
2Integrated Systems Laboratory

1Department of Electrical, Electronic

and Information Engineering

PULP and HERO Tutorial

at Week of Open-Source Hardware (WOSH) 14.06.2019

Andreas Kurth

and the PULP team led by Prof. Luca Benini

||

▪ 09:00 Introduction to the PULP Cluster and its Execution Model:

Software-Managed Scratchpad Memories and DMA Transfers

▪ 09:15 Introduction to the PULP SDK

▪ 09:30 Break

▪ 09:45 Introduction to HERO

▪ 10:00 HERO Live Demo

▪ 10:30 Break

▪ 10:45 HERO Hands-On Programming

▪ 11:45 Q&A

▪ 12:00 Lunch Break

6/17/2019Author Name 2

Agenda

2Integrated Systems Laboratory

1Department of Electrical, Electronic

and Information Engineering

Introduction to PULP Cluster and Execution Model

14.06.2019

Andreas Kurth

Frank K. Gürkaynak

and the PULP team led by Prof. Luca Benini

Platforms

Accelerators

InterconnectPeripheralsRISC-V Cores

The main PULP systems we develop are cluster based

RI5CY

32b

Micro

riscy

32b

Zero

riscy

32b

Ariane

64b

AXI4 – InterconnectDMA GPIO

APB – Peripheral BusI2SUART

Logarithmic interconnectSPIJTAG

M

I

O
cluster

interconnect

A R5R5R5

M MMM

in
te

rc
o
n
n
e
c
t

Neurostream

(ML)

HWCrypt

(crypto)

PULPO

(1st order opt)

HWCE

(convolution)

R5

MI

O

in
te

rc
o
n
n
e
c
t

A

Single Core

• PULPino

• PULPissimo

Multi-core

• Fulmine

• Mr. Wolf

R5

▪ Multiple RISC-V cores

▪ Individual cores can be started/stopped with little overhead

▪ DSP extensions in cores

▪ Multi-banked scratchpad memory (TCDM)

▪ Not a cache, there is no L1 data cache in our systems

▪ Logarithmic Interconnect allowing all cores to access all banks

▪ Cores will be stalled during contention, includes arbitration

▪ DMA engine to copy data to and from TCDM

▪ Data in TCDM managed by software

▪ Multiple channels, allows pipelined operation

▪ Hardware accelerators with direct access to TCDM

▪ No data copies necessary between cores and accelerators.

The main components of a PULP cluster

CLUSTER

PULP cluster contains multiple RISC-V cores

RISC-V

core

RISC-V

core

RISC-V

core

RISC-V

core

CLUSTER

Tightly Coupled Data Memory

All cores can access all memory banks in the cluster

interconnect

RISC-V

core

Mem Mem MemMem

RISC-V

core

RISC-V

core

RISC-V

core

Mem Mem MemMem

Mem

Mem

CLUSTER

Tightly Coupled Data Memory

Data is copied from a higher level through DMA

interconnect

RISC-V

core

MemDMA Mem MemMem

RISC-V

core

RISC-V

core

RISC-V

core

Mem Mem MemMem

Mem

Mem
in

te
rc

o
n

n
e

c
tL2

Mem

CLUSTER

Tightly Coupled Data Memory

There is a (shared) instruction cache that fetches from L2

interconnect

RISC-V

core

MemDMA Mem MemMem

RISC-V

core

RISC-V

core

RISC-V

core

Mem Mem MemMem

I$

Mem

Mem
in

te
rc

o
n

n
e

c
tL2

Mem

I$ I$ I$

CLUSTER

Tightly Coupled Data Memory

Hardware Accelerators can be added to the cluster

interconnect

RISC-V

core

MemDMA Mem MemMem

RISC-V

core

RISC-V

core

RISC-V

core

Mem Mem MemMem

I$

HW

ACCEL

Mem

Mem
in

te
rc

o
n

n
e

c
tL2

Mem

I$ I$ I$

CLUSTER

Tightly Coupled Data Memory

Event unit to manage resources (fast sleep/wakeup)

interconnect

RISC-V

core

MemDMA Mem MemMem

RISC-V

core

RISC-V

core

RISC-V

core

Mem Mem MemMem

I$

HW

ACCEL

Mem

Mem
in

te
rc

o
n

n
e

c
tL2

Mem

I$ I$ I$

Event

Unit

PULPissimo CLUSTER

Tightly Coupled Data Memory

An additional microcontroller system (PULPissimo) for I/O

interconnect

RISC-V

core

MemDMA Mem MemMem

RISC-V

core

RISC-V

core

RISC-V

core

Mem Mem MemMem

I$

HW

ACCEL

Mem

Mem
in

te
rc

o
n

n
e

c
tL2

Mem

Mem

Cont

I/O

RISC-V

core

I$ I$ I$

Ext.

Mem

Event

Unit

PULPissimo CLUSTER

Tightly Coupled Data Memory

How do we work: Initiate a DMA transfer

interconnect

RISC-V

core

MemDMA Mem MemMem

RISC-V

core

RISC-V

core

RISC-V

core

Mem Mem MemMem

I$

HW

ACCEL

Mem

Mem
in

te
rc

o
n

n
e

c
tL2

Mem

Mem

Cont

I/O

RISC-V

core

I$ I$ I$

Ext.

Mem

Event

Unit

PULPissimo CLUSTER

Tightly Coupled Data Memory

Data copied from L2 into TCDM

interconnect

RISC-V

core

MemDMA Mem MemMem

RISC-V

core

RISC-V

core

RISC-V

core

Mem Mem MemMem

I$

HW

ACCEL

Mem

Mem
in

te
rc

o
n

n
e

c
tL2

Mem

Mem

Cont

I/O

RISC-V

core

I$ I$ I$

Ext.

Mem

Event

Unit

PULPissimo CLUSTER

Tightly Coupled Data Memory

Once data is transferred, event unit notifies cores/accel

interconnect

RISC-V

core

MemDMA Mem MemMem

RISC-V

core

RISC-V

core

RISC-V

core

Mem Mem MemMem

I$

HW

ACCEL

Mem

Mem
in

te
rc

o
n

n
e

c
tL2

Mem

Mem

Cont

I/O

RISC-V

core

I$ I$ I$

Ext.

Mem

Event

Unit

PULPissimo CLUSTER

Tightly Coupled Data Memory

Cores can work on the data transferred

interconnect

RISC-V

core

MemDMA Mem MemMem

RISC-V

core

RISC-V

core

RISC-V

core

Mem Mem MemMem

I$

HW

ACCEL

Mem

Mem
in

te
rc

o
n

n
e

c
tL2

Mem

Mem

Cont

I/O

RISC-V

core

I$ I$ I$

Ext.

Mem

Event

Unit

PULPissimo CLUSTER

Tightly Coupled Data Memory

Accelerators can work on the same data

interconnect

RISC-V

core

MemDMA Mem MemMem

RISC-V

core

RISC-V

core

RISC-V

core

Mem Mem MemMem

I$

HW

ACCEL

Mem

Mem
in

te
rc

o
n

n
e

c
tL2

Mem

Mem

Cont

I/O

RISC-V

core

I$ I$ I$

Ext.

Mem

Event

Unit

PULPissimo CLUSTER

Tightly Coupled Data Memory

Once our work is done, DMA copies data back

interconnect

RISC-V

core

MemDMA Mem MemMem

RISC-V

core

RISC-V

core

RISC-V

core

Mem Mem MemMem

I$

HW

ACCEL

Mem

Mem
in

te
rc

o
n

n
e

c
tL2

Mem

Mem

Cont

I/O

RISC-V

core

I$ I$ I$

Ext.

Mem

Event

Unit

PULPissimo CLUSTER

Tightly Coupled Data Memory

During normal operation all of these occur concurrently

interconnect

RISC-V

core

MemDMA Mem MemMem

RISC-V

core

RISC-V

core

RISC-V

core

Mem Mem MemMem

I$

HW

ACCEL

Mem

Mem
in

te
rc

o
n

n
e

c
tL2

Mem

Mem

Cont

I/O

RISC-V

core

I$ I$ I$

Ext.

Mem

Event

Unit

Platforms

Accelerators

InterconnectPeripheralsRISC-V Cores

All these components are combined into platforms

RI5CY

32b

Micro

riscy

32b

Zero

riscy

32b

Ariane

64b

AXI4 – InterconnectDMA GPIO

APB – Peripheral BusI2SUART

Logarithmic interconnectSPIJTAG

M

I

O
cluster

interconnect

A R5R5R5

M MMM

in
te

rc
o
n
n
e
c
t

cluster

interconnect

R5 R5R5R5

M MMM

cluster

interconnect

R5 R5R5R5

M MMM

cluster

interconnect

A R5R5R5

M MMMM

I

O in
te

rc
o
n
n
e
c
t

Neurostream

(ML)

HWCrypt

(crypto)

PULPO

(1st order opt)

HWCE

(convolution)

R5

MI

O

in
te

rc
o
n
n
e
c
t

A

Single Core

• PULPino

• PULPissimo

Multi-core

• Fulmine

• Mr. Wolf

Multi-cluster

• Hero

IOT HPC

R5
R5

2Integrated Systems Laboratory

1Department of Electrical, Electronic

and Information Engineering

Introduction to the PULP SDK

14.06.2019

Andreas Kurth

Germain Haugoug

and the PULP team led by Prof. Luca Benini

||

▪ Package for compiling, running,

debugging and profiling applications on

PULP platforms

▪ Supports all recent and upcoming PULP

chips: Mr.Wolf, GAP, Vega, ...

▪ Supports all targets: Virtual Platform, RTL

platform, FPGA, dev boards

▪ RISC-V GCC with support for PULP

extensions

▪ Basic OpenMP support

▪ Open-source, available at

https://github.com/pulp-platform/pulp-sdk

6/17/2019Author Name 22

PULP Software Development Kit (SDK)

||

▪ Forked GCC 7.1

▪ Extended with all PULP custom

instructions

▪ Some custom instructions

instantiated by GCC (e.g. bit

manipulation instructions, auto-

vectorization), others available

through builtins

▪ CoreMark 3.1 with RI5CY v2

▪ Extended binutils for full GDB

support of all custom instructions

6/17/2019Author Name 23

Compiler

||

▪ Simulate the PULP architecture for

application development with a good

trade-off between speed and accuracy

with performance feedback within a 20%

error margin

▪ Mixed Python/C++ with component-based

approach

▪ Event-based scheduler with cycle-based

models

▪ Whole architecture described in JSON to

ease multiple chips support

▪ 25000 lines of C++ (including ISS) and 4000

lines of Python

6/17/2019Author Name 24

Virtual Platform

||

▪ 100% functional equivalence to RTL

(or supposed to)

▪ Performance estimation

(20% error margin)

▪ Frequency scaling

▪ Power on/off

▪ Power consumption estimation

▪ Architecture traces

▪ VCD traces

▪ Peripheral models (camera, ADC,

microphone, etc)

▪ GDB connection

6/17/2019Author Name 25

Virtual Platform: Features

||

▪ Access to the target is done through the PULP debug

bridge

▪ Uses memory-mapped accesses through JTAG or SPI

▪ Receives remote serial protocol (RSP) commands

from GDB and converts them to platform-specific

commands (e.g. breakpoints)

▪ Provides binary loading, chip reset and start

▪ For the GUI, we support PlatformIO

▪ Plugin generator for lots of common editors/IDE (eclipse,

sublime, visual studio, etc)

▪ Platform described through JSON files (how to compile,

connect, etc)

▪ Connection done through GDB RSP protocol

▪ Provides application build, code loading, target interactions,

debug features, etc.

6/17/2019Author Name 26

Debugger, GUI

||

▪ PulpOS

▪ Provides a simple OS for quick prototyping

▪ Supports all PULP variants, with or without

fabric controller (FC) and multiple clusters

▪ Used for full applications including drivers, as

well as basic tests

▪ All APIs are asynchronous to support small

reactive applications

▪ Zephyr

▪ Just starting now

▪ Plan is to port the kernel to PULP platforms,

create new API for managing the cluster and

port Zephyr drivers (SPI, etc)

6/17/2019Author Name 27

Runtime / OS

||

▪ Features

▪ Multi-threading: to get different priorities

▪ Event scheduler: one per thread, to schedule run-

to-completion tasks (all APIs are asynchronous)

▪ Memory allocators: for all PULP memory levels

(L2, L1)

▪ Cluster management: cluster mount/unmount,

remote cluster call, FC remote services for cluster

▪ Power management: frequency scaling, deep

sleep, voltage scaling

▪ Drivers: SPI, I2S, I2C, CPI, etc.

▪ Cluster execution: team fork / barriers / critical

sections, DMA transfers

6/17/2019Author Name 28

PulpOS

||

git clone \

https://github.com/pulp-platform/pulp-sdk

Check README.md for prerequisites and install them.

Source the configuration file of your target platform.

make all

PULP SDK: Getting Started

|| 30

@pulp_platform

Florian Zaruba2, Davide Rossi1, Antonio Pullini2, Francesco Conti1, Michael Gautschi2,
Frank K. Gürkaynak2, Florian Glaser2, Stefan Mach2, Giovanni Rovere2, Igor Loi1

Davide Schiavone2, Germain Haugou2, Manuele Rusci1, Alessandro Capotondi1,
Giuseppe Tagliavini1, Daniele Palossi2, Andrea Marongiu1,2, Fabio Montagna1,
Simone Benatti1, Eric Flamand2, Fabian Schuiki2, Andreas Kurth2, Luca Benini1,2

2Integrated Systems Laboratory

1Department of Electrical, Electronic

and Information Engineering

Questions?
www.pulp-platform.org

||

▪ 09:00 Introduction to the PULP Cluster and its Execution Model:

Software-Managed Scratchpad Memories and DMA Transfers

▪ 09:15 Introduction to the PULP SDK

▪ 09:30 Break

▪ 09:45 Introduction to HERO

▪ 10:00 HERO Live Demo

▪ 10:30 Break

▪ 10:45 HERO Hands-On Programming

▪ 11:45 Q&A

▪ 12:00 Lunch Break

6/17/2019Author Name 31

Agenda

2Integrated Systems Laboratory

1Department of Electrical, Electronic

and Information Engineering

HERO: Heterogeneous Research Platform

Open-Source HW/SW Platform for R&D of Heterogeneous SoCs 14.06.2019

Andreas Kurth

and the PULP Team led by Prof. Luca Benini

6/17/2019Andreas Kurth 33

Heterogeneous Systems on Chip (HeSoCs)

6/17/2019Andreas Kurth 34

Research on Heterogeneous SoCs

There are many open questions in various areas of computer

engineering:

▪ programming models, task distribution and scheduling,

▪ memory organization, communication, synchronization,

▪ accelerator architectures and granularity, …

But there was no research platform for heterogeneous SoCs!

6/17/2019Andreas Kurth 35

HERO: Heterogeneous Research Platform

|| 6/17/2019Andreas Kurth 36

HERO: Hardware Architecture

|| 6/17/2019Andreas Kurth 37

bigPULP on FPGA: Configurable, Modifiable and Expandable

Configurable:

Modifiable and expandable:

• All components are open-source and written in industry-standard SystemVerilog.

• Interfaces are either standard (mostly AXI) or simple (e.g., stream-payload).

• New components can be easily added to the memory map.

|| 6/17/2019Andreas Kurth 38

bigPULP: Distinguishing Features

• Atomic transactions: RI5CY with ‘A’ decoder, additional signals through cluster

and SoC bus, transactions executed atomically at L2 SPM

• Scalable SVM: Two-level software-managed TLB (“RAB”); TLB misses signaled

back to RI5CY and DMA; handled in SW with lightweight HW support

|| 6/17/2019Andreas Kurth 39

HERO: Software Architecture

|| 6/17/2019Andreas Kurth 40

HERO: Heterogeneous Cross-Compilation Toolchain

• OpenMP offloading with the GCC toolchain requires a host compiler

plus one target compiler for each PMCA ISA in the system.

• A target compiler requires both compiler and runtime extensions.

• HERO includes the first non-commercial heterogeneous cross-

compilation toolchain.

|| 6/17/2019Andreas Kurth 41

HERO: FPGA Platforms

|| 6/17/2019Andreas Kurth 42

HERO: Roadmap

git clone --recursive \

https://github.com/pulp-platform/hero-sdk

cd hero-sdk; git checkout v1.1.0

Check README.md for prerequisites and install them.

./hero-z-7045-builder -A

HERO: Getting Started

|| 44

@pulp_platform

Florian Zaruba2, Davide Rossi1, Antonio Pullini2, Francesco Conti1, Michael Gautschi2,
Frank K. Gürkaynak2, Florian Glaser2, Stefan Mach2, Giovanni Rovere2, Igor Loi1

Davide Schiavone2, Germain Haugou2, Manuele Rusci1, Alessandro Capotondi1,
Giuseppe Tagliavini1, Daniele Palossi2, Andrea Marongiu1,2, Fabio Montagna1,
Simone Benatti1, Eric Flamand2, Fabian Schuiki2, Andreas Kurth2, Luca Benini1,2

2Integrated Systems Laboratory

1Department of Electrical, Electronic

and Information Engineering

Questions?
www.pulp-platform.org

||

▪ 09:00 Introduction to the PULP Cluster and its Execution Model:

Software-Managed Scratchpad Memories and DMA Transfers

▪ 09:15 Introduction to the PULP SDK

▪ 09:30 Break

▪ 09:45 Introduction to HERO

▪ 10:00 HERO Live Demo

▪ 10:30 Break

▪ 10:45 HERO Hands-On Programming

▪ 11:45 Q&A

▪ 12:00 Lunch Break

6/17/2019Author Name 45

Agenda

||

▪ 09:00 Introduction to the PULP Cluster and its Execution Model:

Software-Managed Scratchpad Memories and DMA Transfers

▪ 09:15 Introduction to the PULP SDK

▪ 09:30 Break

▪ 09:45 Introduction to HERO

▪ 10:00 HERO Live Demo

▪ 10:30 Break

▪ 10:45 HERO Hands-On Programming

▪ 11:45 Q&A

▪ 12:00 Lunch Break

6/17/2019Author Name 46

Agenda

▪ 09:00 Introduction to the PULP Cluster and its Execution Model:

Software-Managed Scratchpad Memories and DMA Transfers

▪ 09:15 Introduction to the PULP SDK

▪ 09:30 Break

▪ 09:45 Introduction to HERO

▪ 10:00 HERO Live Demo

▪ 10:30 Break

▪ 10:45 HERO Hands-On Programming

▪ 11:45 Q&A

▪ 12:00 Lunch Break

6/17/2019Author Name 47

Agenda

• Log in to the workstation in front of you with the provided account.

• Open a shell and:

• cd /scratch/hero-sdk

• source scripts/hero-z-7045-env.sh

• cd hero-openmp-examples

• There are a couple of example apps, but in particular:

• mm-demo contains the final code that we discussed in the demo

• sobel-filter is a sample application for you to work on

48

HERO Hands-On Programming

• cd sobel-filter

• Open main.c and sobel.c in the src directory with your favourite editor, e.g.,

atom src/main.c src/sobel.c

• In the main function, you will find

#pragma omp target map(...)
sobelFilter(...);
so the entry function for PULP is sobelFilter.

• Execute make then make run in the shell. Since we all share one HERO board,

you have to wait to get a slot.

• It takes around 20s for PULP to process the image (do not despair, you will soon

improve this by 100x). Compare input.png and output.png.

49

HERO Hands-On Programming: Sobel Filter

• All functions are currently executed by only one RISC-V core in the PULP cluster.

• Your first task is to parallelize execution:

Find the three outer for loops executed in sobelFilter and parallelize them with

#pragma omp parallel for

• All eight cores now work in parallel. What is the speed-up?

• The cores currently operate on data in the DRAM instead of the L1 memory.

• Your second task is to allocate local buffers and transfer data with the DMA to and

from L1 memory. Use the following functions at the start and end of sobelFilter:

hero_l1malloc(int unsigned n_bytes)
hero_dma_memcpy(void* dst, void* src, int unsigned n_bytes)

• What is the speed-up by properly using local memories?

50

HERO Hands-On Programming: Sobel Filter Parallel & DMA

|| 51

@pulp_platform

Florian Zaruba2, Davide Rossi1, Antonio Pullini2, Francesco Conti1, Michael Gautschi2,
Frank K. Gürkaynak2, Florian Glaser2, Stefan Mach2, Giovanni Rovere2, Igor Loi1

Davide Schiavone2, Germain Haugou2, Manuele Rusci1, Alessandro Capotondi1,
Giuseppe Tagliavini1, Daniele Palossi2, Andrea Marongiu1,2, Fabio Montagna1,
Simone Benatti1, Eric Flamand2, Fabian Schuiki2, Andreas Kurth2, Luca Benini1,2

2Integrated Systems Laboratory

1Department of Electrical, Electronic

and Information Engineering

Questions?
www.pulp-platform.org

