m,n, d)-graph and (b) a random (m,n,d) graph
in which the edges going out of a random ¢-sized sub-
set S of the top vertices are modified to ensure S will
have only ¢/3 neighbors.

Assumption DSF(m,d) (Decisional Sparse Function) With
high probability, the following d-local, NC°® mapping
G of n to m bits is a pseudorandom generator: every
output bit of G(z1,...,z,) is MAJ(z', 2", 2""") where
each of ', z", 2" is the parity of d/3 random coordi-
nate of x.

In all of the above, “infeasibility” and “pseudorandomness”
are defined with respect to probabilistic polynomial time
(PPT) algorithms with some constant success probability
(e.g., 0.99). The parameters m,d, ¢, can be functions of
n. We construct three public-key encryption schemes each
based on a different combination of the above assumptions:

THEOREM 1. For every constants ¢ > 0 and function
m =m(n),d = d(n), if both Assumptions DUE(m, clogn, d)
and DSF(m,d) hold then there exists a semantically secure
public key encryption.

Both the DUE and DSF assumptions are arguably much
more “combinatorial” and of a “private key” nature than any
assumptions used before to construct public-key cryptogra-
phy. DSF assumes that a variant of Goldreich’s candidate
one-way function is a pseudorandom generator— a strong
assumption but still of a “private key” nature. DUE is closely
related to the densest subgraph problem— a combinatorial
optimization problem of independent interest [22, 34, 9, 7].

Indeed, we can look at an (m,n, d)-graph G as a d-uniform
hypergraph H of n vertices and m hyperedges, where the
i-th hyperedge of H contains the d neighbors of the i-th
top-vertex of G. In this formulation, the DUE assumption is
about the hardness of distinguishing hypergraphs that con-
tain a somewhat dense sub-hypergraph — aset T of ¢ = q/3
vertices, such that the induced sub-hypergraph on 7" has at
least g hyperedges— from graphs where the induced sub-
hypergraph of every set of ¢’ vertices (for ¢’ up to roughly
n%1 size or some other super-logarithmic bound) has only
about ¢'/d edges. Thus DUE is equivalent to the problem of
distinguishing between a random fairly sparse hypergraph
(m = O(n) hyperedges) and a random hypergraph with a
planted somewhat dense (average degree larger than 1) small
subgraph.?

Note that we use DUE with a planted set of size O(logn).
While, generally speaking, making the set smaller doesn’t
necessarily make the problem easier, there is always a brute
force attack of time (Z), and hence the scheme obtained can

be at best secure against 218" _time adversaries, where ¢
is the running time of the honest parties. While ideally one
would want at least sub-exponential security, we note that
the best construction of public key encryption using (even
idealized) one-way functions has security at most O(t?) [41,
10] and this is optimal for black-box methods [30, 8].

2Note however that there is a more “algebraic” view to DUE,
since a set of ¢ vertices with < ¢ neighbors will result in a
linear relation of length at most ¢ in the rows of the adja-
cency matrix. So, one can think of DUE also as a shortest
codeword problem for the dual code of this matrix. However
due to the imbalance, the dual code here has rate so close to
1 that it contains rather short codewords in any case (e.g.,

of length m!/°).



THEOREM 2. There is a constant ¢ so that if Assumption
3LIN(en**,n7%2/c) holds then there exists a semantically
secure public key encryption.

The 3LIN problem is a central and well studied constraint
satisfaction problem. Furthermore, the above parameters
seem to resist sub-exponential time algorithms (see Sec-
tion 2.2.) It should be mentioned that other public key
encryption schemes were based on solving (dense) random
noisy equations mod 2 and mod p [4, 51, 47]. Still our as-
sumption seems different from those due to the sparsity and
the use of larger noise rate (see Footnote 1 and Section 2.3).
Moreover, our assumption is based on the hardness of a
search problem (i.e. find an z satisfying most equations)
with parameters for which refutation variant of 3LIN (i.e.
certify that no such z satisfying most equations exists) is
harder than refuting a random 3SAT formula with O(n'*)
clauses. Note that finding an efficient algorithm to refute
random 3SAT formulas with o(n'®) clauses is a longstand-
ing open problem. Random 3SAT is perhaps the prototypi-
cal example of a “combinatorial” average-case computational
problem. Of course, this connection is not formal, only sug-
gestive, and does not directly shed light on the strength of
our assumption, as no reductions are known between the
search and refutation versions of random noisy 3XOR.

THEOREM 3. For every constants d,c and g = q(n), there
exists a constant ¢ such that if dLIN(c¢'nlogn,1/(c'q))) and
DUE(cn, q,2d) hold then there exists a semantically secure
public key encryption.

Compared to Thm. 2, Thm. 3 allows us much more flex-
ibility in the choice of parameters for 3LIN; specifically, we
avoid the parameter range in which [21]’s non deterministic
algorithm for the refutation variant of this problem works.
This comes at the expense of using the additional, combina-
torial assumption DUE.?> Again, it seems (see Section 2.2)
that the resulting schemes achieves sub-exponential security.

We stress that we do not claim that our cryptosystems
are “better” or “more secure” than previous candidates for
public key encryption. Indeed, the integer factoring prob-
lem underlying schemes such as [49] is probably the most
well-studied average-case computational problem. Also, lat-
tice based systems such as [3, 51, 47] have the important
advantage of being based on worst-case problems such as
gap shortest vector and shortest linearly independent vec-
tors. Nevertheless we believe our constructions do suggest
that problems with less algebraic or geometric structure may
be useful for public key cryptography.

2.2 More about the assumptions

We now elaborate on the evidence that support our as-
sumptions and on some of their additional applications. To
test the validity of our assumptions, we show uncondition-
ally that they do resist various concrete algorithms, as well
as provide some reductions between these and other com-
putational problems. While our primary motivation is to
broaden the foundations for public key cryptography, we

3We note that known algorithms for DUE (i.e., counting
small subgraphs) place some restrictions on the value of ¢
for which DUE(cn, ¢,d) and we’ll need ¢ € [n®,/n] where
€ is some constant depending on c¢. The actual range of
parameters for which our result holds is somewhat broader.

believe that the computational problems we use are natu-
ral and interesting in their own right.* They broaden the
class of hardness-on-average and pseudorandomness prob-
lems studied in the past in both the algorithmic and cryp-
tographic communities, and focus attention on parameters
of significance for public-key encryption.

The dLIN problem.

We show that for the parameters we use, the noisy linear
equation problem 3LIN unconditionally resists: (1) “Myopic”
attacks that look at the entire matrix but only at some n’ of
the “noisy bits”, or those that look at linear combinations of
these “noisy bits”. (2) Attacks that apply low-degree poly-
nomials or ACP circuits to the “noisy bits“. (3) n’ rounds
of the Lasserre hierarchy [36] of semi-definite programs, for
some constant & > 0. The first item follows similarly to the
analysis of Mossel et al [43], the second item employs the
results of Viola [55] and Braverman [15], and the third item
is implied by Schoenebeck [53].

The last item is especially interesting as semidefinite pro-
grams seem to be the strongest algorithmic tool that is cur-
rently available to attack constraint satisfaction problems.
Moreover, the Lasserre hierarchy is strictly stronger than
other hierarchies for linear and semidefinite programs such
as the Lovasz-Schrijver [39] hierarchies (LS, and LS+) and
the Sherali-Adams [54] hierarchy [37].

We also obtain a new (average-case) reduction from the
dLIN problem into its decisional version (where one needs to
distinguish (1 — ¢)-satisfiable random equations from com-
pletely random ones that will be of course only 1/2 + o(1)
satisfiable). A similar reduction (from search to decision)
was presented in [11] for the non-sparse case, however their
techniques do not hold in the sparse case which turns to be
significantly more challenging. As the sparse case is an im-
portant variant of this problem (see [4, 5]), we believe that
our reduction is of independent interest.

The DSF problem.

We show that the non-linear pseudorandom generator G
of the DSF assumption resists some of the above attacks
as well. Specifically, its output is n®-wise independent and
fools AC? circuits and linear tests over GF(2). In fact, we
prove a more general result about the security of the fol-
lowing construction of [24]. For a sequence of m subsets of
[n], S = S1,...,5m of size d = O(1) and a d-local predi-
cate P, let Ggp : {0,1}" — {0,1}™ be the d-local mapping
whose i-th output is obtained by applying the predicate P
to the input string = restricted to the d indices of the set
Si. Goldreich [24] conjectured that when the mapping is
length preserving (i.e., m = n), the function Gg, p is one-
way for a random choice of the collection S and essentially
any non-trivial predicate P. This assumption was supported
by both theoretical and practical evidence [24, 45, 17]. Re-
cently, [14] showed that if the predicate P is biased towards
a linear combination of two of its inputs, then the function
becomes vulnerable when the output length m is sufficiently
larger than the input length (i.e., m > cn for a constant

4As an example, following this work, a variant of the DUE
assumption was recently used by [7] (co-authored by the
second author) to argue about the complexity of pricing fi-
nancial derivatives. The DUE assumption also served as par-
tial motivation for [9]’s recent work on the densest subgraph
problem.



¢ = ¢(d) > 1). We complement this by giving a combina-
torial condition on S and P under which the function Gs,p
is pseudorandom with respect to the above family of non-
trivial distinguishers (i.e., n’-wise independent tests, AC°
circuits and linear tests over GF(2)) even when m is poly-
nomially larger than n.® This suggests that the vulnerabil-
ity discovered by [14] only holds for a “bad” choice of the
predicate P. Our work also provides a new candidate for
an NC° pseudorandom generator with polynomial stretch
(e.g., from n input bits to n? output bits). The existence of
such a primitive is an important open question [18, 43, 5,
5] which is also motivated by the ability to achieve highly
efficient secure multiparty computation [31]. The only prior
candidate (surviving a similar class of non-trivial attacks)
was due to [43].

The DUE problem.

We also show that the unbalanced expansion (DUE) prob-
lem resists “cycle counting” algorithms (a basic and surpris-
ingly useful technique to identify dense subgraphs of a graph
by counting the number of small cycles in the graph con-
taining specific vertices [9]). In addition we show that vari-
ants of the DUE assumption are implied by variants of other
problems such as small-set vertex expansion in general (not
necessarily bipartite) graphs, and the planted clique prob-
lem in G, for small p = p(n). Finally, we prove that
our third cryptosystem, which is based on a combination
of DUE and DSF implies that a k-junta (i.e., a function
g :{0,1}" — {0,1} which depends in at most k of its vari-
ables) cannot be PAC-learned in less than n®*®) time. The
junta learning problem [12, 13] is one of the most central
open problems in computational learning theory.®

2.3 Prior works

The notion of “structure” in complexity assumptions is
necessarily informal but we can still offer below some com-
parisons of our schemes with previous ones. We do not re-
view all previous assumptions used for candidates for public
key encryption; see the survey [57] and the web site [38]
for more. It seems that currently those candidates that are
considered secure can be classified as falling into two broad
categories: schemes based on number theoretic or group the-
oretic problems such as factoring (e.g. [49, 52]) and discrete
log in various groups (e.g. [19, 42, 35]) and schemes based
on knapsack/lattices/error correcting codes (e.g., [40, 3, 4,
51, 47]).

Our non-linear scheme (based on DSF and DUE) seems
genuinely different from all previous constructions we are
aware of. Our linear scheme (based on solely on 3LIN or
dLIN and DUE) has some similarities to coding/lattice-based
schemes but there are some important differences, which we
now discuss.

Of the coding/lattice based schemes, the McEliece [40]

SRoughly speaking, our condition requires S to be a
good expander and P to satisfy a (stronger) variant of ¢-
resiliency [16]. See full version for details.

In addition, the DSF assumption on its own can be formu-
lated as a “dual” version of the junta learning problem in
which the target function is not local, but instead the data
points given to the learner are “local”. More formally, in
terms of learning theory, in DSF the learner should learn a
function f;, represented by an m-bit vector x, which maps
a d-size set S C [m] to the value P(zs) for some known
(randomly chosen) predicate P.

system seems to use more algebraic structure, in the sense
that the underlying assumption is that decoding a “shuffied”
Goppa code is as hard as decoding a random linear code.
A similar observation applies to the Hidden Field Equations
(HFE) scheme of Patarin [46] that implicitly assumes that a
shuffled low degree univariate polynomial over GF(p") is in-
distinguishable from a random family of quadratic equations
over GF(p)".

More similar to ours are the schemes of Alekhnovich [4]
and Regev [51]. Regev’s scheme (and others such as [48,
47]) is based on the Learning With Error problem that is
a mod p analog of the learning parity with noise problem.
Specifically, like our 3LIN problem it is the task of recover-
ing = from (A, Az + €) except A is a random (dense) m x n
matrix in GF(p) for p > m, and each coordinate of e is
distributed as a discrete Gaussian with standard deviation
ep. However, as mentioned in Footnote 1, to make decryp-
tion work in all those schemes one needs to take ¢ < 1/y/m
which seems to make a qualitative difference in the nature
of the problem [25, 2]. Most similar to ours is Alekhnovich’s
scheme [4]7 that uses the (decisional variant) of the standard
(dense) parity with noise problem. However, he too needed
to use noise level of less than 1/4/m. While no analogous
results to [25, 2] are known for the mod 2 case, it still seems
as an important advantage that we are able to handle much
higher noise levels (in some cases at the expense of using
DUE as well).

3. OVERVIEW OF THE TECHNIQUES

To highlight some of our techniques let us sketch the
proofs of Thms. 2 and 3. We define SearchLIN(d, m,¢) to
be the problem of recovering x given a random d-sparse
m X n matrix M and the vector b = Mx + e, where z is
chosen at random in GF(2)" and e € GF(2)™ is chosen at
random so that e; = 1 with probability € (we call e an e-
noise vector). Note that with extremely high probability
this = to be recovered is unique. We let Search3LIN(m,e) =
SearchLIN(3,m,€).

PKE from 3LIN(Q(n**), 0(n=°2)).

The proof proceeds by a sequence of reductions, ending
with showing that under our hardness assumption on the
search problem, a related prediction problem is hard as well.
This prediction problem gets essentially the same input, a
matrix M and a vector b = Mx + e except its last bit, and
asks to predict that bit. In other words, given the value
of m — 1 noisy (3-sparse) equations, we are asked to predict
the value of another independent equation. A natural way to
predict is to solve the search problem, and use the recovered
solution x to evaluate the new equation (which will predict
it correctly with probability 1 — €). Our reduction shows
that essentially this is the only way to go about prediction.
If search is hard, so is prediction, even if all we ask for is a
constant advantage (say 1/10) over guessing.

The twist is that the distribution of sparse matrices we use

"Indeed, as observed by Ron Rivest and Madhu Sudan
(personal communication), both our linear scheme and
Alekhnovich’s have a common generalization, where the
public key is a matrix G whose dual subspace has a “planted”
short vector, which serves as the private key. Similar struc-
ture occurs in many lattice-based cryptosystems such as [3,
50], where the public key is roughly a generating set for a
lattice whose dual lattice has a planted short (in ¢2) basis.



The scheme (D, ¢):

Public encryption key: A d-sparse matrix
M € GF(2)™*" sampled from distribution D.

Private decryption key: A g¢-size subset S C [m] for
which: m € S and Eies M,; = 0" where M; is the i-th
row of M.

Encryption: Randomly choose z £ U, and a noise
vector e € {0,1}™ whose entries are iid Bernoulli
variables with mean . To encrypt 0, send the vector
b= Mx + e. To encrypt 1, send the vector b with its
last bit flipped.

Decryption: To decrypt y € {0,1}™ output the sum
> ics ¥i- (Decryption errs with probability at most ge.)

Figure 1: Our basic cryptosystem scheme, used in
the proofs of Thms. 2 and 3. m,d, ¢, can depend on
the security parameter n. The distribution D is over
matrices with d 1’s per row, in which the last row is
a linear combination of ¢ — 1 other rows. We show
that under certain assumptions the scheme can be
instantiated to achieve constant privacy. This can
be amplified to full-fledged security using [28].

in this reduction is special. Formally, for any distribution D
on (m,n,3)-matrices, define the following prediction prob-
lem Predict3LIN(D, €): given M drawn from D and the first
m—1 bits of Mx+e where x, e as above, predict the m’th bit
of Mz + e with probability at least 3/5. We will reduce the
search problem Search3LIN(m, €) (where matrices are drawn
uniformly) to the prediction problem Predict3LIN(Do,¢), in
which matrices are drawn from a special distribution Dy.

Our cryptosystem.

Before explaining the reduction, let us explain how the
prediction problem Predict3LIN(Dg,e) can be turned into a
public-key system. This system is also described in Figure 1.
The distribution Dy has the property that if M is in the
support of Dy, then there is a linear relation involving M’s
last row and at most ¢ < 1/¢ other rows. Moreover, it is
possible to efficiently sample a random matrix M from Dy
together with such a set S of rows involved in this linear
relation. Since ge is small, if we add an e-noise vector e
to Mz, then with high probability no equation in S will be
noisy, which means that given the value of Mx + e on the
coordinates in S, one can recover the value of Mx on the
m*" coordinate. Thus, the linear relation can serve as a
sort of “trapdoor” for the Predict3LIN(Dy,e) problem. One
can turn this observation into a PKE by using relatively
standard techniques such as hardness amplification [28].

Search to approximate search.

To get from Search3LIN(m,e) to Predict3LIN(Do,e) we
use a chain of three reductions through two intermediate
problems. The first is an “approximate search” problem
AppSearch3LIN(m, e), which is the variant of Search3LIN in
which the goal is relaxed to only recover a vector =’ that is
close to the true answer x in Hamming distance. We use

error correcting properties of sparse equations to show that
the two problems are equivalent up to constant loss in the
parameters. In essence, we can use O(nlgn) more noisy
equations to detect the “errors” in the approximate solution
vector ' and correct them to recover x.

Search to prediction on the uniform distribution.

The second intermediate problem is Predict3LIN(m, £) which
is the problem Predict3LIN(D, €) where D is the uniform dis-
tribution over (m,n,3)-matrices - the same distribution on
matrices used in Search3LIN(m, ) and AppSearch3LIN(m, ¢).
We reduce AppSearch3LIN(m, ¢) to Predict3LIN(m+O(n), ).
A key observation used in the proof is that by adding two 3-
sparse random equations that share a common variable, we
get a random 4-sparse equation of the form z;+x;+zr+x, =
b, and so given such an equation one can turn a predictor for
;i + x; + xx into a predictor to x¢. By carefully combining
many pairs of equations it can be shown that at the end,
we will get predictions for a large fraction of the variables,
and that most of these predictions will be correct. Hence,
together they form a good approximation for x.

Prediction on a different distribution.

The last step is a reduction between the two prediction
problems Predict3LIN(m, ) to Predict3LIN(Do, €) where Dy
is the special distribution above. This step is composed
of two stages. First we use the results of Feige, Kim, and
Ofek [21] to argue that small linear relations involving the
last row of M will exist in our setting of parameters with
some (small) constant probability for the uniform distribu-
tion. Therefore the statistical distance between Dy (in which
such a relation is sampled first) and the uniform distribution
is bounded away from 1. We complete the proof by showing
how to turn a good predictor for Predict3LIN(D,¢) into a
good predictor A for Predict3LIN(D’, €) for every two distri-
butions D, D’ over matrices with related parameters whose
statistical (or computational!) distance is bounded away
from 1. This differs from most proofs of this type, since
we want the difference in prediction probability of the two
predictors to be much smaller than the statistical (or com-
putationsl) distance of the two distributions! For example,
even if A perfectly solves Predict3LIN(D, ¢) with no error, it
might be a terrible predictor which errs with probability 1/2
when instances are generated according to D’. Still, we show
how to turn it into a useful predictor with respect to D’ as
well. The idea is to identify (via sampling) the instances on
which A is likely to succeed and use it only for these cases.
Then, we amplify the success probability by breaking a sin-
gle instance of Predict3LIN to many smaller instances of the
problem. These instances are rerandomized by relying on
the symmetry and linearity of the 3-LIN constraints.

Thm. 3: PKE from DUE and dLIN.

The description above completes the reduction of Thm. 2.
For Thm. 3, in which smaller values of m are used, such
small linear relations between rows of M will not exist, and
hence the distribution Dy as above will be statistically far
from the uniform distribution on d-sparse matrices. Here
our extra assumption DUE comes to the rescue, basically to
prove that computationally its distance from uniform will be
bounded away from 1. The next two paragraphs highlight
the main ideas in that proof.

The use of DUE, as well as the extension to large sparsity



d > 3 introduce some additional difficulties that we need to
overcome. In particular, for our cryptosystem we need DUE
to hold even if one of the members of the planted shrinking
set is revealed. Hence, to prove security we show that solving
this variant of DUE assumption (denoted by DUE;) implies
a solution to the original DUE problem.

In particular, given a random (m, n, d) graph with a planted
shrinking set, an algorithm for DUE; can be used to dis-
tinguish with some constant advantage between nodes that
participate in the shrinking set to other nodes. This distin-
guisher allows us to “shave” many nodes of the large side
of the graph while preserving the existence of a (smaller)
shrinking set. The resulting graph will have m’ top nodes
and n bottom nodes where m’ < n. (Recall that we started
with m > n top nodes.) For this case, we can detect the
existence of a shrinking set by using Hall’s theorem via a
matching based algorithm. This leads directly to a solu-
tion for DUE. Note that this argument shows only that,
under the DUE assumption, the distribution Dy is not com-
pletely computationally-far from the uniform distribution.
Here again, we need to rely on the strong version of the
reduction from PredictLIN(D, ) to PredictLIN(D’, ¢).

Another difficulty arises from the use of a large spar-
sity d > 3, as in this case the combination of two equa-
tions with overlap of one variable does not lead to an equa-
tion of sparsity d + 1 as in the d = 3 case. We over-
come this problem by employing a different reduction from
PredictLIN to AppSearchLIN. Specifically, given an instance
of AppSearchLIN with locality d, we combine pairs of equa-
tions with no overlap to obtain a 2d-LIN instance. Then, we
generate (2d —2)-LIN equations by combining pairs of equa-
tions with a common variable. This information, together
with a prediction algorithm for 2d-LIN can be used to obtain
a 2-LIN equation. By repeating this process we obtain a ran-
dom 2-LIN (or MAX-CUT) instance. Now we can employ
one of the known algorithms (e.g.,the SDP of [23]) to obtain
a solution that satisfies a large fraction of the constraints.
Finally, we argue that since the 2-LIN instance is random
the resulting assignment is close to the original assignment
and therefore it is a valid solution for AppSearchLIN.

4. FORMAL STATEMENTS

4.1 Preliminaries

The SearchLIN problem. A matrix M is d-sparse if every
row has exactly d nonzero elements. The distribution 7, ».q
chooses a d-sparse matrix by selecting any of the possible (Z)
rows with probability p. The distribution M, .4 picks an
m X n d-sparse matrix by choosing each row independently
at random (with replacement) from all possible (7)) choices.
We define SearchLIN(d, m, ) to be the problem of recovering
z from (M, Mz + e¢) where M i3 Mpn,d, T Ly and e is
chosen at random such that e; = 1 with probability e. We
say that SearchLIN(d, m,¢) is intractable if for every PPT
algorithm A, and every sufficiently large n, the probability
that A solves SearchLIN(d, m(n),e(n)) is smaller than 2/3.

Indistinguishability. A pair of distribution ensembles
X, Vn are e-indistinguishable if for every PPT algorithm C,
we have | Pr[C(X) = 1] — Pr[C(Y) = 1]| < e. An ensemble
X, is e-pseudorandom if X, is e-indistinguishable from U,,,
the uniform distribution over n-bit strings.

Public-key encryption scheme. A (a(n), 3(n))-secure

public-key bit encryption scheme is a triple (Gen, Enc, Dec)
of PPT algorithms such that the algorithm Gen, on input 1™
produces a pair of private and public keys (pk,sk) and the
scheme satisfy the following properties:

e (1 — a)-correctness: For a random bit b id {0,1} and

a pair of random keys (pk, sk) rid Gen(1™) we have:
Pr[Decsk(Encpk (b)) = 8] > 1 — a.

e [(-privacy: The random variables (pk, Encn(0)) and
(pk, Encpk(1)) are [(n)-indistinguishable, where pk is
chosen by Gen(1™).

If a and (3 are constants that satisfy a < (1 — v/3)/2,
we say that the scheme is a weak PKE. It was shown in [28,
Thm. 6] that a weak PKE can be converted into semantically
secure PKE [27] which supports arbitrary (polynomially)
long messages.

4.2 Properties of the scheme £(D,¢)

Two of our constructions are based on the general bit-
encryption scheme which is described in Figure 1. Recall
that the public key is matrix M, and the private-key is a
short non-trivial linear dependency S among the rows of
M which includes the last row. To encrypt the bit o, one
generates an m-bit vector b by perturbing a random vector in
the image of M, and then XOR-s the last entry of b with the
plaintext o. The knowledge of the short linear-dependency
S allows to decrypt the ciphertext b’ by summing-up the bits
that are indexed by the set S. The following lemma shows
that decryption succeeds the noise rate ¢ is sufficiently small.

LEMMA 1. For every pair (M,S) of public/private keys,
and every plaintext o € {0,1}, the decryption errs with prob-
ability at most o = %—%(1—2@)‘1 < gq, where the probability

is taken over the randommness of the encryption algorithm.

To prove that the scheme is secure, it should be shown
that it is hard to predict the last entry of the ciphertext
b. Our main technical theorem shows that as long as M is
chosen from a distribution which is not too far from M, .4
or7 /(%) the scheme is “somewhat” secure assuming that

SearchLIN is intractable for related parameters. Formally,

THEOREM 4. Let 0 < § < 1 be a constant and d be
either 3 or an even number larger than 3, and m(n) =
Q(nlgn),e = e(n) < 0.01 be functions. Let D = {Dy} be
a distribution ensemble which is (1 — 0)-computationally in-
distinguishable from M, n.q or Tm/(’;'),n' Then there exists

a constant ¢ which depends only in & and d such that:

1. For d = 3: If SearchLIN(3,cm,¢) is intractable then
the public-key encryption scheme E(D,¢) is (1 —4§/2)-
private.

2. Ford > 3: IfSearchLIN(d/2, cm, 1=Y0=2) is intractable
then the public-key encryption scheme E(D,¢) is (1 —
§/2)-private.

8 As a special case, the theorem essentially shows that for d-
LIN, prediction is as hard as search. By combining this with
Yao’s theorem [56], one can show that the corresponding
decision problem (distinguishing a random (1 —¢)-satisfiable
instance from a random one) is as hard as search as well
(with some loss in the parameters).



ProOOF. We will sketch the proof only for the (simpler)
case of d = 3. As described in Section 3, we gradually
reduce Search3LIN to the task of breaking £(D,¢).

Step 1: From Search3LIN to AppSearch3LIN. Suppose
that we have an algorithm A that solves AppSearch3LIN(m, ¢);
that is, given a random e-satisfiable 3-LIN instance (M,b =
Mz 4 €) A outputs an assignment & which is 0.1-close to
2. We show how to convert A into an algorithm that solves
Search3LIN(m +t,¢) with almost the same success probabil-
ity, where ¢t > Q(nlnn). Given an input (M, b) € ]FgmH)X"X
F5't* we invoke the approximation algorithm A on the first
m rows of the input, and get an approximation z for =z.
Then, we use the information given by the last t rows of
the input to correct the errors in Z as follows. We will re-
cover the i-th bit of x by letting each equation of the form
T; + xr + ©¢ = v to vote for the correct value of x;. This
vote is simply Zr + Z¢ + vs, i.e., we compute the value of
x; assuming that v is not noisy and that the approximation
for 2 and 2, is correct. Finally, we take the majority of all
votes. To analyze the algorithm, we show that each index
i is likely to participate in many equations and that w.h.p
most of these equations will include only indices for which
x and & agree, hence, we output z; with probability at least
1 —o0(1/n) and therefore (by a union bound) all the indices
of x are recovered w.h.p.

Step 2: From AppSearch3LIN to Predict3LIN. Suppose
that we have an algorithm A that solves Predict3LIN(m, ¢).
That is, given a random input (M,b = Mz + e) the algo-
rithm A predicts the value b,, without reading it. It will
be convenient to parse the input as a tuple (M’,b’, v) where
(M',b') is the first m — 1 rows of (M, b) (“training set”), and
v = (i, 7, k) is the support of the last row of M (“test triple”).
We show how to use A to solve AppSearch3LIN(m +t,¢) for
t = Q(n). Our reduction employs a subroutine B which
transforms a random 3-LIN instance with ¢ equations and
noise ¢ into a random 4-LIN instance with ¢/5 equations and
noise & = 2¢(1 — €) and the same planted solution. Given
B we proceeds as follows.

We break the 3-LIN instance into two parts: the first
m equations (M,b) and the remaining ¢ equations (7, z)
which are converted into a random 4-LIN instance (R,y)
with ¢/5 equations via the subroutine B. Then, we invoke
the predictor A for ¢/5 iterations, where the 3-LIN instance
(T, z) is being used as the training set in all the iterations,
and the test triple of the r-th iteration v = (i, j, k) is ran-
domly chosen from the support of the r-th 4-LIN equation
zi +2; + 2z +x¢ = b. We guess the value of the variable
z¢ (which does not appear in v) by XOR~ing A’s prediction
bit with the LHS b of the 4-LIN equation. Our guess will
be correct if the equation is not noisy and the prediction
succeeds (or if both events do not happen simultaneously).
It can be shown that, if A is a good predictor (e.g., succeeds
with probability 0.99) then, with high probability, we will
get good guesses for most indices (e.g., 0.9 fraction) and thus
obtain a good approximation for x.

Finally, to implement the subroutine B we partition the
3-LIN equations into pairs that share a single variable z;,
and then combine each pair into a 4-LIN equation by simple
addition. We make sure that the partition is oblivious to
the other entries of the equations by first selecting a random
representative from each equation, and then combining pairs
that share a common representative. It is not hard to verify

that such a strategy results in a random instance of 4-LIN
system, and that, except with probability exp(—(t)), we
will get enough equations.

Step 3: Predicting over other distributions. Let
D be a distribution ensemble over 3-sparse matrices which
is (1 — d)-computationally close to M., , for some con-
stant 6.° Suppose that £(D,¢) is not (1 — §/2)-private.
Hence, there exists a (1 — §/4)-predictor A for the prob-
lem Predict3LIN(D,¢) in which the the matrix () of the
Predict3LIN instance (M,b = Mz + e,v) is chosen from D
and z and e are chosen as before. We show that A can
be converted into an 0.99-predictor B for Predict3LIN(m/, ¢)
(over the the uniform distribution) where m’ = ¢(m—1)+1
and the constant ¢ = ¢(d) depends only on §.

Let % < a < B <1-4/4 be constants, we call a pair
(M, v) good (resp. bad) if A succeeds on an instance (M,b =
Mzx+e,v) with probability larger than 3 (resp., smaller than
«) over a random choice of z and e-noisy e. A proper choice
of @ and (3 guarantees that: (1) a random pair selected from
M, will be good with some constant probability v > 0
(by Markov and the closeness of D); and (2) one can effi-
ciently distinguish bad pairs from good pairs by estimating
A’s success probability (say, via Chernoff bound).

Let us now describe the algorithm B. Given an input
(M, b,v) for Predict3LIN(m’, ) partition the matrix M (resp.
the vector b) to ¢ sub-matrices Mi,..., M. (resp. vectors
bi,...,b.) each with m — 1 rows. Rerandomize the i-th in-

stance as follows: choose a random z; & U, and a ran-
dom permutation m; over [n]; Generate the triple (T; =
mi(Mi),a; = b; + T; - mi(xs),vi = 7(v)), where we write
m(R) to denote the matrix R with columns permuted ac-
cording to m. Note that each of the ¢ instances we created
is a random instance of Predict3LIN(m,¢) and, in addition,
all the instances are independently distributed. Also, ob-
serve that given a good prediction o; for the i-th instance
we can compute a good prediction for the original instance
(M, v, z) by adding o; (over F2) to (z;,v). Hence, we apply
A to each instance, translate its answer into a prediction
for (M, v,z) and output the majority over the predictions,
ignoring the votes of the entries for which (73, v;) are bad.
Since 2 < a and v > 0 are constants, a sufficiently large

2
constant ¢ decreases the error probability below 0.01. [

4.3 PKE based on 3LIN

We instantiate the scheme (D, ¢) as follows. Let H.» be
the uniform distribution over matrices with n columns and
q rows, where each row contains exactly 3 ones and each
column contains either 0 or 2 ones. Consider the distribution
Tp,n,q which is simply 7, , conditioned on the event that the
matrix 7' contains a submatrix of rows H € support(H,’)
that includes the last row of 7. Since Hg,’f{ is efficiently
samplable (via standard techniques), it is possible to sample
a triple (M, H, S) where M & T,, . o, H & H23 and Mg =
H (i.e., S is a g-size subset of the rows of M which points to
the submatrix H). We will use this distribution for our key-
generation algorithm. First, we argue that the distribution
Tp,n,q is not too far (in statistical distance) from 7, .

LEMMA 2. There exists a function ¢ = @(n°?) and a con-

9The proof easily extends to the case where D is close to
Tpm for p=m/(}).



stant 6 < 1 such that the distribution 7;:”1_4/(g)m is1l—90

statistically indistinguishable from Tp p . q.

The (omitted) proof relies on the results of Feige, Kim and
Ofek [21]. We can now establish Thm. 2.

PROOF OF THM 2. Let p, g(n) and § be the parameters
obtained from Lemma 2 and let ¢ = ¢(d) be the parameter
obtained from Thm. 4. Suppose that Search3LIN(cn'*,¢)
is intractable for € = kn™%? where k is a sufficiently small
constant that will be determined later. By Lemma 2 and
Thm. 4, we get that the scheme &£ instantiated with the
distribution 7,_,-1.6 ,, , and noise rate € is 3 = (1 — 6/2)-
private. Since 3 is bounded away from 1, and since the
error « tends to zero with k (Lemma 1), a sufficiently small
constant k& will make the error « smaller than (1 —+/3)/2.
Hence, we obtain a weak PKE which can be converted to a
semantically secure PKE via the transformation of [28]. [

4.4 PKE based on dLIN and DUE

In the previous section we constructed a PKE based on
the intractability of Search3LIN(n'* n~%2), our goal in this
section is to relax this assumption and replace it with the in-
tractability of solving the SearchLIN problem with a smaller
number of equations (m = nlogn), and larger noise rate
(e.g., e = n~"1). We do this at the expense of adding the
DUE as an additional assumption.

The DUE problem. In the following we view a d-sparse
matrix M € F3**" as a bipartite graph G = ((Vrop, Viot), F)
with m “top” nodes (each node correspond to a row) and n
“bottom” nodes (each node correspond to a column) where
each top node has degree d. We call such a graph an (m, n, d)
graph. Graphs chosen from M, » 4 Will be, with high prob-
ability, very good expanders. That is, we expect that small
sets S of top vertices will have almost d|S| neighbors. The
distribution fg,m,d is a perturbed version of M, 4 in which
we plant a single g-size top subset S with a small (“shrink-
ing”) neighborhood. Formally, ffn’md is the result of the
following random process: choose G from My, 1, 4, choose at
random subsets S C Viop and T' C Vot of sizes q and ¢q/3 re-

spectively, and choose a random graph H Fid Mg/3,q,a- Then
replace all the d|S| edges in G that are incident to S with
the edges from H. In the DUE problem the goal is to dis-
tinguish between a random graph sampled from M., .4 to
a graph sampled from F! ;. Let m = m(n),d = d(n) and
g = q(n) be some functions of n. We say that DUE(m, g, d)
is d-intractable if the distribution ensembles M, 1 (n),d(n)

and F! (n).d(ny aT€ 0 computationally indistinguishable.

The key generation algorithm. Again, we rely on
the general bit-encryption of Figure 1. Our key generation
algorithm will be based on the DUE planted distribution.
We will sample a pair of private/public-keys as follows. Let
M be an d-sparse matrix chosen from ]:Z,m(n),d and let S
be a shrinking set of size q. We say that a row ¢ in S is
degenerate if it is spanned by the other rows in S. Go over
the rows of S in a random order, until a degenerate row i is
found. (Such a row must exist as S is shrinking and therefore
the column rank of the rows indexed by S is smaller than
g.) Then, permute the i-th row of M with the last row, and
set the public-key to be the permuted matrix M’, and the
private key to be the set S’ which contains the last row of

M’ and the rows that span it, i.e., 35, ¢ Mj (mod 2) = 0.

Security. Let K = ICZM’d denote the distribution of the
public key. Our goal now is to show that K is (1 — §) com-
putationally close to the ensemble M = M,, , 4 for some
constant §, and then apply Thm. 4. Recall that the in-
tractability of DUE asserts that the above is true for the

distribution F = ]:Z,m,w and note that F can be written as

a convex combination a/C+(1—a)KC, where K is essentially F
conditioned on the last row being out of the planted shrink-
ing set. In general, this does not necessarily means that a
good distinguisher for IC, yields a good distinguisher for F.
Consider, for example, an algorithm that always output 1
on inputs from /C, but will output 0 on inputs from K. Such
an algorithm can be a very good distinguisher for /C, and
still be useless for F (say, if it outputs 1 on the uniform
distribution with probability «). The crux of the lemma,
is to show that in this case, we can distinguish IC from I,
and therefore can recover some information regarding the
planted shrinking set. This information allows us to certify
the “shrinkage” of a noticeable fraction of the graphs in F,
and so it leads to a distinguisher for F.

THEOREM 5. Suppose that DUE(cm, ¢, d) is 1/2000¢2 in-
tractable. Then K}  ; is (1 — ) computationally close to
the ensemble My, m.a where § = §(c) is a constant which
depends only in the constant c.

PROOF SKkETCH. Let K, = K . F, = F! . and
M, = My,m,q. Assume, towards a contradictforf, that
we have a J§-distinguisher A for K,, and M,, where § =
1 —1/500c®. We use A to break DUE as follows. Given a
graph G, create the graph G; in which the i-th row is per-
muted with the last row, and invoke A on all the G;’s for
i € [m]. Define a graph G’ by keeping only the rows i of G
for which A(G;) outputs “planted”. If the number of remain-
ing rows is larger than n/kc we output “random” where k
is some fixed universal constant (e.g., 18). Otherwise, think
of G’ as a bipartite graph with (at most) n/kc left vertices
with degree d and n right vertices, and check whether there
exists a perfect matching that consists of all left nodes. If
so output “random”; otherwise, output “planted”.

We argue that when G £ M., the above algorithm out-
puts “random” with probability 1 — o(1). Indeed, suppose
that we outputted “planted”. Then, G’ has no matching that
consists of all left vertices, and therefore, by Hall’s theorem,
G’ has a shrinking left set. Since G’ is a subgraph of G, it
follows that G has a left set of vertices of size at most n/kc
which shrinks. By standard calculations, a random graph

c& M., will have such a set only with probability o(1).

It is left to show that when G & JF, the output is “planted”
with some fixed constant probability (e.g., 1/20). To prove

this we claim that for a typical graph G & K., we have that
A(G;) outputs (1) “planted” for most rows ¢ in the shrink-
ing set, and (2) “random” for most rows ¢ outside of the
shrinking set. Assuming that the claim is true (with the ap-
propriate parameters), we complete the argument by noting
that if G satisfies (2) then G’ has at most n/kc rows, and,
in addition by (1), at least ¢/2 rows from the shrinking set
appear in G’. Since the neighborhood of these rows is at
most ¢/3, the graph G’ has no perfect matching (by Hall’s
theorem), and the algorithm outputs “planted”.

It is left to prove the claim. The first part of the claim
follows (via Markov) from the fact that A, being a ¢ distin-

guisher, outputs “planted” with high probability over G Fil



K. The second part of the claim follows from DUE; as if
(2) is violated A(G;) outputs “planted” with high probabil-

ity over G &£ 7, and a random i & [m], and since A(H;),

where H & M,, and i & [m], outputs “random” with high
probability (by our assumption on A), we break DUE. [J

COROLLARY 1  (THM. 3 RESTATED). For every constants
d,c and function ¢ = o(n), there exist constants a,b for
which: if DUE(cn, q,2d) is 1/2000¢* intractable as well as
SearchLIN(d, anlogn,1/(bq))) is intractable then there exists
a semantically secure PKE.

PRrROOF. Suppose that the assumptions hold with param-
eters d,q,c and sufficiently large constant a,b > 1. By
Thms. 4 and 5, the resulting scheme is (-private for some
constant 0 < # < 1 where 3 does not depend on the constant
b. Hence, by taking b to be1 sufﬁlciently large, we can reduce

the decryption error a = 5 — 5(1 —2-¢)? (see Lemma 1)

below (1 —+/B)/2 and get a PKE. [J

4.5 PKE based on DSF and DUE

For an (m,n,d) graph G = ((Viop, Viot), E), and a pred-
icate f : {0,1}* — {0,1}, we define the function Gj :
{0,1}" — {0,1}™ obtained by mapping every x € {0,1}" to
(f(xry,-- -, f(xr@m)), where I'(i) denotes the neighbors of
the i-th “top” node. We prove that there exists a PKE under
the assumption that (1) (Decisional Sparse Function DSF)
There exists a function f : {0,1}% — {0,1} for which the
distribution (G, Gf(Uy)) is e-indistinguishable from the dis-

tribution (G, U, ) where G 2 My, n.a; and (2) DUE(m, q,d)
is € intractable for some ¢ € ©(logn).

The cryptosystem. The cryptosystem is slightly differ-
ent than the previous ones, and is inspired by Naor’s com-

mitment [44]. To generate a key choose a graph G & f;'{’m’d
together with a g-size shrinking set S, as well as a random
string r & U, The pair (G, r) is the public-key, while the
private key consists of the shrinking set S, and the graph
H which is the subgraph of G induced by the set S and its

neighbors. To encrypt we choose a random z £ U,. To
encrypt the bit 0 output y = Gf(z); To encrypt the bit 1,
output y = Gy(z) + r (mod 2). To decrypt a ciphertext
z, we output O if and only if zg the restriction of z to the
set S is in the image of Hy. (This verification can be im-
plemented efficiently by trying all possible 20/3 — poly(n)
preimages.) It is not hard to prove the following Lemma
which establishes Theorem 1.

LEMMA 3. (1) The scheme is errorless with respect to a
fraction of 1 — 2793 of the public-keys. (2) Under the as-
sumptions above, the scheme is 4e private.

PROOF SKETCH. (1) Fix G, S and H and let v = rg. We
show that for all but 2793 fraction of the v’s the scheme
is errorless. Indeed, a decryption error can happen only
if there are two different preimages wo, w1 € {0,1}9/% for
which Hf(wo) = Hy(wi) + v. Hence, the probability of
choosing a “bad” v is at most 29/% . 29/3 /29, (2) Follows by
a standard hybrid argument. []

Since our decryption algorithm looks at only O(logm) of
the bits of an m-bit ciphertext, and since for most of the
keys the scheme is errorless, we can show, via standard tech-
niques [33], that there is no efficient algorithm to PAC learn
O(log m)-juntas under the same assumptions.
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