Pathophysiology II

Pulmonary Vascular Changes in Heart Disease

 Normal Circulatory Dynamics Physiology

 Pulmonary Hypertension Definition Classification Pathology Pathophysiology Clinical Manifestations Diagnosis Treatment

Pulmonary Circulation

- Low resistance, high compliance vascular bed
- Only organ to receive entire cardiac output (CO)
- Changes in CO as well as pleural/alveolar pressure affect pulmonary blood flow
- Different reactions compared to the systemic circulation
- Normally in a state of mild vasodilation

Physiology: Circulatory Hemodynamics Pressure* = Flow x Resistance

Systemic Circulation

- Pressure = Pressure drop across systemic circulation (mmHg) = Systemic Arterial Pressure (SAPm) - Systemic Venous Pressure (RAPm)
- Flow = Systemic Blood Flow[†] = Cardiac Index (CI; I/m/M²)
- Resistance = Systemic Vascular Resistance (SVR; units M²)

Pulmonary Circulation

- Pressure = Pressure drop across pulmonary circulation (mmHg) = Pulmonary Artery Pressure (PAPm) - Pulmonary Venous Pressure (PCWPm)
- Flow = Pulmonary Blood Flow[†] = Cardiac Index (CI; I/m/M²)
- Resistance = Pulmonary Vascular Resistance (PVR; units M²)

*pressure drop across vascular bed † without congenital systemic to pulmonary shunts

Normal Pulmonary Hemodynamics at Sea Level (Rest and Mild Exercise) and at Elevated Altitude (Rest)

	Sea level Rest	Sea level Mild Exercise	Altitude (~15,000 ft) Rest
Pulmonary arterial pressure, (mean) mmHg	20/10(15)	30/13(20)	38/14(26)
Cardiac output, L/min	6.0	12.0	6.0
Left atrial pressure (mean), mmHg	5.0	9.0	5.0
Pulmonary vascular resistance, units	1.7	0.9	3.3

Pulmonary Hypertension: Definition

PAP mean ≥ 25 mm Hg at rest or ≥ 30 mmHg with exercise

splenectomy

Post-capillary PH: Pulmonary Venous Hypertension Definition

 PAP mean ≥ 25 mmHg at rest or ≥ 30 mmHg with exercise

AND

PCWP or LVEDP >15mmHg

Post-capillary PH: Pulmonary Venous Hypertension Localizing the Problem

- Left Heart Etiologies
 - <u>Aorta</u> coarct, stenosis
 - <u>LV</u> -AS, AR, CM, constriction, myocardial disease, MS, MR, ischemic heart disease, congestive heart failure, diastolic dysfunction
 - <u>LA</u> Ball-valve thrombus, myxoma, cor triatriatum

Venous Etiologies

- -Pulmonary Veins
 - -stenosis
 - -mediastinal fibrosis
 - -neoplasm
 - -pulmonary venoocclusive disease

Pulmonary Venous Hypertension Physiology

PAP mean 35 mmHg →	No obstruction \rightarrow	PCWP mean 25 mmHg
PAP mean 45-100 mmHg →	Pulmonary arteriolar → obstruction	PCWP mean 25 mmHg

Mixed (Pulmonary Venous and Pulmonary Arterial Hypertension): Definition

- PAP mean ≥25 mmHg at rest or ≥30 mmHg with exercise
- PCWP or LVEDP >15 mmHg
- PVRI ≥3 units M²
- Increased Transpulmonary Gradient Across Pulmonary Vascular Bed

Pathophysiology: Rest and Exercise Pulmonary Hemodynamics $P = F \times R$ $\frac{\Delta P}{F} = R$				
	Rest	Exercise		
Normal	<u>15mmHg-10mmHg</u> = 1 unit•M ² 5 L/min/M ²	<u>30mmHg-12mmHg</u> = <1unit•M² 20 L/min/M²		
PAH (Pre-Cap)	50mmHg-10mmHg_= 8 units•M ² 5 L/min/M ²	<u>90mmHg-10mmHg</u> = 10 units•M² 8 L/min/M²		
Pulm Venous PH (post-cap)	35mmHg-25mmHg_= 2 units•M ² 5 L/min/M ²	55mmHg-35mmHg = 2 units•M ² 10 L/min/M ²		
Mixed PH (Pre-cap & Post-cap)	50mmHg-25mmHg = 5 units•M ² 5 L/min/M ²	75mmHg-35mmHg = 5 units•M² 8 L/min/M²		

<section-header><text>

Right Ventricular Dysfunction in Pulmonary Hypertension

Right ventricular failure is a consequence of chronic ischemia on a hypertrophied pressure overloaded ventricle

Effects of pulmonary hypertension on RV myocardial perfusion

- Myocardial perfusion goes from being both systolic and diastolic to mostly diastolic
- The RV hypertrophies, but coronary blood supply remains unchanged
- RV work is dramatically increased without a compensatory increase in coronary blood flow
- Tachycardia makes everything worse

Pulmonary Arterial Hypertension: Clinical Manifestations - Symptoms

- •Dyspnea on Exertion/Rest
- Fatigue
- Chest Discomfort/Pain
- •Cough
- •Syncope/Presyncope
- Hemoptysis
- •Edema
- Hoarseness

PAH: Clinical Manifestations

- Dyspnea
 - Reduced O2 diffusion
 - Ventilationperfusion mismatching
 - Low O2 transport
- Angina
 - RV ischemia
 - Left main coronary compression

- Syncope
 - Hypotension due to systemic vasodilation and fixed pulmonary resistance
 - Arrhythmia
- Edema, hepatic congestion, ascites
 – RV failure

PAH: Findings on Physical Examination

- Tachypnea
- Jugular venous distention
- Right ventricular heave
- Right-sided fourth heart sound
- Loud pulmonic valve closure (P₂)
- Tricuspid regurgitation murmur
- Pulmonary insufficiency murmur
- Hepatomegaly (pulsatile)
- Peripheral edema, ascites, pleural effusions
- Decreased peripheral perfusion
- Cyanosis

Pulmonary Venous PH: Symptoms

- Angina
- Syncope
- Congestive heart failure
- Dyspnea
- Hemoptysis
- Hoarseness
- Edema
- Ascites
- Paroxysmal nocturnal dyspnea
- Orthopnea
- Central and peripheral cyanosis

Pulmonary Venous PH: Findings on Physical Examination

- Tachypnea, cough, wheezing
- Basilar crackles
- Central and peripheral cyanosis
- Specific signs Re: Left Heart or Pulmonary Venous Hypertension Etiology
- Signs of PH

Diagnosis of PH: Procedures

- Electrocardiogram
- Chest radiography
- Echocardiogram
- Ventilation perfusion scan (V/Q scan)
- Serologic studies, HIV
- Pulmonary function tests (PFT)
- Sleep study (if indicated)
- Arterial blood gases (ABG) (if indicated)
- Right-heart catheterization (with acute vasodilator testing if PAH)

PAH: Findings on the Echocardiogram

- TR (tricuspid regurgitation)
- RVE (right ventricular enlargement)
- RAE (right atrial enlargement)
- RVH (right ventricular hypertrophy)
- Flattening of IVS (interventricular septum)
- Dilated IVC/Hepatic veins

PH: Congestive Heart Failure - CXR hilar fullness and haziness

Diagnosis of PH:
ECHO May Suggest an Underlying
Etiology• LV diastolic dysfunction• MS or MR• LV systolic dysfunction• Congenital heart disease, e.g. ASD,
SD, PDA

Cardiac Catheterization

- To exclude congenital heart disease
- To measure PCWP or LVEDP
- To establish severity and prognosis
- Acute vasodilator drug testing

Cardiac catheterization should be performed in patients with suspected pulmonary hypertension

Diagnosis of Pulmonary Hypertension

- High index of suspicion
- Thorough and complete evaluation

Idiopathic or Familial PAH PAH Associated with (APAH) Connective tissue disease thyroid disorders **Congenital heart disease** glycogen storage **Portal hypertension** disease **HIV infection** Gaucher disease **Drugs and toxins** hereditary Other hemorrhagic telangiectasia hemoglobinopathies High PA pressure and normal myeloproliferative "downstream" pulmonary disorders venous pressures splenectomy

Treatment: Pre-capillary PH -Pulmonary Arterial Hypertension

- Treat associated conditions, e.g. thyroid disease
- Early surgery to repair congenital heart disease, e.g. VSD, PDA
 - However, if no longer "operable" due to progressive pulmonary vascular obstructive disease, "corrective" surgery is contra-indicated
 - Medical PAH Therapy
 - Lung or Heart-Lung Transplantation

Acute Pulmonary Edema

- Cardiogenic Pulmonary Edema
- Noncardiogenic Pulmonary Edema

Physiology of Microvascular Fluid Exchange in the Lung

Representative Chest Radiograph from Patient with Cardiogenic Pulmonary Edema

Representative Chest Radiograph from Patient with Noncardiogenic Pulmonary Edema

Ware L and Matthay M. N Engl J Med 2005;353:2788-2796

Radiographic Features That May Help to Differentiate Cardiogenic from Noncardiogenic Pulmonary Edema

Radiographic Feature	Cardiogenic Edema	Noncardiogenic Edema	
Heart size	Normal or greater than normal	Usually normal	
Vascular distribution	Balanced or inverted	Normal or balanced	
Distribution of edema	Even or central	Patchy or peripheral	
Pleural effusions	Present	Not usually present	
Peribronchial cuffing	Present	Not usually present	
Septal lines, i.e. Kerley's B lines	Present	Not usually present	
Air bronchograms	Not usually present	Usually present	
	Adapted from: Ware L and Matthay M. N Engl J Med 2005;353:2788-2796		

Algorithm for the Clinical Differentiation between Cardiogenic and Noncardiogenic Pulmonary Edema

Treatment: Post-capillary PH -Pulmonary Venous Hypertension

- Surgery to eliminate left-sided cardiac obstruction
- Heart transplantation for left ventricular failure
- Additional medical and/or surgical treatment as needed
 - Specific re: left heart or pulmonary venous hypertension etiology
 - PAH treatment

Chronic Heart Failure Treatment

- Sodium restriction
- Afterload reduction, e.g. ACE inhibitors
- Inotropic support, e.g. digitalis
- Diuretics
- Beta-blockers
- Identification and treatment of underlying cause(s)

PAH: Increased Expression of Endothelin in the Lung

Experience and Reason "In Medicine one must pay attention not to plausible theorizing but to experience and reason together . . . I agree that theorizing is to be approved, provided that it is based on facts, and systematically makes its deductions from what is observed . . . But conclusions drawn from unaided reason can bardly be serviceable; only those drawn from observed fact."