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Introduction

Headed anchors are structural steel elements used to connect and,
thus, transfer forces from one concrete component to another.
Among the several types of failure, the one occurring as a result
of the anchors pulling out of the concrete matrix has been the
most widely investigated and represents the biggest concern for
structural engineering applications. In the mid-1980s, formulas
for the prediction of load-carrying capacity in the case of concrete
pullout relied on plasticity-based models, which assumed a con-
stant tensile stress acting on the projected area of a conical failure
surface oriented at 45° with respect to the plane of the anchor head
(Jensen and Braestrup 1976; ACI 1989).

Experimental and analytical investigations (Ottosen 1981;
Ballarini et al. 1986, 1987; Eligehausen and Sawade 1989;
Eligehausen and Ozbolt 1990; Ozbolt et al. 1999) demonstrated
that formulas based on plasticity were incorrect and unconservative
for typical anchor embedment depths and that experimentally
measured load-carrying capacity could be accurately predicted
using fracture mechanics models. The fracture mechanics paradigm
is a result of recognition that the failure of headed anchors reflects
the progressive propagation of discrete cracks. The resulting linear
elastic fracture mechanics (LEFM)-based concrete capacity design
(CCD) formula (Fuchs et al. 1995) can be expressed as

Pu ≈ Kc · d3∕2 ≈ knc ·
ffiffiffiffi
f 0c

p
· d3∕2 ð1Þ

where Pu, Kc, f 0c, d, and knc = load-carrying capacity, fracture
toughness, compressive strength, embedment depth, and the

empirical constant relating toughness to compressive strength,
respectively. Eq. (1) was adopted by several international building
codes, such as ACI 318 (ACI 2008), ACI 349 (ACI 2006),
and the Comité Euro-International du Béton design (CEB 1997),
and was calibrated through numerous experimental programs and
expresses the correct dependence of the ultimate pullout capacity of
headed anchors on embedment depth. Additional and important
studies were completed by Ozbolt et al. (1999). In their investiga-
tions, experimental and numerical results confirmed the strong
size effect on the concrete pullout failure strength for a broad range
of embedment depths larger than 1.5 in. (about 40 mm). Despite the
large number of data, no investigations were conducted on the
behavior of very shallow anchors (i.e., embedment d < 1:5 in:).

According to ACI 318 Appendix D (ACI 2008), the CCD for-
mula can be used to predict the 5% fractile of the concrete breakout
loads only for situations in which the concrete matrix is uncracked
(unstressed) and for anchors with a relatively small head (mean
bearing pressure at maximum load of approximately 13f 0c). When
cracking as a result of external loads (e.g., tension zones, negative
moment loading conditions) or imposed deformations (e.g., creep,
shrinkage, temperature) is expected in the region in which the
anchor is placed, a 25% reduction in pullout capacity is prescribed.
This is achieved by reducing the constant knc in Eq. (1).

Modifications to the CCD formula for anchors placed in com-
pressively prestressed concrete have not been contemplated and
have received less attention. Within the context of plasticity theory,
three-dimensional (3D) constitutive models for concrete subjected
to a triaxial state of stress were used for structural analyses of
headed and undercut anchors (Pivonka et al. 2004). Baran et al.
(2006) performed experiments on various types of cast-in-place
inserts to determine the influence of reinforcement and prestress.
As expected, they observed that the presence of a prestressing force
in the direction orthogonal to the axes of the inserts embedded
in reinforced concrete resulted in an increase in load capacity
and ductility. Despite this unique experimental investigation, no
formulas or recommendations and, above all, no insights on the
fundamental mechanics of the problem were proposed. By follow-
ing Ballarini et al. (1986, 1987) and Vogel and Ballarini (1999),
Piccinin et al. (2010) investigated the effects of compressive and
tensile fields on the capacity of headed anchors using LEFM.
Preliminary experimental results showed that for embedments
that are not too shallow, the model correctly predicts a linear
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dependence of the pullout force on the compressive stresses applied
biaxially to the embedding concrete matrix, and a tentative design
formula was proposed. However, for embedment depths of less
than 1 in., LEFM could not reproduce the experimentally measured
capacity. It was speculated that such shallow embedments may
be associated with a relatively large process zone, within which
microcracking and aggregate interlock occur. If this is the case,
the experimental results reflect a transition from the strongest size
effect possible (the inverse square root dependence of nominal
strength on size determined by LEFM) to the size-independent
behavior demanded by plasticity-based models. Another explana-
tion of the discrepancy between LEFM predictions and experimen-
tal data is that the very shallow embedment dimension is
comparable to the maximum aggregate size, rendering a highly
heterogeneous material that cannot be modeled by a homogeneous
continuum.

The work presented in this paper was performed to determine
the answer to the previously raised question and develop a design
formula that generalizes the CCD formula to cases involving a pre-
stressed matrix. Specifically, the LEFM finite-element model intro-
duced by Vogel and Ballarini (1999) and Piccinin et al. (2010) is
generalized to include a cohesive zone that mimics the localized
process zone that can develop ahead of a crack front in concrete.
The predictions of the model are compared with new experimental
results that cover a wider range of embedment depth and fracture
energy and that corroborate those obtained in the preliminary
experimental program.

LEFM Model and Nondimensional Parameters

Fracture mechanics involves parameter β introduced by
Cherepanov (1979)

β ≡ L
rp

≈ f 2t · L
K2

c
ð2Þ

where rp = extent of the process zone that would develop in the
vicinity of a very long crack and L = characteristic dimension
of the structure. It is noted that β is referred to by the concrete frac-
ture mechanics community as the brittleness number (Bažant and

Planas 1998). The value of the brittleness assigned to a specimen
configuration through the use of a particular structural dimension in
Eq. (2) may not be representative of the brittleness of a different
configuration comprised of the same material. For example, the
approximate constraint β ≥ 2:5 is suggested for valid toughness
testing on beamlike specimens, where the characteristic dimension
L is equal to the beam depth. For embedded anchors, the character-
istic dimension can be assumed to be equal to the embedment
depth, which is typically much smaller than the depth of a beam.
Thus, it is not uncommon to find values of β < 1 (Elfgren and
Ohlsson 1992).

Fig. 1(a) shows the maximum nominal stress, σmax
N , of a concrete

component and illustrates that the brittleness number determines
whether failure is of the strength-limited ductile type, or of the
toughness-limited brittle type. Noting that L is proportional to
d and that any choice of nominal area scales as d2, plasticity
predicts a size-independent strength, whereas LEFM predicts a
1∕

ffiffiffi
β

p
dependence of strength.

From a design point of view, investigations carried out by
Ozbolt et al. (1999) showed that the CCD [Eq. (1)] exhibits a good
agreement with the experimental results for the whole size range
investigated (d ≥ 1:5 in:). As shown in Fig. 1(b), where the
nominal strength is calculated as the ultimate pullout load divided
by the area of a circle with a radius equal to the embedment depth,
d, the experimental results show that the size effect on the nominal
pullout strength is the strongest possible (Reinhardt 1981; Bažant
and Sener 1988). Fig. 1(b) suggests that for embedded anchors
there is no transition between the plasticity and the LEFM bounds
and that LEFM suffices to predict the load-carrying capacity for
all values of embedment. Whether LEFM can be applied to very
shallow depths (d < 1:5 in:) is yet to be determined.

Fig. 2 shows the cross section of the axisymmetric configuration
considered in this study. The headed anchor, embedded at a depth d
within a matrix stressed to a level, σ, is represented—as was done
by Ballarini et al. (1986, 1987), Vogel and Ballarini (1999), and
Piccinin et al. (2010)—by a discontinuity of diameter c with a rigid
top surface and a traction-free lower surface. The stem is not
considered. The pullout load, P, is represented by the resultant re-
active force on the top surface of the discontinuity produced by a
uniform stress, p, applied along the bottom surface of the cylindri-
cal model. The curvilinear distance of the traction-free propagating

Fig. 1. (a) Normalized nominal strength versus brittleness number; (b) nominal pullout strength as a function of the embedment depth including test
data, calculated data, and the size and no size effect prediction formulas (Ozbolt et al. 1999, with permission from the University of Stuttgart)
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crack front from the edge of the anchor is defined by l, and the
normalized level of stress is defined as λ ¼ σ∕f t (note that for
the compressive case λ > 0, whereas for the tension case
λ < 0). FRANC2D (Cornell Fracture Group 1997), a program that
possesses automatic remeshing capabilities, was used to calculate
the stress intensity factors and crack extension direction of the
propagating front. More details pertaining to the model can be
found in Piccinin (2011).

In the LEFM simulations, by using linearity and dimensional
consistency, the ultimate load-carrying capacities were obtained as

Pu;LEFM ¼ max

�
f 1

�
l
d
;
d
c
; ν
�
· KIc · d1:5 þ f 2

�
l
d
;
d
c
; ν
�
· σ

�
ð3Þ

In terms of β and λ

Pu;LEFM

f t · d2
¼ max

�
f 1

�
l
d
;
d
c
; ν
�
·
1ffiffiffi
β

p þ f 2

�
l
d
;
d
c
; ν
�
· λ

�
ð4Þ

Nonlinear Fracture Mechanics Model

The LEFM model was extended to account for the process zone
by using zero thickness cohesive elements along the crack faces
following Ingraffea and Saouma (1984), Wawrzynek and Ingraffea
(1987), and Hellier et al. (1987).

Two methods can be used to model a cohesive crack that is
propagating along a curved path. The first method is quick but
imprecise, and assumes that the path is not significantly different
from what the crack would choose in the absence of the cohesive
zone. The procedure involves predicting the path that the crack
would follow in the absence of the cohesive zone according to
the local symmetry condition (for example, maximum hoop stress,
zero local mode-II stress intensity factor, maximum energy release
rate conditions) and then calculating the load required to extend the
crack along the predicted path when in the presence of the cohesive
zone. The second method involves the construction of the crack
path through an incremental procedure that searches, at each step,
the direction ahead of the front that is perpendicular to the maxi-
mum hoop stress. Note that in the first approach the direction is
dictated by the stress intensity factors, whereas the second ap-
proach is associated with finite stresses along the crack front.
Examples of this technique can be found in Bittencourt et al.
(1992), Xie and Gerstle (1995), and Ingraffea et al. (1989). The
results presented subsequently are for predefined crack paths be-
cause it was discovered that the differences in the paths predicted
by the two procedures were small compared with the variation in
paths observed in the experiments. The details of this investigation
can be found in Piccinin (2011).

The crack paths predicted by the maximum hoop stress criterion
are shown in Figs. 3 and 4 for selected values of embedment
depth, brittleness number, and level of prestress. As expected,
and rationalized in Piccinin et al. (2010), the crack path becomes
increasingly less steep with increasing level of prestress.

Experimental Program

The experimental program was divided in two parts. In the first
part, the experiments documented in Piccinin et al. (2010) were
completed. The second part involved concrete with a cylindrical
strength of 3.36 ksi (23.17 MPa) and a cubic strength of
4.05 ksi (27.91 MPa). The mix components of the material
were portland cement CEM I 52.5 R, according to the ENV
197/1 European Standard, and a natural river aggregate (maximum
size of 25 mm). No super plasticizers were added. The concrete had
an aggregate/cement ratio of 6.24 and a water/cement ratio of 0.7.
The compressive strength of the mix was obtained from compres-
sion tests performed on cubes with a 5.9 in. (150 mm) side. The
compression tests were completed between 28 and 35 days after the
specimens were cast. The concrete properties were recorded and

Fig. 2. Cross section of the axisymmetric model of a headed anchor in
a prestressed matrix; the axis of rotation/symmetry is represented by the
left edge of the section (units in inches)

Fig. 3. LEFM crack profiles used for the NLFM simulations: (a) d∕c ¼ 1 and β ¼ 0:3; (b) d∕c ¼ 2 and β ¼ 0:6
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then averaged. Standard-size cylinders were tested to obtain the
indirect tensile strength (splitting test). After averaging, a value
of 412 psi was obtained for the concrete indirect tensile strength.
The Young’s modulus was obtained from available standard design
formulas as E ¼ 57;000

ffiffiffiffi
f 0c

p
psi. The mixture design and the

averaged concrete properties for the two parts of the experiments
at the time of the tests are reported in Table 1.

All the specimens consisted of concrete blocks with the follow-
ing dimensions: 39:37 × 39:37 × 7:87 in: (1 × 1 × 0:2 m). To
allow the application of large confining pressures, these dimensions
were kept constant and independent of the embedment depth. Four
hooks were positioned at the corners to allow for specimen
handling.

The concrete anchors had a stem diameter of 0.5 in. (12.7 mm),
a head diameter between 0.98 and 1 in. (25 and 25.4 mm), an
ultimate strength of 65 ksi (450 MPa), and a yield characteristic
strength of 51 ksi (350 MPa). The anchors were cast into the
concrete specimens in a single cast. Wood formworks were used
as a support for the anchors during the casting process so that they
could easily be positioned at various embedment depths.

In the first set of the experiments, a single nominal embedment
depth of 0.98 in. (25 mm), corresponding to a value of d∕c ¼ 1,
was tested. This was necessary to complete the experimental data
available in Piccinin et al. (2010), in which only d∕c ¼ 2 was
thoroughly investigated.

In the second set, three different nominal embedment depths
were used: 0.71, 1.97, and 2.7 in. (18, 50, and 69 mm). These val-
ues were chosen to obtain values of d∕c equal to 0.75, 2, and 2.75,

respectively. The smallest embedment depth was tested to
determine the limit of applicability of a continuum mechanics
approach.

Owing to the vibrating process and settlements during curing,
the embedment depths at the time of the tests were slightly different
from the nominal values, as listed in Table 2. Four anchors were
placed on the four corners of each concrete specimen according
to specifications spelled out in ACI 318 Appendix D (ACI
2008) and to avoid edge effects or undesired modes of failure
(i.e., concrete blow out).

The tests were displacement controlled, and the relative dis-
placements between the anchors and the upper surface of the con-
crete blocks were monitored by two LVDTs [�0:2 in: (�5 mm)]
symmetrically positioned at a distance of 10.4 in. (264.2 mm)
for short embedments and 15.2 in. (385 mm) for larger embed-
ments. In all cases, the data (load and displacement) were acquired
with an acquisition system.

The effect of confinement was simulated by applying biaxial
compression along the sides of the concrete specimens in the
directions orthogonal to the axis of the anchor. As shown in Fig. 5,
the compression was applied by means of horizontally oriented
hydraulic jacks inserted in a specially built reaction frame.

The steel beams used to build the reaction frame were tied
together in the two plane directions by using six special Dywidag
tying bars. On the two sides of the specimens that were subjected to
the forces of the hydraulic jacks, two additional steel beams were
used to uniformly distribute the horizontal pressure. The opposite
sides of the specimens were loaded by contrast through the reaction

Fig. 4. LEFM crack profiles used for the NLFM simulations: (a) d∕c ¼ 0:75 and β ¼ 0:31; (b) d∕c ¼ 2 and β ¼ 0:82; (c) d∕c ¼ 2:75 and β ¼ 1:13

Table 1. Material Properties

Material Property Part I value [ksi (MPa)] Part II value [ksi (MPa)]

Concrete Cylinder strength, 28 days 4.73 (32.59) 3.36 (23.17)

Cubic strength, 28 days 5.26 (36.30) 4.05 (27.91)

Cylinder strength, 21 days 3.90 (26.90) NA

Cubic strength, 21 days 4.70 (32.40) NA

Tensile strength, f t 0.42 (2.88) 0.41 (2.84)

Young’s modulus 3,408 (23,500) 3,300 (22,750)

Steel Yield strength, 0.2% offset, f y 51 (350) 51 (350)

Ultimate strength, f u 65 (450) 65 (450)
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frame. To allow for a more uniform load distribution, a 0.4 in.
[10 mm] layer of rubber band was positioned between the speci-
mens and the frame. The pullout tests were first performed in
unconfined concrete (λ ¼ 0) for each value of embedment. Biaxial
compression was subsequently considered. In the first part of the
experiments, the tests in confined concrete were performed using
values of λ in the range 0.47 to 0.94, whereas in the second part,
values of λ equal to 0.41, 0.61, 0.82, and 1.22 were applied (details
of the amount of force and relative stress applied to each specimen
are shown in Table 2). The applied compression was constantly
monitored before and after each pullout test with standard
manometers.

In addition to the ultimate pullout forces and load-displacement
curves, the shapes of the failure surfaces were also measured. For
shallow anchors (d∕c ¼ 1), a very accurate observation of the crack
profiles was made possible by a laser scanning machine. In this
case, 3D crack profiles were obtained. By elaborating the available
data, two-dimensional crack envelope profiles were then extrapo-
lated. Because of the limited range of action of the scanning
machine [about 1 in. (25.4 mm)], crack profiles for anchors
with embedment depth d∕c ¼ 2 were reconstructed by visual
inspection.

Results

Pullout Capacity

The experimentally measured normalized data for unstressed and
prestressed concrete, together with the calibrated LEFM and non-
linear fracture mechanics (NLFM) numerical results, are shown in
Figs. 6 and 7. The experimental ultimate capacities were nondimen-
sionalized using the measured indirect tensile strengths of the
materials and the effective embedment depths (Tables 1 and 2).
Remarkably, the linear dependence on prestress predicted by the
numerical models was consistent with the experimental results.
In all cases in which d∕c ≥ 1, with respect to the unconfined case
(λ ¼ 0), an increase in capacity of about 12–15% was associated
with a value of λ≈ 1. When d∕c ¼ 0:75, the experimental results
presented larger scatter and the effects of prestress were not ben-
eficial. It is noted that for the limit case where d∕c ¼ 1 and λ≈ 1
[Fig. 6(a)], a clear increase in capacity was not observed. A com-
parison between the LEFMmodel’s predictions and the experimen-
tal results can be achieved by determining a reference value of β.

In Fig. 6(b), the results obtained from Piccinin et al. (2010) for
d∕c ¼ 2 can be calibrated by using a reference value of β ≈ 0:6,
which corresponds to a value of fracture toughness for concrete
equal to KIC ≈ 0:755 ksi ·

ffiffiffiffiffi
in:

p
that is well within the range of

typical values for concrete (between 0.18 and 1:26 ksi ·
ffiffiffiffiffi
in:

p
).

In Fig. 6(a), having decided to arbitrarily define L as the embed-
ment depth, d, the experimental data are compared with the LEFM
prediction associated with β ¼ 0:3.

Similarly, in Fig. 7(c), the experimental results for d∕c ¼ 2:75
can be calibrated by using a value of β ≈ 1:13, which corresponds
to a value of fracture toughness KIC ≈ 0:65 ksi ·

ffiffiffiffiffi
in:

p
for concrete.

Remarkably, the behavior at d∕c ¼ 2 is also very well represented.
On the other hand, for the corresponding value of β ≈ 0:31 at
d∕c ¼ 0:75, LEFM can only provide an upper bound to the exper-
imental evidence.

Results from the NLFM simulations are also shown in Figs. 6
and 7. The traction-separation law used in this investigation is
given by

Table 2. Experimental Investigation Details and Parameters

Part Test

Nominal
embedment

length
[in. (mm)]

Effective
embedment

length
[in. (mm)]

Maximum
confinement
[kip (kN)]

Confining
pressure σc
[ksi (MPa)]

I 1 0.98 (25) 0.93 (24) 0 (0) 0 (0)

2 0.98 (25) 0.97 (25) 0 (0) 0 (0)

3 0.98 (25) 0.96 (24) 0 (0) 0 (0)

4 0.98 (25) 0.91 (23) 0 (0) 0 (0)

5 0.98 (25) 1.07 (27) 62 (276) 0.20 (1.34)

6 0.98 (25) 1.03 (26) 62 (276) 0.20 (1.34)

7 0.98 (25) 1.23 (31) 62 (276) 0.20 (1.34)

8 0.98 (25) 1.06 (27) 89 (400) 0.29 (2.02)

9 0.98 (25) 1.03 (26) 90 (400) 0.29 (2.02)

10 0.98 (25) 0.98 (25) 121 (538) 0.39 (2.69)

11 0.98 (25) 1.04 (26) 121 (538) 0.39 (2.69)

12 0.98 (25) 0.94 (24) 121 (538) 0.39 (2.69)

II 1 0.71 (18) 0.83 (21) 0 (0) 0 (0)

2 0.71 (18) 0.87 (22) 0 (0) 0 (0)

3 0.71 (18) 0.77 (20) 0 (0) 0 (0)

4 0.71 (18) 0.75 (19) 52 (232) 0.17 (1.16)

5 0.71 (18) 0.97 (25) 52 (232) 0.17 (1.16)

6 0.71 (18) 0.69 (18) 52 (232) 0.17 (1.16)

7 0.71 (18) 0.66 (17) 52 (232) 0.17 (1.16)

8 0.71 (18) 0.68 (17) 78 (347) 0.25 (1.74)

9 0.71 (18) 0.75 (19) 78 (347) 0.25 (1.74)

10 0.71 (18) 0.69 (18) 78 (347) 0.25 (1.74)

11 0.71 (18) 0.68 (17) 78 (347) 0.25 (1.74)

12 0.71 (18) 0.82 (21) 104 (463) 0.34 (2.32)

13 0.71 (18) 0.82 (21) 104 (463) 0.34 (2.32)

14 0.71 (18) 0.69 (18) 104 (463) 0.34 (2.32)

15 0.71 (18) 0.71 (18) 156 (695) 0.50 (3.47)

16 0.71 (18) 0.72 (18) 156 (695) 0.50 (3.47)

17 1.97 (50) 1.80 (46) 0 (0) 0 (0)

18 1.97 (50) 2.03 (52) 0 (0) 0 (0)

19 1.97 (50) 2.00 (51) 0 (0) 0 (0)

20 1.97 (50) 1.96 (50) 52 (232) 0.17 (1.16)

21 1.97 (50) 2.06 (52) 52 (232) 0.17 (1.16)

22 1.97 (50) 1.95 (50) 78 (347) 0.25 (1.74)

23 1.97 (50) 1.89 (48) 78 (347) 0.25 (1.74)

24 1.97 (50) 1.83 (46) 78 (347) 0.25 (1.74)

25 1.97 (50) 2.29 (58) 104 (463) 0.34 (2.32)

26 1.97 (50) 1.93 (49) 104 (463) 0.34 (2.32)

27 1.97 (50) 2.27 (58) 104 (463) 0.34 (2.32)

28 1.97 (50) 2.01 (51) 104 (463) 0.34 (2.32)

29 1.97 (50) 1.90 (48) 156 (695) 0.50 (3.47)

30 1.97 (50) 1.82 (46) 156 (695) 0.50 (3.47)

31 1.97 (50) 2.04 (52) 156 (695) 0.50 (3.47)

32 1.97 (50) 1.80 (46) 156 (695) 0.50 (3.47)

33 2.70 (69) 2.93 (74) 0 (0) 0 (0)

34 2.70 (69) 2.83 (72) 0 (0) 0 (0)

35 2.70 (69) 2.83 (72) 52 (232) 0.17 (1.16)

36 2.70 (69) 2.60 (66) 52 (232) 0.17 (1.16)

37 2.70 (69) 2.62 (67) 78 (347) 0.25 (1.74)

38 2.70 (69) 2.60 (66) 78 (347) 0.25 (1.74)

39 2.70 (69) 2.62 (67) 78 (347) 0.25 (1.74)

40 2.70 (69) 2.62 (67) 104 (463) 0.34 (2.32)
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σ ¼ f t ·

�
1� COD

CODc

�
ð5Þ

where f t = indirect tensile strength of the material, COD = crack
opening displacement, and CODc = critical COD. The area under
the curve defined by Eq. (5) is defined as the cohesive fracture
energy Gf .

In each experimental set, the data obtained from the larger em-
bedment depth investigated, d∕c ¼ 2 [Fig. 6(b)], and d∕c ¼ 2:75
[Fig. 7(c)], was used to calibrate the nonlinear fracture mechanics
model, producing Gf ¼ 0:2 lb∕in: (35 N∕m) and 0:15 lb∕in:

(27 N∕m), respectively. The characteristic length of the fracture
process zone is defined as (Shah et al. 1995)

lch ¼
E · Gf

f 2t
ð6Þ

For the current study, lch ≈ 4 in: for the first set of experiments
[which lies within the 4-in. (100-mm) to 16-in. (400-mm) range
typical of concrete materials], whereas lch ≈ 3 in: for the
second set.

Fig. 5. Built-in frame for the application of compressive prestress using hydraulic jacks

Fig. 6. Pullout load as a function of prestress and LEFM and NLFM calibration: (a) d∕c ¼ 1 (first set of experiments); (b) d∕c ¼ 2 (Piccinin
et al. 2010)
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It is noted that the aforementioned values of the fracture ener-
gies are relatively low compared with the values available in the
literature. CEB (1997), for example, recommended values of Gf
of about 60 or 70 N∕m for these types of concrete and aggregate
sizes. However, the suggestion addresses concretes in which the
water/cement ratio is around 0.3–0.4 and in which the cohesive
law is usually specified as a softening bilinear function. In this case,
the total fracture energy, Gf , is composed of an initial linear con-
tribution that controls the peak load and a tail that quantifies the
postpeak behavior. As indicated by the fact that high water/cement
ratios provide lower values of Gf (Wittmann et al. 1987) and
that only the linear contribution of the total fracture energy was
calibrated to capture the experimental behavior, it is not surprising
that relatively low values of Gf were determined.

It is clear that LEFM and NLFM provided identical and reason-
able predictions for all the embedment depths investigated, except
for d∕c ¼ 0:75. For this very shallow length scale, it seems that a
deterministic continuum-based model cannot capture the experi-
mental behavior. This can be alternatively shown for the unstressed
case (λ ¼ 0). Fig. 8 shows the experimental results in comparison
with the existing design formulas. In a log-scale plot, the pullout
loads are normalized with respect to the area of a circle of radius
equal to the embedment depth, d. When compared with the numeri-
cal predictions, the CCD formula provided identical predictions for
relatively large embedment depths and was a lower (conservative)
bound for shallow anchors. Fig. 8(b) shows that the behavior of
anchors embedded at d∕c ¼ 0:75 is unpredictable. This is true
from a quantitative (the results are between the LEFM and the
plasticity-based predictions) and qualitative (the results show,

in fact, a significant scatter) point of view. Further support to these
observations is provided subsequently, where crack profiles from
the experimental investigation are shown.

Load versus Displacement Behavior

The effects of prestress on ductility were quantified using the work
of fracture (WOF), defined as the area under the normalized force-
displacement curve. Results from the NLFM simulations are shown
in Fig. 9. LEFM results, as reported in Piccinin et al. (2010), had
proven to be identical. For a value of Gf ¼ 0:2 lb∕in: (35 N∕m),
when a confining (compressive) prestress was applied, the energy
dissipated in the postpeak increased. This increase was the result
of the significant increase in the length of crack propagation. It is
noted that the curves shown are truncated when the load in the
postpeak range is about half the peak value. Numerical instabilities
arise when the stress free portion of the fictitious crack is signifi-
cantly larger than the cohesive counterpart.

It is noted that in the experiments, the displacement was mea-
sured by two LVDTs positioned symmetrically with respect to the
axis of the anchor, whereas in the numerical model the displace-
ment was defined as the crack opening displacement of the infi-
nitely small slit representing the bolt (Fig. 2, Δ).

Even though qualitative—and based on different definitions of
the load-point displacement, Δ—the significant postpeak ductile
behavior of the system and the increase in capacity and ductility
with the applied compressive stress are shown in Fig. 10. Clearly,
and as previously observed, Fig. 9 illustrates that the NLFM
predictions only provide a lower bound solution to the experimental
evidence. The writers have not yet determined why there are such

Fig. 7. Second set of experiments with pullout load as a function of prestress and LEFM and NLFM calibration: (a) d∕c ¼ 0:75; (b) d∕c ¼ 2;
(c) d∕c ¼ 2:75
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discrepancies between the experimental load-displacement curves
and those predicted by the idealized model of the anchor. The sour-
ces of the discrepancy may be a result of the following: (1) the
concrete near the top surface of the anchor’s head may have
experienced crushing; (2) the physical anchor contains a stem,

which could lead to a less stiff response than the response predicted
by the idealized infinitely thin slit anchor geometry; and/or (3) the
computational model did not take into account slippage, friction,
and other displacement contributions that may have occurred
during the pullout tests.

Crack Profiles

Crack profiles from the experimental studies and LEFM investiga-
tions are shown in Fig. 11 for d∕c ¼ 1 (laser machine readings) and
in Fig. 12 for d∕c ¼ 2 (visual inspection), for several values of λ.
First, it is clearly shown that the propagating crack front steers
toward the direction of application of the compressive stresses
(e.g., the horizontal direction, orthogonal to the axis of the anchor).
This was true for all the embedment depths investigated and was
enhanced when large compressions were applied (Piccinin et al.
2010). Second, it appears that the experiments do not differ signifi-
cantly from the numerical LEFM results. Considering the simplic-
ity of the finite-element model and the fact that inhomogeneities
and aggregates can give rise to very tortuous crack paths, LEFM
does a good job of predicting the crack paths. It is noted, more
importantly, that these results support the method adopted to carry
out the NLFM numerical simulations, which were based on the use
of cohesive elements along LEFM predefined crack paths.

Experimental observations of the crack profiles and the cone
sizes for anchors embedded at d∕c ¼ 0:75 were also completed

Fig. 9. Numerical load-displacement curves for (a) d∕c ¼ 1 and (b) d∕c ¼ 2 and various levels of prestress

Fig. 10. Experimental normalized load-displacement curves for
d∕c ¼ 2 and various levels of prestress (λ ¼ 0, 0.82, and 1.22)

Fig. 8. Log-log plot of nominal pullout strength as a function of the embedment depth for the embedment depths investigated in which λ ¼ 0 and
(a) d∕c ¼ 1 (first set of experiments) and d∕c ¼ 2 (Piccinin et al. 2010) and (b) d∕c ¼ 0:75, d∕c ¼ 2, and d∕c ¼ 2:75; experimental data represented
by discrete points
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(data not shown). For such small embedments, the size of the
aggregate was comparable to the characteristic dimensions of
the experiments and the models. The experiments for these cases
resulted in the pulling out of the anchors as a result of discrete
cracks propagating at the interface between the matrix and the
aggregate and remaining unchanged for the unstressed and stressed
cases. Thus, the cracks in the experiments cannot possibly take on
the paths predicted by the mixed mode crack propagation theory
used in the homogeneous material model. For example, if the
aggregate is slightly to the left of the anchor tip shown in the sche-
matic of the model (Fig. 2), propagation along the interface would

be almost vertical and typical of pullout of a cohesionless granular
material. This result supports the conclusion that the size effect is
the strongest possible down to such small embedments and that a
continuum-based theory cannot be applied to cases where the
length scale involved is comparable to the dimension of the largest
aggregate.

Design Formula

The present investigation shows that for values of 0 ≤ λ ≤ 1:25 and
0 < β ≤ 10, the design formula based on LEFM concepts and

Fig. 11. Comparison of crack profiles from the experiments (shaded gray area/envelope) and LEFM simulations (dashed line) in which d∕c ¼ 1 and
(a) λ ¼ 0; (b) λ ¼ 0:47; (c) λ ¼ 0:7; and (d) λ ¼ 0:94

Fig. 12. Comparison between LEFM predictions (dashed lines) and experimental crack propagation patterns (from top to bottom); d∕c ¼ 2 and
λ ¼ 0, 0.41, 0.61, and 0.82
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proposed in Piccinin et al. (2010) still holds. This formula can be
expressed as

Pu

f td2
¼ 3:15ffiffiffi

β
p þ 0:53λ ð7Þ

By combining Eqs. (1) and (7), for 0 ≤ λ ≤ 1:2 and only for
d∕c ≥ 1, an accurate fit of the numerical predictions and the exper-
imental evidence leads to the following, more practical, design
formula:

Pu ¼ ðknc þ 0:015 · σcÞ ·
ffiffiffiffi
f 0c

p
· d3∕2 ð8Þ

where knc ¼ 30 (uncracked concrete condition), Pu is expressed in
lb, and σc and f 0c are expressed in psi. A comparison between the
experimental results and the proposed formula is shown in Fig. 13,
in which the pullout loads are normalized with respect to the area
of a circle of radius equal to the embedment depth d.

Being based on Eq. (1), the proposed formula for the capacity
of headed anchors in a compressively stressed concrete matrix
represents a lower bound for shallow anchors. However, it repre-
sents a sufficiently accurate and conservative fit for all the other
embedment depths.

Conclusions

The results from the present investigations show that the capacity of
headed anchors is increased when compressive prestress is applied

to the concrete matrix. As a consequence, a design formula
validated through numerical and experimental investigations is pro-
posed. However, it is recommended that further studies be carried
out before its application.

It is recognized that LEFM and NLFM provide very similar
results and are both valid for scale lengths as small as d∕c ¼ 1,
which have never been investigated before. This provides valuable
insights into the behavior of headed anchors, and it is concluded
that the pullout failure is a problem governed by the maximum
possible concrete’s size effect and that no transition between
strength-based theory and LEFM is expected. For the limit case
in which d∕c ¼ 1 and λ≈ 1, the increase in capacity predicted
by the numerical models is not completely corroborated by the
experimental evidence. Further investigation is required to
enlighten this case. For embedments d∕c < 1, that is, for scale
lengths smaller than the maximum aggregate size, this investigation
shows that the pullout problem cannot be solved by applying a
deterministic continuum theory.

Acknowledgments

The experimental part of this research was carried out with the
support of the Yucatan Decima concrete precast plant and its tech-
nical staff. The staff of the Laboratorio Prove Materiali of the
Politecnico di Milano is also gratefully thanked. The writers ex-
press their gratitude to Professor L. Biolzi, Professor G. Rosati,
and D. Spinelli for their valuable advice, constant encouragement,

Fig. 13. Comparison of the experiments and proposed design [Eq. (8)]: (a) d∕c ¼ 1 and (b) d∕c ¼ 2 (first set of experiments); (c) d∕c ¼ 2 and
(d) d∕c ¼ 2:75 (second set of experiments)

886 / JOURNAL OF ENGINEERING MECHANICS © ASCE / JULY 2012

J. Eng. Mech. 2012.138:877-887.

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

W
A

L
T

E
R

 S
E

R
IA

L
S 

PR
O

C
E

SS
 o

n 
02

/0
5/

14
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



and tireless dedication, and Dr. P. Wawrzynek and Professor
A. Ingraffea from Cornell University for their support in under-
standing and using their software.

References

American Concrete Institute (ACI). (1989). “Code requirements for nuclear
safety.” Appendix B, ACI 349.1R, ACI, Detroit.

American Concrete Institute (ACI). (2006). “Code requirements for nuclear
safety related concrete structures and commentary.” Appendix D,
ACI 349-06 and ACI 349R-06, ACI, Farmington Hills, MI.

American Concrete Institute (ACI). (2008). “Building code requirements
for structural concrete and Commentary.” Appendix D, ACI 318-08
and ACI 318R-08, ACI, Farmington Hills, MI.

Ballarini, R., Keer, L. M., and Shah, S. P. (1987). “An analytical model for
the pull-out of rigid anchors.” Int. J. Fract., 33(2), 75–94.

Ballarini, R., Shah, S. P., and Keer, L. M. (1986). “Failure characteristics
of short anchor bolts embedded in a brittle material.” Proc. R. Soc.
London, Ser. A, 404(1826), 35–54.

Baran, E., Schultz, A. E., and French, C. E. (2006). “Tension tests on
cast-in-place inserts: The influence of reinforcement and prestress.”
PCI J., 51(5), 88–108.

Bažant, Z. P., and Planas, J. (1998). Fracture and size effect in concrete
and other quasibrittle materials, CRC, Boca Raton, FL.

Bažant, Z. P., and Sener, S. (1988). “Size effect in pullout tests.” ACI Mater.
J., 85(5), 347–351.

Bittencourt, T. N., Ingraffea, A. R., and Llorca, J. (1992). “Simulation of
arbitrary, cohesive crack propagation.” Fracture mechanics of concrete
structures, Z. P. Bažant, ed., Elsevier Applied Science, London,
339–350.

Cherepanov, G. P. (1979). Mechanics of brittle fracture, McGraw-Hill,
New York.

Comité Euro-International du Béton (CEB). (1997). Design of fastenings in
concrete: Design guide, Thomas Telford, London.

Cornell Fracture Group. (1997). FRANC2D, Cornell Fracture Group,
Cornell Univ., Ithaca, NY. 〈http://www.cfg.cornell.edu/software/
franc2d_casca.htm〉 (Jun. 2008).

Elfgren, L., and Ohlsson, U. (1992). “Anchor bolts modeled with fracture
mechanics.” Application of fracture mechanics to reinforced concrete,
A. Carpinteri, ed., Elsevier Applied Science, London, 267–283.

Eligehausen, R., and Ozbolt, J. (1990). “Size effect in anchorage behavior.”
Fracture behavior and design of materials and structures, D. Firrao,
ed., Vol. 2, Engineering Materials Advisory Services, Ltd., Warley,
West Midlands, UK, 721–727.

Eligehausen, R., and Sawade, G. (1989). “Analysis of anchorage behaviour
(literature review).” Fracture mechanics of concrete structures:
From theory to applications, L. Elfgren, ed., Chapman & Hall,
London, 263–280

Fuchs, W., Eligehausen, R., and Breen, J. E. (1995). “Concrete capacity
design (CCD) approach for fastening to concrete.” ACI Struct. J.,
92(1), 73–94.

Hellier, A. K., Sansalone, M., Ingraffea, A. R., Carino, N. J., and
Stone, W. C. (1987). “Finite element analysis of the pull-out test
using a nonlinear discrete cracking approach.” Cem., Concr.,
Aggregates, 9(1), 20–29.

Ingraffea, A. R., Linsbauer, H., and Rossmanith, H. (1989). “Computer
simulation of cracking in large arch dam—downstream side cracking.”
Fracture of concrete and rock, S. P. Shah and S. E. Swartz, eds.,
Springer, New York, 334–342.

Ingraffea, A. R., and Saouma, V. (1984). “Numerical modeling of fracture
propagation in reinforced and plain concrete.” Fracture mechanics of
concrete: Structural application and numerical calculation, G. C. Shih
and A. Di Tommasi, eds., Martinus Nijhoff, Dordrecht, Netherlands,
171–225.

Jensen, B. C., and Braestrup, H. W. (1976). Lok-tests determine the com-
pressive strength of concrete, No. 2, Nordisk Betong, Stockholm,
Sweden, 9–11.

Ottosen, N. S.. (1981). “Nonlinear finite element analysis of pull-out test.”
J. Struct. Div., 107(4), 591–603.

Ozbolt, J., Eligehausen, R., and Reinhardt, H. W. (1999). “Size effect on the
concrete cone pull-out load.” Int. J. Fract., 95(1-4), 391–404.

Piccinin, R. (2011). “Effects of compressive and tensile fields on the
load carrying capacity of headed anchors.” Ph.D. dissertation, Univ.
of Minnesota, Minneapolis.

Piccinin, R., Ballarini, R., and Cattaneo, S. (2010). “Linear elastic fracture
mechanics pullout analyses of headed anchors in stressed concrete.”
J. Eng. Mech., 136(6), 761–768.

Pivonka, P., Lackner, R., and Mang, H. A. (2004). “Concrete subjected to
triaxial stress states: Application to pull-out analyses.” J. Eng. Mech.,
130(12), 1486–1498.

Reinhardt, H. W. (1981). “Masstabsein uss bei Schubversuchen im Licht
der Bruchmechanik.” Beton- Stahlbetonbau, 1, 19–21.

Shah, S. P., Swartz, S. E., Ouyang, C. (1995). Fracture mechanics of con-
crete: applications of fracture mechanics to concrete, rock, and other
quasi-brittle materials, Wiley, New York.

Vogel, A., and Ballarini, R. (1999). “Ultimate load capacities of plane
and axisymmetric headed anchors.” J. Eng. Mech., 125(11),
1276–1279.

Wawrzynek, P. A., and Ingraffea, A. R. (1987). “Interactive finite element
analysis of fracture processes: An integrated approach.” Theor. Appl.
Fract. Mech., 8(2), 137–150.

Wittmann, F. H., Roelfstra, P. E., and Mihashi, H. (1987). “Influence of
age of loading, water-cement ratio and rate of loading on fracture energy
of concrete.” Mater. Struct., 20(2), 103–110.

Xie, M., and Gerstle, W. (1995). “Energy-based cohesive crack propagation
modeling.” J. Eng. Mech., 121(12), 1349–1358.

JOURNAL OF ENGINEERING MECHANICS © ASCE / JULY 2012 / 887

J. Eng. Mech. 2012.138:877-887.

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

W
A

L
T

E
R

 S
E

R
IA

L
S 

PR
O

C
E

SS
 o

n 
02

/0
5/

14
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

http://dx.doi.org/10.1098/rspa.1986.0017
http://dx.doi.org/10.1098/rspa.1986.0017
http://www.cfg.cornell.edu/software/franc2d_casca.htm
http://www.cfg.cornell.edu/software/franc2d_casca.htm
http://www.cfg.cornell.edu/software/franc2d_casca.htm
http://www.cfg.cornell.edu/software/franc2d_casca.htm
http://www.cfg.cornell.edu/software/franc2d_casca.htm
http://www.cfg.cornell.edu/software/franc2d_casca.htm
http://dx.doi.org/10.1520/CCA10393J
http://dx.doi.org/10.1520/CCA10393J
http://dx.doi.org/10.1023/A:1018685225459
http://dx.doi.org/10.1061/(ASCE)EM.1943-7889.0000120
http://dx.doi.org/10.1061/(ASCE)0733-9399(2004)130:12(1486)
http://dx.doi.org/10.1061/(ASCE)0733-9399(2004)130:12(1486)
http://dx.doi.org/10.1061/(ASCE)0733-9399(1999)125:11(1276)
http://dx.doi.org/10.1061/(ASCE)0733-9399(1999)125:11(1276)
http://dx.doi.org/10.1016/0167-8442(87)90007-3
http://dx.doi.org/10.1016/0167-8442(87)90007-3
http://dx.doi.org/10.1007/BF02472745
http://dx.doi.org/10.1061/(ASCE)0733-9399(1995)121:12(1349)

