

PUMPSET MANUAL MV150iC

Sykes Group Pty Ltd

Customer: Reference: WC

TABLE OF CONTENTS

1.			INTRODUCTION
2.			CUSTOMER SPECIFICATION
3.			TECHNICAL DATA SHEET
4.			HOW TO READ A PERFORMANCE CURVE
	4.1		Example Sykes' CP150 Pump Curve
	4.2		Generalisations
	4.3		Radial Thrust
	4.4		Cavitation
5.			RISK ASSESSMENT GUIDE
6.			RISK ASSESSMENT – MV150i
7.			AS2417-2001 GRADE 2 ACCEPTANCE TEST
8.			SITE COMMISIONING PROCEDURE
	8.1		Delivery Inspection
	8.2		Installation & Setup
	8.3		Suction Hose Setup
	8.4		Discharge Hose / Pipe Setup
	8.5		Pre-Start Checks
	8.6		Starting Procedure
9.			AUTOMATIC PRIMING NRV FUNCTION
10.			PUMP OPERATING INSTRUCTIONS
	10.1		Description of Pump Unit
	10.2		Procedure Prior to Pump Start Up
	10.3		Failure to Prime Pump
		10.3.1	Air Leaks
	10.4		Pump Dynamic Test
	10.5		Ejector Test
		10.5.1	Dri-Prime Ejector Pack Assembly

11.			PUMP MAINTENANCE INSTRUCTIONS
	11.1		Pump Maintenance Schedule
	11.2		General Pump Inspection Procedure
	11.3		Pump Assembly Instructions
		11.2.1	Pump Bearing Engine Adaptor
		11.2.2	Centrifugal Pump
		11.2.3	Ejector Package
		11.2.4	Mechanical Seal
		11.2.5	Non Return Valve Inspection Procedure
		11.2.6	Engine Pump Coupling
	11.3		Air Compressor
		11.3.1	Preface
		11.3.2	General Description
		11.3.3	Performance Chart
		11.3.4	Internal Detail of Compressor
		11.3.5	Parts List
		11.3.6	Operation
		11.3.7	Accessories
		11.3.8	Piping
		11.3.9	Installation Dimensions
		11.3.10	Maintenance
		11.3.11	Fitting Instructions – Compressor Assembly
		11.3.12	Compressor Belt Replacement
12.			PUMP DIAGNOSTICS
	12.1		Trouble Shooting Guide
13.			PUMP UNIT SUB-ASSEMBLY
14.			PARTS LIST
	14.1		Recommended MV150i Pump Spare Parts
	14.2		Front Cover and Volute Parts List
	14.3		Bearing Bracket and Shaft Parts List
	14.4		Ejector Package Parts List

	14.5	Compressor Parts List
	14.6	Reflux Box Non return Valve Parts List
	14.7	Engine Coupling Parts List
	14.8	Chassis Accessories
15.		PUMP UNIT ACCESSORIES
16.		DIESEL ENGINE MANUAL (if applicable)
17.		ELECTRIC MOTOR MANUAL (if applicable)
18.		WARRANTY CLAIM PROCEDURE
19.		MISCELLANEOUS ENGINEERING INFORMATION
	19.1	Main Factors Affecting Pump Suction Lift
	19.2	Pump Suction Pipe Velocity
	19.3	Total Dynamic Head Explanation Diagram
	19.4	pH Compatibility Chart
	19.5	Jet & Nozzle Information

1 INTRODUCTION

Congratulations on the purchase of your new Sykes Pump.

With Sykes' established quality control systems you can be assured your pump was manufactured with a high level of control and has undergone extensive testing on Sykes' certified test facility.

Sykes are pleased to offer a 12 month warranty on your new pump. As with all warranties, Sykes' warranty is subject to regular maintenance as per the pump manual. To ensure your warranty is maintained, make sure your pump is regularly serviced. Sykes offer maintenance and repairs on our entire range and are able to offer regular service agreements if required.

Sykes provide local service through a highly trained network of branches and are able to meet your service and spare parts requirements around the clock. For spare parts or service enquiries contact Sykes spare parts direct on 1800 131 950. Turnaround on parts is rapid with Sykes customer service ready to meet your needs 24 hours a day with spare parts located at branches Australia wide and around the globe.

Sykes also offer onsite application assistance and training to ensure your pump is running at its optimum performance. Our Sykes trained staff will assess your application and help to set up optimum operating settings which will help to reduce unnecessary wear and tear on the pump whilst ensuring the pump is operating at its most efficient duty point.

Should you have any after sales issues, please do not hesitate to contact your local Sykes branch or contact Sykes' After Sales Service on 02 4954 3333.

2 CUSTOMER SPECIFICATION

General Unit Information

Customer Sykes Job Number Sykes Serial Number Plant Number

Pump Information

Pump Type Pump Size Pumpend Serial Number Impeller Diameter

Engine Information

Engine Make Engine Serial Number Tacho Serial Number

Electric Motor Information

Motor Make Motor Serial Number

Chassis Information

Dry Weight Wet Weight Fuel Capacity

Trailer Information

VIN Number Tyre Type Axle Set Up WO23443 10MV150iC23443 -

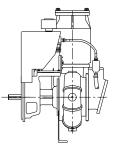
MV150iC 150mm x 150mm 0922542-3 Ø255mm

Deutz F3L912 08825109

-

-

1450 KG 1520 KG 80 LTRS


-

_

6T9T26V9780EXJ003

TECHNICAL DATA SHEET 3

MV150iC Olympic Diesel Drive Compressor Prime Pump

MATERIALS OF CONSTRUCTION SG Iron AS1831 Grade 400/12

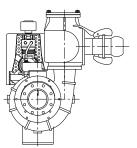
Pump Casing:

Suction Cover:

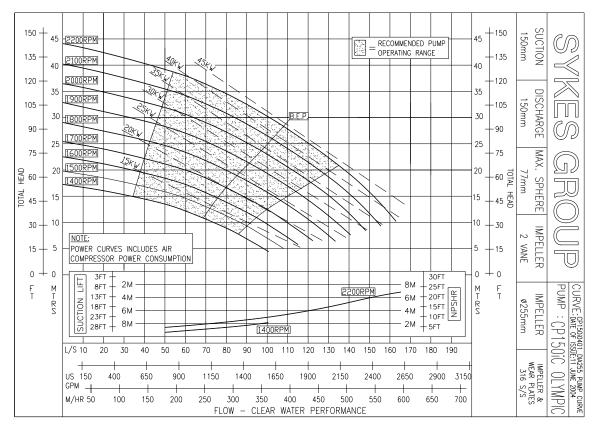
SG Iron AS1831 Grade 400/12

Tee Piece: **Bearing Bracket:** Pump Shaft: Impeller: Wear Plates: Air Injector: Mechanical Seal: Non Return Valve **Compressor Pulley:** Drive Pulley: **Belt Section: Compressor Details:** SG Iron AS1831 Grade 400/12 SG Iron AS1831 Grade 400/12 431 Stainless Steel 316 Stainless Steel 316 Stainless Steel 316 Stainless Steel Silicon Carbide / Silicon Carbide 150mm Flapper or Ball Style NRV Tooth Belt 1/2" Heavy Pitch - 36H150 Tooth Belt 1/2" Heavy Pitch - 28H150 Timing Belt - 390H150 Bendix 2W 440 R Twin-in-line cylinders 75mm x 50mm stroke, air cooled 15cfm (410L/min) at 1000rpm Lubrication from engine oil system.

23-0568-2016 Jet: Nozzle: 23-0571-2016


DESIGN DETAILS

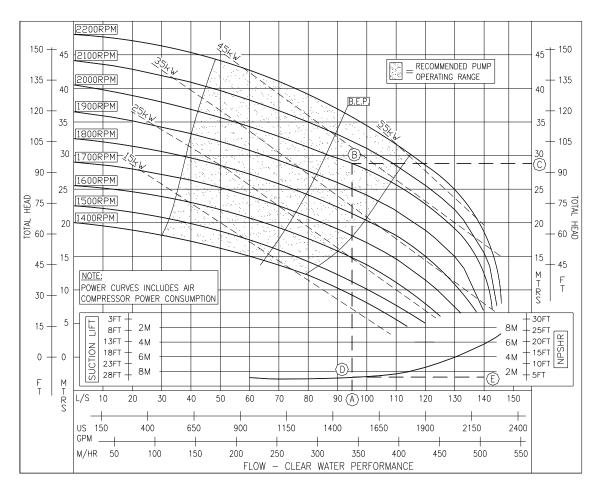
Pump Designation:


Pump Description:

Suction Flange: **Delivery Flange:** Nominal Casing Thickness: Nominal Shaft Diameter: Impeller Eye Diameter: Maximum Impeller O.D.: Minimum Impeller O.D.: Solids Handling Size: **Operating Speed:** Maximum Head: Maximum Capacity: **Bearing Sizes:**

Bearing Lubrication:

MV150i Olympic Centrifugal Single Stage, Volute Type, 2 Bladed Fully Open Impeller. 150mm Table 'D' 150mm Slotted Table 'D' or 'E' 16mm 40mm 161mm 255mm 255mm 77mm MIN: 1400rpm MAX: 2200rpm 44m 162l/s Drive End: 33111Q Tapered Roller Pump End: 33111Q Tapered Roller Grease Lubrication Multi Lube Lithium Grease EP Additives NLGI #2 or Equivalent



Sykes Group Pty Ltd

Spare Parts & Service 24 hours: 1800 131950 Website: www.sykesgroup.com

Ejector Details:

4 HOW TO READ A PERFORMANCE CURVE

4.1 Example Sykes' CP150 Pump Curve

The lines sloping downwards from left to right represent the varying quantities of liquid delivered by the pump with variations in head. The intersection of this line at 2000rpm with the zero flow line shows the shut off head (41m) of pressure developed by the pump.

Total Dynamic Head (m) = Static Suction lift (m) + Static Discharge Head (m) + Friction Head (m)

Where:

Static Suction Lift:	Difference in elevation between liquid level of the suction and the centre line of the pump.
Static Discharge Head:	Difference in elevation between liquid levels of the
	centre line of the pump and the discharge.
Friction Head:	Equivalent head necessary to overcome friction on the interior surfaces of the pipework system including all valves, bends and fittings.

Duty Point: A pump operating at 951/s at 29m (Total Dynamic Head).

- 1) Draw a line upwards from Flow (x-axis) at 95I/s (point A).
- 2) Draw a line across from Total Head (y-axis) at 29m (point C)
- Where the vertical line of 95l/s intersects the horizontal line of 29m (point B) determines the pump rpm speed and power required at this duty.
- 4) ∴ Pump Speed Curve = **2000rpm**.
- 5) ∴ Power Requirement = **45kW** to run the whole of the 2000rpm curve.
- 6) To obtain NPSHR (Net Positive Suction Head Required), draw a line across from where the vertical line of the 95l/s intersects the NPSHR curve (point D).
- 7) \therefore NPSHR = **1.1m** (point E).
- 8) Dynamic Suction Lift Available (DSLA)

DSLA = Atmosphere (m) – Velocity Head (allow 1m) – NPSHR (m)

= 10.3m – 1m –1.1m

= **8.2**m

To determine the actual dynamic lift of pump, it is recommended to fit a vacuum gauge on the suction side of the pump to obtain a vacuum reading. The vacuum gauge, for this example, should read no more than 80.4kPa (8.2m). If the vacuum gauge reading is greater than 80.4kPa then the pump will experience cavitation.

<u>Note:</u>

To ensure minimal losses to the total suction lift:

- Keep suction pipes as short and straight as possible.
- Eliminate all possibility of air pockets being trapped in suction pipework.
- When choosing foot valves, strainers, bends etc, select those, which will provide minimal restriction to the flow.
- The diameter of the suction pipe should be equal in diameter to the pump inlet connection.
- It is recommended to fit eccentric reducer in conjunction with pipe diameters larger than the pump inlet to avoid the possibility of air pockets in the suction pipework.

4.2 Generalisations

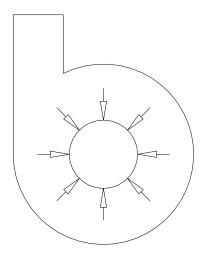
- (1) Flow (I/s) decreases, as Total Head (m) increases.
- (2) Flow (I/s) increases, Power used increases.

It is **not** recommended to operate the pump outside the recommended pump operating range. To operate outside this area will lead to cavitation, vibration and non-uniform radial forces present in the pump. This drastically reduces the operating life of the mechanical seal, bearings and efficiency of the pump. In addition, the pump alignment will also be adversely effected due to excessive vibration. All this will result in an increase of maintenance cost of the pump.

4.3 Radial Thrust

When a pump is operated at its best efficiency flow rate the velocities and hence the pressures acting on the impeller are uniform around the volute. This is shown in *Figure* – A.

At flow rates other than best efficiency point, the pressure distribution is no longer uniform. At reduced flow rates, the pressures increase spirally towards the cutwater resulting in a radial reaction F as shown *Figure – B*.


This will lead to the following operating problems:

- Low efficiency of pump.
- Noise vibration, reduced life of pump.
- Increased radial loads on bearings due to unbalanced volute pressures.
- Temperature rise due to dissipated energy created by low efficiency.

A similar situation exists at flow rates beyond best efficiency flow rates, with an approximate opposite (in direction) reaction.

This also will lead to similar problems associated with the reduced flow rates with an addition of poor suction performance (high NPSHR).

Figure – C shows typical variation of radial thrust with flow rate.

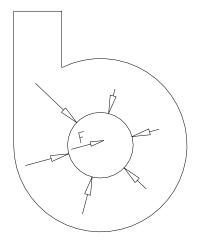


Figure A – 100% Best Efficiency Flow

Figure B – Reduced Flow

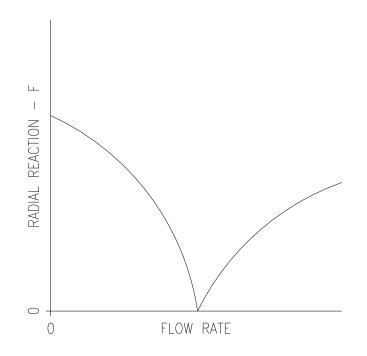


Figure C – Radial Thrust

4.4 Cavitation

If the Net Positive Head Available of the pump is less than the Net Positive Head Required, the pumpend liquid will vaporize in the region of the impeller eye i.e. where the local pressure is less then the vapour pressure.

In this region, the fluid will consist of a liquid plus vapour cavities. This can, in the extreme, result in the formation of a vapour lock and the prevention of the fluid entering the impeller.

This phenomenon is called 'cavitation'. The cavitation cycle comprises therefore of two phase changes; one from liquid to vapour during the initiation and the other from vapour back to liquid during cavity collapse.

Cavitation may be caused by excessive suction lift, insufficient NPSHA or operation at too high a speed. The resulting effects include:

- (1) Pitting of material surfaces due to the continual hammering action of the collapsing vapour cavities.
- (2) Significant reduction of performance due to vapour formation.
- (3) The crackling noise (like gravel going through the pump) caused by vapour cavity collapse.

Severe cavitation usually results in excessive noise, vibration and damage to pump, whereas mild cavitation may produce nothing more than a small reduction in pump efficiency and moderate wear of pump components.

5 RISK ASSESSMENT GUIDE

The following RISK CLASSIFICATION table should be used to assess the degree of risk presented by hazardous situations identified when carrying out the assessment.

Consider:				
Electrical	Thermal	Noise	Mechanical	Gravity
Pressure	Chemical	Radiant	Biochemical	

The numbers indicate how important it is to do something.

```
1 = Top priority – do something immediately
```

6 = Low priority – do something when possible

The table does not provide for control actions to be taken to minimise the risk and it is very important that these are documented, along with time frame and responsibilities.

How severely	How likely is it to happen?							
could it hurt someone or how ill could it make someone	(A) VERY LIKELY could happen any time	(B) LIKELY could happen sometime	(C) UNLIKELY could happen but very rarely	(D) VERY UNLIKELY could happen but probably never will				
(1) Kill or cause permanent disability or ill health	1	1	2	3				
(2) Long term illness or serious injury	1	2	3	4				
(3) Medical attention and several days off work	2	3	4	5				
(4) First aid needed	3	4	5	6				

6 RISK ASSESSMENT – MV150i

No.	Activity	Hazard & Type of Injury Risk	Likelihood	Consequence	Risk Rating	Eliminate / Reduce / Control the risk by
1	Lifting of Pumpset by single point lifting frame	Excessive lateral movement of unit - crushing	В	1	1	 Only qualified personnel to use lifting equipment Hoisting acceleration should not exceed 0.4m/sec² Ensure lifting equipment is in good condition Keep all personnel away from Pumpset when it is suspended Do not lift Pumpset by any other method than the central lifting eye Do not lift in extreme weather conditions Stop & think Correct PPE
2	Setting up the Pumpset	Slips, trips, strain, sprains and pinch points	В	3	3	 Wear correct PPE Stop and think Inspect area to ensure safe working conditions Set up on level ground Communicate with personnel located/working in vicinity of Pumpset Clean up any spillages causing trip hazards Do not operate Pumpset in known unsafe conditions Do not use Pumpset in any classification of hazardous environment unless it has been specifically designed to do so Do not operate within a confined space
3	Operation of Pumpset	Excessive Noise – hearing loss	В	2	2	 Wear hearing protection at all times when working or operating around the Pumpset Stop & think

No.	Activity	Hazard & Type of Injury Risk	Likelihood	Consequence	Risk Rating	Eliminate / Reduce / Control the risk by
	Operation of Pumpset	Boom movement (Suction Hose Boom) – pinch points & crushing	В	2	2	 Wear correct PPE Stop & think Do not operate Pumpset in known unsafe conditions Do not use Pumpset in any classification of hazardous environment unless it has been specifically designed to do so Do not operate within a confined space Keep all personnel away from Pumpset when boom is tilted, raised or lowered Do not move Pumpset whilst operating the boom Ensure boom lifting equipment is in good condition Do not operate Boom in known unsafe conditions Communicate with personnel located/working in vicinity of Pumpset
	Operation of Pumpset	Running engine & Pump Unit – moving parts, hot pump parts, hot exhaust and manifolds on engine – possible burns, pinch points, cuts and abrasions	В	3	3	 Wear correct PPE Stop & think Educate employees of burn hazards on engines Keep access door on enclosures closed and locked when not required to be open Ensure that the engine is operated only from the control panel or from the operator's position by one person only Keep hands, arms, long hair, loose clothing and jewelry away from pulleys, belts and other moving parts Do not remove any safety guards or panel

No.	Activity	Hazard & Type of Injury Risk	Likelihood	Consequence	Risk Rating	Eliminate / Reduce / Control the risk by
	Operation of Pumpset	Hydraulic, fuel, grease, oil, radiator coolant, water pressure, movement of pump water hose and battery electrolyte leaks – environmental pollution, poisoning, burns & skin irritation	В	3	3	 Stop & think Wear correct PPE Check all hoses for cracks and leaks Check that all covers and caps are secure on alternator, cooling fan/radiator, engine & fuel tank Ensure spillages are contained MSDS available for all items used in Pumpset Educate employees of burn hazards
	Operation of Pumpset	Possible electrocution – electric shock and burns	В	1	1	 Wear correct PPE Stop & think Only Authorised Personnel to work on electrical equipment Check all conduits for splits, bare wires or unsecured conduit fitting prior to operation of Pumpset Check all circuit breaker boards are secure and sealed Check all guards covering electrical section are secured correctly Do not attempt to connect or disconnect load while standing in water or on wet or soggy ground Ensure all electrical power is isolated from electrical equipment being serviced Keep all electrical equipment clean and dry Keep terminals clean and tight Test earth leakage equipment regularly Ensure correct fire extinguisher is available

No.	Activity	Hazard & Type of Injury Risk	Likelihood	Consequence	Risk Rating	Eliminate / Reduce / Control the risk by
	Operation of Pumpset	Possible fire and explosion – burns, bodily injuries and possible death	В	1	1	 Wear correct PPE Stop & think Ensure correct fire extinguisher is available Do not refill the fuel tank while engine is running Never store oily rags in metal covered containers Do not smoke or allow sparks, flames or other sources of ignition around fuel or batteries To avoid arcing keep grounded conductive objects, such as tools, away from exposed live electrical parts, such as terminals Do not operate the Pumpset system with any known leaks in the fuel system Open exhaust system drain plugs after repeated failed start attempts
4	Maintenance - Battery charging	Possible explosion – burns and bodily injuries	В	1	1	 Wear correct PPE Stop & think Correctly isolate equipment Do not smoke or allow sparks, flames or other sources of ignition around batteries To avoid arcing keep grounded conductive objects, such as tools, away from exposed live electrical parts, such as terminals When disconnecting battery disconnect the negative battery terminal first When reconnecting battery connect the negative battery terminal last Ensure adequate ventilation Turn off power or disconnect the power to the battery charger before making or breaking connections with the battery

No.	Activity	Hazard & Type of Injury Risk	Likelihood	Consequence	Risk Rating	Eliminate / Reduce / Control the risk by
	Maintenance - Electrical	Possible electrocution – electric shock and burns	В	1	1	 Wear correct PPE Stop & think Correctly isolate equipment Only Authorised Personnel to work on electrical equipment Do not attempt to connect or disconnect load while standing in water or on wet or soggy ground Ensure all electrical power is isolated from electrical equipment being serviced Keep all electrical equipment clean and dry Keep terminals clean and tight Test earth leakage equipment regularly Ensure correct fire extinguisher is available
	Maintenance – refilling fuel tank	Fuel leaks – environmental pollution, poisoning, burns & skin irritation	В	3	3	 Stop & think Wear correct PPE Correctly isolate equipment Check all hoses and fittings for cracks and leaks Ensure spillages are contained MSDS available for fuel used in lighting tower Educate employees of burn hazards

No.	Activity	Hazard & Type of Injury Risk	Likelihood	Consequence	Risk Rating	Eliminate / Reduce / Control the risk by
	Maintenance - mechanical	Engine, hydraulic pump and centrifugal pumpend maintenance – explosion, burns, pinch points, skin irritation	В	2	2	 Stop & think Wear correct PPE Correctly isolate equipment MSDS available for items used in Pumpset Ensure spillages are contained Check all hoses and fittings for cracks and leaks Correctly de-energise hydraulic system Ensure guarding is in place and secure after maintenance is finished Do not remove the radiator filler cap until the coolant has cooled. Then loosen the cap slowly to relieve any excess pressure before removing the cap completely Educate employees on hazards of hot coolant and oil under pressure Educate employees of burn hazards Ensure correct fire extinguisher is available

7 AS2417-2001 GRADE 2 ACCEPTANCE TEST

Sykes Group tests all their manufactured pumps to meet AS2417-2001 Grade 2 standard. This standard outlines the acceptable performance parameters whilst testing / collecting pump hydraulic performance data.

Please note that all performance test equipment at Sykes Head Office testing facility is certified to meet relevant standards.

Pump Test performed to meet AS2417 – 2001 (ISO 9906: 1999 (E)) Rotodynamic pumps – Hydraulic performance acceptance tests – Grade 2.

Permissible amplitude of fluctuations as a percentage of mean value of quantity

being measuredFlow Rate±6%Pump Total Head±6%Speed of Rotation±2%

Permissible values of overall measurement uncertainties

Flow Rate	±3.5%
Pump Total Head	±5.5%
Speed of Rotation	±2%

Values of tolerance factors

Because of manufacturing uncertainties during completion, geometrical deviations from the drawings are given at every pump. Tolerances shall be allowed, including the possible deviations in operating dates between the tested pump and a pump without any manufacturing uncertainties.

Flow Rate±8%Pump Total Head±5%Pump Efficiency-5%

NPSH3

NPSH required for a drop of 3% of the total head of the first stage of the pump as a standard base for use in performance curves.

<u>NPSHR</u>

Minimum NPSH given by the manufacturer for a pump achieving a specified performance at a specified flow rate, speed and pumped liquid (occurrence of visible cavitation, increase of noise and vibration due to cavitation, beginning of head or efficiency drop, head or efficiency drop of a give amount, limitation of cavitation erosion).

Tolerance factor for NPSHR

The maximum permissible value of the difference between measured and guaranteed NPSHR;

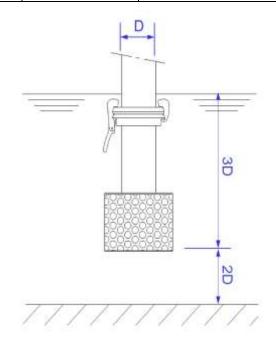
Grade 2: NSPHR = +6% or NPSHR = +0.3m (whichever is greater)

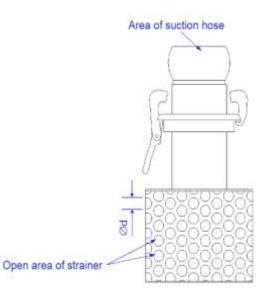
8 SITE COMMISIONING PROCEDURE

Customer Name:	
Customer Representative:	
Sykes Representative:	
Pump Type:	
Pump Serial Number:	
Date of Commissioning:	
Form:	WP-04
Revision:	3
Date Issued:	28 September 2004
Commission Completed Satisfactory:	YES NO
Customer Representative Sign:	
Sykes Representative Sign:	
Date:	

8.1 Delivery Inspection

				Satisfa	actory
				Yes	No
A	A Pump and associated equipment has been supplied in full and in operational condition				
Def	fects	Action Taken	Comments	Da	te

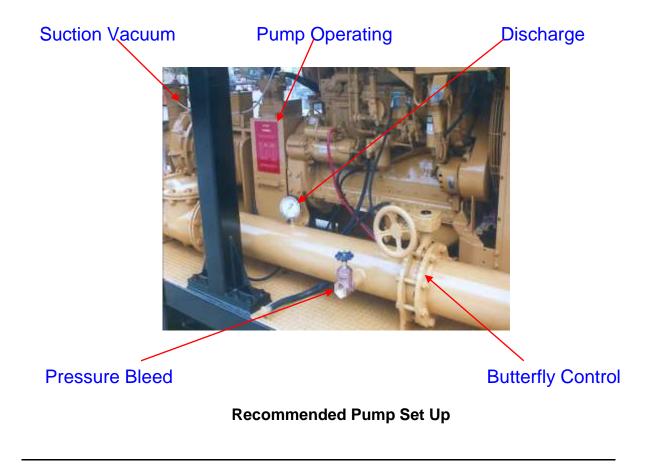

8.2 Installation and Set Up


8.2.1 <u>General Set Up</u>

				Satisfa	actory		
				Yes	No		
Α	Ensure pumpse	et is suitable selected to n	natch required duty				
В	Pumpset is leve	el and on firm ground					
С	Pumpset and a vehicles	ssociated equipment is a	ccessible by service				
D	Site risk assess	ment has been carried o	ut				
Def	fects	Action Taken	Comments	Da	ite		

8.3 Suction Hose Set Up

				Satisfa	actory		
				Yes	No		
А	Hose is non collapsible type, free of kinks and internal						
	blockages						
В	Hose size at least to be equal or larger than pump inlet size						
С		be short and straight	•				
D		directly to pump inlet					
Е	•	• •	.e. no possibility of trapped	1			
	air in suction ho						
F	No excessive st						
G		ze to be less than pu	mp solids handling				
	capability						
Н			and clogging due to silt /				
		oor of tank / pond / d					
I	Strainer open a suction hose	rea to be at least fou	r times the area of the				
J	No foot valve in	suction hose set up,	, please contact Sykes for				
	assistance.	-					
Def	efects Action Taken Comments				ite		



Recommended Suction Strainer Set Up

8.4 Discharge Hose / Pipe Set Up

				Satisfa	actory
				Yes	No
Α	Hose diameter	er as pump outlet			
В	Correctly rated gearbox butterfl	discharge hose and fitting ly valves etc)	gs (non return valves,		
С	Control valve ha	as fine adjustment capab nditions	ilities and is designed		
D Pressure gauge fitted in discharge pipe work as close as possible to pump outlet					
E Suitable rated pressure bleed valve					
F Free from air leaks, kinks and internal blockages					
G	Discharge hose	straight and short as pos	ssible		
Def	Defects Action Taken Comments				te

8.5 Pre-Start Checks

0.0	Pre-Start Check			Satisfa	actory
				Yes	No
А	A Operator familiar with pumpset stop / start operating procedures				
В		evel of all lubricants, cool o motor / pump manuals	•		
С	All moving parts	s and rotating parts are ad	dequately guarded		
D	Discharge isolation and pump operation	tion control valves are ful ating stages	y open for initial prime		
Е	If unit is belt driv	ve check for belt alignmer	nt and tension		
F	If drive is an electric motor direction of rotation shall be checked prior to start up. It is recommended that the pump / electric motor coupling be disconnected for this check.				
Def	iects	Action Taken	Comments	Da	te

8.6 Starting Procedure

				Satisfa	actory		
				Yes	No		
А	on initial start up	< and inspect for undue noise, vibration and misalignment tial start up					
В	of all gauges. Si priming process	For diesel drive, start engine at idle speed and check operation of all gauges. Slowly increase engine speed during pump priming process					
С	required pump of	rimed, increase and set duty. The setting of a cor ary to meet minimum ope	ntrol discharge valve				
D	speed a dischar	hat is driven by an electr ge control valve may be erate within the pump's re	required to regulate				
E	Monitor pumpset for a period of time. Operator should observe and monitor; - bearing temperatures						
Def	ects	Action Taken	Comments	Da	te		

9 AUTOMATIC PRIMING NRV FUNCTION

Sykes Automatic Self Priming Pump are supplied complete with discharge check valves as a part of the pump priming system.

The primary function of the check valve is for sealing the discharge side of the pump during the automatic priming process.

Whilst this check valve is rated for maximum pump performance it is not intended to be used as the discharge system non return valve.

Sykes recommend that a suitable system non return valve be installed as part of the discharge pipe work.

10 PUMP OPERATING INSTRUCTIONS

10.1 Description of Pump Unit

The pump is basically a simple end suction pump which has a completely automatic priming system built into the design. This enables the pump to selfprime from a completely dry condition even with a long suction line. No liquid of any nature is required to prime the pump and therefore in temporary dry trench conditions the pump will 'snore' until such time as liquid is available.

It can handle unscreened sewage, trade effluents, thick slurries and solids up to a normal limitation of 77mm.

The impeller is fully open two bladed, 316 Stainless Steel construction, with shaft of 431 stainless steel.

The pump body is SG iron construction fitted with Stainless Steel wear plates secured by high tensile steel screws.

The mechanical seal is fitted externally to the pump in its own self-contained oil. It is leak tight and suitable for sewage and sludges; using silicon carbide faces. Pump out vanes on the impeller ensure the seal is lightly loaded and not contaminated by the main solid content.

The pump unit is supported off a SAE 4 engine flange through a heavy-duty SG iron adaptor bracket.

Guards are fitted as standard to all moving parts.

Suction flange 150mm Table 'D'.

Delivery flange slotted 150mm Table 'D' & 'E'.

<u>Note</u>

If your MV150i pumpset has been mounted on a trailer chassis, it is recommended that after approximately 5 km of travel that all wheel nuts be inspected and retightened.

10.2 Procedure Prior to Pump Start Up

The pump should be placed on a level area of ground.

In order to put the pump to work the following procedure should be undertaken.

- 1. Ensure that the pump turns freely.
- 2. Ensure bearings are adequately lubricated.
- 3. Check pump runs without excessive noise, heat or vibration.
- 4. Position hoses to avoid unnecessary stress. Sharp bends should be eliminated and protective measures taken where hoses are exposed to abrasive surfaces. Collapsible type hoses <u>MUST NOT</u> be used on the suction side of the pump.
- 5. For diesel prime movers:-Check engine fuel supply level and top up if necessary. (The fuel tank is built into the chassis).
- 6. Check engine oil level on dipstick and top up with recommended oil if necessary.

The pump will prime automatically once the suction hose intake is submerged.

<u>Note</u>

For engine starting instructions or starting difficulties, refer to the manufacturer's handbook.

10.3 Failure to Prime Pump

10.3.1 <u>Air Leaks</u>

To test for air leaks, disconnect suction hose from pump and blank off suction entry. If the vacuum gauge registers a satisfactory reading, i.e. 9.14 metres, the leak will be in the suction hose. Re-couple hose to pump; remove intake and blank-off entry to hose. It should then be possible to locate leak. If the air leak is in the pump:-

- a) Check that all drain plugs are screwed tightly in position
- b) Remove NRV Inspection cover and make sure that the valve is seating correctly.

10.4 Pump Dynamic Test

- 1. Before starting the engine, check that the shaft, pulleys and belt are free to rotate with the guards in position.
- 2. Start pump and run completely dry for a minimum period of 10 minutes (initial run up speed at 900rpm increasing during test to 1100rpm). During this period, generally check and observe for any unusual vibrations, overheating, fuel, oil or air leaks.
- 3. These faults must be rectified immediately to prevent a possible engine seizure.
- 4. After the dry running period, check that the pump unit will raise a minimum vacuum of 0.81bar (24 inches mercury).

Special Note

Consult engine manufacturers handbook for oil, fuel, speed control and stop details.

10.5 Ejector Test

10.5.1 Dri-Prime Ejector Pack Assembly

- 1. Check ejector and jet sizes: *Nozzle:* 23-0571-2016 *Jet:* 23-0568-2016
- 2. Clean the jet and nozzle with paraffin or similar cleaner. On no account should stiff wire be used as this will enlarge the bores.
- 3. Check the nozzle and jet bores for any sharp edges, burrs or rough surfaces. If damaged and no replacement is readily available, smooth and polish as well as possible to original form.
- 4. Alignment of jet and nozzle is important but this is preset by machining tolerances.
- Assemble ejector unit and check performance on test unit. Operation Air Pressure: 40 psi approximately. Minimum Pass Vacuum: 24" Mercury (27.24ft)
- 6. A satisfactory arrangement for carrying out the performance test on the ejector unit is a plate fitted with a vacuum gauge as illustrated.

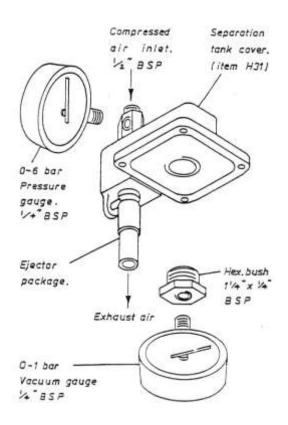
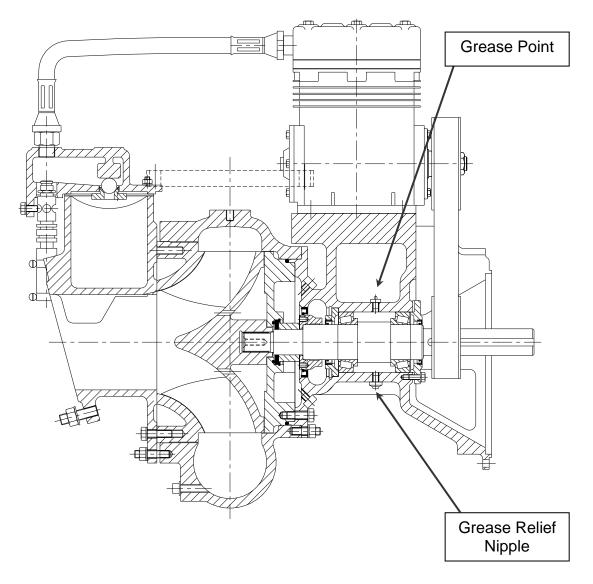


Figure 1 – Ejector Exploded Assembly Drawing


Sykes Group Pty Ltd

11 PUMP MAINTENANCE INSTRUCTIONS

11.1 Pump Maintenance Schedule

		Daily					6,000 hours	As Required
			3 Months	6 months	9 months	12 months	3 years	no nequireu
	Pump end							
1	Check for mechanical seal leaks							
	Change mechanical seal oil	<u> </u>						
	Change mechanical seal Check coupling alignment & condition							
		<u> </u>						
	Change pump coupling rubber/s							
-	Check/Adjust wet end clearances	<u> </u>						
	Change pump wet parts, impeller / wear plates Check bearing temperature							
	Check bearing end float	-						
	Replace pump shaft bearings							
-	Check pump shaft seals	<u> </u>						
	Change pump shaft seals	-						
		_						
	Check impeller for visual blockages Replace volute							
14	incepiace volute		I				1	
<u> </u>	Driming System Compresses							
	Priming System Compressor							
	Change compressor air filter							
	Check compressor air hose							
-	Check/Clean priming tee filter							
	Change priming tee filter							
	Check priming tee ball/seat							
	Change priming tee ball	L						
	Check/clean priming tee jet/nozzle							
	Change priming tee jet/nozzle							
	Check compressor drive belt							
	Replace compressor drive belt							
	Check compressor performance							
12	Change compressor air							
	Ancillaries							
1	Check non return valve							
2	Change non return valve seat/flap							
	Check vacuum gauge							
4	Change vacuum gauge							
5	Check pressure gauge							
6	Change pressure gauge							
7	Check gear box butterfly valve							
8	Change gear box butterfly valve							
	Check all oil, water and air hose's condition	1						
	Check condition of hose coupling o-rings							
	Check for all mounting bolts, skid, chassis							
	Check shut down operations engine and pump							
	All quarding							
	For diesel servicing and panel operational checks.			S	ee relevant	manuals.		•
<u> </u>								
	= Daily Check							
	= Minor Service							
	= Major Service							
	= As Required							
-								
Note	s:							
1		e / nricina n	lease conta	rt Sykee for	assistance			
1'	1 Ancillaries are not included in major service schedule / pricing, please contact Sykes for assistance							
2	Please refer to Service Schedule for detailed parts, service checks and labour information							
 ²	Please refer to Service Schedule for detailed parts, service checks and labour information							
2	3 Follow minor and major schedules outlined in Sykes Service Schedule. Use the service hours or							
3								
1	calendar time, whichever occurs first, in order to det	ermine the n	naintenance	intervals.				
	1 1 1 1 1 1 1 1 1 1	0 -						
4	If the pump is operated in ambient temperatures bel							
1	intervals. Severe services includes the following con	aitions; high	temperature	es, continuo	us high load	s, vibration an	a dusty conditi	ions.
L								

Grease Lubrication Schedule – CP150i

Notes:

- 1. Single point grease point to grease 2 off 33111 bearings
- 2. Single point grease relief nipple
- 3. Grease relief nipple set at 3 5 psi
- 4. Grease Specification: Multi Lube Lithium Grease EP Additives NLGI #2

Operating Conditions	:		
Ambient Temperature	20	0 ⁰	
Humidity / Dust	Mode	rate	
Vibration	Mode	rate	
Load	Mode	rate	
Bearings 33111	(2 off)		Quantity of Grease required at 250 Hour Intervals
Speed	1400	rpm	5.2 grams
Bearing Temperature	44	O⁰	5.2 granis
Speed	1500	rpm	
Bearing Temperature	46	⁰ C	5.2 grams
Speed	1600	rpm	5.6 grams
Bearing Temperature	44	0 ⁰	
Speed	1700	rpm	7.0 gromo
Bearing Temperature	48	rpm ⁰C	7.0 grams
Speed	1800	rpm	
Bearing Temperature	50	⁰ C	8.4 grams
		Ŭ	
Speed	1900	rpm	9.4 grams
Bearing Temperature	52	0 ⁰	o. r grano
Speed	2000	rpm	0.0
Bearing Temperature	54	⁰ C	9.6 grams
Greed	0400		
Speed	2100	rpm ⁰C	10.0 grams
Bearing Temperature	56	ι Γ	
Speed	2200	rpm	10.4 grome
Bearing Temperature	60	⁰ C	10.4 grams

<u>!WARNING!</u>

Use this re-greasing schedule as a guide only. Re-greasing quantities will change due to variances in Operating Conditions.

For re-greasing schedules to suit particular Operating Conditions please contact Sykes for assistance.

Operating Conditions:				
Ambient Temperature	40	⁰ C		
Humidity / Dust	High			
Vibration	High			
Load	Heavy	/		
			Quantity of Grease required at	
Bearings 33111	(2 off)		250 Hour Intervals	
Speed	1400	rpm	10.4 grams	
Bearing Temperature	52	⁰ O ⁰	10.4 grams	
Speed	1500	rpm	10.0	
, Bearing Temperature	54	0 ⁰	16.0 grams	
Speed	1600	rpm		
Bearing Temperature	56	⁰ C	16.8 grams	
Speed	1700	rom		
Bearing Temperature	1700 58	rpm ⁰C	21.2 grams	
* :	00	0		
Speed	1800	rpm	25.4 grams	
Bearing Temperature	60	0 ⁰	2011 9101110	
Speed	1900	rpm		
Bearing Temperature	62	⁰ O	25.8 grams	
Speed	2000	rpm		
Bearing Temperature	64	⁰ C	26.0 grams	
Speed	2100	rnm		
Bearing Temperature	66	rpm ⁰C	26.6 grams	
X <i>i</i>		0		
Speed	2200	rpm	28.0 grams	
Bearing Temperature	70	0 ⁰	20.0 yranis	

<u>!WARNING!</u>

Use this re-greasing schedule as a guide only. Re-greasing quantities will change due to variances in Operating Conditions.

For re-greasing schedules to suit particular Operating Conditions please contact Sykes for assistance.

11.2 General Pump Inspection Procedure

- 1. Drain the water from the pump and the non-return valve.
- 2. Remove the non-return valve and inspect the ball and seat for wear.
- 3. Drain the oil from the engine and the pump.
- 4. Dismantle the pump end completely.
- 5. If the oil seal has scored the collar, it may be pushed in 2mm to seal on an unscored area of the sleeve. Ensure that the oil seal is positioned squarely and that it is less than 8mm from the machined face of the adaptor.
- 6. Worn seal faces may be reclaimed by lapping faces to a surface finish of 3 sodium light bands. Note that the stationary seat was originally lapped both sides and may be reversed in the wearplate.
- 7. Check that the shaft rotates freely and has an end float less than 0.2mm.
- 8. Clean and inspect all components and renew where necessary. Do not use abrasive materials or solutions to clean the ejector assembly. Renew all nitrile seals.
- 9. Reassemble the complete pump end and non-return valve (refer to enclosed Fitting Instructions).
- 10. Drain the fuel tank.
- 11. Detach fuel, oil and air hoses. Clean and ensure that they are not blocked. Test the relief valves (at 3 to 5 psi, and AC78 at 90 to 100 psi).
- 12. Check pulley alignment and belt condition. Check the security of pulleys and flexible couplings.
- 13. Reassemble the complete unit.

11.3 Pump Assembly Instructions

11.3.1 Pump Bearing Engine Adaptor

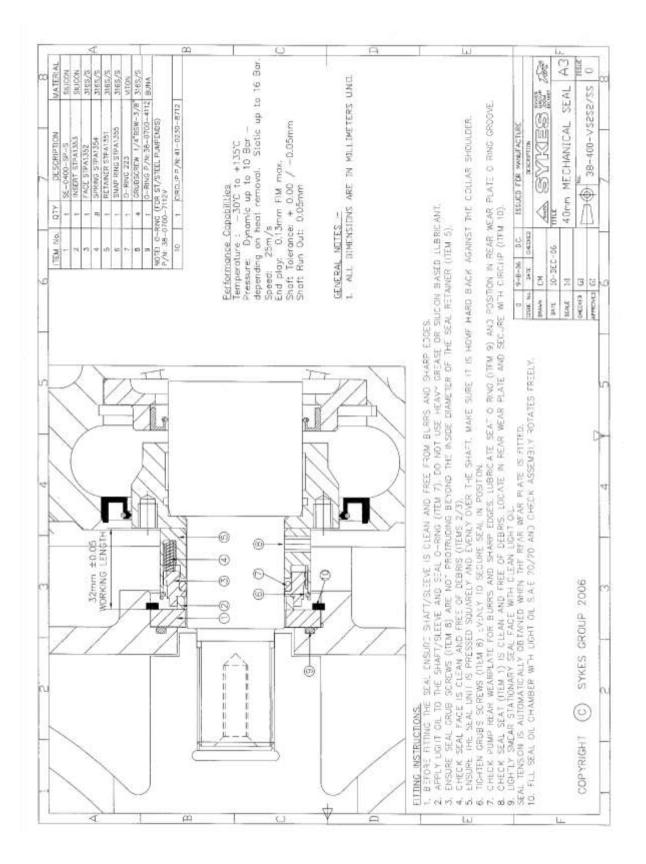
- 1. Ensure all items are free from burrs and rust.
- 2. Clean out all casting sand from the recess in the adaptor.
- 3. Check that all items are clean and free from foreign matter and that the bearings rotate freely.
- 4. Assemble the bearings and press them onto the shaft ensuring that the tapers are correctly orientated.
- 5. Remove the outer race from the pump end bearings and press it 10mm into the adaptor from the pump end.
- 6. Insert the lip seals into the bearing covers, than smear them with grease. Fit cover and press it fully into the adaptor. Secure with circlip.
- 7. Assemble the shaft and bearings into the adaptor.
- 8. Fit the rear bearing cover with fasteners. To ensure alignment, the screws should each be rotated a quarter turn in sequence. When the shaft becomes difficult to rotate, measure the gap between the face of the cover and adaptor, with a feeler gauge. Remove the cover and refit with shims having a total thickness slightly in excess of the gap measurement. Secure the screws and ensure that the shaft rotates freely and has an end float less than 0.2mm.
- Check that the plug has a 1.6 diameter hole and that the relief valve is set to 3-5psi before fitting to adaptor. Fit items grease nipple & 3/8" BSP plug to the adaptor.
- 10. Press the lip seal squarely into the adaptor.
- 11. Fill the bearing housing with 0.2 litres of Shell Alvania RA grease.
- 12. Items set screws, lockwashers & keysteel should be fitted when assembling to the engine.

11.3.2 <u>Centrifugal Pump</u>

- 1. Ensure all items are free from burrs and rust.
- 2. Visually check for porosity and blowholes in the castings and clean out all the casting sand and swarf from the hollow in the separation tank cover.
- 3. Ensure that all items are clean and that the seal faces are free from score or wear marks.
- 4. Fit O-ring to the shaft collar.
- 5. Fit the collar over the shaft and ensure that the lip seal is correctly positioned over it.
- 6. To fit the tight fitting synthetic rubber friction ring in the seal onto the shaft apply light oil or swarfega to the inside diameter of the friction ring and to the outside diameter of the shaft. Do not use heavy grease, silicon or P.T.F.E. based lubricant. Ensure that the seal is hard against the shoulder on the collar and that the spring can be compressed. Locate the seal rotating face into the seal.
- 7. Locate the O-ring and the seal seat, into the rear wearplate. Place the seat into the wearplate and fit the circlip. Ensure that the seat is secure. Apply non-adhesive sealant (e.g. Boss white non-adhesive Hermatite or Locktite hydraulic sealant) to the back face of the wearplate and secure it into the adaptor with fasteners.
- 8. Apply 'Copperslip' to the threads on the shaft. Fit shims having a total thickness of 2mm and the impeller, remove shims, and then refit with shims having a total thickness of 2.5mm minus the gap measurement. Fit the impeller and check that the gap behind it is between 0.3mm and 0.6mm and that the impeller rotates freely.
- 9. Locate the O-ring onto the wearplate.
- 10. Fit studs to the body. The longer studs should be in the lower holes.
- 11. Fit the front wearplate onto the front cover and secure with fasteners.
- 12. Assemble the body onto the adaptor carefully so as not to dislodge the Oring then secure with fasteners.
- 13. Assemble front cover to pump body. Secure tightly using fasteners until the front wearplate and the impeller are just touching. Measure the gap between the mating surface of the pump body and the front cover.

- 14. Joints having a thickness of this gap measurement plus 0.5mm should be fitted between the pump body and front cover. After fitting joints secure the pump body and the front cover with fasteners.
- 15. Check that the gap between the front wear plate and the impeller is between 0.3mm and 0.6mm and the impeller rotates freely.
- 16. Fit fasteners.
- 17. If pump units are to remain unused for a long time all adjacent clearance surfaces should be sprayed with a coating of 'Molyprotectoslip' to prevent rust or seizure.

11.3.3 <u>Ejector Package</u>


- 1. Check that all items are clean and free from burrs. The jet and nozzle should only be cleaned with paraffin or similar cleaner. Wire should not be used as this will enlarge the bores.
- 2. Do not use excessive jointing compound when fitting these items and ensure that it does not enter the bores. This may cause a blockage in the ejector.
- 3. Fit, in their grooves, o-ring onto jet and o-ring onto nozzle.
- 4. Screw by hand, the jet and the nozzle to the collar.
- 5. Release the location screw and insert the assembly into the separation tank cover, than re-tighten the screw so that it locates in the groove on the nozzle.
- 6. Screw the jet sleeve by hand into the separation tank cover. A spanner should only be used for the final quarter turn.
- 7. Place the ball in the separation tank cover, then secure ball seat.
- 8. Fit the separation tank cover to the pump body with gasket filters and fasteners.
- 9. Push the exhaust hose onto the nozzle. Fasten using clamp.
- 10. Push air muffler into the exhaust hose. Fasten using clamp.

11.3.4 <u>Mechanical Seal</u>

- 1. Drain water from pump and non-return valve.
- 2. Drain oil from mechanical seal cavity.
- 3. Remove the front cover, impeller and rear wear plate allowing direct access to the mechanical seal.
- 4. Remove mechanical seal and sleeve assembly, check oil seal has not been damaged or the adjacent sleeve scored.
- 5. Renew where necessary ensuring that oil seal is replaced squarely in it's housing.
- 6. To renew the mechanical seal, remove shaft collar complete with mechanical seal unit. If the mechanical seal unit is in good condition it may only be necessary to remove carbide rotating face from the mechanical seal unit. *Please Note; before fitting a complete new seal assembly ensure that all sharp edges are removed and all working faces are clean and free from any foreign matter.*
- 7. Apply light oil to the shaft / sleeve an o-ring (item 7). *Please note: do not use heavy grease, silicon based or P.T.F.E. lubricant.*
- 8. Ensure grub screws (item 8) are not protruding beyond the inside diameter of the mechanical seal retainer (item 5).
- 9. Check mechanical seal face is clean and free of debris (item 2 & 3).
- 10. Ensure the mechanical seal unit is pressed squarely and evenly over the shaft. Make sure it is home hard against the shaft collar shoulder.
- 11. Tighten grub screws (item 8) evenly to secure mechanical seal in position.
- 12. Check pump rear wear plate for burrs and sharp edges. Lubricate seat o-ring (item 9) and position in rear wear plate o-ring groove.
- 13. Check mechanical seal seat (item 1) is clean and free of debris. Locate in rear wear plate and secure with circlip (item 10).
- 14. Lightly smear stationary mechanical seal face with clean light oil.
- 15. Fit rear wear plate carrying the seal static face using a non-adhesive sealant on rear face of wear plate. Seal tension is automatically obtained when the wear plate and impeller are re-fitted.
- 16. Ensure rear impeller clearance is between 0.50mm and 0.65mm.

17. Fill oil chamber with SAE 20/20 grade of oil and check assembly rotates freely.

18. Rebuild pump casing assembly onto adaptor.

11.3.5 Non Return Valve Inspection Procedure

- 1. Ensure that all items are clean and free from burrs.
- 2. Visually check for porosity and blow holes in the castings and for scores or chaffing of the valve ball and seat.
- 3. Fit studs into the body.
- 4. Fit drain plug and locate the valve seat onto the body.
- 5. Clean the delivery flange on the pump body and secure the valve to it with fasteners.
- 6. Insert ball then fit o-ring and cover with fasteners.

11.3.6 Engine / Pump Coupling

Installation Procedure

1. The outer toothed aluminium ring is bolted (bolt complete with supplied flat washer (refer to **Photo 1**)) to engine flywheel (refer to **Photo 2 & 3**) with tightening torque as per below listed information;

			SBE, SCE, SI olts on flywh		e								
	es: SB, SC, S		•		r	_	r				r		
	SAE		SAE	6½	71/2	8	10	11½	14	16	18	21	24
netrisch	Schrauben	metric	bolts	M 8	M 8	M 10	M 10	M 10	M 12	M 12	M 16	M 16	M 18
3.8	T _{A2} (Nm)	8.8	T _{A2} (Nm)	23	23	46	46	46	79	79	195	195	245
Zoll	Schrauben	Inch	bolts	⁵ / ₁₆ -18	⁵ / ₁₆ -18	³ / ₈ -16	³ / ₈ -16	³ / ₈ -16	1⁄2-13	½-13	⁵ / ₈ -11	⁵ / ₈ -11	34-10
•	T _{A2} (Nm)		T _{A2} (Nm)	25	25	40	40	40	110	110	195	205	375
	(inch-lbs.)		(inch-lbs.)	220	220	360	360	360	960	960	1800	1800	3300

Please note that the bolts must be tightened alternately (diagonal opposites) in several steps until they have all reached the correct tightening torque. Finally the tightening torque of all bolts must be checked all around.

- 2. Measure from engine bell housing to aluminium ring.
- **3.** Install shaft key.
- **4.** Slide driven hub onto shaft.
- 5. Fit vulcanised ring (rubber disc) with cap screws (supplied with coupling (refer to **Photo 4**)) without washers.
- 6. Measure from pump engine adaptor flange to vulcanised ring so that vulcanised ring locates centrally in aluminium ring (refer to **Photo 5 & 6**) when assembled.
- 7. Tighten cap screws slightly.
- 8. Re-check measurement and adjust if necessary.

9. Torque cap screws (refer to Photo 7 & 8);

	ening torc s: SB, SC,		ts on the	inner hub									
Kupplungs Größe	coupling size	120 SB	240 SB	400 SB	800 SB 1200 SB	1600 SB 2400 SB	2600 SC 2800 SC 3500 SC	4000 SC 5000 SC 6000 SC 7000 SC	4000 SD	8000 SC 1000 SC	12000 SC 18000 SC	8000 SD 10000 SD	12000 SI 18000 SI
Schrauben ISO 4762	bolts ISO 4762	M 6x20 8.8	M 8x20 8.8	Konusnabe M 8x20 8.8	M 10x20 8.8	M12x25 8.8	M 16x40 10.9	M 16×40 10.9	M16x55 10.9	M 20x50 10.9	M 20x50 10.9	M 20x80 12.9	M 22x80 10.9
Anzugs- moment T _{A1} (Nm)	tightening torque T _{A1} (Nm)	9,5	23	23	46	79	280	280	280	490	490	700	670
Stückzahl	quantity	6	6	8	8	8	8	12	24	12	24	24	24

Please note that the bolts must be tightened alternately (diagonal opposites) in several steps until they have all reached the correct tightening torque. Finally the tightening torque of all bolts must be checked all around.

- **10.** Re-check measurement.
- **11.** Assemble mating coupling part (pump / engine) ensure that teeth are properly engaged (refer to **Photo 9**).
- **12.** If any issues are encountered during Centamax SB coupling installation contact Supervisor and fill in relevant Quality Action Report.

Photo 1

Photo 2

Photo 3

Photo 4

Photo 5

Photo 6

Photo 7

Photo 8

Photo 9

11.4 Air Compressor

11.4.1 Preface

This manual provides the owner with the necessary instructions to maintain its compressor properly, so that the Customer gets the best service from it. Hence, the owner is requested to go through the contents of the manual & become well acquainted with the instructions herein.

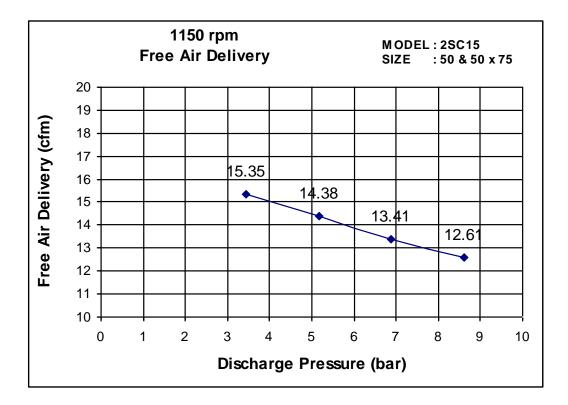
In case any question arises related to the equipment or the manual the customer is requested to contact the aftermarket division of **SYKES GROUP PTY LTD**.

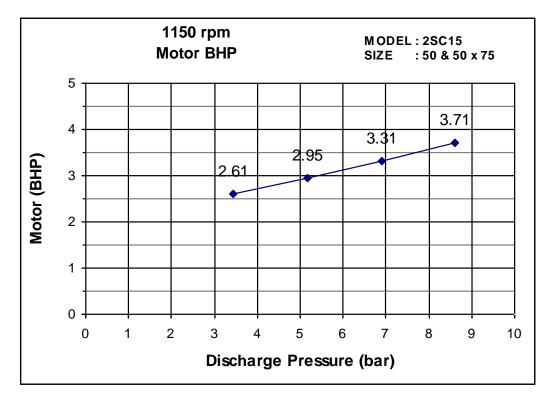
11.4.2 General Description

Application

These compressors are positive displacement type, reciprocating and single acting. The cylinder barrels are air-cooled while the cylinder head is cooled by water circulated from the vehicle engine cooling system.

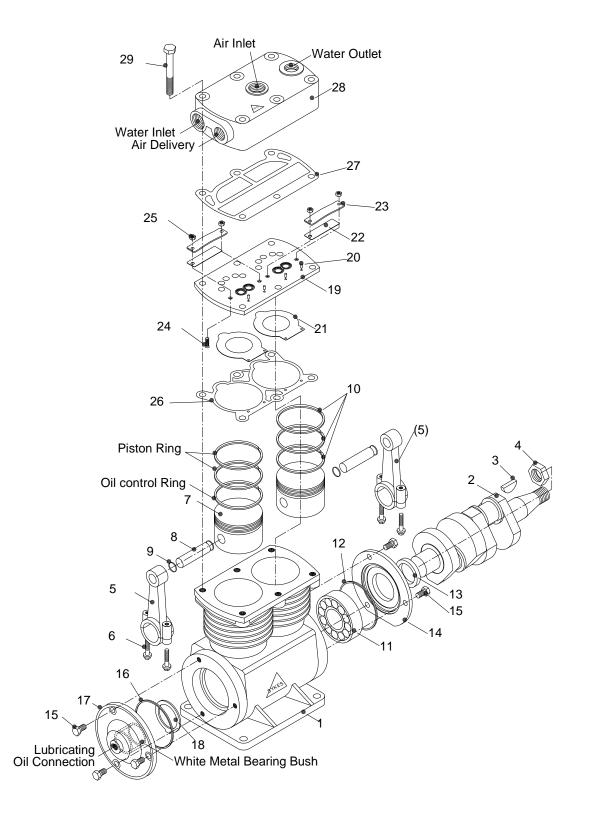
The salient features of these compressors are robust overhung design crankshaft for reliability & easy maintenance, solid end connecting rods, highly thermal efficient interfolding, totally reliable splash lubrication & force feed lubrication for smooth vibration free operation.


Single Stage Compressor


These compressors have cylinders of the same size. The principle of operation is as follows: On the suction stroke of the individual piston, air at atmospheric pressure enters the crankcase/cylinder through the inlet filter and the valve located in airhead. On the compression stroke of the each piston, air is forced out through the valve and passes into a common discharge.

General Specifications

Bore	75 mm
Stroke	50 mm
Swept Volume	37.4 CFM
Maximum Recommended Speed	2400 RPM
Maximum Recommended Delivery Pressure	9bar (130 PSI.)
Operating Temperature Range	-40 [°] C to +80 [°] C
Maximum Continuous delivery Air Temperature	200 ⁰ C
Weight	20 Kg


11.4.3 Performance Chart

Performance Chart @ 1150 rpm Model 2SC15

11.4.4 Internal Detail of Compressor

11.4.5 <u>Parts List</u>

SR. NO.	DESCRIPTION	PART NO.	CCN NO.	QTY
1	CYLINDER/CRANKCASE	IAR 0803	71005001	01
2	CRANK SHAFT	IAH 0804	71005002	01
3	CRANK SHAFT KEY	IAF 0832	74005030	01
4	CRANK SHAFT NUT	IAF 0830	74005028	01
5	CONNECTING ROD	IAH 0805	71005003	02
6	ALEN CAP SCREW (M6 x 32LG)	IAF 0806	74005004	04
7	PISTON (STD)	IAH 0807	71005005	02
8	PISTON PIN	IAF 0808	71005006	02
9	PISTON PIN LOCK RING	IAF 0809	74005007	04
10	PISTON RING SET	IAF 0843	71005043	02 SET
11	BEARING	IAF 0814	74005012	01
12	"O" RING (FRONT)	IAF 0827	75005025	01
13	OIL SEAL	IAF 0816	75005014	01
14	BEARING COVER	IAH 0815	71005013	01
15	HEX BOLT (M8 x 20LG)	IAF 0817	74005015	06
16	"O" RING REAR	IAF 0842	75005042	01
17	BUSHING COVER	IAH 0839	71005039	01
18	THRUST WASHER	IAF 0819	74005017	01
19	SPACER PLATE	IAF 0820	71005018	01
20	DOWEL PIN	IAF 0826	74005024	04
21	INLET FINGER VALVE	IAF 0825	74005023	02
22	DISCHARGE VALVE	IAF 0821	72005019	02
23	VALVE STOPPER	IAF 0822	72005020	02
24	FLAT HEAD SCREW (M5)	IAF 0823	74005021	04
25	NUT (M5)	IAF 0824	74005022	04
26	GASKET SPACER PLATE	IAF 0834	75005032	01
27	AIR HEAD GASKET	IAH 0835	75005033	01
28	AIR HEAD	IAR 0833	71005031	01
29	HEX. BOLT (M10)	IAF 0828	74005026	06

11.4.6 Operation

The following instructions should be used by the operator as a guide for the general operation of the compressor. As the operator gains experience with the compressor under actual conditions, a set routine should be established. After a general overhauling or installation of new parts, the operator should be guided by the instructions as though the compressor was new.

Initial Start:

IMPORTANT

It is very important that the intake piping be clean and properly installed. It is essential that this be done after installation or relocation of the compressor and after a long shutdown or new parts installation

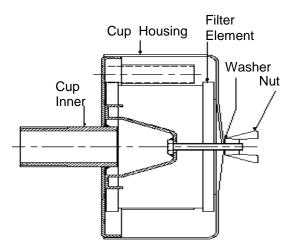
Preparation

When the installation of the compressor has been completed in accordance to the instructions given, carry out the following procedure before starting the machine.

- 1. Clean up the base from vehicle, and remove oil, dirt and dust from the exterior of the compressor.
- 2. Remove the air head and clean out with safety solvent every portion of the interior and the crankcase oil sump to ensure a clean interior, free from dust and dirt, which may have entered during shipping and installation. Never use waste or a linty cloth to clean the interior of the machine.

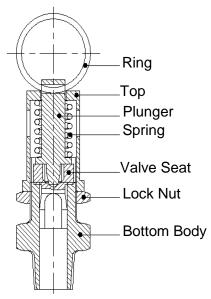
The running and finished parts inside the crankcase are covered with a heavy antirust compound previous to shipment. It is not necessary to remove this coating before starting the compressor, as it is soluble in the pump lubricating oil.

- Fill the crankcase to the proper oil level on the oil sight glass with the recommended grade of crankcase lubricating oil. Pour oil over all the bearings, which can be easily reached through the frame or openings. On lubricated units, fill the cylinder lubricator with the recommended grade of air cylinder lubricating oil.
- 4. Prime the frame lubricating oil pump.
- 5. On lubricated units each cylinder force feed lubricator line must be disconnected at the point where it is attached to the oil inlet side of the check valve. The lubricator feeds must then be operated manually until all the air is forced out of the lines and oil appears. The lines should now be reconnected


and the lubricator given several additional turns to assure proper lubrication of the cylinder as soon as the compressor is started. Once the compressor is started, the oil lines will remain full of oil and require no further attention.

- 6. Drain the air intake pipe of any moisture, which may have accumulated. Be sure that the air intake filter if properly installed and protected.
- 7. Before starting a new compressor be sure you are familiar with the starting and stopping controls, and with the regulation and regulator controlling the load and no-load operation.
- 8. Check the machines thoroughly to be sure there are no loose parts and that the machine has not been tampered with since its erection.
- 9. The compressor lubricating oil is circulated under pressure from the vehicle engine lubricating oil system.

11.4.7 Accessories


Inlet Air Filter

The air that is drawn into a compressor should be free from dust, dirt and abrasive or gritty particles that could damage cylinders, valves & moving parts. It is the purpose of the inlet filter to remove all such particles from the ambient air, in order to safeguard the performance of the compressor and prevent what might otherwise results in high maintenance costs and needless compressor down time. Suction air filters also helps in reducing the noise level of the compressors.

Safety Valve

Provided as a standard accessory on air head. Safety valve is set to open, when the maximum permissible delivery pressure of the compressor is exceeded, thus protecting compressor.

11.4.8 <u>Piping</u>

Discharge piping is considered to be the piping between the compressor and the system.

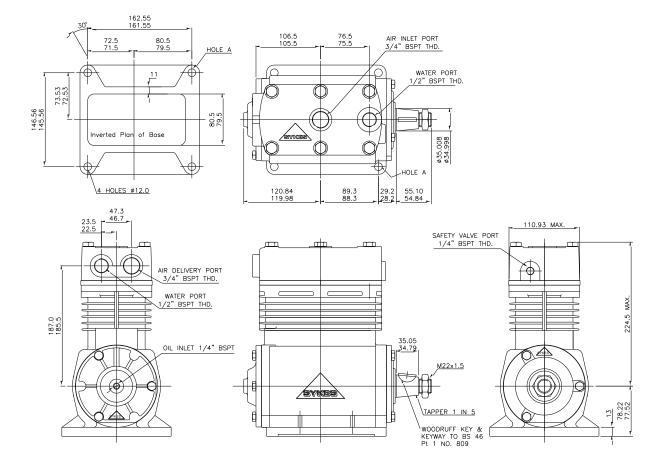
The discharge pipe should be of the full size as of the compressor outlet or larger and it should run directly to the system.

The discharge should be as short and direct as possible with long radius elbows, where bends are necessary.

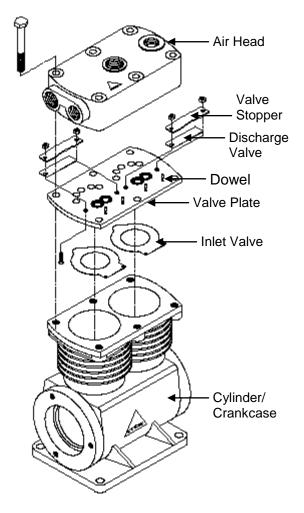
All pipe fittings must be considered for the operating pressure. All pipe joints should be tight and having no leaks in discharge system, leaks will reduce output of the compressor. Leaks are easily located by squirting soap and water solution around all joints and watching for bubbles.

Where a bare compressor is supplied, it is very important to observe the following when installing the piping between the compressor and the system.

1. Never install a shut off valve (such as a gate or globe valve) between the compressor and the system unless a safety valve is put in the piping between the valve and the compressor.


If possible, run the piping down from the compressor discharge to permit condensate to drain into the receiver. If this is not possible, install a "drain leg". The drain leg should project down from the compressor discharge and be at least 10" long (254 mm). Put a drain valve at the end of this pipe and drain at least weekly, or as often as necessary.

The compressor should be mounted where the maximum air flow will pass over it to help in ensuring that the delivered air temperature does not exceed 220°C.


WARNING

DO NOT USE PLASTIC PIPE OR RUBBER HOSE AS DISCHARGE PIPE, AS THEY CAN RESULT IN MECHANICAL FAILURE, PROPERTY DAMAGE & SEVERE INJURY OR DEATH

11.4.9 Installation Dimensions

11.4.10 <u>Maintenance</u>

Valve Maintenance

The valves are efficient, durable, reliable and easily serviced. They are readily accessible and may be removed without disturbing piping.

To clean the valves, remove the airhead bolts and take out the head and valve plate from the cylinder. Remove the valves from the valve plate and clean both the valve and valve plate by brushing with a stiff bristle brush (not wire). If necessary, use a non-flammable safety solvent to loosen dirt, oil or carbon deposits.

Handle the valves with care and be careful not to dent or scratch them. While replacing a valve, make sure it will lie flat against the seating surface surrounding the valve slots; otherwise, the valve will leak, resulting in carbonization and reduced compressor output.

Maintenance

Before working on or around air brake systems and components always observe the following precautions:

- 1) Stop the engine before working on the compressor.
- 2) Keep hands away from actuator push rods and slack adjusters. They may apply as the system pressure drops.
- 3) Never connect or disconnect a hose or line containing air pressure. It may whip as air escapes.
- 4) Never remove a component or pipe plug unless you are certain all system pressure has been depleted.
- 5) Never exceed recommended air pressure.

- 6) Always wear safety glasses when working with air pressure. Never look into air jets or direct them at anyone.
- 7) Never attempt to dismantle a component until you have read and understand recommended procedures.
- 8) Some units contain powerful springs and injury can result if not properly dismantled.
- 9) Use only the correct tools and observe all precautions pertaining to the use of these tools.

At Pump services intervals check the compressor for any leakages of water, oil, or air. If the compressor is slow to build up pressure the cylinder head and valve plate may be removed.

The condition of the valve assemblies and the cylinder bores may then be checked and any excessive build up of carbon removed. Service kits of replaceable items are available on request.

Basic Assembly Procedure

- 1) Place Bearing into the Frame.
- 2) Insert Crank Shaft from the opposite side of the Bearing.
- 3) Enclose with the Bushing Cover & Bearing Cover on both sides.
- 4) Insert the sub assembly of the Piston & Con-Rod on the Crank Shaft from the Upper side of the Body.
- 5) For all bolts adhere to the table below.

00		T	orque	Settin	g	
SR. NO.	DESCRIPTION	N.	. m	Ft.lbs		
NO.		Min	Мах	Min	Мах	
6	Con-Rod Bolts	8.1	9.5	6	7	
15	Side Cover Bolt	16.3	19.0	12	14	
29	Head Cover Bolt	28.5	32.6	21	24	

11.4.11 <u>Fitting Instructions – Compressor Assembly</u>

- 1. Ensure all items are clean and that the hoses are free from foreign matter.
- 2. Do not use excessive jointing compound (eg. Stag, Neolite, Non-Adhesive Hermatite etc) when fitting these items and ensure that it does not enter the bores. This may cause a blockage in the oil or air lines.
- 3. Fit gasket to the compressor position on adaptor and secure with fasteners.
- 4. Secure the compressor pulley to the compressor with the nut and split pin. Remove the taperlock bush from the pump pulley then pass the pulley over the shaft. Ease the belt over the pulleys, and fit the key. Align the pulleys then refit the taperlock bush to the pump pulley and secure it to the shaft.
- 5. Remove and discard four cylinder head screws from the compressor and ensure the compressed air port is located at the opposite end to fan.
- 6. Connect the compressed air hose between the compressor and the jet sleeve.
- 7. Fit the oil pipe fittings to the compressor.
- 8. Connect air intake fittings.
- 9. Secure the guard with screws. Ensure that the belt and pulleys are free to rotate.

11.4.12 <u>Compressor Belt Replacement</u>

Timing Belt Procedure

- 1. Remove pulley guard set screws and pump support nuts and draw pump assembly away from engine flywheel housing
- 2. Remove old belt and taper lock bush from pump pulley.
- 3. Ease replacement belt over pulleys, realign pulleys and refit taper lock bush.
- 4. Check belt tension then refit pump unit onto engine.
- 5. The compressor tooth belt drive has fixed centres so no adjustment is necessary. The normal operating air pressure is 2.75 4.13 bar (40-60psi).

Link Belt Procedure

- 1 Remove pulley guard and old belt.
- 2 Place belt around pulleys without creating any tension.
- 3 Count the number of links and remove 7% (1 in 14).
- 4 Place belting around pump shaft and link up.
- 5 Fit around drive pulley and over compressor pulley rotating the drive shaft slowly.

The normal operating air pressure is 2.75 -

12 Pump Diagnostics

12.1 Trouble Shooting Guide

Pump System Problems	Likely Cause
Pump Does Not Prime	 Suction lift too great Inlet of suction pipe insufficiently submerged Suction inlet or strainer blocked Excessive amount of air or gas in liquid Viscosity and / or S.G. of liquid being pumped too high Suction line not air tight Suction hose collapsed Non return valve ball not seating Mechanical seal / Packing drawing air into pump Pump's priming system blocked or badly worn Separation tank cover blocked Pump's priming hose leaking air Pump's priming system not delivering sufficient air Pump's priming system belt drive faulty
➢ Not Enough Liquid	 Incorrect engine speed Discharge head too high Suction lift too great Suction inlet or strainer blocked Suction line not air tight Suction hose collapsed Mechanical seal drawing air into pump Obstruction in pump casing / impeller Impeller excessively worn Delivery hose punctured or blocked Pump not primed Air pockets in suction line Inlet of suction pipe insufficiently submerged Excessive amount of air or gas in liquid

Pump System Problems	Likely Cause
➢ Not Enough Pressure	 Speed too low Excessive amount of air or gas in liquid Incorrect direction of rotation Viscosity and / or S.G. of liquid being pumped too high Impeller Damaged Impeller out of balance
Pump Ceases to Deliver Liquid After a Time	 Suction lift too great Insufficient water at suction inlet Suction inlet or strainer blocked Suction hose collapsed Excessive air leak in suction line Mechanical seal / Packing drawing air into pump Obstruction in pump casing / impeller Delivery hose punctured or blocked
Pump Takes Excessive Power	 Engine speed too high Obstruction between impeller and casing Viscosity and / or SG of liquid being pumped too high Incorrect direction of rotation Misalignment Shaft bent
Pump Leaking at Mechanical Seal Housing	- Mechanical seal damaged or worn
➢ Pump Bearings Have Short Life	 Obstruction in pump casing / impeller Impeller out of balance Shaft bent Shaft running of centre because of worn bearings or misalignment Misalignment Bearings worn Excessive thrust caused by mechanical failure inside pump Lack of bearing lubrication Incorrect assembly of stacked bearings, i.e. angular contact ball bearings fitted front-to-front instead of back-to-back Dirt in bearings Rusting of bearings from water in housing

Pump System Problems	Likely Cause
▶ Pump Vibrating or Overheating	 Engine speed too high Obstruction in pump casing / impeller Impeller damaged Cavitation due to excessive suction lift Impeller out of balance Shaft bent Shaft running of centre because of worn bearings or misalignment Misalignment Bearings worn Pump not primed Pump or suction pipe not completely filled with water Inlet of suction pipe insufficiently submerged Suction or discharge re-circulation in volute Excessive thrust caused by mechanical failure inside pump Lack of bearing lubrication Incorrect assembly of stacked bearings, i.e. angular contact ball bearings fitted front-to-front instead of back-to-back Dirt in bearings Rusting of bearings from water in housing

13 PUMP UNIT SUB-ASSEMBLY

- H Volute & Front Cover Separation Tank
- MA Bearing Bracket
- EP Ejector Pack
- V Non Return Ball Valve
- AC Compressor Assembly

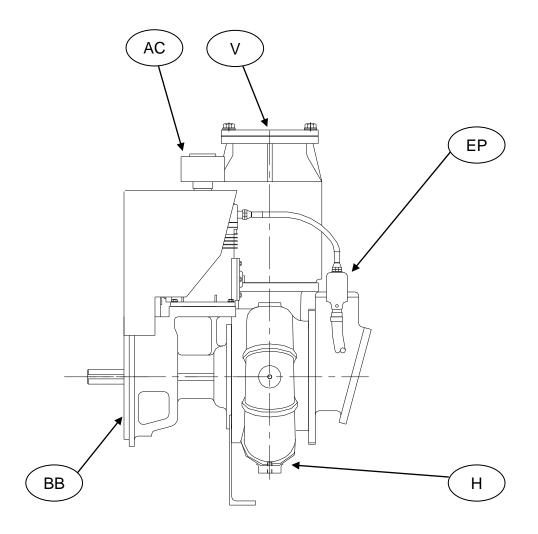
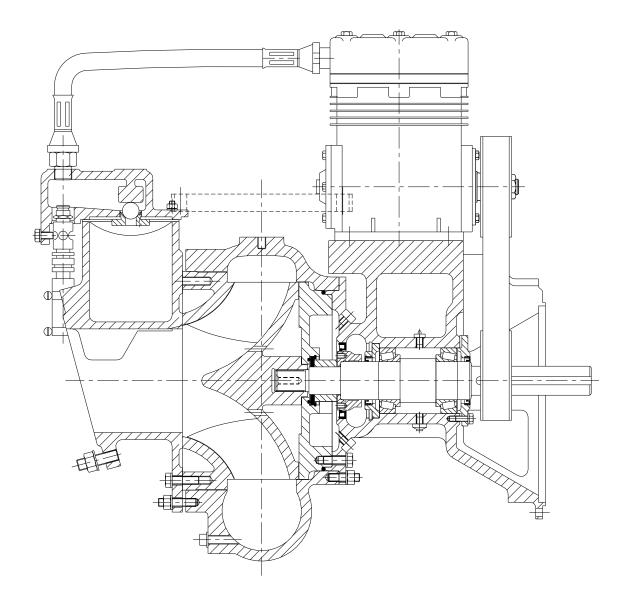
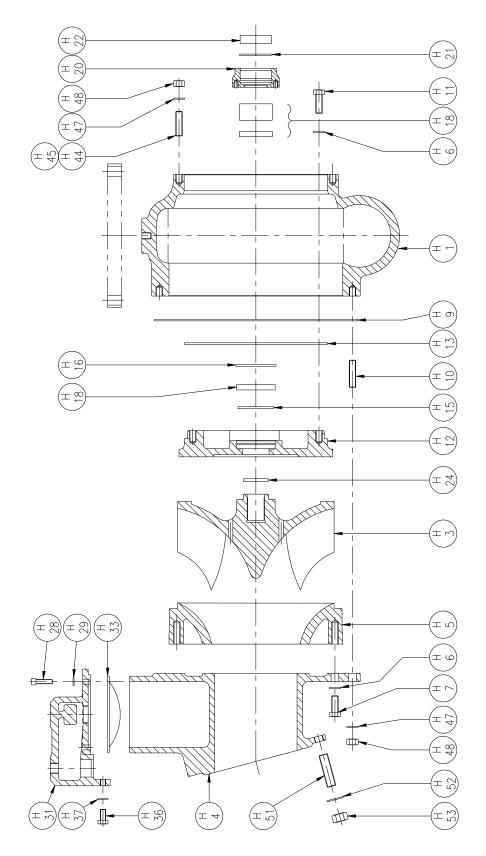


Figure 2 - Typical MV150i Pumpend




Figure 3 – MV150i General Assembly Drawing

14 PARTS LIST

14.1 Recommended MV150i Pump Spare Parts

Description	Part Number	Quantity
Impeller	CP150I-316-C-255MM	1
Front Wear Plate	CP150FWP-316	1
Rear Wear Plate	12-0284-0115	1
'O' Ring (Seat)	38-0700-4112	1
Joint	38-1034-5413	2
Joint	38-1034-5423	2
Joint	38-1034-5443	2
Sealing Washer SS	38-0785-4412	8
'O' Ring (Sealing Washer SS)	38-0787-4112V	8
Mechanical Seal	38-0400-VS2S2/SS	1
Impeller Shim	36-0646-8913	3
Impeller Shim	36-0646-8923	3
Impeller Shim	36-0646-8933	3
'O' Ring (Rear Wear Plate)	38-1004-4112	1
Circlip (Seat)	41-0230-8712	1
Belt (Compressor)	26-0840-9912	1
Gasket (Compressor)	KX2542/1	1

14.2 Front Cover and Volute Parts List

	FRONT COVER AND VC	DLUTE PARTS LIST	
Illustration number	Description	Part Number	Quantity
H1	Volute (Pump Body)	CP150V-SGI	1
H3		CP150I-316-C-255MM	1
H4	Front Cover & Separation Tank	11-0259-0115	1
H5	Wearplate (Front)	CP150FWP-316	1
	O-Ring Sealing Washer M12	38-0785-4412	8
H6	O-Ring OR11x3 Viton	38-0787-4112V	8
H7	Stud M12 x 50		4
H9a	Joint (Body)	38-1034-5413	A/R
H9b	Joint (Body)	38-1034-5423	A/R
H9c	Joint (Body)	38-1034-5443	2
H10	Stud (Body) M12 x 60		6
H11	Stud M12 x 45		4
H12	Wearplate (Rear)	12-0284-0115	1
H13	O-ring (Wearplate)	38-1004-4112	1
H15	O-ring (Seat)	38-0700-4112	1
H16	Circlip (Seat)	41-0230-8712	1
H18	Mechanical Seal	38-0400-VS2S2/SS	1
H20	Shaft Collar	28-0255-3215	1
H21	O-ring (Collar)	38-1036-4112	1
H22	Tolerance Ring	41-0241-6112	1
H24a	Impeller Shim 0.25mm	36-0646-8913	A/R
H24b	Impeller Shim 0.5mm	36-0646-8923	A/R
H24c	Impeller Shim 1.0mm	36-0646-8933	A/R
H28	Skt Hd Capscrew		4
H29	Flat Washer M8		4
H30	N/A		
H31	Separation Tank Cover	21-0230-7915	1
H33	Filter (Separation Tank)	23-0586-9923	1
H36	Setscrew M10 x 20		1
H37	Lockwasher M10		1
H44	Stud (Pump/Adaptor) M12 x 45		4
H45	Stud (Pump/Adaptor) M12 x 55		2
H47	Lockwasher M12		12
H48	Nut M12		12
H51	Stud (Flange) M16 x 60		8
H52	Lockwasher M16		8
H53	Nut M16		8

14.3 Bearing Bracket and Shaft Parts List

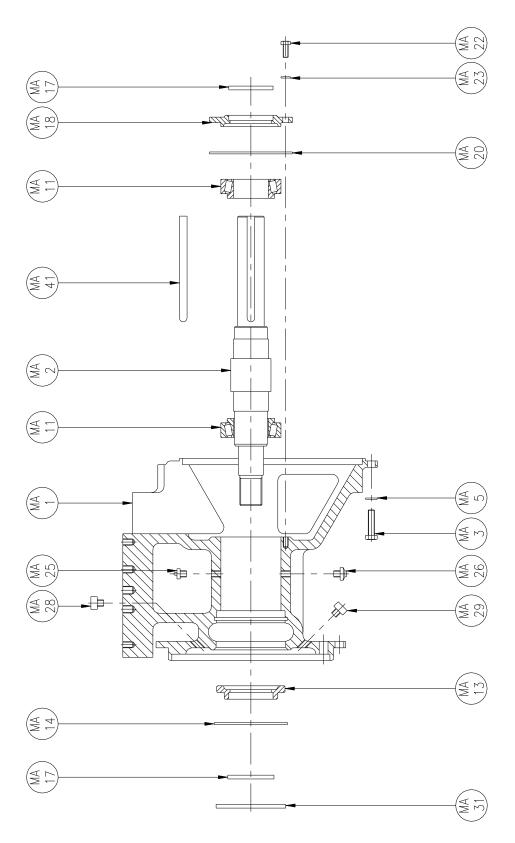
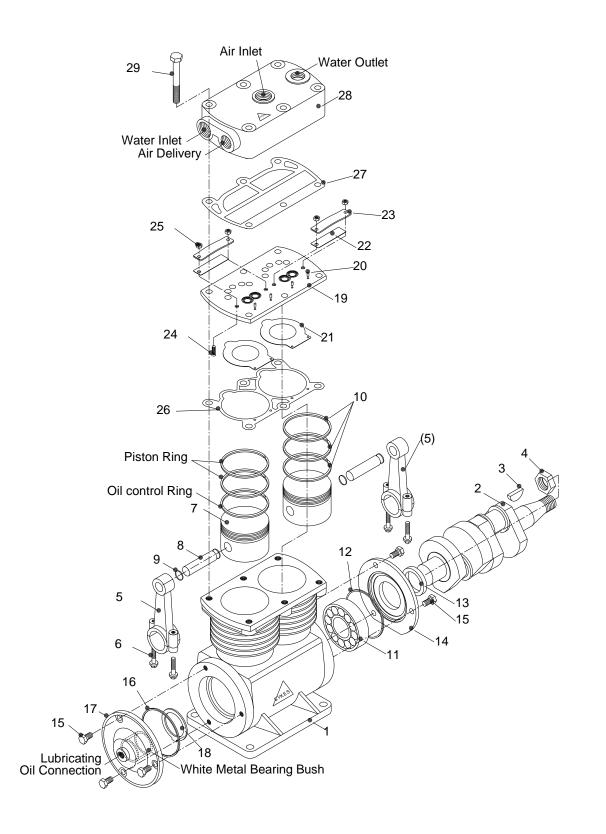


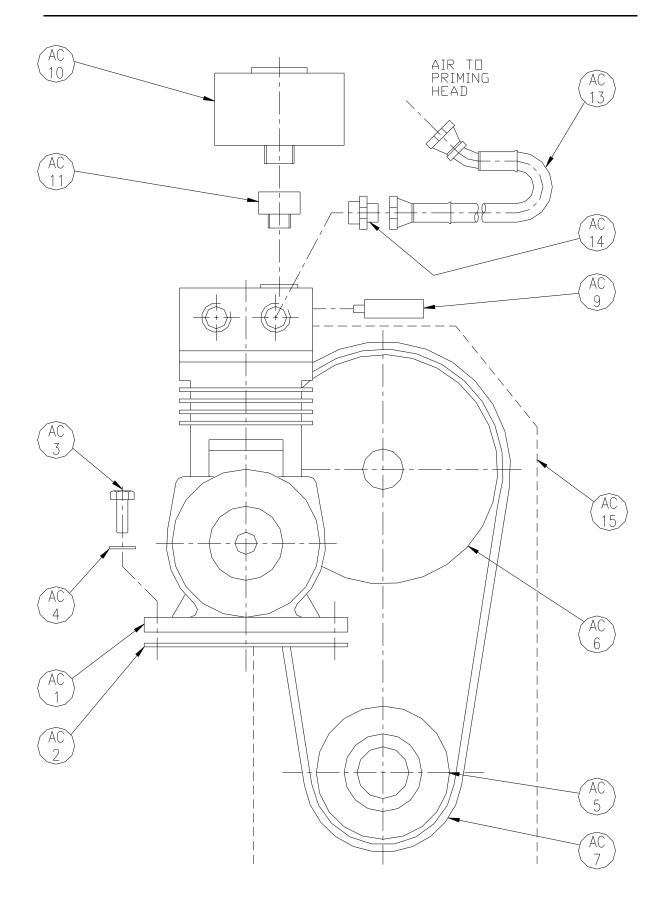
Figure 5 – Bearing Bracket Exploded Assembly Drawing

BEARING BRACKET & SHAFT PARTS LIST				
Illustration Number	Description	Part Number	Quantity	
MA1	Engine Adaptor	13-0174-0215	1	
MA2	Shaft (* see note below)	16-0400-8011-R4R	1	
MA3	Setscrew M10 x 30		9	
MA5	Lockwasher 10mm		9	
MA11	Taper Roller Bearing	39-0069-9912	2	
MA13	Bearing Cover (Front)	13-0172-0915	1	
MA14	Circlip	41-0232-8712	1	
MA17	Spiroseal	38-0809-4112	2	
MA18	Bearing Cover (Rear)	13-0173-0115	1	
MA20	Shim (Bearing Cover)	36-0650-9903	A/R	
MA20a	Shim (Bearing Cover)	36-0650-9913	A/R	
MA20b	Shim (Bearing Cover)	36-0650-9923	A/R	
MA20c	Shim (Bearing Cover)	36-0650-9933	A/R	
MA20d	Shim (Bearing Cover)	36-0650-9943	A/R	
MA22	Setscrew M8 x 25		3	
MA23	Lockwasher 8mm		3	
MA25	Grease Nipple	51-0003-8112	1	
MA26	Relief Valve	51-0010-2012	1	
MA28	Plug 3/8" BSP	43-1048-4515	1	
MA29	Plug 3/8" BSP		1	
MA31	Spiroseal	38-1033-4112	1	
MA41	Key		1	

* <u>Note:</u>

When ordering Shaft state pump engine type so correct type of shaft length can be supplied.


14.4 Ejector Package Parts List


Figure 6 – Ejector Package Exploded Assembly Drawing

EJECTOR PACKAGE PARTS LIST			
Illustration Number	Description	Part Number	Quantity
EP1	Ejector Jet	23-0568-2016	1
EP2	Ejector Nozzle	23-0571-2016	1
EP3	O-ring (Jet)	38-1013-4112	1
EP4	O-ring (Nozzle)	38-1014-4112	1
EP5	Ejector Collar	23-0570-2011	1
EP8	Jet Sleeve	23-0567-2011	1
EP12	Ball Seat	23-0412-2011	1
EP13	Ball	39-0641-4113	1
EP15	Toyo Hose		1
EP17	Hose Clamp		2
	Vacuum Gauge	001-0003	1

14.5 Compressor Parts List

SR. NO.	DESCRIPTION	PART NO.	CCN NO.	QTY
1	CYLINDER/CRANKCASE	IAR 0803	71005001	01
2	CRANK SHAFT	IAH 0804	71005002	01
3	CRANK SHAFT KEY	IAF 0832	74005030	01
4	CRANK SHAFT NUT	IAF 0830	74005028	01
5	CONNECTING ROD	IAH 0805	71005003	02
6	ALEN CAP SCREW (M6 x 32LG)	IAF 0806	74005004	04
7	PISTON (STD)	IAH 0807	71005005	02
8	PISTON PIN	IAF 0808	71005006	02
9	PISTON PIN LOCK RING	IAF 0809	74005007	04
10	PISTON RING SET	IAF 0843	71005043	02 SET
11	BEARING	IAF 0814	74005012	01
12	"O" RING (FRONT)	IAF 0827	75005025	01
13	OIL SEAL	IAF 0816	75005014	01
14	BEARING COVER	IAH 0815	71005013	01
15	HEX BOLT (M8 x 20LG)	IAF 0817	74005015	06
16	"O" RING REAR	IAF 0842	75005042	01
17	BUSHING COVER	IAH 0839	71005039	01
18	THRUST WASHER	IAF 0819	74005017	01
19	SPACER PLATE	IAF 0820	71005018	01
20	DOWEL PIN	IAF 0826	74005024	04
21	INLET FINGER VALVE	IAF 0825	74005023	02
22	DISCHARGE VALVE	IAF 0821	72005019	02
23	VALVE STOPPER	IAF 0822	72005020	02
24	FLAT HEAD SCREW (M5)	IAF 0823	74005021	04
25	NUT (M5)	IAF 0824	74005022	04
26	GASKET SPACER PLATE	IAF 0834	75005032	01
27	AIR HEAD GASKET	IAH 0835	75005033	01
28	AIR HEAD	IAR 0833	71005031	01
29	HEX. BOLT (M10)	IAF 0828	74005026	06

COMPRESSOR ASSEMBLY

COMPRESSOR PARTS LIST			
Illustration Number	Description	Part Number	Quantity
AC1	Compressor (Bendix)	49-0523-9915	1
AC2	Gasket	KX2542/1	1
AC3	Stud M10 x 40		4
AC4	Springwasher M10		4
AC5	Pump Pulley c/w TLB	26-0851-9912	1
AC6	Compressor Pulley	26-0724-0243	1
AC7	Belt 38wide x 78 teeth (1/2" Heavy Pitch)	26-0840-9912	1
AC8	Fan Washer	36-0556-8111	1
AC9	Relief Valve	10-0000-0004	1
AC10	Air Cleaner	54-0556-9912	1
AC11	Adaptor (Air Cleaner)	A1212	1
AC13	Compressed Air Hose	42-0000-0004	1
AC14	Nipple ³ / ₄ " BSP x ¹ / ₂ " BSP	N1208H	1
AC15	Pulley/Belt Guard	27-2800-1000	1

14.6 Reflux Box Non Return Valve Parts List

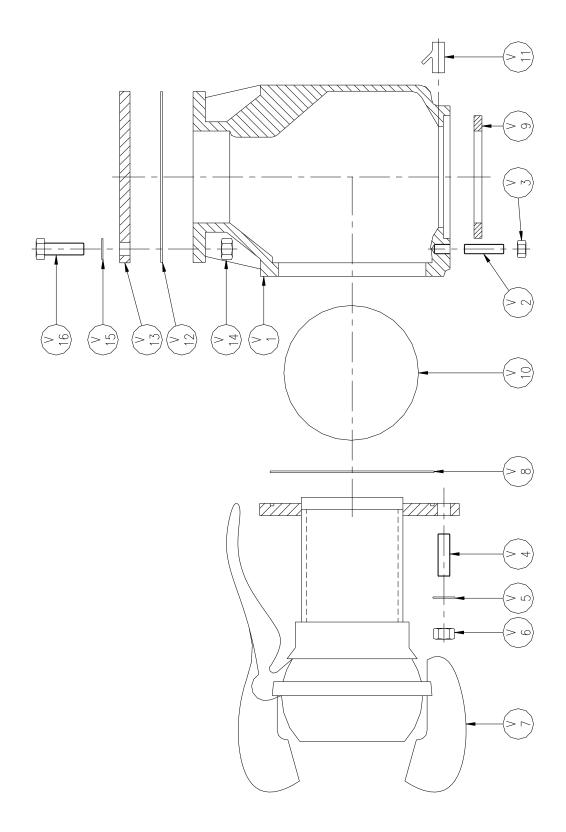


Figure 8 – Reflux Box Non Return Valve Exploded Assembly Drawing

REFLUX BOX NON RETURN VALVE PARTS LIST			
Illustration Number	Description	Part Number	Quantity
	REFLUX BOX COMPLETE	356-6000	
V1	Reflux Box	356-4061	1
V2	Stud M16 x 65		8
V3	Nut M16		8
V4	Stud M20 x 70		4
V5	Flat Washer M20		4
V6	Nut M20		4
V7	Reflux Box Discharge (Optional)	356-4064	1
V8	O-Ring	356-4153	1
V9	Reflux Box Seat	356-4063	1
V10	Reflux Box Ball	313-4169	1
V11	Drain Cock	920-9242	1
V12	Joint	500-4051	1
V13	6" T.E Blank Flange	FB150TE	1
V14	Nut M16		8
V15	Washer M16		8
V16	Bolt M20 X 70		8

14.7 Engine Coupling Parts List

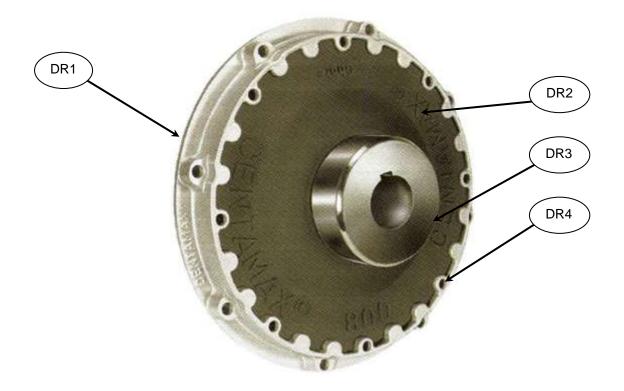


Figure 9– Engine / Pump Coupling Drawing

ENGINE / PUMP COUPLING PARTS LIST						
Illustration Number	Description Part Numper Ullant					
	Complete Coupling Assembly	CM-240-50-10-42	1			
DR1	Flywheel Flange	CM-0240-FL1-10	1			
DR2	Coupling Rubber Element	CM-0240-EL-50	1			
DR3	Hub (to suit 42mm shaft)	CM-0240-H-SB1-42	1			
DR4	Bolt Set to suit Hub	CM-0240-BS	1			

14.8 Chassis & Accessories

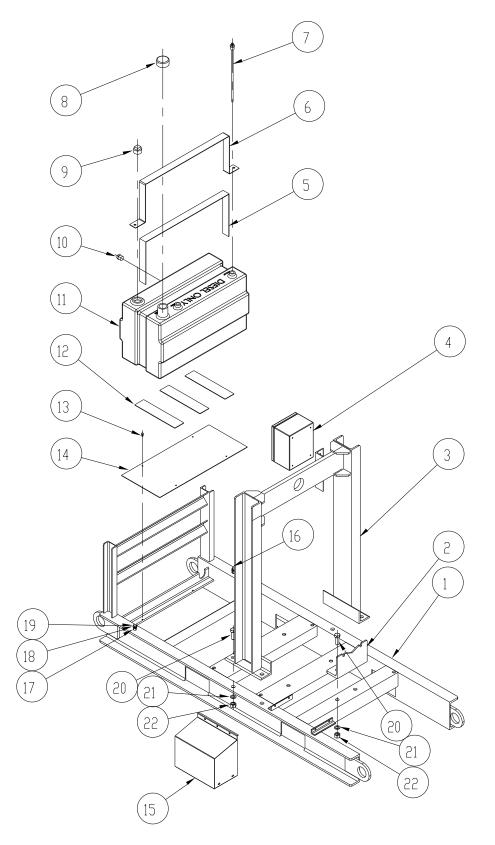


Figure 10 – Chassis Exploded Assembly Drawing

CHASSIS & ACCESSORIES PARTS LIST				
Illustration Description		tion Part Number		
1	MV Chassis	MV-1000	1	
2	Pump-End Support	MV-1020	1	
3	MV - Lifting Frame	MV-1200	1	
4	Control Box		1	
5	MV - Sticky Back Rubber	MV-2005	1	
6	GALVABOND SHEET 50 x 3	MV-2006	1	
7	MV -Fuel Line Pickup	MV-2004	1	
8	2" BSP Pipe Cap - Gal Mal c/w Breather	C50NB	1	
9	Plug BSP GAL/MAL 1 1/2"	P24	1	
10	Plug BSPT Black 3/4"	P12	1	
11	80L Fuel Tank	MV-2001	1	
12	MV - Rubber Insert for Fuel Tank	MV-2003	3	
13	Magna Bulbs 6.5mmx1/4"	MV-2007	4	
14	GALVABOND Sheet 320 x 3	MV-2002	1	
15	Battery Box	340-8002	1	
16	Bolt (M12x55)		1	
17	Nut (M12)		5	
18	Washer (M12)		6	
19	Bolt (M12x65)		1	
20	Bolt (M20x55)		6	
21	Washer (M20)		6	
22	Nut (M20)		6	

15 PUMP UNIT ACCESSORIES

Your MV150iC Olympic pumpset has been mounted on a robust custom built skid chassis and comes complete with extras include.

Desc	ription	Part /Drawing Number
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
11		
12		
13		
14		
15		
16		
17		

For further information please refer to the manufacturer's Operation and Maintenance Manuals.

16 DIESEL ENGINE MANUAL

Your MV150iC Olympic pumpend is driven by a Deutz F3L912 Diesel Engine and comes complete with the following.

Desc	ription	Part/Drawing Number
1		
2		
3		
4		
5		

For further information please refer to the manufacturer's Operation and Maintenance Manuals.

17 ELECTRIC MOTOR MANUAL

N/A

Desc	ription	Part Number
1		
2		
3		
4		
5		

For further information please refer to the manufacturer's Operation and Maintenance Manuals.

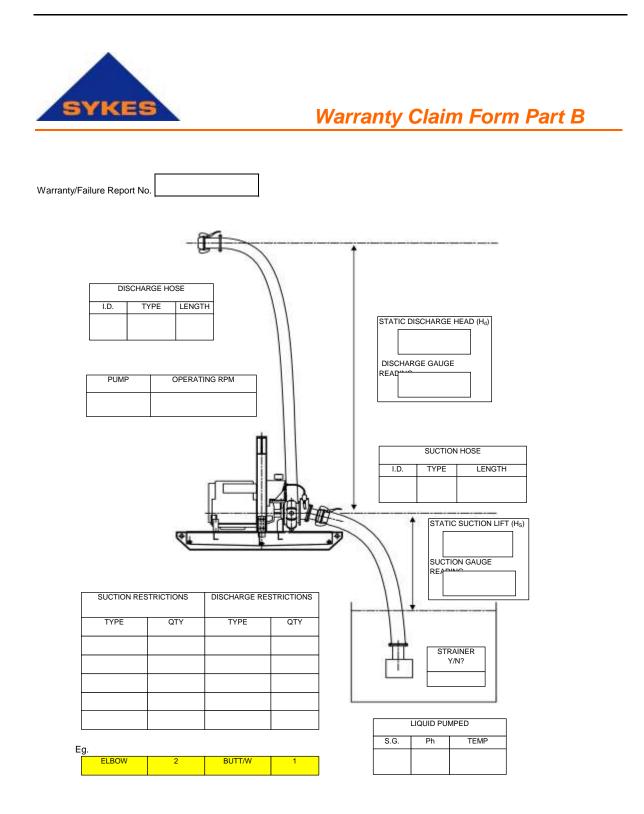
18 WARRANTY CLAIM PROCEDURE

SYKES WARRANTY POLICY

Sykes Group warrants all manufactured product against faulty workmanship or material for a period of 12 months from the invoice date. Lip seals, "O" rings and other "rubber" components which age/degrade naturally over time may not be covered by Sykes warranty if the failure is a result of this natural aging/degrading

Subject to material inspection and completion of correct warranty claim forms, Sykes Group will re-supply faulty parts for claims arising from faulty workmanship or materials.

Sykes warranty does not cover any consequential losses due to product failure.


Sykes Warranty Notification Procedure;

- 1. Upon determining a failure, the end user will advise the Sykes Group representative of the failure and the cause.
- 2. A decision will be made as to if a serviceman is sent to site or the unit is returned to Sykes.
- 3. Freight is to be covered by the customer and a nil value order number raised to cover any non-warranty issues.
- 4. The end user will then be required to complete a Sykes Group warranty claim form, with all relevant information completed. (See attachment A and B).
- 5. Digital photos, if applicable, will be taken and attached to the warranty claim form, to document failure and allow for a clearer interpretation of the failure.
- 6. Upon receiving the warranty claim form and relevant documentation Sykes will review the cause of failure, and advise the end user of the status within a reasonable time period.

Warranty claim processing procedure:

- 1. The After Sales Service Manager will be the Primary Contact between the end user and Sykes Group for all matters, relating to warranty.
- 2. All correspondence will be done by or backed up with e-mail, so as to create easy tracking, Sykes claim form part A) and B) where applicable are to be completed and forwarded as an attachment to the relevant person.
- 3. The local Sykes Representative will be copied in on any warranty correspondence in there region.

SYKES		Warrar	nty Claim	Form Part A	
Customer		Date		Report No.	
Name		Date Purchased		Date of Failure	
Pump Description		Serial Number		Time Operated Hrs	
Description of Failure					
Failed Parts. Part No.	Description			Qty	
					\exists
					╡
Please use Sykes partnumbers	ГГ				
Witnessed by Sykes Repres	-				
This section to be complet Y/N	ed by Sykes				
	Ship to Sykes Group 42 M	Iunibung Rd, Cardiff NSW 22	85		
	Ī	rea representative or agent			
	To be scrapped	ou reprocentative of agent			
	To be repaired on site by	Sulvas			
Decision	-	Sykes			
Decision pending upon inspe	ection of defective parts				—
Claim Approved	Y/N Name Amount A\$	Comments		Date	
Type of Cost					
Parts Used					\exists
Other					╡
					늭
TOTAL		L			

19 MISCELLANEOUS ENGINEERING INFORMATION

19.1 Main Factors Affecting Pump Suction Lift

Pump's Suction Lift / NPSHR curve capabilities can be influenced by various factors in particular altitude (refer to *Table 1 – Effect of Altitude on Available Suction Lift*) and temperature of fluid being pumped (refer to *Table 2 – Effect of Temperature on Available Suction Lift*).

Sykes manufacture automatic self priming pumps where the available suction lift plays a critical part in the pump dynamic system.

Therefore, any increase in fluid temperature or altitude will adversely affect the available suction lift. The higher the temperature or altitude the greater the adverse affect on the available suction lift.

In addition, higher temperature will introduce thermal expansion of pump parts and reduce internal pump clearances.

Pump o-rings, gaskets and associated parts are rated as listed;

Viton	Min -40 °C	Max 176 °C
Buna N	Min -4.4 °C	Max 121 °C
Polyurethane	Min -4.4 °C	<i>Max 93.3°</i> C
Teadit NA-1002 (Gasket Material)	Min -29 °C	Max 260 °C

Sykes recommend contacting Sykes Engineering Department with high fluid temperature (> 60 $^{\circ}$ C), altitude or any different applications to ensure the pump is correctly rated / set up.

Please note that Sykes Pump's Suction Lift / Net Positive Suction Lift Required (NPSHR) curves as published are based on standard clean water at 15° C.

The below table show the effect of altitude on the Pump's Suction Lift / NPSHR curve capabilities;

Altitude	Reduction in Suction Lift			
(m)	(m)			
0	0			
250	0.30			
500	0.60			
750	0.89			
1000	1.16			
1250	1.44			
1500	1.71			
1750	1.97			
2000	2.22			
2250	2.47			
2500	2.71			
2750	2.95			
3000	3.18			
3250	3.40			
3500	3.62			
(International Standard Atmosphere)				

Table 1 – Effect of Altitude on Available Suction Lift

<u>Altitude</u>

In basic terms, the higher the altitude the less atmospheric pressure resulting in a reduction of pressure differential between atmosphere and vacuum created in Sykes self priming system resulting in a reduction of available suction lift.

The below table show the effect of temperature on the Pump's Suction Lift / NPSHR curve capabilities;

Temperature	Reduction in Suction Lift				
(°C)	(m)				
15	0				
20	0.06				
30	0.22				
40	0.52				
50	0.98				
55	1.32				
60	1.73				
65	2.23				
70	2.85				
75	3.60				
80	4.51				
85	5.59				
90	6.88				
95	8.39				
100	10.18				
(For Water Relative to 15°C)					

Table 2 - Effect of Temperature on Available Suction Lift

<u>Temperature</u>

In basic terms, the higher the water temperature the greater the reduction in suction lift due to changing water vapour pressure and density.

19.2 Pump Suction Pipe Velocity

Achieving correct suction pipe velocity is a significant part in obtaining satisfactory suction lift.

Any increase of velocity (i.e. increase in flow) will result in greater friction losses and adversely affect the available suction lift.

Sykes manufacture automatic self priming pumps where the available suction lift plays a critical part in the pump dynamic system and therefore it is essential to take suction pipe velocity into consideration.

Sykes recommend the maximum suction pipe velocity is 4 m/s.

This velocity is on the high side when comparing to other published recommended figures but Sykes supply, in most instances, mobile dewatering equipment. To achieve lower velocities would result in large hoses that would be difficult and impractical to transport or install.

For Example A standard CP150i pump 108 l/sec – BEP at 1800 rpm: 150mm ID Pipe = 6.34 m/s 200mm ID Pipe = 3.57 m/s 250mm ID Pipe = 2.28 m/s

In this example it is recommended to use 200mm ID pipe to ensure satisfactory suction lift performance.

Please note that the suction pipe velocity is an important part of the suction lift set up but other factors also affect suction lift such as static suction lift, elbows, valves, pipe internal roughness etc. All these factors combined determine the available suction lift of the pump.

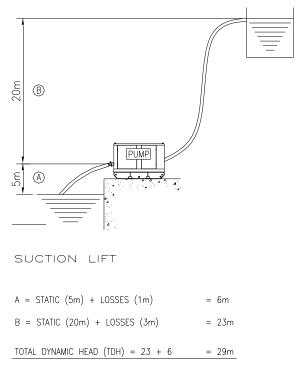
Please refer to enclosed tables for recommended pipe ID by pump type (refer to Table 1) and a generic flow versus pipe diameter chart (refer to Table 2).

		Suction Hose or Pipe Internal Dimension (ID) (mm)								
Pump Type	80	100	150	200	250	300	350	400		
CP80i	18	32	40*							
CP100i		32	67*							
CP150i			70	125	173*					
CP220i				125	195	218*				
CP300i						280	380	444*		
MH300						280	340*			
HH80	18	30*								
HH125			57*							
HH150				125	163*					
HH160i				125	185*					
HH220i				125	195	280*				
XH80	18	28*								
XH100			70	82*						
XH150				125	150*					

Table 1 – Recommended Pipe ID vs Flow Rates by Pump Type

- Matrix Unit of Measure of Flow = litres / second
- * = Maximum flow for pump type
- Recommendation based on maximum velocity = 4 m/s
- Suction pipe is based on Inside Diameter (ID)
- For high static suction lifts oversized suction pipe / hose may be required even at lower flow rates

This information this should be read in conjuction with the pump curve for reference to the pump's recommended operating flow rates


					PIPE I	NTERNAL	DIMENSIO	N (mm)				
FLOW	2"	3"	4"	5"	6"	8"	10"	12"	14"	16"	18"	20"
(L/sec)	50	75	100	125	150	200	250	300	350	400	450	500
2	1.02	0.45	0.25	0.16	0.11	0.06	0.04	0.03	0.02	0.02	0.01	0.01
4	2.04	0.91	0.51	0.33	0.23	0.13	0.08	0.06	0.04	0.03	0.03	0.02
6	3.06	1.36	0.76	0.49	0.34	0.19	0.12	0.08	0.06	0.05	0.04	0.03
8	4.07	1.81	1.02	0.65	0.45	0.25	0.16	0.11	0.08	0.06	0.05	0.04
10	5.09	2.26	1.27	0.81	0.57	0.32	0.20	0.14	0.10	0.08	0.06	0.05
12	6.11	2.72	1.53	0.98	0.68	0.38	0.24	0.17	0.12	0.10	0.08	0.06
14	7.13	3.17	1.78	1.14	0.79	0.45	0.29	0.20	0.15	0.11	0.09	0.07
16	8.15	3.62	2.04	1.30	0.91	0.51	0.33	0.23	0.17	0.13	0.10	0.08
18	9.17	4.07	2.29	1.47	1.02	0.57	0.37	0.25	0.19	0.14	0.11	0.09
20	10.19	4.53	2.55	1.63	1.13	0.64	0.41	0.28	0.21	0.16	0.13	0.10
25	12.73	5.66	3.18	2.04	1.41	0.80	0.51	0.35	0.26	0.20	0.16	0.13
30	15.28	6.79	3.82	2.44	1.70	0.95	0.61	0.42	0.31	0.24	0.19	0.15
40	20.37	9.05	5.09	3.26	2.26	1.27	0.81	0.57	0.42	0.32	0.25	0.20
50	25.46	11.32	6.37	4.07	2.83	1.59	1.02	0.71	0.52	0.40	0.31	0.25
60	30.56	13.58	7.64	4.89	3.40	1.91	1.22	0.85	0.62	0.48	0.38	0.31
70	35.65	15.84	8.91	5.70	3.96	2.23	1.43	0.99	0.73	0.56	0.44	0.36
80	40.74	18.11	10.19	6.52	4.53	2.55	1.63	1.13	0.83	0.64	0.50	0.41
90	45.84	20.37	11.46	7.33	5.09	2.86	1.83	1.27	0.94	0.72	0.57	0.46
100	50.93	22.64	12.73	8.15	5.66	3.18	2.04	1.41	1.04	0.80	0.63	0.51
112	57.04	25.35	14.26	9.13	6.34	3.57	2.28	1.58	1.16	0.89	0.70	0.57
120	61.12	27.16	15.28	9.78	6.79	3.82	2.44	1.70	1.25	0.95	0.75	0.61
130	66.21	29.43	16.55	10.59	7.36	4.14	2.65	1.84	1.35	1.03	0.82	0.66
140	71.30	31.69	17.83	11.41	7.92	4.46	2.85	1.98	1.46	1.11	0.88	0.71
150	76.39	33.95	19.10	12.22	8.49	4.77	3.06	2.12	1.56	1.19	0.94	0.76
160	81.49	36.22	20.37	13.04	9.05	5.09	3.26	2.26	1.66	1.27	1.01	0.81
170	86.58	38.48	21.65	13.85	9.62	5.41	3.46	2.41	1.77	1.35	1.07	0.87
180	91.67	40.74	22.92	14.67	10.19	5.73	3.67	2.55	1.87	1.43	1.13	0.92
190	96.77	43.01	24.19	15.48	10.75	6.05	3.87	2.69	1.97	1.51	1.19	0.97
200	101.86	45.27	25.46	16.30	11.32	6.37	4.07	2.83	2.08	1.59	1.26	1.02
210	106.95	47.53	26.74	17.11	11.88	6.68	4.28	2.97	2.18	1.67	1.32	1.07
220	112.05	49.80	28.01	17.93	12.45	7.00	4.48	3.11	2.29	1.75	1.38	1.12
230	117.14	52.06	29.28	18.74	13.02	7.32	4.69	3.25	2.39	1.83	1.45	1.17
240	122.23	54.32	30.56	19.56	13.58	7.64	4.89	3.40	2.49	1.91	1.51	1.22
250	127.32	56.59	31.83	20.37	14.15	7.96	5.09	3.54	2.60	1.99	1.57	1.27
260	132.42	58.85	33.10	21.19	14.71	8.28	5.30	3.68	2.70	2.07	1.63	1.32
270	137.51	61.12	34.38	22.00	15.28	8.59	5.50	3.82	2.81	2.15	1.70	1.38
280	142.60	63.38	35.65	22.82	15.84	8.91	5.70	3.96	2.91	2.23	1.76	1.43
290	147.70	65.64	36.92	23.63	16.41	9.23	5.91	4.10	3.01	2.31	1.82	1.48
300	152.79	67.91	38.20	24.45	16.98	9.55	6.11	4.24	3.12	2.39	1.89	1.53
310	157.88	70.17	39.47	25.26	17.54	9.87	6.32	4.39	3.22	2.47	1.95	1.58
320	162.97	72.43	40.74	26.08	18.11	10.19	6.52	4.53	3.33	2.55	2.01	1.63
330	168.07	74.70	42.02	26.89	18.67	10.50	6.72	4.67	3.43	2.63	2.07	1.68
340	173.16	76.96	43.29	27.71	19.24	10.82	6.93	4.81	3.53	2.71	2.14	1.73
350	178.25	79.22	44.56	28.52	19.81	11.14	7.13	4.95	3.64	2.79	2.20	1.78
360	183.35	81.49	45.84	29.34	20.37	11.46	7.33	5.09	3.74	2.86	2.26	1.83
370	188.44	83.75	47.11	30.15	20.94	11.78	7.54	5.23	3.85	2.94	2.33	1.88
380	193.53	86.01	48.38	30.97	21.50	12.10	7.74	5.38	3.95	3.02	2.39	1.94
390	198.63	88.28	49.66	31.78	22.07	12.41	7.95	5.52	4.05	3.10	2.45	1.99
400	203.72	90.54	50.93	32.59	22.64	12.73	8.15	5.66	4.16	3.18	2.52	2.04
410	208.81	92.81	52.20	33.41	23.20	13.05	8.35	5.80	4.26	3.26	2.58	2.09
420	213.90	95.07	53.48	34.22	23.77	13.37	8.56	5.94	4.37	3.34	2.64	2.14
430	219.00	97.33	54.75	35.04	24.33	13.69	8.76	6.08	4.47	3.42	2.70	2.19
440	224.09	99.60	56.02	35.85	24.90	14.01	8.96	6.22	4.57	3.50	2.77	2.24
450	229.18	101.86	57.30	36.67	25.46	14.32	9.17	6.37	4.68	3.58	2.83	2.29
100	220.10	101.00	01.00	00.01	20.10	11.02	0.11	0.01	1.00	0.00	2.00	2.20

Matrix Unit of Measure is Velocity = metres / second

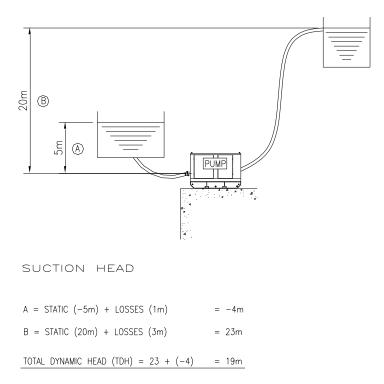


Table 2 – Flow vs Pipe ID Generic

19.3 Total Dynamic head Explanation Diagram

Suction Lift Set Up

Suction Head Set Up

Sykes Group Pty Ltd

19.4 pH Compatibility Chart

The abbreviation pH means 'hydrogen potential' – or the ability of the liquid to take up acidic hydrogen ions and become more acid.

The numbers used are the logarithms or the actual numbers, which would otherwise be in millions.

pH 7.0 is neutral.

An already acid solution cannot take up as much additional acid. Therefore pH less than 7.0 is acidic.

pH greater than 7.0 is alkaline.

As each change of 1 on the log scale is equivalent to 10 times on the linear scale, a linear scale, a solution of pH5 is ten times more acidic than a solution of pH6.

Similarly, pH4 is 100 times more acidic than pH6, and so on.

Fluid	pH Level	Metals
Alkaline	14 13 12 11	Stainless Steels
Caustic Basic	10 9	Cast Iron
Neutral	8 7 6	Aluminium
	5 4	Cast Iron
Acid	3 2 1 0	Stainless Steels

Wetted Material Compatibility Guideline for Metals

19.5 Jet and Nozzle Information

The results are for a standard compressor prime pump build with a Bendix Compressor.

PUMP TYPE	JET	NOZZLE	JET	NOZZLE
	23-0568-2016	23-0571-2016	23-0415-2016	23-0414-2036
CP80	✓	\checkmark		
CP100	✓	\checkmark		
CP150	✓	√		
CP200	✓	√		
CP300			✓	✓
CP300i			✓	✓
HH80	✓	√		
HH100			✓	✓
HH125			✓	✓
HH150			✓	✓
HH160i			✓	~
HH200			✓	~
HH250			✓	✓
MH300			✓	\checkmark
XH100			\checkmark	\checkmark
XH150			\checkmark	\checkmark

The following tables show the performance data for the complete compressor pump range at nominated speed (normal pump speed) and at maximum pump speed.

These results are for a standard compressor prime pump built (Bendix Compressor).

PUMP TYPE	COMPRESSOR / PUMP PULLEY RATIO
CP80	- 1.60
CP100	- 1.60
CP150	- 1.29
CP200	- 1.29
CP300	+ 1.56
CP300i	+ 1.56
HH80	- 1.29
HH100	- 1.25
HH125	- 1.25
HH150	- 1.125
HH160i	-1.125
HH200	- 1.125
HH250	- 1.125
MH300	- 1.125
XH100	- 1.125
XH150	- 1.125

– Reducing Drive Ratio

+ = Increasing Drive Ratio

PUMP TYPE	PUMP SPEED	COMPRESSOR SPEED	BACK PRESSURE	VACUUM PRESSURE
	(rpm)	(rpm)	(psi)	(kPa)
CP80	2000	1250	50	83.5
CFOU	2400	1500	58	81.0
CP100	2000	1250	50	83.5
CF100	2200	1375	54	82.0
CP150	1800	1395	54	82.0
CF 150	2200	1705	65	80.0
CP200	1800	1395	54	82.0
GF200	2000	1550	60	81.0
CP300	1000	1560	59	82.5
07300	1200	1872	66	82.0
CP300i	1000	1560	59	82.5
053001	1200	1872	66	82.0

Figure 9– Engine Coupling Exploded Assembly

Sykes MV150iC – Installation, Operation & Maintenance Manual

ed	1	10			AIR TO	
hlv	`				PRIMING HEAD	AC 13
F	PUMP TYPE	PUMP SPEED	COMPRESSOR SPEED	BACK PRESSURE (psi)	VACUUM PRESSURE (kPa)	
H	IH80	11 2000 2400	(rpm) 1550 1860	60 70 - 1	81	
Н	IH100	2000 2400	1600 1920		<u>83</u> 82	AC 14
Н	IH125	2000 2400	1600 1920	/ 60 / 63	83 82	ÂC
Н	IH150	1800 2000	1600 / / 	60 66	83 82	9
Н	IH160i	1400 2000	1120	60 66	83 82	
Н	IH200	1800 2200	1600 1956	60 63	83 82	
Н	IH250	1800 AC 2000	<u> </u>	60 66	83\\`\ 82	
N	1H300	3 1800 1800	1600 1600	60 - 60(83 	
X	(H100	180 0 1800	1600 160 0	60 60	83 83	AC 15
X	(H150	1800 180 0 -	1600	60 	83 83	
	(AC 4				AC 6
		AC 2				AC 5 AC 7

COMPRESSOR ASSEMBLY