
Lecture 12

1

Public	Key	Distribution	
(and	Certifications)

(Chapter	15	in	KPS)	



2

KDC

A B

(1)	Request|B|N1 (2)	EKa[Ks|Request|N1|EKb(Ks,A)]

(3)	EKb[Ks,A]

(4)	EKs[A,N2]

(5)	EKs[f(N2)]Notes:
• Msg2	is	tied	to	Msg1
• Msg2	is	fresh/new
• Msg3	is	possibly	old	*
• Msg1	is	possibly	old	(KDC	doesn’t	authenticate	Alice)
• Bob	authenticates	Alice
• Bob	authenticates	KDC
• Alice	DOES	NOT	authenticate	Bob

A	Typical	KDC-based	Key	Distribution	Scenario	
KDC	=	Key	Distribution	Center

EK[X]	=	Encryption	of	X	with	key	K



Public	Key	Distribution

• General	Schemes:

• Public	announcement	(e.g.,	in	a	newsgroup	or	
email	message)
•Can	be	forged

• Publicly	available	directory
•Can	be	tampered	with

• Public-key	certificates	(PKCs)		issued	by	
trusted	off-line	Certification	Authorities	(CAs)

3



Certification	Authorities

• Certification	Authority	(CA):	binds	public	key	to	a	specific	entity
• Each	entity	(user,	host,	etc.)	registers	its	public	key	with	CA.
• Bob	provides	“proof	of	identity”	to	CA.	
• CA	creates	certificate	binding	Bob	to	this	public	key.
• Certificate	containing	Bob’s	public	key	digitally	signed	by	CA:								

CA	says:	“this	is	Bob’s	public	key”

4

Bob’s	
public
key

PK	B

Bob’s	
identifying	
information

digital
signature

CA	
private
key

SK	CA

PK	B

certificate	for	Bob’s	
public	key,	signed	by	

CA



• When	Alice	wants	to	get	Bob’s	public	key:
• Get	Bob’s	certificate	(from	Bob	or	elsewhere)
• Using	CA’s	public	key	verify	the	signature	on	Bob’s		certificate
• Check	for	expiration
• Check	for	revocation	(we’ll	talk	about	this	later)
• Extract	Bob’s	public	key

5

Bob’s	
Public
Key

PK	
B

digital
signature

CA	
Public
Key PK	

CA

PK
B

Certification	Authority



6

•Serial	number	(unique	to	issuer)
• Info	about	certificate	owner,	including	algorithm	and	
key	value	itself	(not	shown)

• info	about	
certificate	
issuer

• valid	dates
• digital	
signature	by	
issuer

A	Certificate	Contains



Reflection	Attack	and	a	Fix
• Original	Protocol

1. A	® B	:	 rA
2. B	® A	:	 {	rA,	rB }	K
3. A	® B	:	 rB

• Attack
1. A	® E	:	 rA
2. E	® A	:	 rA :	Starting	a	new	session
3. A	® E	:	 {	rA,	rA’	}	K :	Reply	to	(2)
4. E	® A	:	 {	rA,	rA’	} K :	Reply	to	(1)
5. A	® E	:	 rA’

Solutions?
• Use	2	different	uni-directional	keys	k” (AàB)	and	k’ (BàA)
• Remove	symmetry	(direction,	msg identifiers)

7



Interleaving	Attacks
• Protocol	for	Mutual	Authentication

1. A	® B	:	 A,	rA,
2. B	® A	:	 rB,		{	rB,	rA,	A	}	SKB
3. A	® B	:	 rA’,	{	rA’,	rB,	B	}	SKA

• Attack
1. E	® B	: A,	rA
2. B	® E	:	 rB,			{	rB,	rA,	A	}	SKB
3. E	® A	:	 B,				rB
4. A	® E	:	 rA’,		{	rA’,	rB,	B	}	SKA
5. E	® B	:	 rA’,		{	rA’,	rB,	B	}	SKA

• Attack	due	to	symmetric	messages	(2),	(3)

8



x.509	Authentication	&	Key	Distribution	
Protocols

AB
SKPKabaaa KotherBrt }][,,,,,1{

9

AB
SKPKabaaa KotherBrt }][,,,,,2{

BA
SKPKbababb KotherrArt }][,,,,,,2{

AB
SKPKabaaa KotherBrt }][,,,,,3{

BA
SKPKbababb KotherrArt }][,,,,,,3{

ASKbr },3{

O
ne-w

ay
A
à
B

Tw
o-w

ay
A
à
B

Tree-w
ay

A
ß
à
B



Lessons	Learned?

• Designing	secure protocols	is	hard.	There	are	many	
documented	failures	in	the	literature.
• Good	protocols	are	already	standardized	(e.g.,	ISO	
9798,	X.509,	…)	– use	them!
• The	problem	of	verifying	security	gets	much	harder	
as	protocols	get	more	complex	(more	parties,	
messages,	rounds).

10



11

Merkle’s Puzzles	(1974)

€ 

0 < i < 2n = N
Xi,Yi −− random secret keys
indexi =  random (secret) value

Puzzle   Pi = {indexi,Xi,S}
Yi

S −− fixed string,  e.g.,  " Alice to Bob"
}20|{ n

i iP <<

jindex

€ 

Pick random j,  0 < j < 2n

Select Pj

Break Yj  by brute force
Obtain {index j ,X j ,S}

€ 

Look up index j

Obtain X j Encrypted	communication	with	X
j

?

Is	security	computational	or	
information	theoretic?



12

PK-based	Needham-Schroeder

TTP

A B3.	[N
a
,	A]

PKb

6.	[N
a
,	N

b
]
PKa

7.	[N
b
]
PKb

Here,	TTP	acts	as	an	“on-line”	certification	authority	(CA)	and	takes	care	of	
revocation

1.	A,	B

2.	{PK
b
,	B}

SKT

4.	B,	A

5.	{PK
a
,	A}

SKT



13

What	If?

• Alice	and	Bob	have:

• No	common	mutually	trusted	TTP(s)

• and/or

• No	on-line	TTP(s)



14

Public	Key	Infrastructure	
(Distribution)

• Problem: How	to	determine	the	correct	public	key	of	a	
given	entity
• Binding	between	IDENTITY	and	PUBLIC	KEY

• Possible	Attacks
• Name	spoofing:	Eve	associates	Alice’s	name	with	Eve’s	public	key
• Key	spoofing:	Eve	associates	Alice’s	key	with	Eve’s	name	
• DoS:	Eve	associates	Alice’s	name	with	a	nonsensical	(bogus)	key

• What	happens	in	each	case?



15

Public	Key	Distribution

• Diffie - Hellman	(1976)	proposed	the														
“public	file”	concept

• universally	accessible

• no	unauthorized	modification

• not	scalable!



16

Public	Key	Distribution

• Popek - Kline	(1979)	proposed	“trusted	third	
parties”	(TTPs)	as	a	means	of	PK	distribution:
• Each	org-n	has	a	TTP	that	knows	public	keys	of	all	of	

its	constituent	entities	and	distributes	them	on-
demand	

• On-line	protocol	like	the	one	we	already	saw
• TTP	=	single	point	of	failure
• Denial-of-Service	(DoS)	attacks



17

Certificates	

• Kohnfelder (BS	Thesis,	MIT,	1978)	proposed	
“certificates”	as	yet	another	public-key	distribution	
method

• Certificate	=	explicit	binding	between	a	public	key	and	
its	owner’s	(unique!)	name

• Must	be	issued	(and	signed)	by	a	recognized	trusted	
Certificate	Authority	(CA)

• Issuance	done	off-line



Authenticated	Public-Key-based	Key	Exchange	
(Station-to-Station	or	STS	Protocol)

18

pay v
a mod=

Choose random v

Bob
abbob

w
b

yySIG
pay
},{

mod
=

=

Choose
random w,
Compute

pyK w
aba mod)(=Compute

( ) mod

{ , }

v
ab b

alice
alice a b

K y p
SIG y y

=

=

bobbbob SIGyCERT ,,

alicealice SIGCERT ,



19

Certificates

• Procedure
• Bob	registers	at	local	CA
• Bob	receives	his	certificate:	

{	PKB,	IDB,	issuance_time,	expiration_time,	etc.,...}SKCA

• Bob	sends	certificate	to	Alice
• Alice	verifies	CA’s	signature

• PKCA hard-coded	in	software

• Alice	uses	PKB for	encryption	and/or	verifying	
signatures



20

Who	Issues	Certificates?

• CA:	Certification	Authority
• e.g.,	GlobalSign,	VeriSign,	Thawte,	etc.
• look	into	your	browser	...

• Trustworthy	(at	least	to	its	users/clients)
• Off-line	operation	(usually)
• Has	its	own	well-known	long-term	certificate
• May	store	(as	backup)	issued	certificates
• Very	secure:	physically	and	electronically



21

How	does	it	work?

• A		public/private	key-pair	is	generated	by	user
• User	requests	certificate	via	a	local	application	(e.g.,	web	

browser)
• Good	idea	to	prove	knowledge	of	private	key	as	part	of	the	

certificate	request.	Why?

• Public	key	and	owner’s	name	are	usually	part	of	a	
certificate

• Private	keys	only	used	for	small	amount	of	data	(signing,	
encryption	of	session	keys)

• Symmetric	keys	(e.g.,	RC5,	AES)	used	for	bulk	data	
encryption



22

Certification	Authority	(CA)

• CA	must	verify/authenticate	the	entity	requesting	a	
new	certificate.

• CA’s	own	certificate	is	signed	by	a	higher-level	CA.	
Root	CA’s	certificate	is	self-signed	and	its	name	is	
“well-known.”

• CA	is	a	critical	part	of	the	system	and	must	operate	in	
a	secure	and	predictable	way	according	to	some	
policy.



23

Who	needs	them?
• Alice’s	certificate	is	checked	by	whomever	wants	to:							

1)	verify	her	signatures,	and/or	2)	encrypt	data	for	her.	

• A	signature	verifier	(or	encryptor)	must:
• know	the	public	key	of	the	CA(s)	
• trust	all	CAs	involved

• Certificate	checking	is:	verification	of	the	signature	and	
validity

• Validity:	expiration	+	revocation	checking



24

Verifying	a	Certificate	
(assuming	Common	CA)

To	be	
covered	
later



25

BTW:
• Certificate	Types

• PK	(Identity)	certificates
• Bind	PK	to	some	identity	string

• Attribute	certificates
• Bind	PK	to	arbitrary	attribute	information,	e.g.,	

authorization,	group	membership

• We	concentrate	on	former



26

What	are	PK	Certificates	Good	For?
• Secure	channels	in	TLS	/	SSL	for	web	servers	

• Signed	and/or	encrypted	email	(PGP,S/MIME)

• Authentication	(e.g.,	SSH	with	RSA)

• Code	signing!

• Encrypting	files	(EFS	in	Windows)

• IPSec:	encryption/authentication	at	the	network	

layer



27

Components	of	a	Certification	System
• Request	and	issue	certificates	(different	categories)	with	

verification	of	identity
• Storage	of	certificates	
• Publishing/distribution	of	certificates	(LDAP,	HTTP)
• Pre-installation	of	root	certificates	in	a	trusted	environment
• Support	by	OS	platforms,	applications	and	services	
• Maintenance	of	database	of	issued	certificates	(no	private	

keys!)
• Helpdesk	(information,	lost	+	compromised	private	keys)
• Advertising	revoked	certificates	(and	support	for	applications	

to	perform	revocation	checking)
• Storage	“guidelines”	for	private	keys



28

CA	Security	

• Must	minimize	risk	of	CA	private	key	being	
compromised

• Best	to	have	an	off-line	CA	
• Requests	may	come	in	electronically	but	not	processed	

in	real	time

• In	addition,	using	tamper-resistant	hardware	for	
the	CA	would	help	(should	be	impossible	to	
extract	private	key)



29

Mapping	Personal	Certificates	into	
Accounts/Names

• Certificate	must	map	“one-to-one”	into	an	
account/name	for	the	sake	of	authentication

• In	some	systems,	mapping	are	based	upon	X.509	
naming	attributes	from	the	Subject field

• Example:	Verisign	issues	certificate	as	CN=Full	Name	
(account)	

• Account/name	is	local	to	the	issuing	domain



30

Storage	of	Private	Key

• The	problem	of	having	the	user	to	manage	the	private	key	
(user	support,	key	loss	or	compromise)

• Modern	OS's	offers	Protected	Storage	which	saves	private	keys	
(encrypted).

• Applications	take	advantage	of	this;	Browsers	sometimes	save	
private	keys	encrypted	in	its	configuration	directory

• Users	who	mix	applications	or	platforms	must	manually	import	
/	export	private	keys	via	PFX	files.



31

Key	Lengths

• Strong	encryption	has	been	adopted	since	the	relaxation	of	
US	export	laws

• E.g.,	512- and	1024-bit	RSA	is	not	safe	anymore

• Root	CA	should	have	an	(RSA)	key	length	of	>=	2048	bits	given	
its	importance	and	typical	lifetime	of	3-5	years

• A	personal	(RSA)	certificate	should	have	key	length	of	at	least	
1536	bits



32

January	2016	Recommendation	from	National	Security	Agency	(NSA)
https://cryptome.org/2016/01/CNSA-Suite-and-Quantum-Computing-FAQ.pdf

Key	Lengths



33

Naming	Comes	First!
• Cannot	have	certificates	without	a	comprehensive	naming	scheme
• Cannot	have	PKI	without	a	comprehensive	distribution/access	

method
• X.509	uses	X.500	naming
• X.500	Distinguished	Names	(DNs)	contain	a	subset	of:

• C Country
• SP State/Province
• L Locality
• O Organization
• OU Organizational	Unit
• CN	 Common	Name



34

X.500

• ISO	standard	for	directory	services

• Global,	distributed

• First	solid	version	in	1988.	(second	in	1993.)

• Documentation	- several	Internet	Standard	
Request	for	Comments	(RFC)



35

X.500

• Data	Model:
• Based	on	hierarchical	namespace
• Directory	Information	Tree	(DIT)
• Geographically	organized
• Entry	is	defined	with	its	dn (Distinguished	Name)

• Searching:
• You	must	select	a	location	in	DIT	to	base	your	search
• A one-level	search	or	a	subtree	search
• Subtree	search	can	be	slow



36

X.500	- DIT

.	.	.

.	.	.

World

c=AF c=USA

o=AL	QAEDA o=Army

.	.	.
cn=Osama	bin	Laden	(deceased)

dn: cn=Osama	bin	Laden,	o=Al	Qaeda,	c=AF

.	.	.



37

X.500

• Accessible	through:
• Telnet	(client	programs	known	as	dua,	dish,	...)
• WWW	interface	
• For	example:	http://www.dante.net:8888/

• Hard	to	use	and	very	heavy	…

• …	thus	LDAP	was	developed



38

LDAP

• LDAP	- Lightweight	Directory	Access	Protocol
• LDAP	v2	- RFC	1777,	RFC	1778
• LDAP	v3	- RFC	1779
• developed	to	make	X.500	easier	to	use
• provides	basic	X.500	functions
• referral	model	instead	original	chaining
• server	informs	client	to	ask	another	server	

(without	asking	question	on	the	behalf	of	client)
• LDAP	URL	format:
• ldap://server_address/dn

• (ldap://ldap.uci.edu/cn=Kasper	Rasmussen,o=UCI,c=US)



39

Some	Relevant	Standards

• The	IETF	Reference	Site
• http://ietf.org/html.charters/wg-dir.html#Security_Area

• Public-Key	Infrastructure	(X.509,	PKIX)
• RFC	2459	(X.509	v3	+	v2	CRL)	

• LDAP	v2	for	Certificate	and	CRL	Storage
• RFC	2587

• Guidelines	&	Practices	
• RFC	2527

• S/MIME	v3	
• RFC	2632	&	2633

• TLS	1.0	/	SSL	v3	
• RFC	2246


