
Puppet Documentation
(Generated on May 13, 2011, from git revision c171bed4eddbb6bd55cf764ed487d383a1312999)

Puppet Labs Documentation
Welcome to the Puppet Labs documentation site. The documentation posted here is also available
as a (very large, and frequently updated) PDF, which can be found here.

MCollective

For information about MCollective, see the Marionette Collective documentation.

Puppet Dashboard

For information about Puppet Dashboard, see the Puppet Dashboard documentation.

Drive-Thru
Small documents for getting help fast.

 Core Types Cheat Sheet — available in single-page flavor�
(double-sided), extra breathing room flavor� (six pages), and plain
web page flavor�
Frequently Asked Questions

Learning Puppet
Learn to use Puppet! New users: start here.

Introduction and Index
Resources and the RAL — learn about resources, the molecules of system configuration�
Manifests — start writing and applying Puppet code
Ordering — learn to join resources that depend on each other
Variables, Facts, and Conditionals — read system information to make versatile manifests
Classes and Modules, Part One — start collecting resources into self-contained modules

Reference Shelf
Get detailed information about config files, APIs, and the Puppet language.��

REST API — reference of api accessible resources
Puppet Language Guide — all the language details
Puppet Manpages — detailed help for each Puppet application
REST Access Control — secure API access with auth.conf

Generated References

Complete and up-to-date references for Puppetʼs resource types, functions, metaparameters,
configuration options, indirection termini, and reports, served piping hot directly from the source�
code.

Puppet Documentation • Puppet Labs Documentation 2/311

http://info.puppetlabs.com/request-pdf-docs
http://projects.puppetlabs.com/projects/puppet/wiki/Core_Types_Cheat_Sheet/

Resource Types — all default types
Functions — all built in functions
Metaparameters — all type-independent resource attributes
Configuration� — all configuration file settings��
Report — all available report handlers

These references are automatically generated from the inline documentation in Puppetʼs source
code. References generated from each version of Puppet are archived here:

Versioned References — inline reference docs from Puppetʼs past and present

Puppet Guides
Learn about different areas of Puppet, fix problems, and design solutions.��

Components

Learn more about major working parts of the Puppet system.

Puppet commands: master, agent, apply, resource, and more — components of the system

Installing and Configuring�

Get Puppet up and running at your site.

An Introduction to Puppet
Supported Platforms
Installing Puppet — from packages, source, or gems
Configuring Puppet� — includes server setup & testing

Tuning and Scaling

Puppetʼs default configuration is meant for prototyping and designing a site. Once youʼre ready for�
production deployment, learn how to adjust Puppet for peak performance.

Scaling Puppet — general tips & tricks
Scaling With Passenger — for Puppet 0.24.6 and later
Scaling With Mongrel — for older versions of Puppet

Basic Features and Use

Techniques — common design patterns, tips, and tricks
Troubleshooting — avoid common problems and confusions
Puppet Modules — modules make it easy to organize and share content
Parameterized Classes — use parameterized classes to write more effective, versatile, and�
encapsulated code
Module Smoke Testing — write and run basic smoke tests for your modules
Scope and Puppet — understand and banish dynamic lookup warnings with Puppet 2.7
Puppet File Serving — serving files with Puppet�
Style Guide — Puppet community conventions

Puppet Documentation • Puppet Labs Documentation 3/311

http://localhost:9292/references/

Best Practices — use Puppet effectively�

Advanced Features

Go beyond basic manifests.

Templating — template out config files using ERB��
Virtual Resources
Exported Resources — share data between hosts
Environments — separate dev, stage, & production
Reporting — learn what your nodes are up to
Getting Started With CloudPack — create and bootstrap new nodes with the experimental
CloudPack extension

Hacking and Extending

Build your own tools and workflows on top of Puppet.�
USING APIS AND INTERFACES

External Nodes — specify what your machines do using external data sources
Inventory Service — use Puppetʼs inventory of nodes at your site in your own custom applications

USING RUBY PLUGINS

Plugins In Modules — where to put plugins, how to sync to clients
Writing Custom Facts
Writing Custom Functions
Writing Custom Types & Providers
Complete Resource Example — more information on custom types & providers
Provider Development — more about providers

DEVELOPING PUPPET

Running Puppet from Source — preview the leading edge
Development Life Cycle — learn how to contribute code

Other Resources
Puppet Wiki & Bug Tracker
Puppet Patterns (Recipes)

Help Improve This Document
This document belongs to the community and is licensed under the Creative Commons. You can
help improve it!

This work is licensed under a Creative Commons Attribution-Share Alike 3.0 United States License.

To contribute ideas, problems, or suggestions, simply use the Contribute link. If you would like to
submit your own content, the process is easy. You can fork the project on github, make changes,

Puppet Documentation • Puppet Labs Documentation 4/311

http://projects.puppetlabs.com/
http://projects.puppetlabs.com/projects/puppet/wiki/Recipes
http://creativecommons.org/licenses/by-sa/3.0/us/
http://creativecommons.org/licenses/by-sa/3.0/us/
http://github.com/puppetlabs/puppet-docs

and send us a pull request. See the README files in the project for more information.�

Documentation Version
This release of the documentation was generated from revision
c171bed4eddbb6bd55cf764ed487d383a1312999 of the puppet-docs repo on May 13, 2011.

Learning Puppet
The web (including this site) is full of guides for how to solve specific problems with Puppet and�
how to get Puppet running. This is something slightly different.�

Start: Resources and the RAL →

Latest: Ordering →

Welcome
This is Learning Puppet, and itʼs part of the Puppet documentation. Specifically, itʼs the first part.��

By which I donʼt mean itʼs about getting Puppet installed, or making sure your SSL certificates got�
issued correctly; thatʼs the other first part. To be a little gnomic about it — because why not — this�
series is less about how to use Puppet than it is about how to become a Puppet user. If youʼve heard
good things about Puppet but donʼt know where to start, this, hopefully, is it.

Itʼs a work in progress, and Iʼd love to read your feedback at nick.fagerlund@puppetlabs.com.

Get Equipped
You canʼt make a knowledge omelette without breaking… stuff. Possibly eggs, maybe your systemʼs�
entire configuration! Such is life.�

So to learn Puppet effectively, you need a virtual machine you can experiment on fearlessly. And to�
learn Puppet fast, you want a virtual machine with Puppet already installed, so you donʼt have to
learn to debug SSL problems before you know how to classify a node.

In short, you want this virtual machine:

Currently, this has been tested with VMWare Fusion on OS X, but it should be usable with other
virtualization software; we hope to test it with VirtualBox soon. The root userʼs password is puppet,
and you should be able to SSH into it without a problem; for your convenience, the system is
configured to write its current IP address to the login screen about ten seconds after it boots.�
Beyond that, teaching the use of virtualization software is outside the scope of this introduction,
but let me know if you run into trouble and weʼll try to refine our approach over time.�

If youʼd rather cook up your own VM than download one from the web, you can imitate it fairly

Get the Learning Puppet VMGet the Learning Puppet VM

Puppet Documentation • Learning Puppet 5/311

mailto:nick.fagerlund@puppetlabs.com
http://info.puppetlabs.com/learning-puppet-vm
mailto:nick.fagerlund@puppetlabs.com

easily: this is a stripped-down CentOS 5.5 system with a hostname of “puppet,” Puppet Enterprise
installed using all default answers, iptables turned off, and the �pe-puppet and pe-httpd services
stopped and disabled. (It also has some nice language modes installed for vim and emacs, but
thatʼs not strictly necessary.)

To begin with, you wonʼt need separate agent and master VMs; youʼll be running Puppet in its
serverless mode on a single machine. When we get to agent/master Puppet, weʼll walk through
turning on the puppet master and duplicating this system into a new agent node.

Hit the Gas
And with that, youʼre ready to start.

Part one: Serverless Puppet

Begin with Resources and the RAL, where youʼll learn about the fundamental building blocks of
system configuration.�
After that, move on to Manifests and start controlling your system by writing actual Puppet code.
Next, in Ordering, learn about dependencies and refresh events, manage the relationships
between resources, and discover the most useful Puppet design pattern.
In Variables, Conditionals, and Facts, make your manifests versatile by reading system
information.
In Classes and Modules, Part One, take the first step to a knowable and elegant site design and�
start turning your manifests into self-contained modules.

And come back soon, because there are a lot more chapters on the way.

Learning — Resources and the RAL
Resources are the building blocks of Puppet, and the division of resources into types and providers
is what gives Puppet its power.

You are at the beginning. — Index — Manifests →

Molecules
Imagine a systemʼs configuration as a collection of molecules; call them �“resources.”

These pieces vary in size, complexity, and lifespan: a user account can be a resource, as can a
specific file, a software package, a running service, or a scheduled cron job. Even a single��
invocation of a shell command can be a resource.

Any resource is very similar to a class of related things: every file has a path and an owner, and�
every user has a name, a UID, and a group. Which is to say: similar resources can be grouped into
types. Furthermore, the most important attributes of a resource type are usually conceptually
identical across operating systems, regardless of how the implementations differ. That is, �the
description of a resource can be abstracted away from its implementation.
Puppet Documentation • Learning — Resources and the RAL 6/311

http://info.puppetlabs.com/puppet-enterprise

These two insights form Puppetʼs resource abstraction layer (RAL). The RAL splits resources into
types (high-level models) and providers (platform-specific implementations), and lets you describe�
resources in a way that can apply to any system.

Sync: Read, Check, Write
Puppet uses the RAL to both read and modify the state of resources on a system. Since itʼs a
declarative system, Puppet starts with an understanding of what state a resource should have. To
sync the resource, it uses the RAL to query the current state, compares that against the desired
state, then uses the RAL again to make any necessary changes.

Anatomy of a Resource
In Puppet, every resource is an instance of a resource type and is identified by a �title; it has a
number of attributes (which are defined by its type), and each attribute has a �value.

The Puppet language represents a resource like this:

				user	{	'dave':
						ensure					=>	present,
						uid								=>	'507',
						gid								=>	'admin',
						shell						=>	'/bin/zsh',
						home							=>	'/home/dave',
						managehome	=>	true,
				}

This syntax is the heart of the Puppet language, and youʼll be seeing it a lot. Hopefully you can
already see how it lays out all of the resourceʼs parts (type, title, attributes, and values) in a fairly
straightforward way.

The Resource Shell
Puppet ships with a tool called puppet resource, which uses the RAL to let you query and modify
your system from the shell. Use it to get some experience with the RAL before learning to write and
apply manifests.

Puppet resourceʼs first argument is a resource type. If executed with no further arguments…�

$	puppet	resource	user

… it will query the system and return every resource of that type it can recognize in the systemʼs
current state.

You can retrieve a specific resourceʼs state by providing a resource name as a second argument.�

$	puppet	resource	user	root

user	{	'root':

Puppet Documentation • Learning — Resources and the RAL 7/311

				home	=>	'/var/root',
				shell	=>	'/bin/sh',
				uid	=>	'0',
				ensure	=>	'present',
				password	=>	'*',
				gid	=>	'0',
				comment	=>	'System	Administrator'
}

Note that puppet resource returns Puppet code when it reads a resource from the system! You can
use this code later to restore the resource to the state itʼs in now.

If any attribute=value pairs are provided as additional arguments to puppet resource, it will modify
the resource, which can include creating it or destroying it:

$	puppet	resource	user	dave	ensure=present	shell="/bin/zsh"	home="/home/dave"	
managehome=true

notice:	/User[dave]/ensure:	created

user	{	'dave':
				ensure	=>	'present',
				home	=>	'/home/dave',
				shell	=>	'/bin/zsh'
}

(Note that this command line assignment syntax differs from the Puppet languageʼs normal�
attribute => value syntax.)

Finally, if you specify a resource and use the --edit flag, you can change that resource in your text�
editor; after the buffer is saved and closed, puppet resource will modify the resource to match your�
changes.

The Core Resource Types
Puppet has a number of built-in types, and new native types can be distributed with modules.
Puppetʼs core types, the ones youʼll get familiar with first, are �notify, file�, package, service, exec,
cron, user, and group. Donʼt worry about memorizing them immediately, since weʼll be covering
various resources as we use them, but do take a second to print out a copy of the core types cheat
sheet, a double-sided page covering these eight types. It is doctor-recommended1 and has been
clinically shown to treat reference inflammation.�

Documentation for all of the built-in types can always be found in the reference section of this site,
and can be generated on the fly with the puppet describe utility.�

An Aside: puppet describe -s
You can get help for any of the Puppet executables by running them with the --help flag, but itʼs�
worth pausing for an aside on puppet describeʼs -s flag.�

$	puppet	describe	-s	user

Puppet Documentation • Learning — Resources and the RAL 8/311

user
====
Manage	users.		This	type	is	mostly	built	to	manage	system
users,	so	it	is	lacking	some	features	useful	for	managing	normal
users.

This	resource	type	uses	the	prescribed	native	tools	for	creating
groups	and	generally	uses	POSIX	APIs	for	retrieving	information
about	them.		It	does	not	directly	modify	`/etc/passwd`	or	anything.

Parameters

				allowdupe,	auth_membership,	auths,	comment,	ensure,	expiry,	gid,	groups,
				home,	key_membership,	keys,	managehome,	membership,	name,	password,
				password_max_age,	password_min_age,	profile_membership,	profiles,
				project,	role_membership,	roles,	shell,	uid

Providers

				directoryservice,	hpuxuseradd,	ldap,	pw,	user_role_add,	useradd

-s makes puppet describe dump a compact list of the given resource typeʼs attributes and
providers. This isnʼt useful when learning about a type for the first time or looking up allowed�
values, but itʼs fantastic when you have the name of an attribute on the tip of your tongue or you
canʼt remember which two out of “group,” “groups,” and “gid” are applicable for the user type.

Next
Puppet resource can be useful for one-off jobs, but Puppet was born for greater things. �Time to
write some manifests.

Learning — Manifests
You understand the RAL; now learn about manifests and start writing and applying Puppet code.

← Resources and the RAL — Index — Resource Ordering →

No Strings Attached
You probably already know that Puppet usually runs in an agent/master (that is, client/server)
configuration, but ignore that for now. Itʼs not important yet and you can get a lot done without it,�
so for the time being, we have no strings on us.

Instead, weʼre going to use puppet apply, which applies a manifest on the local system. Itʼs the
simplest way to run Puppet, and it works like this:

1. The core types cheat sheet is not actually doctor-recommended. If youʼre a sysadmin with an M.D., please email me so I can
change this footnote.↩

Puppet Documentation • Learning — Manifests 9/311

$	puppet	apply	my_test_manifest.pp

Yeah, that easy.

You can use puppet — that is, without any subcommand — as a shortcut for puppet	apply; it has
the rockstar parking in the UI because of how often it runs at an interactive command line. Iʼll
mostly be saying “puppet apply” for clarityʼs sake.

The behavior of Puppetʼs man pages is currently in flux. You can always get help for Puppetʼs�
command line tools by running the tool with the --help flag; in the Learning Puppet VM, which uses�
Puppet Enterprise, you can also run pe-man	puppet	apply to get the same help in a different�
format. Versions of Puppet starting with the upcoming 2.7 will use Git-style man pages (man
puppet-apply) with improved formatting.

Manifests
Puppet programs are called “manifests,” and they use the .pp file extension.�

The core of the Puppet language is the resource declaration, which represents the desired state of
one resource. Manifests can also use conditional statements, group resources into collections,
generate text with functions, reference code in other manifests, and do many other things, but it all
ultimately comes down to making sure the right resources are being managed the right way.

An Aside: Compilation
Manifests donʼt get used directly when Puppet syncs resources. Instead, the flow of a Puppet run�
goes a little like this:

Puppet Documentation • Learning — Manifests 10/311

Before being applied, manifests get compiled into a “catalog,” which is a directed acyclic graph that
only represents resources and the order in which they need to be synced. All of the conditional
logic, data lookup, variable interpolation, and resource grouping gets computed away during
compilation, and the catalog doesnʼt have any of it.

Why? Several really good reasons, which weʼll get to once we rediscover agent/master Puppet;1 itʼs
not urgent at the moment. But Iʼm mentioning it now as kind of an experiment: I think there are
several things in Puppet that are easy to explain if you understand that split and quite baffling if��
you donʼt, so try keeping this in the back of your head and weʼll see if it pays off later.�

OK, enough about that; letʼs write some code! This will all be happening on your main Learning
Puppet VM, so log in as root now; youʼll probably want to stash these test manifests somewhere
convenient, like /root/learning-manifests.

Resource Declarations
Letʼs start by just declaring a single resource:

				#	/root/training-manifests/1.file.pp

				file	{'testfile':
						path				=>	'/tmp/testfile',
						ensure		=>	present,
						mode				=>	0640,
						content	=>	"I'm	a	test	file.",
				}

Puppet Documentation • Learning — Manifests 11/311

http://en.wikipedia.org/wiki/Directed_acyclic_graph

And apply!

#	puppet	apply	1.file.pp
notice:	/Stage[main]//File[testfile]/ensure:	created
#	cat	/tmp/testfile
I'm	a	test	file.
#	ls	-lah	/tmp/testfile
-rw-r-----	1	root	root	16	Feb	23	13:15	/tmp/testfile

Youʼve seen this syntax before, but letʼs take a closer look at the language here.

First, you have the type (“file”), followed by…�
…a pair of curly braces that encloses everything else about the resource. Inside those, you
have…

…the resource title, followed by a colon…
…and then a set of attribute => value pairs describing the resource.

A few other notes about syntax:

Missing commas and colons are the number one syntax error made by learners. If you take out
the comma after ensure	=>	present in the example above, youʼll get an error like this:

		Could	not	parse	for	environment	production:	Syntax	error	at	'mode';	
expected	'}'	at	/root/manifests/1.file.pp:6	on	node	barn2.magpie.lan

Missing colons do about the same thing. So watch for that. Also, although you donʼt strictly need
the comma after the final attribute �=> value pair, you should always put it there anyhow. Trust
me.
Capitalization matters! You canʼt declare a resource with File	{'testfile:'..., because that
does something entirely different. (Specifically, it breaks. But itʼs ��kind of similar to what we use to
tweak an existing resource, which weʼll get to later.)
Quoting values matters! Built-in values like present shouldnʼt be quoted, but normal strings
should be. For all intents and purposes, everything is a string, including numbers. Puppet uses
the same rules for single and double quotes as everyone else:

Single quotes are completely literal, except that you write a literal quote with \' and a literal
backslash with \\.
Double quotes let you interpolate $variables and add newlines with \n.

Whitespace is fungible for readability. Lining up the => arrows (sometimes called “fat commas”) is
good practice if you ever expect someone else to read this code — note that future and mirror
universe versions of yourself count as “someone else.”

Puppet Documentation • Learning — Manifests 12/311

Once More, With Feeling!
Okay, you sort of have the idea by now. Letʼs make a whole wad of totally useless files! (And throw�
in some notify resources for good measure.)

				#	/root/training-manifests/2.file.pp

				file	{'/tmp/test1':
						ensure		=>	present,
						content	=>	"Hi.",
				}

				file	{'/tmp/test2':
						ensure	=>	directory,
						mode			=>	0644,
				}

				file	{'/tmp/test3':
						ensure	=>	link,
						target	=>	'/tmp/test1',
				}

				notify	{"I'm	notifying	you.":}	#	Whitespace	is	fungible,	remember.
				notify	{"So	am	I!":}

#	puppet	apply	2.file.pp
notice:	/Stage[main]//File[/tmp/test2]/ensure:	created
notice:	/Stage[main]//File[/tmp/test3]/ensure:	created
notice:	/Stage[main]//File[/tmp/test1]/ensure:	created
notice:	I'm	notifying	you.
notice:	/Stage[main]//Notify[I'm	notifying	you.]/message:	defined	'message'	as	
'I'm	notifying	you.'
notice:	So	am	I!
notice:	/Stage[main]//Notify[So	am	I!]/message:	defined	'message'	as	'So	am	I!'

#	ls	-lah	/tmp/test*
-rw-r--r--		1	root	root				3	Feb	23	15:54	test1
lrwxrwxrwx		1	root	root			10	Feb	23	15:54	test3	->	/tmp/test1
-rw-r-----		1	root	root			16	Feb	23	15:05	testfile

/tmp/test2:
total	16K
drwxr-xr-x	2	root	root	4.0K	Feb	23	16:02	.
drwxrwxrwt	5	root	root	4.0K	Feb	23	16:02	..

#	cat	/tmp/test3
Hi.

That was totally awesome. What just happened?

“Exercise: Declare a file resource in a manifest and apply it! Try changing the�
login message by setting the content of /etc/motd.

Puppet Documentation • Learning — Manifests 13/311

Titles and Namevars

All right, notice how we left out some important attributes there and everything still worked?
Almost every resource type has one attribute whose value defaults to the resourceʼs title. For the
file resource, thatʼs path; with notify, itʼs message. A lot of the time (user, group, package…), itʼs
plain old name.

To people who occasionally delve into the Puppet source code, the one attribute that defaults to the
title is called the “namevar,” which is a little weird but as good a name as any. Itʼs almost always the
attribute that amounts to the resourceʼs identity, the one thing that should always be unique about
each instance.

This can be a convenient shortcut, but be wary of overusing it; there are several common cases
where it makes more sense to give a resource a symbolic title and assign its name (-var) as a
normal attribute. In particular, itʼs a good idea to do so if a resourceʼs name is long or you want to
assign the name conditionally depending on the nature of the system.

				notify	{'bignotify':
						message	=>	"I'm	completely	enormous,	and	will	mess	up	the	formatting	of	
your
										code!	Also,	since	I	need	to	fire	before	some	other	resource,	you'll	
need
										to	refer	to	me	by	title	later	using	the	Notify['title']	syntax,	and	
you
										really	don't	want	to	have	to	type	this	all	over	again.",
				}

The upshot is that our notify	{"I'm	notifying	you.":} resource above has the exact same effect�
as:

				notify	{'other	title':
						message	=>	"I'm	notifying	you.",
				}

… because the message attribute just steals the resource title if you donʼt give it anything of its own.

You canʼt declare the same resource twice: Puppet will always keep you from making resources with
duplicate titles, and will almost always keep you from making resources with duplicate
name/namevar values. (exec resources are the main exception.)

And finally, you donʼt need an encyclopedic memory of what the namevar is for each resource —�
when in doubt, just choose a descriptive title and specify the attributes you need.

644 = 755 For Directories

We said /tmp/test2/ should have permissions mode 0644, but our ls	-lah showed mode 0755.
Thatʼs because Puppet groups the read bit and the traverse bit for directories, which is almost
always what you actually want. The idea is to let you recursively manage whole directories as mode
0644 without making all their files executable.�

Puppet Documentation • Learning — Manifests 14/311

New Ensure Values

The file type has several different values for its ensure attribute: �present, absent, file,
directory, and link. Theyʼre listed on the core types cheat sheet whenever you need to refresh
your memory, and theyʼre fairly self-explanatory.

The Destination
Hereʼs a pretty crucial part of learning to think like a Puppet user. Try applying that manifest again.

#	puppet	apply	2.file.pp
notice:	I'm	notifying	you.
notice:	/Stage[main]//Notify[I'm	notifying	you.]/message:	defined	'message'	as	
'I'm	notifying	you.'
notice:	So	am	I!
notice:	/Stage[main]//Notify[So	am	I!]/message:	defined	'message'	as	'So	am	I!'

And again!

#	rm	/tmp/test3
#	puppet	apply	2.file.pp
notice:	I'm	notifying	you.
notice:	/Stage[main]//Notify[I'm	notifying	you.]/message:	defined	'message'	as	
'I'm	notifying	you.'
notice:	/Stage[main]//File[/tmp/test3]/ensure:	created
notice:	So	am	I!
notice:	/Stage[main]//Notify[So	am	I!]/message:	defined	'message'	as	'So	am	I!'

The notifies are firing every time, because thatʼs what theyʼre for, but Puppet doesnʼt do anything��
with the file resources unless theyʼre wrong on disk; if theyʼre wrong, it makes them right.�
Remember how I said Puppet was declarative? This is how that pays off: You can apply the same�
configuration every half hour without having to know anything about how the system currently�
looks. Manifests describe the destination, and Puppet handles the journey.

Next

“
“

Exercise: Write and apply a manifest that’ll make sure Apache (httpd) is
running, use a web browser on your host OS to view the Apache welcome page,
then modify the manifest to turn Apache back off. (Hint: You’ll have to check the
cheat sheet or the types reference, because the service type’s ensure values
differ from the ones you’ve seen so far.)

Slightly more difficult exercise:� Write and apply a manifest that uses the
ssh_authorized_key type to let you log into the learning VM as root without a
password. You’ll need to already have an SSH key.

Puppet Documentation • Learning — Manifests 15/311

Resource declarations: Check! You know how to use the fundamental building blocks of Puppet
code, so now itʼs time to learn how those blocks fit together�.

Learning — Resource Ordering
You understand manifests and resource declarations; now learn about metaparameters, resource
ordering, and one of the most useful patterns in Puppet.

← Manifests — Index — Variables →

Disorder
Letʼs look back on one of our manifests from the last page:

				#	/root/training-manifests/2.file.pp

				file	{'/tmp/test1':
						ensure		=>	present,
						content	=>	"Hi.",
				}

				file	{'/tmp/test2':
						ensure	=>	directory,
						mode			=>	644,
				}

				file	{'/tmp/test3':
						ensure	=>	link,
						target	=>	'/tmp/test1',
				}

				notify	{"I'm	notifying	you.":}
				notify	{"So	am	I!":}

Although we wrote these declarations one after another, Puppet might sync them in any order:
unlike with a procedural language, the physical order of resources in a manifest doesnʼt imply a
logical order.

But some resources depend on other resources. So how do we tell Puppet which ones go first?�

Metaparameters, Resource References, and Ordering
				file	{'/tmp/test1':
						ensure		=>	present,
						content	=>	"Hi.",

1. There are also a few I can mention now, actually. If you drastically refactor your manifest code and want to make sure it still
generates the same configurations, you can just intercept the catalogs and use a special diff tool on them; if the same nodes��
get the same configurations, you can be sure the code acts the same without having to model the execution of the code in�
your head. Compiling to a catalog also makes it much easier to simulate applying a configuration, and since the catalog is�
just data, itʼs relatively easy to parse and analyze with your own tool of choice.↩

Puppet Documentation • Learning — Resource Ordering 16/311

				}

				notify	{'/tmp/test1	has	already	been	synced.':
						require	=>	File['/tmp/test1'],
				}

Each resource type has its own set of attributes, but thereʼs another set of attributes, called
metaparameters, which can be used on any resource. (Theyʼre meta because they donʼt describe
any feature of the resource that you could observe on the system after Puppet finishes; they only�
describe how Puppet should act.)

There are four metaparameters that let you arrange resources in order: before, require, notify,
and subscribe. All of them accept a resource reference (or an array1 of them). Resource references
look like this:

				Type['title']

(Note the square brackets and capitalized resource type!)
AN ASIDE: CAPITALIZATION

The easy way to remember this is that you only use the lowercase type name when declaring a new
resource. Any other situation will always call for a capitalized type name.

This will get more important in another couple lessons, so Iʼll mention it again later.

Before and Require

before and require make simple dependency relationships, where one resource must be synced
before another. before is used in the earlier resource, and lists resources that depend on it;
require is used in the later resource and lists the resources that it depends on.

These two metaparameters are just different ways of writing the same relationship — our example�
above could just as easily be written like this:

				file	{'/tmp/test1':
						ensure		=>	present,
						content	=>	"Hi.",
						before		=>	Notify['/tmp/test1	has	already	been	synced.'],
						#	(See	what	I	meant	about	symbolic	titles	being	a	good	idea?)
				}

				notify	{'/tmp/test1	has	already	been	synced.':}

Notify and Subscribe

A few resource types2 can be “refreshed” — that is, told to react to changes in their environment.
For a service, this usually means restarting when a config file has been changed; for an ��exec
resource, this could mean running its payload if any user accounts have been changed. (Note that
refreshes are performed by Puppet, so they only occur during Puppet runs.)

Puppet Documentation • Learning — Resource Ordering 17/311

The notify and subscribe metaparameters make dependency relationships the way before and
require do, but they also make refresh relationships. Not only will the earlier resource in the pair
get synced first, but if Puppet makes any changes to that resource, it will send a refresh event to the�
later resource, which will react accordingly.

Chaining

				file	{'/tmp/test1':
						ensure		=>	present,
						content	=>	"Hi.",
				}

				notify	{'after':
						message	=>	'/tmp/test1	has	already	been	synced.',
				}

				File['/tmp/test1']	->	Notify['after']

Thereʼs one last way to declare relationships: chain resource references with the ordering (->) and
notification (�~>; note the tilde) arrows. The arrows can point in either direction (<- works too), and
you should think of them as representing the flow of time: the resource at the blunt end of the�
arrow will be synced before the resource the arrow points at.

The example above yields the same dependency as the two examples before it. The benefit of this�
alternate syntax may not be obvious when weʼre working with simple examples, but it can be much
more expressive and legible when weʼre working with resource collections.

Autorequire

Some of Puppetʼs resource types will notice when an instance is related to other resources, and
theyʼll set up automatic dependencies. The one youʼll use most often is between files and their�
parent directories: if a given file and its parent directory are both being managed as resources,�
Puppet will make sure to sync the parent directory before the file.�

Donʼt sweat much about the details of autorequiring; itʼs fairly conservative and should generally do
the right thing without getting in your way. If you forget itʼs there and make explicit dependencies,
your code will still work.

Summary
So to sum up: whenever a resource depends on another resource, use the before or require
metaparameter or chain the resources with ->. Whenever a resource needs to refresh when another
resource changes, use the notify or subscribe metaparameter or chain the resources with ~>.
Some resources will autorequire other resources if they see them, which can save you some effort.�

Hopefully thatʼs all pretty clear! But even if it is, itʼs rather abstract — making sure a notify fires after�
a file is something of a “hello world” use case, and not very illustrative. Letʼs break something!�

Example: sshd
Puppet Documentation • Learning — Resource Ordering 18/311

Youʼve probably been using SSH and your favorite terminal app to interact with the Learning Puppet
VM, so letʼs go straight for the most-annoying-case scenario: weʼll pretend someone accidentally
gave the wrong person (i.e., us) sudo privileges, and have you ruin rootʼs ability to SSH to this box.
Weʼll use Puppet to bust it and Puppet to fix it.�

First, if you got the ssh_authorized_key exercise from the last page working, undo it.

#	mv	~/.ssh/authorized_keys	~/old_ssh_authorized_keys

Now letʼs get a copy of the current sshd config file; going forward, weʼll use our new copy as the��
canonical source for that file.�

#	cp	/etc/ssh/sshd_config	~/learning-manifests/

Next, edit our new copy of the file. Thereʼs a line in there that says �PasswordAuthentication	yes;
find it, and change the yes to a no. Then start writing some Puppet!�

				#	/root/learning-manifests/break_ssh.pp
				file	{	'/etc/ssh/sshd_config':
						ensure	=>	file,
						mode			=>	600,
						source	=>	'/root/learning-manifests/sshd_config',
						#	And	yes,	that's	the	first	time	we've	seen	the	"source"	attribute.
						#	It	accepts	absolute	paths	and	puppet:///	URLs,	about	which	more	later.
				}

Except that wonʼt work! (Donʼt run it, and if you did, read this footnote.3) If we apply this manifest,
the config file will change, but ��sshd will keep acting on the old config file until it restarts… and if itʼs��
only restarting when the system reboots, that could be years from now.

If we want the service to change its behavior as soon as we change our policy, weʼll have to tell it to
monitor the config file.��

				#	/root/learning-manifests/break_ssh.pp,	again
				file	{	'/etc/ssh/sshd_config':
						ensure	=>	file,
						mode			=>	600,
						source	=>	'/root/learning-manifests/sshd_config',
				}

				service	{	'sshd':
						ensure					=>	running,
						enable					=>	true,
						hasrestart	=>	true,
						hasstatus		=>	true,
						#	FYI,	those	last	two	attributes	default	to	false,	since
						#	bad	init	scripts	are	more	or	less	endemic.
						subscribe		=>	File['/etc/ssh/sshd_config'],
				}

Puppet Documentation • Learning — Resource Ordering 19/311

And thatʼll do it! Run that manifest with puppet apply, and after you log out, you wonʼt be able to
SSH into the VM again. Victory.

To fix it, youʼll have to log into the machine directly — use the screen provided by your�
virtualization app. Once youʼre there, youʼll just have to edit /root/learning-
manifests/sshd_config again to change the PasswordAuthentication setting and re-apply the
same manifest; Puppet will replace /etc/ssh/sshd_config with the new version, restart the service,
and re-enable remote password logins. (And you can put your SSH key back now, if you like.)

Package/File/Service
The example we just saw was very close to a pattern youʼll see constantly in production Puppet
code, but it was missing a piece. Letʼs complete it:

				#	/root/learning-manifests/break_ssh.pp
				package	{	'openssh-server':
						ensure	=>	present,
						before	=>	File['/etc/ssh/sshd_config'],
				}

				file	{	'/etc/ssh/sshd_config':
						ensure	=>	file,
						mode			=>	600,
						source	=>	'/root/learning-manifests/sshd_config',
				}

				service	{	'sshd':
						ensure					=>	running,
						enable					=>	true,
						hasrestart	=>	true,
						hasstatus		=>	true,
						subscribe		=>	File['/etc/ssh/sshd_config'],
				}

This is package/file/service,� one of the most useful patterns in Puppet: the package resource makes
sure the software is installed, the config file depends on the package resource, and the service��
subscribes to changes in the config file.��

Itʼs hard to understate the importance of this pattern; if this was all you knew how to do with
Puppet, you could still do a fair amount of work. But weʼre not done yet.

Next
Now that you can sync resources in their proper order, itʼs time to make your manifests aware of
the outside world with variables, facts, and conditionals.
1. Arrays in Puppet are made with square brackets and commas, so an array of resource references would [Notify['look'],

Notify['like'],	Notify['this']].↩
2. Of the built-in types, only exec, service, and mount can be refreshed.↩
3. If you DID apply the incomplete manifest, something interesting happened: your machine is now in a half-rolled-out

condition that puts the lie to what I said earlier about not having to worry about the systemʼs current state. Since the config�
file is now in sync with its desired state, Puppet wonʼt change it during the next run, which means applying the complete�

Puppet Documentation • Learning — Resource Ordering 20/311

Learning — Variables, Conditionals, and
Facts
You can write manifests and order resources; now, add logic and flexibility with conditional�
statements and variables.

← Ordering — Index — Modules (Part One) →

Variables
Variables! Iʼm going to bet you pretty much know this drill, so letʼs move a little faster:

$variables always start with a dollar sign. You assign to variables with the = operator.
Variables can hold strings, numbers, special values (false, undef…), arrays, and hashes.
You can use variables as the value for any resource attribute, or as the title of a resource.
You can also interpolate variables inside strings, if you use double-quotes. To distinguish a
${variable} from the surrounding text, you should wrap its name in curly braces.
Every variable has a short local name and a long fully-qualified name. Fully qualified variables��
look like $scope::variable. Top scope variables are the same, but their scope is nameless. (For
example: $::top_scope_variable.)

You can only assign the same variable once in a given scope.1

				$longthing	=	"Imagine	I	have	something	really	long	in	here.	Like	an	SSH	
key,	let's	say."
				
				file	{'authorized_keys':
						path				=>	'/root/.ssh/authorized_keys',
						content	=>	$longthing,
				}

Pretty easy.

Facts
And now, a teaspoon of magic.

Before you even start writing your manifests, Puppet builds you a stash of pre-assigned variables.

manifest wonʼt cause the service to refresh until either the source file or the file on the system changes one more time. ��

In practice, this isnʼt a huge problem, because only your development machines are likely to end up in this state; your
production nodes wonʼt have been given incomplete configurations. In the meantime, you have two options for cleaning up�
after applying an incomplete manifest: For a one-time fix, echo a bogus comment to the bottom of the file on the system��
(echo	"#	ignoreme"	>>	/etc/ssh/sshd_config), or for a more complete approach, make a comment in the source file that�
contains a version string, which you can update whenever you make significant changes to the associated manifest(s). Both�
of these approaches will mark the config file as out of sync, replace it during the Puppet run, and send the refresh event to��
the service.↩

Puppet Documentation • Learning — Variables, Conditionals, and Facts 21/311

Check it out:

				#	hosts-simple.pp
				
				#	Host	type	reference:
				#	http://docs.puppetlabs.com/references/latest/type.html#host
				
				host	{'self':
						ensure	=>	present,
						name			=>	$::hostname,
						ip					=>	$::ipaddress,
				}
				
				file	{'motd':
						ensure		=>	file,
						path				=>	'/etc/motd',
						mode				=>	0644,
						content	=>	"Welcome	to	${::hostname},\n	a	${::operatingsystem}	island	in	
the	sea	of	${::domain}.\n",
				}

#	puppet	apply	hosts-simple.pp

notice:	/Stage[main]//Host[puppet]/ensure:	created
notice:	/Stage[main]//File[motd]/ensure:	defined	content	as	
'{md5}d149026e4b6d747ddd3a8157a8c37679'

#	cat	/etc/hosts
#	HEADER:	This	file	was	autogenerated	at	Mon	Apr	25	14:39:11	-0700	2011
#	HEADER:	by	puppet.		While	it	can	still	be	managed	manually,	it
#	HEADER:	is	definitely	not	recommended.
#	Do	not	remove	the	following	line,	or	various	programs
#	that	require	network	functionality	will	fail.
127.0.0.1	localhost.localdomain	localhost
::1	localhost6.localdomain6	localhost6
172.16.158.137	puppet

Our manifests are starting to get versatile, with pretty much no real work on our part.

Hostname? IPaddress?

So where did those helpful variables come from? Theyʼre “facts.” Puppet ships with a tool called
Facter, which ferrets out your system information, normalizes it into a set of variables, and passes
them off to Puppet. The compiler then has access to those facts when itʼs reading a manifest.�

There are a lot of different facts, and the easiest way to get a list of them is to simply run �facter at
your VMʼs command line. Youʼll get back a long list of key/value pairs separated by the familiar =>
hash rocket. To use one of these facts in your manifests, just prepend a dollar sign to its name
(along with a ::, because being explicit about namespaces is a good habit).

Most kinds of system will have at least a few facts that arenʼt available on other kinds of system
(e.g., try comparing Facterʼs output on your CentOS VM to what it does on an OS X machine), and it
can get fuzzier if youʼre extending Facter with custom facts, but thereʼs a general core of facts that
give you the same info everywhere. Youʼll get a feel for them pretty quickly, and can probably guess
Puppet Documentation • Learning — Variables, Conditionals, and Facts 22/311

most of them just by reading the list of names.

Conditional Statements
Puppet has a fairly complete complement of conditional syntaxes, and the info available in facts
makes it really easy to code different behavior for different systems.��

If

Weʼll start with your basic if statement. Same as it ever was: if condition { block of code } elsif
condition { block of code } else { block of code }; the else and any number of elsif statements are
optional.

				if	$is_virtual	{
						service	{'ntpd':
								ensure	=>	stopped,
								enable	=>	false,
						}
				}
				else	{
						service	{	'ntpd':
								name							=>	'ntpd',
								ensure					=>	running,
								enable					=>	true,
								hasrestart	=>	true,
								require	=>	Package['ntp'],
						}
				}

The blocks of code for each condition can contain any Puppet code.
WHAT IS FALSE?

Youʼll notice I used a bare fact as the condition above. The Puppet languageʼs data types are kind of
loose, and a lot of things tend to get represented internally as strings, so itʼs worth mentioning that
the following values will be treated as false by an if statement:

undef

'' (the empty string)
false

Any expression that evaluates to false.

In particular, be aware that 0 is true.
CONDITIONS

Conditions can get pretty sophisticated: you can use any valid expression in an if statement.
Usually, this is going to mean using one of the standard comparison operators (==, !=, <, >, <=, >=),
the regex match operators (=~ and !~), or the in operator (which tests whether the right operand
contains the left one).

Case

Also probably familiar: the case statement. (Or switch, or whatever your language of choice calls it.)
Puppet Documentation • Learning — Variables, Conditionals, and Facts 23/311

Also probably familiar: the case statement. (Or switch, or whatever your language of choice calls it.)

				case	$operatingsystem	{
						centos:	{	$apache	=	"httpd"	}
						#	Note	that	these	matches	are	case-insensitive.
						redhat:	{	$apache	=	"httpd"	}
						debian:	{	$apache	=	"apache2"	}
						ubuntu:	{	$apache	=	"apache2"	}
						default:	{	fail("Unrecognized	operating	system	for	webserver")	}
						#	"fail"	is	a	function.	We'll	get	to	those	later.
				}
				package	{'apache':
						name			=>	$apache,
						ensure	=>	latest,
				}

Instead of testing a condition up front, case matches a variable against a bunch of possible values.
default is a special value, which does exactly what it sounds like.

CASE MATCHING

Matches can be simple strings (like above), regular expressions, or comma-separated lists of either.

String matching is case-insensitive, like the == comparison operator. Regular expressions are
denoted with the slash-quoting used by Perl and Ruby; theyʼre case-sensitive by default, but you
can use the (?i) and (?-i) switches to turn case-insensitivity on and off inside the pattern. Regex�
matches also assign captured subpatterns to $1, $2, etc. inside the associated code block, with $0
containing the whole matching string.

Hereʼs a regex example:

				case	$ipaddress_eth0	{
						/^127[\d.]+$/:	{	
								notify	{'misconfig':	
										message	=>	"Possible	network	misconfiguration:	IP	address	of	$0",
								}	
						}
				}

And hereʼs the example from above, rewritten and more readable:

				case	$operatingsystem	{
						centos,	redhat:	{	$apache	=	"httpd"	}
						debian,	ubuntu:	{	$apache	=	"apache2"	}
						default:	{	fail("Unrecognized	operating	system	for	webserver")	}
				}

Selectors

Selectors might be less familiar; theyʼre kind of like the ternary operator, and kind of like the case
statement.

Instead of choosing between a set of code blocks, selectors choose between a group of possible
values. You canʼt use them on their own; instead, theyʼre usually used to assign a variable.
Puppet Documentation • Learning — Variables, Conditionals, and Facts 24/311

http://en.wikipedia.org/wiki/%3F:

				$apache	=	$operatingsystem	?	{
						centos																=>	'httpd',
						redhat																=>	'httpd',
						/(?i)(ubuntu|debian)/	=>	"apache2-$1",
								#	(Don't	actually	use	that	package	name.)
						default															=>	undef,
				}

Careful of the syntax, there: it looks kind of like weʼre saying $apache	=	$operatingsystem, but
weʼre not. The question mark flags �$operatingsystem as the pivot of a selector, and the actual
value that gets assigned is determined by which option $operatingsystem matches. Also note how
the syntax differs from the case syntax: it uses hash rockets and line-end commas instead of colons�
and blocks, and you canʼt use lists of values in a match. (If you want to match against a list, you
have to fake it with a regular expression.)

It can look a little awkward, but there are plenty of situations where itʼs the most concise way to get
a value sorted out; if youʼre ever not comfortable with it, you can just use a case statement to assign
the variable instead.

Selectors can also be used directly as values for a resource attribute, but try not to do that, because
it gets ugly fast.

Exercises

Next
Now that your manifests can adapt to different kinds of systems, itʼs time to start grouping�
resources and conditionals into meaningful units. Onward to classes, defined resource types, and�
modules!

“
“

Exercise: Use the $operatingsystem fact to write a manifest that installs a build
environment on Debian-based (“debian” and “ubuntu”) and Enterprise Linux-
based (“centos,” “redhat”) machines. (Both types of system require the gcc
package, but Debian-type systems also require build-essential.)

Exercise: Write a manifest that installs and configures NTP for Debian-based�
and Enterprise Linux-based Linux systems. This will be a package/file/service�
pattern where you’ll be shipping different config files (��Debian version, Red Hat
version — remember the file type’s “source” attribute) and using different
service names (ntp and ntpd, respectively).

(Use a second manifest to disable the NTP service after you’ve gotten this
example working; NTP can behave kind of uselessly in a virtual machine.)

Puppet Documentation • Learning — Variables, Conditionals, and Facts 25/311

Learning — Modules and Classes (Part One)
You can write some pretty sophisticated manifests at this point, but theyʼre still at a fairly low
altitude, going resource-by-resource-by-resource. Now, zoom out with resource collections.

← Variables, etc. — Index — TBA →

Collecting and Reusing
At some point, youʼre going to have Puppet code that fits into a couple of different buckets: really��
general stuff that applies to all your machines, more specialized stuff that only applies to certain��
classes of machines, and very specific stuff thatʼs meant for a few nodes at most.��

So… you could just paste in all your more general code as boilerplate atop your more specific code.�
There are ways to do that and get away with it. But thatʼs the road down into the valley of the
4,000-line manifest. Better to separate your code out into meaningful units and then call those
units by name as needed.

Thus, resource collections and modules! In a few minutes, youʼll be able to maintain your manifest
code in one place and declare whole groups of it like this:

class	{'security_base':	}
class	{'webserver_base':	}
class	{'appserver':	}

And after that, itʼll get even better. But first things first.��

Classes
Classes are singleton collections of resources that Puppet can apply as a unit. You can think of
them as blocks of code that can be turned on or off.�

If you know any object-oriented programming, try to ignore it for a little while, because thatʼs not
the kind of class weʼre talking about. Puppet classes could also be called “roles” or “aspects;” they
describe one part of what makes up a systemʼs identity.

Defining�

Before you can use a class, you have to define� it, which is done with the class keyword, a name,
and a block of code:

1. This has to do with the declarative nature of the Puppet language: the idea is that the order in which you read the file�
shouldnʼt matter, so changing a value halfway through is illegal, since it would make the results order-dependent.

In practice, this isnʼt the full story, because you canʼt currently read a variable from anywhere north of its assignment. Weʼre
working on that.↩

Puppet Documentation • Learning — Modules and Classes (Part One) 26/311

class	someclass	{	
		...	
}

Well, hey: you have a block of code hanging around from last chapterʼs exercises, right? May as well
just wrap that in a class definition!�

				#	ntp-class1.pp
				
				class	ntp	{
						case	$operatingsystem	{
								centos,	redhat:	{	
										$service_name	=	'ntpd'
										$conf_file	=	'ntp.conf.el'
								}
								debian,	ubuntu:	{	
										$service_name	=	'ntp'
										$conf_file	=	'ntp.conf.debian'
								}
						}
						
						package	{	'ntp':
								ensure	=>	installed,
						}
						
						service	{	'ntp':
								name	=>	$service_name,
								ensure	=>	running,
								enable	=>	true,
								subscribe	=>	File['ntp.conf'],
						}
						
						file	{	'ntp.conf':
								path	=>	'/etc/ntp.conf',
								ensure	=>	file,
								require	=>	Package['ntp'],
								source	=>	"/root/learning-manifests/${conf_file}",
						}
				}

Go ahead and apply that. In the meantime:
AN ASIDE: NAMES, NAMESPACES, AND SCOPE

Class names have to start with a lowercase letter, and can contain lowercase alphanumeric
characters and underscores. (Just your standard slightly conservative set of allowed characters.)

Class names can also use a double colon (::) as a namespace separator. (Yes, this should look
familiar.) This is a good way to show which classes are related to each other; for example, you can
tell right away that somethingʼs going on between apache::ssl and apache::vhost. This will
become more important about two feet south of here.

Also, class definitions introduce new variable scopes. That means any variables you assign within�
wonʼt be accessible by their short names outside the class; to get at them from elsewhere, you
would have to use the fully-qualified name (e.g. �$apache::ssl::certificate_expiration). It also
means you can localize — mask — variable short names in use outside the class; if you assign a
Puppet Documentation • Learning — Modules and Classes (Part One) 27/311

http://localhost:9292/learning/variables.html#variables

$fqdn variable in a class, you would get the new value instead of the value of the Facter-supplied
variable, unless you used the fully-qualified fact name (�$::fqdn).

Declaring

Okay, back to our example, which youʼll have noticed by now doesnʼt actually do anything.

#	puppet	apply	ntp-class1.pp
(...silence)

The code inside the class was properly parsed, but the compiler didnʼt build any of it into the
catalog, so none of the resources got synced. For that to happen, the class has to be declared.

You actually already know the syntax to do that. A class definition just enables a unique instance of�
the class resource type, so you can declare it like any other resource:

				#	ntp-class1.pp
				
				class	ntp	{
						case	$operatingsystem	{
								centos,	redhat:	{	
										$service_name	=	'ntpd'
										$conf_file	=	'ntp.conf.el'
								}
								debian,	ubuntu:	{	
										$service_name	=	'ntp'
										$conf_file	=	'ntp.conf.debian'
								}
						}
						
						package	{	'ntp':
								ensure	=>	installed,
						}
						
						service	{	'ntp':
								name	=>	$service_name,
								ensure	=>	running,
								enable	=>	true,
								subscribe	=>	File['ntp.conf'],
						}
						
						file	{	'ntp.conf':
								path	=>	'/etc/ntp.conf',
								ensure	=>	file,
								require	=>	Package['ntp'],
								source	=>	"/root/learning-manifests/${conf_file}",
						}
				}
				
				#	Then,	declare	it:
				class	{'ntp':	}

This time, all those resources will end up in the catalog:

#	puppet	apply	--verbose	ntp-class1.pp

Puppet Documentation • Learning — Modules and Classes (Part One) 28/311

info:	Applying	configuration	version	'1305066883'
info:	FileBucket	adding	/etc/ntp.conf	as	{md5}5baec8bdbf90f877a05f88ba99e63685
info:	/Stage[main]/Ntp/File[ntp.conf]:	Filebucketed	/etc/ntp.conf	to	puppet	
with	sum	5baec8bdbf90f877a05f88ba99e63685
notice:	/Stage[main]/Ntp/File[ntp.conf]/content:	content	changed	
'{md5}5baec8bdbf90f877a05f88ba99e63685'	to	
'{md5}dc20e83b436a358997041a4d8282c1b8'
info:	/Stage[main]/Ntp/File[ntp.conf]:	Scheduling	refresh	of	Service[ntp]
notice:	/Stage[main]/Ntp/Service[ntp]/ensure:	ensure	changed	'stopped'	to	
'running'
notice:	/Stage[main]/Ntp/Service[ntp]:	Triggered	'refresh'	from	1	events

Defining the class makes it available; declaring activates it.�
INCLUDE

Thereʼs another way to declare classes, but it behaves a little bit differently:�

include	ntp
include	ntp
include	ntp

The include function will declare a class if it hasnʼt already been declared, and will do nothing if it
has. This means you can safely use it multiple times, whereas the resource syntax can only be used
once. The drawback is that include canʼt currently be used with parameterized classes, on which
more later.

So which should you choose? Neither, yet: learn to use both, and decide later, after weʼve covered
site design and parameterized classes.

Classes In Situ

Youʼve probably already guessed that classes arenʼt enough: even with the code above, youʼd still
have to paste the ntp definition into all your other manifests. So itʼs time to meet the �module
autoloader!
AN ASIDE: PRINTING CONFIG

But first, weʼll need to meet its friend, the �modulepath.

#	puppet	apply	--configprint	modulepath
/etc/puppetlabs/puppet/modules

By the way, --configprint is basically my favorite. Puppet has a lot of config options, all of which�
have default values and site-specific overrides in puppet.conf, and trying to memorize them all is a�
pain. You can use --configprint on most of the Puppet tools, and theyʼll print a value (or a bunch,
if you use --configprint	all) and exit.

Modules
So anyway, modules are re-usable bundles of code and data. Puppet autoloads manifests from the

Puppet Documentation • Learning — Modules and Classes (Part One) 29/311

modules in its modulepath, which means you can declare a class stored in a module from anywhere.
Letʼs just convert that last class to a module immediately, so you can see what Iʼm talking about:

#	cd	/etc/puppetlabs/puppet/modules
#	mkdir	ntp;	cd	ntp;	mkdir	manifests;	cd	manifests
#	vim	init.pp

				#	init.pp
				
				class	ntp	{
						case	$operatingsystem	{
								centos,	redhat:	{	
										$service_name	=	'ntpd'
										$conf_file	=	'ntp.conf.el'
								}
								debian,	ubuntu:	{	
										$service_name	=	'ntp'
										$conf_file	=	'ntp.conf.debian'
								}
						}
						
						package	{	'ntp':
								ensure	=>	installed,
						}
						
						service	{	'ntp':
								name	=>	$service_name,
								ensure	=>	running,
								enable	=>	true,
								subscribe	=>	File['ntp.conf'],
						}
						
						file	{	'/etc/ntp.conf':
								ensure	=>	file,
								require	=>	Package['ntp'],
								source	=>	"/root/learning-manifests/${conf_file}",
						}
				}
				
				#	(Remember	not	to	declare	the	class	yet.)

And now, the reveal:1

#	cd	~
#	puppet	apply	-e	"include	ntp"

It just works. You can now do that from any manifest, without having to cut and paste anything.

But weʼre not quite done yet. See how the manifest is referring to some files stored outside the�
module? Letʼs fix that:�

#	mkdir	/etc/puppetlabs/modules/ntp/files
#	mv	/root/learning-manifests/ntp.conf.*	/etc/puppetlabs/modules/ntp/files/
#	vim	/etc/puppetlabs/modules/ntp/manifests/init.pp

Puppet Documentation • Learning — Modules and Classes (Part One) 30/311

				#	...
						file	{	'/etc/ntp.conf':
								ensure	=>	file,
								require	=>	Package['ntp'],
								#	source	=>	"/root/learning-manifests/${conf_file}",
								source	=>	"puppet:///modules/ntp/${conf_file}",
						}
				}

There — our little example from last chapter has grown up into a self-contained blob of awesome.

Module Structure
A module is just a directory with stuff in it, and the magic comes from putting that stuff where��
Puppet expects to find it. Which is to say, arranging the contents like this:�

{module}/
files/�
lib/
manifests/

init.pp
{class}.pp
{defined type}.pp�
{namespace}/

{class}.pp
{class}.pp

templates/
tests/

The main directory should be named after the module. All of the manifests go in the manifests
directory. Each manifest contains only one class (or defined type). Thereʼs a special manifest called�
init.pp that holds the moduleʼs main class, which should have the same name as the module.
Thatʼs your barest-bones module: main folder, manifests folder, init.pp, just like we used in the ntp
module above.

But if that was all a module was, itʼd make more sense to just load your classes from one flat folder.�
Modules really come into their own with namespacing and grouping of classes.

Manifests, Namespacing, and Autoloading

The manifests directory can hold any number of other classes and even folders of classes, and
Puppet uses namespacing to find them. Say we have a manifests folder that looks like this:�

foo/
manifests/

init.pp

Puppet Documentation • Learning — Modules and Classes (Part One) 31/311

bar.pp
bar/

baz.pp

The init.pp file should contain �class	foo	{	...	}, bar.pp should contain class	foo::bar	{	...
}, and baz.pp should contain class	foo::bar::baz	{	...	}.

This can be a little disorienting at first, but I promise youʼll get used to it. Basically, init.pp is special,�
and all of the other classes (each in its own manifest) should be under the main classʼs namespace.
If you add more levels of directory hierarchy, they get interpreted as more levels of namespace
hierarchy.

Files

Puppet can serve files from modules, and it works identically regardless of whether youʼre doing�
serverless or agent/master Puppet. Everything in the files directory in the ntp module is available
under the puppet:///modules/ntp/ URL. Likewise, a test.txt file in the �testing moduleʼs files
could be retrieved as puppet:///modules/testing/test.txt.

Tests

Once you start writing modules you plan to keep for more than a day or two, read our brief guide to
module smoke testing. Itʼs pretty simple, and will eventually pay off.�

Templates

More on templates later.

Lib

Puppet modules can also serve executable Ruby code from their lib directories, to extend Puppet
and Facter. (Remember how I mentioned extending Facter with custom facts? This is where they
live.) Itʼll be a while before we cover any of that.

Module Scaffolding�

Since youʼll be dealing with those same five subdirectories so much, I suggest adding a function for�
them to your .bashrc file.�

mkmod()	{
				mkdir	"$1"
				mkdir	"$1/files"	"$1/lib"	"$1/manifests"	"$1/templates"	"$1/tests"
}

Exercises

“Exercise: Build an Apache2 module and class, which ensures Apache is
installed and running and manages its config file. While you’re at it, make��
Puppet manage the DocumentRoot and put a custom 404 page and index.html

Puppet Documentation • Learning — Modules and Classes (Part One) 32/311

Next
And weʼve reached another brief pause! Thereʼs some fun stuff ahead: come back next update,�
where weʼll cover defined resource types, classes with parameters in ʻem, and possibly inheritance,�
templates, functions, and/or resource defaults.

Tools
This guide covers the major tools that comprise Puppet.

Single binary
From version 2.6.0 and onwards all the Puppet functions are also available via a single Puppet
binary, in the style of git.

List of binary changes:

puppetmasterd → puppet master
puppetd → puppet agent
puppet → puppet apply
puppetca → puppet cert
ralsh → puppet resource
puppetrun → puppet kick
puppetqd → puppet queue
filebucket → puppet filebucket��
puppetdoc → puppet doc
pi → puppet describe

This also results in a change in the puppet.conf configuration file. The sections, previously things��
like [puppetd], now should be renamed to match the new binary names. So [puppetd] becomes
[agent]. You will be prompted to do this when you start Puppet. A log message will be generated
for each section that needs to be renamed. This is merely a warning – existing configuration file will��
work unchanged.

1. The -e flag lets you give puppet apply a line of manifest code instead of a file, same as with Perl or Ruby.��↩

“in place.

Set any files or package/service names that might vary per distro conditionally,�
failing if we’re not on CentOS; this’ll let you cleanly shim in support for other
distros once you need it.

We’ll be using this module some more in future lessons. Oh yes.

Puppet Documentation • Tools 33/311

Manpage documentation
Additional information about each tool is provided in the relevant manpage. You can consult the
local version of each manpage, or view the web versions of the manuals.

puppet master (or puppetmasterd)
Puppet master is a central management daemon. In most installations, youʼll have one puppet
master server and each managed machine will run puppet agent. By default, puppet master
operates a certificate authority, which can be managed using puppet cert.�

Puppet master serves compiled configurations, files, templates, and custom plugins to managed��
nodes.

The main configuration file for puppet master, puppet agent, and puppet apply is��
/etc/puppet/puppet.conf, which has sections for each application.

puppet agent (or puppetd)
Puppet agent runs on each managed node. By default, it will wake up every 30 minutes
(configurable), check in with puppetmasterd, send puppetmasterd new information about the�
system (facts), and receive a ʻcompiled catalogʼ describing the desired system configuration. Puppet�
agent is then responsible for making the system match the compiled catalog. If pluginsync is
enabled in a given nodeʼs configuration, custom plugins stored on the Puppet Master server are�
transferred to it automatically.

The puppet master server determines what information a given managed node should see based
on its unique identifier (“certname”); that node will not be able to see configurations intended for��
other machines.

puppet apply (or puppet)
When running Puppet locally (for instance, to test manifests, or in a non-networked disconnected
case), puppet apply is run instead of puppet agent. It then uses local files, and does not try to�
contact the central server. Otherwise, it behaves the same as puppet agent.

puppet cert (or puppetca)
The puppet cert command is used to sign, list and examine certificates used by Puppet to secure�
the connection between the Puppet master and agents. The most common usage is to sign the
certificates of Puppet agents awaiting authorisation:�

>	puppet	cert	--list
agent.example.com

>	puppet	cert	--sign	agent.example.com

You can also list all signed and unsigned certificates:�

Puppet Documentation • Tools 34/311

>	puppet	cert	--all	and	--list
+	agent.example.com
agent2.example.com

Certificates with a + next to them are signed. �All others are awaiting signature.

puppet doc (or puppetdoc)
Puppet doc generates documentation about Puppet and your manifests, which it can output in
HTML, Markdown and RDoc.

puppet resource (or ralsh)
Puppet resource (also known as ralsh, for “Resource Abstraction Layer SHell”) uses Puppetʼs
resource abstraction layer to interactively view and manipulate your local system.

For example, to list information about the user ʻxyzʼ:

>	puppet	resource	User	"xyz"

user	{	'xyz':
			home	=>	'/home/xyz',
			shell	=>	'/bin/bash',
			uid	=>	'1000',
			comment	=>	'xyz,,,',
			gid	=>	'1000',
			groups	=>	
['adm','dialout','cdrom','sudo','plugdev','lpadmin','admin','sambashare','libvirtd'],

			ensure	=>	'present'
}

It can also be used to make additions and removals, as well as to list resources found on a system:

>	puppet	resource	User	"bob"	ensure=present	group=admin

notice:	/User[bob]/ensure:	created
user	{	'bob':
				shell	=>	'/bin/sh',
				home	=>	'/home/bob',
				uid	=>	'1001',
				gid	=>	'1001',
				ensure	=>	'present',
				password	=>	'!'
}

>	puppet	resource	User	"bob"	ensure=absent
...

>	puppet	resource		User
...

Puppet resource is most frequently used as a learning tool, but it can also be used to avoid
Puppet Documentation • Tools 35/311

memorizing differences in common commands when maintaining multiple platforms. (Note that�
puppet resource can be used the same way on OS X as on Linux, e.g.)

puppet inspect
Puppet inspect generates an inspection report and sends it to the puppet master. It cannot be run
as a daemon.

Inspection reports differ from standard Puppet reports, as they do not record the actions taken by�
Puppet when applying a catalog; instead, they document the current state of all resource attributes
which have been marked as auditable with the audit metaparameter. (The most recent cached
catalog is used to determine which resource attributes are auditable.)

Inspection reports are handled identically to standard reports, and must be differentiated �at parse
time by your report tools; see the report format documentation for more details. Although a future
version of Puppet Dashboard will support viewing of inspection reports, Puppet Labs does not
currently ship any inspection report tools.

Puppet inspect was added in Puppet 2.6.5.

facter
Puppet agent nodes use a library (and associated front-end tool) called facter to provide
information about the hardware and OS (version information, IP address, etc) to the puppet master
server. These facts are exposed to Puppet manifests as global variables, which can be used in
conditionals, string expressions, and templates. To see a list of the facts any node offers, simply�
open a shell session on that node and run facter. Facter is included with (and required by) all
Puppet installations.

Introduction to Puppet
Why Puppet
As system administrators acquire more and more systems to manage, automation of mundane
tasks is increasingly important. Rather than develop in-house scripts, it is desirable to share a
system that everyone can use, and invest in tools that can be used regardless of oneʼs employer.
Certainly doing things manually doesnʼt scale.

Puppet has been developed to help the sysadmin community move to building and sharing mature
tools that avoid the duplication of everyone solving the same problem. It does so in two ways:

It provides a powerful framework to simplify the majority of the technical tasks that sysadmins
need to perform
The sysadmin work is written as code in Puppetʼs custom language which is shareable just like
any other code.

This means that your work as a sysadmin can get done much faster, because you can have Puppet
Puppet Documentation • Introduction to Puppet 36/311

http://projects.puppetlabs.com/projects/puppet/wiki/Report_Format_2

handle most or all of the details, and you can download code from other sysadmins to help you get
done even faster. The majority of Puppet implementations use at least one or two modules
developed by someone else, and there are already hundreds of modules developed and shared by
the community.

Learning Recommendations
Weʼre glad you want to learn Puppet. Youʼre free to browse around the documentation as you like,
though we generally recommend trying out Puppet locally first (without the daemon and�
client/server setup), so you can understand the basic concepts. From there, move on to centrally
managed server infrastructure. Ralsh is also a great way to get your feet wet exploring the Puppet
model, after you have read some of the basic information — you can quickly see how the declarative
model works for simple things like users, services, and file permissions.�

Once youʼve learned the basics, make sure you understand classes and modules, then move on to
the advanced sections and read more about the features that are useful to you. Learning all at once
is definitely not required. If you find something confusing, use the feedback tab to let us know.��

System Components
Puppet is typically (but not always) used in a client/server formation, with all of your clients talking
to one or more central servers. Each client contacts the server periodically (every half hour, by
default), downloads the latest configuration, and makes sure it is in sync with that configuration.��
Once done, the client can send a report back to the server indicating if anything needed to change.
This diagram shows the data flow in a regular Puppet implementation:�

Puppetʼs functionality is built as a stack of separate layers, each responsible for a fixed aspect of�
the system, with tight controls on how information passes between layers:

Puppet Documentation • Introduction to Puppet 37/311

See also Configuring Puppet�. For more information about components (puppetmasterd, puppetd,
puppet, and so on), see the Tools section.

Features of the System
Idempotency

One big difference between Puppet and most other tools is that Puppet configurations are��
idempotent, meaning they can safely be run multiple times. Once you develop your configuration,�
your machines will apply the configuration often — by default, every 30 minutes — and Puppet will�
only make any changes to the system if the system state does not match the configured state.�

If you tell the system to operate in no-op (“aka dry-run”), mode, using the --noop argument to one
of the Puppet tools, puppet will guarantee that no work happens on your system. Similarly, if any
changes do happen when running without that flag, puppet will ensure those changes are logged.�

Because of this, you can use Puppet to manage a machine throughout its lifecycle — from initial
installation, to ongoing upgrades, and finally to end-of-life, where you move services elsewhere.�
Unlike system install tools like Sunʼs Jumpstart or Red Hatʼs Kickstart, Puppet configurations can�
keep machines up to date for years, rather than just building them correctly only the first time and�
then neccessitating a rebuild. Puppet users usually do just enough with their host install tools to
boostrap Puppet, then they use Puppet to do everything else.

Cross Platform

Puppetʼs Resource Abstraction Layer (RAL) allows you to focus on the parts of the system you care
about, ignoring implementation details like command names, arguments, and file formats — your�
tools should treat all users the same, whether the user is stored in NetInfo or /etc/passwd. We call
these system entities resources.

Ralsh, listed in the Tools section is a fun way to try out the RAL before you get too deep into Puppet
language.

Model & Graph Based
RESOURCE TYPES

The concept of each resource (like service, file, user, group, etc) is modelled as a “type”. Puppet�
decouples the definition from how that implementation is fulfilled on a particular operating system,��
for instance, a Linux user versus an OS X user can be talked about in the same way but are
implemented differently inside of Puppet.�

See Type Guides for a list of managed types and information about how to use them.
PROVIDERS

Providers are the fulfillment of a resource. �For instance, for the package type, both ʻyumʼ and ʻaptʼ
are valid ways to manage packages. Sometimes more than one provider will be available on a
particular platform, though each platform always has a default provider. There are currently 17
providers for the package type.
MODIFYING THE SYSTEM

Puppet Documentation • Introduction to Puppet 38/311

Puppet resource providers are what are responsible for directly managing the bits on disk. You do
not directly modify a system from Puppet language — you use the language to specify a resource,
which then modifies the system. �This way puppet language behaves exactly the same way in a
centrally managed server setup as it does locally without a server. Rather than tacking a couple of
lines onto the end of your fstab, you use the mount type to create a new resource that knows how
to modify the fstab, or NetInfo, or wherever mount information is kept.

Resources have attributes called ʻpropertiesʼ which change the way a resource is managed. For
instance, users have an attribute that specicies whether the home directory should be created.

ʻMetaparamsʼ are another special kind of attribute, those exist on all resources. This include things
like the log level for the resource, whether the resource should be in noop mode so it never
modifies the system, and the relationships between resources.�
RESOURCE RELATIONSHIPS

Puppet has a system of modelling relationships between resources — what resources should be
evaluated before or after one another. They also are used to determine whether a resource needs
to respond to changes in another resource (such as if a service needs to restart if the configuration�
file for the service has changed). �This ordering reduces unneccessary commands, such as avoiding
restarting a service if the configuration has �not changed.

Because the system is graph based, itʼs actually possible to generate a diagram (from Puppet) of the
relationships between all of your resources.

Learning The Language
Seeing a few examples in action will greatly help in learning the system.

For information about the Puppet language, see the excellent language guide

Supported Platforms
Learn what platforms are supported.

Please contact Puppet Labs if you are interested in a platform not on this list.

Puppet requires Ruby to run and currently supports Ruby version 1.8.1 to 1.8.7. Ruby 1.9.x is not
yet supported.

Linux
CentOS
Debian 3.1 and later
Fedora Core 2-6
Fedora 7 and later
Gentoo Linux
Mandriva Corporate Server 4

Puppet Documentation • Supported Platforms 39/311

http://puppetlabs.com/contact/

RHEL 3 and later
Oracle Linux
SuSE Linux 8 and later
Ubuntu 7.04 and later
ArchLinux

BSD
FreeBSD 4.7 and later
OpenBSD 4.1 and later

Other Unix
Macintosh OS X
Sun Solaris 2.6
Sun Solaris 7 and later
AIX
HP-UX

Windows
Windows (version 2.6.0 and later)

Installation Guide
This guide covers in-depth installation instructions and options for Puppet on a wide-range of
operating systems.

Before Starting
You will need to install Puppet on all machines on both clients and the central Puppet master
server(s).

For most platforms, you can install ʻpuppetʼ via your package manager of choice. For a few
platforms, you will need to install using the tarball or RubyGems.

INFO: For instructions on installing puppet using a distribution-specific package manager, consult�
your operating system documentation. Volunteer contributed operating system packages can also
be found on the downloads page

Ruby Prerequisites
The only prerequisite for Puppet that doesnʼt come as part of the Ruby standard library is facter,
which is also developed by Puppet Labs.

All other prerequisites Ruby libraries should come with any standard Ruby 1.8.2+ install. Should

Puppet Documentation • Installation Guide 40/311

http://www.puppetlabs.com/downloads/puppet/
http://www.puppetlabs.com/downloads/gems/
http://projects.puppetlabs.com/projects/puppet/wiki/Downloading_Puppet
http://www.puppetlabs.com/projects/facter/index.html

your OS not come with the complete standard library (or you are using a custom Ruby build), these
include:

base64
cgi
digest/md5
etc
fileutils�
ipaddr
openssl
strscan
syslog
uri
webrick
webrick/https
xmlrpc

NOTE: We strongly recommend using the version of Ruby that comes with your system, since that
will have a higher degree of testing coverage. If you feel the particular need to build Ruby manually,
you can get the source from ruby-lang.org.

OS Packages
If installing from a distribution maintained package, such as those listed on the Downloading
Puppet Wiki Page all OS prerequisites should be handled by your package manager. See the Wiki for
information on how to enable repositories for your particular OS. Usually the latest stable version is
available as a package. If you would like to do puppet-development or see the latest versions,
however, you will want to install from source.

Installing Facter From Source
The facter library is a prerequisite for Puppet. Like Puppet, there are packages available for most
platforms, though you may want to use the tarball if you would like to try a newer version or are
using a platform without an OS package:

Get the latest tarball:

$	wget	http://puppetlabs.com/downloads/facter/facter-latest.tgz

Untar and install facter:

$	gzip	-d	-c	facter-latest.tgz	|	tar	xf	-
$	cd	facter-*
$	sudo	ruby	install.rb	#	or	become	root	and	run	install.rb

There are also gems available in the download directory.
Puppet Documentation • Installation Guide 41/311

http://ruby-lang.org/
http://projects.puppetlabs.com/projects/puppet/wiki/Downloading_Puppet
http://projects.puppetlabs.com/projects/puppet/wiki/Downloading_Puppet
http://www.puppetlabs.com/downloads/

Installing Puppet From Source
Using the same mechanism as Facter, install the puppet libraries and executables:

#	get	the	latest	tarball
$	wget	http://puppetlabs.com/downloads/puppet/puppet-latest.tgz
#	untar	and	install	it
$	gzip	-d	-c	puppet-latest.tgz	|	tar	xf	-
$	cd	puppet-*
$	sudo	ruby	install.rb	#	or	become	root	and	run	install.rb

You can also check the source out from the git repo:

$	mkdir	-p	~/git	&&	cd	~/git
$	git	clone	git://github.com/puppetlabs/puppet
$	cd	puppet
$	sudo	ruby	./install.rb

To install into a different location you can use:�

$	sudo	ruby	install.rb	--bindir=/usr/bin	--sbindir=/usr/sbin

Alternative Install Method: Using Ruby Gems

You can also install Facter and Puppet via gems:

		$	wget	http://puppetlabs.com/downloads/gems/facter-1.5.7.gem
		$	sudo	gem	install	facter-1.5.7.gem
		$	wget	http://puppetlabs.com/downloads/gems/puppet-0.25.1.gem
		$	sudo	gem	install	puppet-0.25.1.gem

Find the latest gems here

For more information on Ruby Gems, see the Gems User Guide

WARNING: If you get the error, in require:	no	such	file	to	load, define the RUBYOPT�
environment variable as advised in the post-install instructions of the RubyGems User Guide.

Configuring Puppet�
Now that the packages are installed, see Configuring Puppet� for setup instructions.

Configuration Guide�
Once Puppet is installed, learn how to set it up for initial operation.

Puppet Documentation • Configuration Guide 42/311

http://puppetlabs.com/downloads/gems/
http://docs.rubygems.org/read/book/1
http://docs.rubygems.org/read/chapter/3#page70

Open Firewall Ports On Server and Agent Node
In order for the puppet master server to centrally manage agent nodes, you may need to open port
8140 for incoming tcp connections on the puppet master. Consult your firewall documentation for�
more details.

Configuration Files�
The main configuration file for Puppet is ��/etc/puppet/puppet.conf. A package based installation
file will have created this file automatically. ��Unlisted settings have reasonable defaults. To see all
the possible values, you may run:

$	puppet	--genconfig

Configure DNS (Optional)�
The puppet agent looks for a server named puppet by default. If you choose, you can set up a
puppet DNS CNAME record to avoid having to specify your puppet master hostname in the
configuration of each agent node.�

If you have local DNS zone files, you can add a CNAME record pointing to the server machine in the�
appropriate zone file.�

puppet			IN			CNAME		crabcake.picnic.edu.

See the book “DNS and Bind” by Cricket Liu et al if you need help with CNAME records. After adding
the CNAME record, restart your name server. You can also add a host entry in the /etc/hosts file�
on both the server and agent nodes.

For the server:

127.0.0.1	localhost.localdomain	localhost	puppet

For the agent nodes:

192.168.1.67	crabcake.picnic.edu	crabcake	puppet

NOTE: If you can ping the server by the name puppet but Syslog (for example /var/log/messages)
on the agent nodes still has entries stating the puppet agent cannot connect to the server, verify
port 8140 is open on the server.

Puppet Language Setup
Create Your Site Manifest

Puppet is a declarative system, so it does not make much sense to speak of “executing” Puppet
Puppet Documentation • Configuration Guide 43/311

programs or scripts. Instead, we choose to use the word manifest to describe our Puppet code, and
we speak of applying those manifests to the managed systems. Thus, a manifest is a text document
written in the Puppet language and meant to describe and result in a desired configuration.�

Puppet assumes that you will have one central manifest capable of configuring an entire site, which�
we call the site manifest. You could have multiple, separate site manifests if you wanted, though if
doing this each of them would need their own puppet servers. Individual system differences can be�
seperated out, node by node, in the site manifest.

Puppet will start with /etc/puppet/manifests/site.pp as the primary manifest, so create
/etc/puppet/manifests and add your manifest, along with any files it includes, to that directory. It�
is highly recommended that you use some form of version control (git, svn, etc) to keep track of
changes to manifests.

Example Manifest

The site manifest can do as little or as much as you want. A good starting point is a manifest that
makes sure that your sudoers file has the appropriate permissions:�

				#	site.pp
				file	{	"/etc/sudoers":
								owner	=>	root,	group	=>	root,	mode	=>	440
				}

For more information on how to create the site manifest, see the tutorials listed in the Getting
Started section.

Start the Central Daemon
Most sites should only need one puppet master server. Puppet Labs will be publishing a document
describing best practices for scale-out and failover, though there are various ways to address
handling in larger infrastructures. For now, weʼll explain how to work with the one server, and
others can be added as needed.

First, decide which machine will be the central server; this is where puppet master will be run.

The best way to start any daemon is using the local serverʼs service management system, often in
the form of init scripts.

If youʼre running on Red Hat, CentOS, Fedora, Debian, Ubuntu, or Solaris, the OS package already
contains a suitable init script. If you donʼt have one, you can either create your own using an
existing init script as an example, or simply run without one (though this is not advisable for
production environments).

It is also neccessary to create the puppet user and group that the daemon will use. Either create
these manually, or start the daemon with the --mkusers flag to create them.�

#	puppet	master	--mkusers

Puppet Documentation • Configuration Guide 44/311

Starting the puppet daemon will automatically create all necessary certificates, directories, and files.��

NOTE: To enable the daemon to also function as a file server, so that agent nodes can copy files��
from it, create a fileserver configuration file��� and restart puppet master.

Verifying Installation
To verify that your daemon is working as expected, pick a single agent node to use as a testbed.
Once Puppet is installed on that machine, run the agent against the central server to verify that
everything is working appropriately. You should start the agent in verbose mode the first time and�
with the --waitforcert flag enabled:�

#	puppet	agent	--server	myserver.domain.com	--waitforcert	60	--test

Adding the --test flag causes puppet agent to stay in the foreground, print extra output, only run�
once and then exit, and to just exit if the remote configuration fails to compile (by default, puppet�
agent will use a cached configuration if there is a problem with the remote manifests).�

In running the agent, you should see the message:

info:	Requesting	certificate
warning:	peer	certificate	won't	be	verified	in	this	SSL	session
notice:	Did	not	receive	certificate

INFO: This message will repeat every 60 seconds with the above command.

This is normal, since your server is not auto-signing certificates as a security precaution.�

On your server, list the waiting certificates:�

#	puppet	cert	--list

You should see the name of the test agent node. Now go ahead and sign the certificate:�

#	puppet	cert	--sign	mytestagent.domain.com

Within 60 seconds, your test agent should receive its certificate from the server, receive its�
configuration, apply it locally, and exit normally.�

NOTE: By default, puppet agent runs with a waitforcert of five minutes; set the value to 0 to disable�
this wait-polling period entirely.

Scaling your Installation
For more about how to tune Puppet for large environments, see Scaling Puppet.

Puppet Documentation • Configuration Guide 45/311

Scaling Puppet
Tune Puppet for maximum performance in large environments.

Are you using the default webserver?
WEBrick, the default web server used to enable Puppetʼs web services connectivity, is essentially a
reference implementation, and becomes unreliable beyond about ten managed nodes. In any sort
of production environment, you should switch to a more efficient web server implementation such��
as Passenger or Mongrel, which will allow for serving many more nodes concurrently. If your system
can work with Passenger, that is currently the recommended route. On older systems, use Mongrel.

Delayed check in
Puppetʼs default configuration asks that each node check in every 30 minutes. �An option called
ʻsplayʼ can add a random configurable lag to this check in time, to further balance out check in�
frequency. Alternatively, do not run puppetd as a daemon, and add puppet	agent with --onetime
to your crontab, allowing for setting different crontab intervals on different servers.��

Triggered selective updates
Similar to the delayed checkin and cron strategies, itʼs possible to trigger node updates on an as-
needed basis. Managed nodes can be configured to not check in automatically every 30 minutes,�
but rather to check in only when requested. puppetrun (in the ʻextʼ directory of the Puppet
checkout) may be used to selectively update hosts. Alternatively, do not run the daemon, and a tool
like mcollective could be used to launch puppet	agent with the --onetime option.

No central host
Using a central server offers numerous advantages, particularly in the area of security and�
enhanced control. In environments that do not need these features, it is possible to use rsync, git,
or some other means to transfer Puppet manifests and data to each individual node, and then run
puppet	apply locally (usually via cron). This approach scales essentially infinitely, and full usage of�
Puppet and facter is still possible.

Minimize recursive file serving�
Puppetʼs recursive file serving works well for small directories, but it isnʼt as efficient as rsync or���
NFS, and using it for larger directories can take a performance toll on both the client and server.

Passenger
Using Passenger instead of WEBrick for web services offers numerous performance advantages.�
This guide shows how to set it up.

Puppet Documentation • Scaling Puppet 46/311

http://www.puppetlabs.com/mcollective/introduction/

Supported Versions
Passenger support is present in release 0.24.6 and later versions only. For earlier versions, consider
Using Mongrel.

Why Passenger
Traditionally, the puppetmaster would embed a WEBrick or Mongrel Web Server to serve the puppet
clients. This may work well for you, but a few people feel like using a proven web server like Apache
would be superior for this purpose.

What is Passenger?
Passenger (AKA mod_rails or mod_rack) is the Apache 2.x Extension which lets you run Rails or
Rack applications inside Apache.

Puppet (>0.24.6) now ships with a Rack application which can embed a puppetmaster. While it
should be compatible with every Rack application server, it has only been tested with Passenger.

Depending on your operating system, the versions of Puppet, Apache and Passenger may not
support this implementation. Specifically, Ubuntu Hardy ships with an older version of puppet�
(0.24.4) and doesnʼt include passenger at all, however updated packages for puppet can be found
here. There are also some passenger packages there, but as of 2009-09-28 they do not seem to
have the latest passenger (2.2.5), so better install passenger from a gem as per the instructions at
[modrails.com].

Note: Passenger versions 2.2.3 and 2.2.4 have known bugs regarding to the SSL environment
variables, which make them unsuitable for hosting a puppetmaster. So use either 2.2.2, or 2.2.5.
Note that while it was expected that Passenger 2.2.2 would be the last version which can host a
0.24.x puppetmaster, that turns out to be not true, cf. this bug report. So, passenger 2.2.5 works
fine.�

Installation Instructions for Puppet 0.25.x and 2.6.x
Please see ext/rack/README in the puppet source tree for instructions.

Whatever you do, make sure your config.ru file is owned by the puppet user! Passenger will setuid��
to that user.

Installation Instructions for Puppet 0.24.x for
Debian/Ubuntu and RHEL5
Make sure puppetmasterd ran at least once, so puppetmasterd SSL certificates are setup intially.�

Install Apache 2, Rack and Passenger

For Debian/Ubuntu:

apt-get	install	apache2
apt-get	install	ruby1.8-dev

Puppet Documentation • Scaling Puppet 47/311

http://www.modrails.com/
https://launchpad.net/~bitpusher/+archive/ppa
http://projects.puppetlabs.com/issues/2386#change-9238
http://github.com/puppetlabs/puppet/tree/master/ext/rack

apt-get	install	ruby1.8-dev

For RHEL5 (needs the EPEL repository enabled):

yum	install	httpd	httpd-devel	ruby-devel	rubygems

Install Rack/Passenger

The latest version of Passenger (2.2.5) appears to work fine on RHEL5:�

gem	install	rack
gem	install	passenger
passenger-install-apache2-module

If you want the older 2.2.2 gem, you could manually download the .gem file from �RubyForge. Or,
you could just add the correct versions to your gem command:

		gem	install	-v	0.4.0	rack
		gem	install	-v	2.2.2	passenger

Enable Apache modules “ssl” and “headers”:

#	for	Debian	or	Ubuntu:
a2enmod	ssl
a2enmod	headers

#	for	RHEL5
yum	install	mod_ssl

Configure Apache�

For Debian/Ubuntu:

cp	apache2.conf	/etc/apache2/sites-available/puppetmasterd		(see	below	for	the	
file	contents)
ln	-s	/etc/apache2/sites-available/puppetmasterd	/etc/apache2/sites-
enabled/puppetmasterd
vim	/etc/apache2/conf.d/puppetmasterd	(replace	the	hostnames)

For RHEL5:

cp	puppetmaster.conf	/etc/httpd/conf.d/	(see	below	for	file	contents)
vim	/etc/httpd/conf.d/puppetmaster.conf	(replace	hostnames	with	corrent	values)

Install the rack application [1]:

mkdir	-p	/usr/share/puppet/rack/puppetmasterd
mkdir	/usr/share/puppet/rack/puppetmasterd/public	
/usr/share/puppet/rack/puppetmasterd/tmp

Puppet Documentation • Scaling Puppet 48/311

https://fedoraproject.org/wiki/EPEL
http://rubyforge.org/frs/?group_id=5873

cp	config.ru	/usr/share/puppet/rack/puppetmasterd
chown	puppet	/usr/share/puppet/rack/puppetmasterd/config.ru

Go:

#	For	Debian/Ubuntu
/etc/init.d/apache2	restart

#	For	RHEL5
/etc/init.d/httpd	restart

If all works well, youʼll want to make sure your puppmetmasterd init script does not get called
anymore:

#	For	Debian/Ubuntu
update-rc.d	-f	puppetmaster	remove

#	For	RHEL5
chkconfig	puppetmaster	off
chkconfig	httpd	on

[1] Passenger will not let applications run as root or the Apache user, instead an implicit setuid will
be done, to the user whom owns config.ru. Therefore, config.ru shall be owned by the puppet user.��

Apache Configuration for Puppet 0.24.x�
This Apache Virtual Host configures the puppetmaster on the default puppetmaster port (8140).�

Listen	8140
<VirtualHost	*:8140>

				SSLEngine	on
				SSLCipherSuite	SSLv2:-LOW:-EXPORT:RC4+RSA
				SSLCertificateFile						/var/lib/puppet/ssl/certs/puppet-
server.inqnet.at.pem
				SSLCertificateKeyFile			/var/lib/puppet/ssl/private_keys/puppet-
server.inqnet.at.pem
				SSLCertificateChainFile	/var/lib/puppet/ssl/ca/ca_crt.pem
				SSLCACertificateFile				/var/lib/puppet/ssl/ca/ca_crt.pem
				#	CRL	checking	should	be	enabled;	if	you	have	problems	with	Apache	
complaining	about	the	CRL,	disable	the	next	line
				SSLCARevocationFile					/var/lib/puppet/ssl/ca/ca_crl.pem
				SSLVerifyClient	optional
				SSLVerifyDepth		1
				SSLOptions	+StdEnvVars

				#	The	following	client	headers	allow	the	same	configuration	to	work	with	
Pound.
				RequestHeader	set	X-SSL-Subject	%{SSL_CLIENT_S_DN}e
				RequestHeader	set	X-Client-DN	%{SSL_CLIENT_S_DN}e
				RequestHeader	set	X-Client-Verify	%{SSL_CLIENT_VERIFY}e

				RackAutoDetect	On
				DocumentRoot	/usr/share/puppet/rack/puppetmasterd/public/

Puppet Documentation • Scaling Puppet 49/311

				<Directory	/usr/share/puppet/rack/puppetmasterd/>
								Options	None
								AllowOverride	None
								Order	allow,deny
								allow	from	all
				</Directory>
</VirtualHost>

If the current puppetmaster is not a certificate authority, you may need to change the following�
lines. The certs/ca.pem file should exist as long as the puppetmaster has been signed by the CA.�

		SSLCertificateChainFile	/var/lib/puppet/ssl/certs/ca.pem
				SSLCACertificateFile				/var/lib/puppet/ssl/certs/ca.pem

For Debian hosts you might wish to add:

		LoadModule	passenger_module	/var/lib/gems/1.8/gems/passenger-
2.2.5/ext/apache2/mod_passenger.so
				PassengerRoot	/var/lib/gems/1.8/gems/passenger-2.2.5
				PassengerRuby	/usr/bin/ruby1.8

For RHEL hosts you may need to add:

			LoadModule	passenger_module	/usr/lib/ruby/gems/1.8/gems/passenger-
2.2.5/ext/apache2/mod_passenger.so
			PassengerRoot	/usr/lib/ruby/gems/1.8/gems/passenger-2.2.5
			PassengerRuby	/usr/bin/ruby

For details about enabling and configuring Passenger, see the �Passenger install guide.

The config.ru file for Puppet 0.24.x��
#	This	file	is	mostly	based	on	puppetmasterd,	which	is	part	of
#	the	standard	puppet	distribution.

require	'rack'
require	'puppet'
require	'puppet/network/http_server/rack'

#	startup	code	stolen	from	bin/puppetmasterd
Puppet.parse_config
Puppet::Util::Log.level	=	:info
Puppet::Util::Log.newdestination(:syslog)
#	A	temporary	solution,	to	at	least	make	the	master	work	for	now.
Puppet::Node::Facts.terminus_class	=	:yaml
#	Cache	our	nodes	in	yaml.		Currently	not	configurable.
Puppet::Node.cache_class	=	:yaml

#	The	list	of	handlers	running	inside	this	puppetmaster
handlers	=	{
				:Status	=>	{},
				:FileServer	=>	{},

Puppet Documentation • Scaling Puppet 50/311

http://www.modrails.com/install.html

				:Master	=>	{},
				:CA	=>	{},
				:FileBucket	=>	{},
				:Report	=>	{}
}

#	Fire	up	the	Rack-Server	instance
server	=	Puppet::Network::HTTPServer::Rack.new(handlers)

#	prepare	the	rack	app
app	=	proc	do	|env|
				server.process(env)
end

#	Go.
run	app

If you donʼt want to run with the CA enabled, you could drop the ʻ:CA => {}ʼ line from the config.ru�
above.

The config.ru file for 0.25.x��
Please see ext/rack in the 0.25 source tree for the proper config.ru file.��

Suggested Tweaks
Larry Ludwigʼs testing of passenger/puppetmasterd recommends adjusting these options in your
apache configuration:�

PassengerPoolIdleTime 300 - Set to 5 min (300 seconds) or less. The shorting this option allows
for puppetmasterd to get refreshed at some interval. This option is also somewhat dependent
upon the amount of puppetd nodes connecting and at what interval.
PassengerMaxPoolSize 15 - to 15% more instances than whatʼs needed. This will allow idle
puppetmasterd to get recycled. The net effect is less memory will be used, not more.�
PassengerUseGlobalQueue on - Since communication with the puppetmaster from puppetd is a
long process (more than 20 seconds in most cases) and will allow for processes to get recycled
better
PassengerHighPerformance on - The additional Passenger features for apache compatibility are
not needed with Puppet.

As is expected with traditional web servers, once your service starts using swap, performance
degradation will occur — so be mindful of your memory/swap usage on your Puppetmaster.

To monitor the age of your puppetmasterd processes within Passenger, run

passenger-status	|	grep	PID	|	sort

		PID:	14590			Sessions:	1				Processed:	458					Uptime:	3m	40s
		PID:	7117				Sessions:	0				Processed:	10980			Uptime:	1h	43m	41s
		PID:	7355				Sessions:	0				Processed:	9736				Uptime:	1h	38m	38s
		PID:	7575				Sessions:	0				Processed:	9395				Uptime:	1h	32m	27s
		PID:	9950				Sessions:	0				Processed:	6581				Uptime:	1h	2m	35s

Puppet Documentation • Scaling Puppet 51/311

Passenger can be configured to be recycling puppetmasterd every few hours to ensure�
memory/garbage collection from Ruby is not a factor.

Using Mongrel
Puppet daemons default to using WEBrick for http serving, but puppetmasterd can be used with
Mongrel instead for performance benefits.�

The mongrel documentation is currently maintained our our Wiki until it can be migrated over.
Please see the OS specific setup documents on the Wiki for further information.�

Techniques
Here are some useful tips & tricks.

How Can I Manage Whole Directories of Files Without
Explicitly Listing the Files?
The file type has a “recurse” attribute, which can be used to synchronize the contents of a target�
directory recursively with a chosen source. In the example below, the entire /etc/httpd/conf.d
directory is synchronized recursively with the copy on the server:

file	{	"/etc/httpd/conf.d":
		source	=>	"puppet://server/vol/mnt1/adm/httpd/conf.d",
		recurse	=>	true,
}

You can also set purge	=>	true to keep the directory clear of all files or directories not managed by�
Puppet.

How Do I Run a Command Whenever A File Changes?
The answer is to use an exec resource with refreshonly set to true, such as in this case of telling
bind to reload its configuration when it changes:�

file	{	"/etc/bind":	source	=>	"/dist/apps/bind"	}

exec	{	"/usr/bin/ndc	reload":
		subscribe	=>	File["/etc/bind"],
		refreshonly	=>	true
}

The exec has to subscribe to the file so it gets notified of changes.��

Puppet Documentation • Using Mongrel 52/311

http://projects.puppetlabs.com/projects/puppet/wiki/Using_Mongrel

How Can I Ensure a Group Exists Before Creating a User?
In the example given below, weʼd like to create a user called tim who we want to put in the fearme
group. By using the require attribute, we can create a dependency between the user tim and the
group fearme. The result is that user tim will not be created until puppet is certain that the fearme
group exists.

group	{	"fearme":
								ensure	=>	present,
								gid	=>	1000
}
user	{	"tim":
								ensure	=>	present,
								gid	=>	"fearme",
								groups	=>	["adm",	"staff",	"root"],
								membership	=>	minimum,
								shell	=>	"/bin/bash",
								require	=>	Group["fearme"]
}

Note that Puppet will set this relationship up for you automatically, so you should not normally
need to do this.

How Can I Require Multiple Resources Simultaneously?
Give the require attribute an array as its value. In the example given below, weʼre again adding the
user tim (just as we did earlier in this document), but in addition to requiring timʼs primary group,
fearme, weʼre also requiring another group, fearmenot. Any reasonable number of resources can
be required in this way.

user	{	"tim":
								ensure	=>	present,
								gid	=>	"fearme",
								groups	=>	["adm",	"staff",	"root",	"fearmenot"],
								membership	=>	minimum,
								shell	=>	"/bin/bash",
								require	=>	[Group["fearme"],
																												Group["fearmenot"]
]
								}

Can I use complex comparisons in if statements and
variables?
In Puppet version 0.24.6 onwards you can use complex expressions in if statements and variable
assignments. You can see examples of how to do this in the language guide.

Can I output Facter facts in YAML?
Facter supports output of facts in YAML as well as to standard out. You need to run:

Puppet Documentation • Using Mongrel 53/311

#	facter	--yaml

To get this output, which you can redirect to a file for further processing.�

Can I check the syntax of my templates?
ERB files are easy to syntax check. For a file mytemplate.erb, run:��

$	erb	-x	-T	'-'	-P	mytemplate.erb	|	ruby	-c

The trim option specified corresponds to what Puppet uses.�

Troubleshooting
Answers to some common problems that may come up.

Basic workflow items are covered in the main section of the documentation. �If youʼre looking for
how to do something unconventional, you may also wish to read Techniques.

General
Why hasnʼt my new node configuration been noticed?�

If youʼre using separate node definition files and import them into site.pp (with an ��import	*.node,
for example) youʼll find that new files added wonʼt get noticed until you restart puppetmasterd.��
This is due to the fact globs arenʼt evaluated on each run, but only when the ʻparentʼ file is re-read.�

To make sure your new file is actually read, simply ʻtouchʼ the site.pp (or importing file) and the��
glob will be re-evaluated.

Why donʼt my certificates show as waiting to be signed on my server when I do a “�puppet
cert	--list”?

puppet cert must be run with root privileges. If you are not root, then re-run the command with
sudo:

sudo	puppet	cert	--list

I keep getting “certificates were not trusted”. Whatʼs wrong?�

Firstly, if youʼre re-installing a machine, you probably havenʼt cleared the previous certificate for�
that machine. To correct the problem:
1. Run sudo	puppet	cert	--clean	{node	certname} on the puppet master to clear the

certificates.�
2. Remove the entire SSL directory of the client machine (sudo	rm	-r	etc/puppet/ssl;	rm	-r

/var/lib/puppet/ssl).
Puppet Documentation • Troubleshooting 54/311

Assuming that youʼre not re-installing, by far the most common cause of SSL problems is that the
clock on the client machine is set incorrectly, which confuses SSL because the “validFrom” date in
the certificate is in the future.�

You can figure the problem out by manually verifying the certificate with openssl:��

sudo	openssl	verify	-CAfile	/etc/puppet/ssl/certs/ca.pem	
/etc/puppet/ssl/certs/myhostname.domain.com.pem

This can also happen if youʼve followed the Using Mongrel pattern to alleviate file download�
problems. If your set-up is such that the host name differs from the name in the Puppet server�
certificate, or there is any other SSL certificate negotiation problem, the SSL handshake between��
client and server will fail. In this case, either alleviate the SSL handshake problems (debug using
cURL), or revert to the original Webrick installation.

Iʼm getting IPv6 errors; whatʼs wrong?

This can happen if Ruby is not compiled with IPv6 support. The only known solution is to make sure
youʼre running a version of Ruby compiled with IPv6 support.

Iʼm getting tlsv1 alert unknown ca errors; whatʼs wrong?

This problem is caused by puppetmasterd not being able to read its ca certificate. This problem�
might occur up to 0.18.4 but has been fixed in 0.19.0. You can probably fix it for versions before��
0.19.0 by changing the group ownership of the /etc/puppet/ssl directory to the puppet group, but
puppetd may change the group back. Having puppetmasterd start as the root user should fix the�
problem permanently until you can upgrade.

Why does Puppet keep trying to start a running service?

The ideal way to check for a service is to use the hasstatus attribute, which calls the init script with
its status command. This should report back to Puppet whether the service is running or stopped.

In some broken scripts, however, the status output will be correct (“Ok” or “not running”), but the
exit code of the script will be incorrect. (Most commonly, the script will always blindly return 0.)
Puppet only uses the exit code, and so may behave unpredictably in these cases.

There are two workarounds, and one fix. If you must deal with the scriptʼs broken behavior as is,�
your resource can either use the “pattern” attribute to look for a particular name in the process
table, or use the “status” attribute to specify a custom script that returns the proper exit code for
the serviceʼs status.

The longer-term fix is to rewrite the serviceʼs init script to use the proper exit codes. When�
rewriting them, or submitting bug reports to vendors or upstream, be sure to reference the LSB Init
Script Actions standard. This should carry more weight by pointing out an official, published��
standard theyʼre failing to meet, rather than trying to explain how their bug is causing problems in
Puppet.

Why is my external node configuration failing? I get no errors by running the script by hand.�

Puppet Documentation • Troubleshooting 55/311

http://refspecs.linux-foundation.org/LSB_3.1.0/LSB-Core-generic/LSB-Core-generic/iniscrptact.html

Most of the time, if you get the following error when running you client

warning:	Not	using	cache	on	failed	catalog
err:	Could	not	retrieve	catalog;	skipping	run

it is because of some invalid YAML output from your external node script. Check yaml.org if you
have doubts about validity.

Puppet Syntax Errors
Puppet generates syntax errors when manifests are incorrectly written. Sometimes these errors can
be a little cryptic. Below is a list of common errors and their explanations that should help you
trouble-shoot your manifests.

Syntax error at ʻ}ʼ; expected ʻ}ʼ at manifest.pp:nnn

This error can occur when:

service	{	"fred"	}

This contrived example demonstrates one way to get the very confusing error of Puppetʼs parser
expecting what it found. In this example, the colon (:) is missing after the service title. A variant
looks like:

service	{	"fred"
				ensure	=>	running
}

and the error would be Syntax error at ʻensureʼ; expected ʻ}ʼ .

You can also get the same error if you forget a comma. For instance, in this example the comma is
missing at the end of line 3: service { “myservice”: provider => “runit” path => “/path/to/daemons”
}

Syntax error at ʻ:ʼ; expected ʻ]ʼ at manifest.pp:nnn

This error can occur when:

classname::define_name	{
				"jdbc/automation":
								cpoolid					=>	"automationPool",
								require					=>	[Classname::other_define_name["automationPool"]],
}

The problem here is that Puppet requires that object references in the require lines to begin with a
capital letter. However, since this is a reference to a class and a define, the define also needs to��
have a capital letter, so Classname::Other_define_name would be the correct syntax.�

Syntax error at ʻ.ʼ; expected ʻ}ʼ at manifest.pp:nnn

Puppet Documentation • Troubleshooting 56/311

http://www.yaml.org

This error happens when you use unquoted comparators with dots in them, aʼla:

class	autofs	{

		case	$kernelversion	{
				2.6.9:			{	$autofs_packages	=	["autofs",	"autofs5"]	}
				default:	{	$autofs_packages	=	["autofs"]	}
		}
}

That 2.6.9 needs to have double quotes around it, like so:

class	autofs	{

			case	$kernelversion	{
					"2.6.9":			{	$autofs_packages	=	["autofs",	"autofs5"]	}
					default:	{	$autofs_packages	=	["autofs"]	}
			}
	}

Could not match ʻ_define_nameʼ at manifest.pp:nnn on node nodename�

This error can occur using a manifest like:

case	$ensure	{
				"present":	{
								_define_name	{
												"$title":
																user								=>	$user,
								}
				}
}

This one is simple - you cannot begin a function name (define name) with an underscore.�

Duplicate definition: Classname::Define_name[system] is already defined in file manifest.pp at����
line nnn; cannot redefine at manifest.pp:nnn on node nodename�

This error can occur when using a manifest like:

Classname::define_name	{
					"system":
									properties		=>	"Name=system";
				
					"system":
										properties		=>	"Name=system";
	}

The most confusing part of this error is that the line numbers are usually the same - this is the case
when using the block format that Puppet supports for a resource definition. In this contrived�
example, the system entry has been defined twice, so one of them needs removing.�

Puppet Documentation • Troubleshooting 57/311

Syntax error at ʻ=>ʼ; expected ʻ)ʼ

This error results from incorrect syntax in a defined resource type:�

define	foo($param	=>	'value')	{	...	}

Default values for parameters are assigned, not defined, therefore a ʻ=ʼ, not a ʻ=>ʼ operator is�
needed.

err: Exported resource Blah[$some_title] cannot override local resource on node $nodename

While this is not a classic “syntax” error, it is a annoying error none-the-less. The actual error tells
you that you have a local resource Blah[$some_title] that puppet refuses to overwrite with a
collected resource of the same name. What most often happens, that the same resource is exported
by two nodes. One of them is collected first and when trying to collect the second resource, this�
error happens as the first is already converted to a “local” resource.�

Common Misconceptions
Node Inheritance and Variable Scope

It is generally assumed that the following will result in the /tmp/puppet-test.variable file containing�
the string ʻmy_nodeʼ:

class	test_class	{
				file	{	"/tmp/puppet-test.variable":
							content	=>	"$testname",
							ensure	=>	present,
				}
}

node	base_node	{
				include	test_class
}

node	my_node	inherits	base_node	{
				$testname	=	'my_node'
}

Contrary to expectations, /tmp/puppet-test.variable is created with no contents. This is because
the inherited test_class remains in the scope of base_node, where $testname is undefined.�

Node inheritance is currently only really useful for inheriting static or self-contained classes, and is
as a result of quite limited value.

A workaround is to define classes for your node types - essentially include classes rather than�
inheriting them. For example:

class	test_class	{
				file	{	"/tmp/puppet-test.variable":
							content	=>	"$testname",
							ensure	=>	present,

Puppet Documentation • Troubleshooting 58/311

				}
}

class	base_node_class	{
				include	test_class
}

node	my_node	{
				$testname	=	'my_node'
				include	base_node_class
}

/tmp/puppet-test.variable will now contain ʻmy_nodeʼ as desired.

Class Inheritance and Variable Scope

The following would also not work as generally expected:

class	base_class	{
				$myvar	=	'bob'
				file	{"/tmp/testvar":
									content	=>	"$myvar",
									ensure	=>	present,
				}
}

class	child_class	inherits	base_class	{
				$myvar	=	'fred'
}

The /tmp/testvar file would be created with the content ʻbobʼ, as this is the value of $myvar where�
the type is defined.�

A workaround would be to ʻincludeʼ the base_class, rather than inheriting it, and also to strip the
$myvar out of the included class itself (otherwise it will cause a variable scope conflict - $myvar�
would be set twice in the same child_class scope):

$myvar	=	'bob'

class	base_class	{
				file	{"/tmp/testvar":
									content	=>	"$myvar",
									ensure	=>	present,
				}
}

class	child_class	{
				$myvar	=	'fred'
				include	base_class
}

In some cases you can reset the content of the file resource so that the scope used for the content�
(e.g., template) is rebound. Example:

Puppet Documentation • Troubleshooting 59/311

class	base_class	{
				$myvar	=	'bob'
				file	{	"/tmp/testvar":
									content	=>	template("john.erb"),
				}
}

class	child_class	inherits	base_class	{
				$myvar	=	'fred'
				File["/tmp/testvar"]	{	content	=>	template("john.erb")	}
}

(john.erb contains a reference like <%= myvar %>.)

To avoid the duplication of the template filename, it is better to sidestep the problem altogether�
with a define:�

class	base_class	{
				define	testvar_file($myvar="bob")	{
									file	{	$name:
													content	=>	template("john.erb"),
									}
				}
				testvar_file	{	"/tmp/testvar":	}
}

class	child_class	inherits	base_class	{
				Base_class::Testvar_file["/tmp/testvar"]	{	myvar	=>	fred	}
}

Whilst not directly solving the problem also useful are qualified variables that allow you to refer to�
variables from other classes. Qualified variables might provoke alternate methods of solving this�
issue. You can use qualified methods like:�

class	foo	{
				$foovariable	=	"foobar"
}

class	bar	{
				$barvariable	=	$foo::foovariable
}

In this example the value of the of the $barvariable variable in the bar class will be set to foobar the
value of the $foovariable variable which was set in the foo class.

Custom Type & Provider development
err: Could not retrieve catalog: Invalid parameter ʻfooʼ for type ʻbarʼ

When you are developing new custom types, you should restart both the puppetmasterd and the
puppetd before running the configuration using the new custom type. The pluginsync feature will�
then synchronise the files and the new code will be loaded when both daemons are restarted.�

Puppet Documentation • Troubleshooting 60/311

Module Organization
How to organize Puppet content inside of modules.

General Information
A Puppet module is a collection of resources, classes, files, definitions and templates. It might be��
used to configure Apache or a Rails module, or a Trac site or a particular Rails application.�

Modules are easily re-distributable. For example, this will enable you to have the default site
configuration under �/etc/puppet, with modules shipped by Puppet proper in /usr/share/puppet/.
You could also have other directories containing a happy mix-and-match of version control
checkouts in various states of development and production readiness.

Modules are available in Puppet version 0.22.2 and later.

Configuration�
There are two configuration settings that pertain to modules:�

Sources of Modules
To accommodate different locations in the file system for the different use cases, there is a���
configuration variable modulepath which is a list of directories to scan in turn.�

A reasonable default could be configured as�
/etc/puppet/modules:/usr/share/puppet:/var/lib/modules. Alternatively, the /etc/puppet
directory could be established as a special anonymous module which is always searched first to�
retain backwards compatibility to todayʼs layout.

For some environments it might be worthwhile to consider extending the modulepath
configuration item to contain branches checked out directly from version control, for example:�

1. The search path for modules is defined with the �modulepath setting in the [puppetmasterd]
(pre-2.6) or [master] (post-2.6) section of the puppet masterʼs config file, and it should be a��
colon-separated list of directories:

[puppetmasterd]
...
modulepath	=	/var/lib/puppet/modules:/data/puppet/modules

The search path can be added to at runtime by setting the PUPPETLIB environment variable,
which must also be a colon-separated list of directories.

2. Access control settings for the fileserver module �[modules] are set in fileserver.conf, as�
described later in this page. The path configuration for that module is always ignored, and�
specifying a path will produce a warning.

Puppet Documentation • Module Organization 61/311

svn:file:///Volumes/svn/repos/management/master/puppet.testing/trunk

Naming
Module names should be restricted to lowercase alphanumeric characters and underscores, and
should begin with a lowercase letter; that is, they should match the expression [a-z][a-z0-9_]*.
Note that these are the same restrictions that apply to class names, with the added restriction that
module names cannot contain the namespace separator (::) as modules cannot be nested.

Although some names that violate these restrictions currently work, using them is not
recommended.

The module name site is reserved for local use and should not be used in modules meant for
distribution.

Internal Organisation
A Puppet module contains manifests, distributable files, plugins and templates arranged in a�
specific directory structure:�

MODULE_PATH/
└──downcased_module_name/
			├──files/
			├──manifests/
			│		├──init.pp
			│		└──foo.pp
			├──lib/
			│		├──puppet/
			│		│		├──parser/
			│		│		│		└──functions/
			│		│		├──provider/
			│		│		└──type/
			│		└──facter/
			├──templates/
			├──tests
			│		├──init.pp
			│		└──foo.pp
			└──README

NOTE: In Puppet versions prior to 0.25.0 the lib directory was named plugins. Other directory
names are unchanged.

Each module must contain a init.pp manifest file at the specified location. This manifest file can���
contain all the classes associated with this module or additional .pp files can be added directly�
under the manifests folder. If adding additional .pp files, naming them after the class they define��
will allow auto lookup magic (explained further below in Module Lookup).

One of the things to be accomplished with modules is code sharing. A module by nature should be
self-contained: one should be able to get a module from somewhere and drop it into your module
path and have it work.

Puppet Documentation • Module Organization 62/311

There are cases, however, where the module depends on generic things that most people will
already have defines or classes for in their regular manifests. Instead of adding these into the�
manifests of your module, add them to the depends folder (which is basically only documenting, it
doesnʼt change how your module works) and mention these in your README, so people can at least
see exactly what your module expects from these generic dependencies, and possibly integrate
them into their own regular manifests.

(See Plugins In Modules for info on how to put custom types and facts into modules in the plugins/
subdir)

Example
As an example, consider a autofs module that installs a fixed auto.homes map and generates the�
auto.master from a template. Its init.pp could look something like:

class	autofs	{
		package	{	autofs:	ensure	=>	latest	}
		service	{	autofs:	ensure	=>	running	}
		file	{	"/etc/auto.homes":
				source	=>	"puppet://$servername/modules/autofs/auto.homes"
		}
		file	{	"/etc/auto.master":
				content	=>	template("autofs/auto.master.erb")
		}
}

and have these files in the file system:��

MODULE_PATH/
		autofs/
				manifests/
						init.pp
				files/
						auto.homes
				templates/
						auto.master.erb

Notice that the file source path includes a �modules/ component. In Puppet version 0.25 and later,
you must include this component in source paths in order to serve files from modules. Puppet 0.25�
will still accept source paths without it, but it will warn you with a deprecation notice about “Files
found in modules without specifying ʻmodulesʼ in file path”. In versions 0.24 and earlier, source�
paths should not include the modules/ component.

Note also that you can still access files in modules when using puppet instead of puppetd; just leave�
off the server name and puppetd will fill in the server for you (using its configuration server as its���
file server) and puppet will use its module path:�

file	{	"/etc/auto.homes":
				source	=>	"puppet:///modules/autofs/auto.homes"
}

Puppet Documentation • Module Organization 63/311

Module Lookup
Since modules contain different subdirectories for different types of files, a little behind-the-scenes���
magic makes sure that the right file is accessed in the right context. All module searches are done�
within the modulepath, a colon-separated list of directories. In most cases, searching files in�
modules amounts to inserting one of manifest, files, or templates after the first component into a��
path, i.e. paths can be thought of as downcased_module_name/part_path where part_path is a path
relative to one of the subdirectories of the module module_name.

For file references on the fileserver, a similar lookup is used so that a reference to��
puppet://$servername/modules/autofs/auto.homes resolves to the file autofs/files/auto.homes in��
the moduleʼs path. (Note that this behavior will break if you have declared an explicit [autofs]
mount in your fileserver.conf�, so take care to avoid name collisions when assigning custom
fileserver mount points outside of modules.)�

You can apply some access controls to files in your modules by creating a [modules] file mount,��
which should be specified without a path statement, in the fileserver.conf configuration file:����

[modules]
allow	*.domain.com
deny	*.wireless.domain.com

Unfortunately, you cannot apply more granular access controls, for example at the per module level
as yet.

To make a module usable with both the command line client and a puppetmaster, you can use a
URL of the form puppet:///path, i.e. a URL without an explicit server name. Such URLʼs are treated
slightly differently by puppet and puppetd: puppet searches for a serverless URL in the local�
filesystem, and puppetd retrieves such files from the fileserver on the puppetmaster. This makes it���
possible to use the same module as part of a site manifest on a puppetmaster and in a standalone
puppet script by running puppet	--modulepath	{path}	script.pp, without any changes to the
module.

Finally, template files are searched in a manner similar to manifests and files: a mention of��
template(“autofs/auto.master.erb”) will make the puppetmaster first look for a file in��
$templatedir/autofs/auto.master.erb and then autofs/templates/auto.master.erb on the module
path. This allows more-generic files to be provided in the templatedir and more-specific files under���
the module path (see the discussion under Feature 1012 for the history here).

Module Autoloading

Since version 0.23.1, Puppet will attempt to autoload classes and definitions from modules, so you�
no longer have to explicitly import them; you can just include the class or start using the definition.�

The rules Puppet uses to find the appropriate manifest when a module class or definition is��
declared are pretty easy to understand, and break down like this:

include	foo #	{modulepath}/foo/manifests/init.pp

Puppet Documentation • Module Organization 64/311

http://projects.puppetlabs.com/issues/1012

class	foo	{	...	}

include	foo::bar #	{modulepath}/foo/manifests/bar.pp

class	foo::bar	{	...	}

foo::params	{	"example":	value	=>	'meow'	} #	{modulepath}/foo/manifests/params.pp

define	foo::params	($value)	{	...	}

class	{	"foo::bar::awesome":	} #	{modulepath}/foo/manifests/bar/awesome.pp

class	foo::bar::awesome	{	...	}

In short, lookup paths within a moduleʼs manifest directory are derived by splitting class and
definition names on �:: separators, then interpreting the first element as the name of the module,�
the final element as the filename (with a ��.pp extension appended), and any intermediate elements
as subdirectories of the moduleʼs manifests directory:

{module	name}::{subdirectory}::{...}::{filename	(sans	extension)}

The one special case is that a one-word class or definition name which matches the name of the�
module will always be found in manifests/init.pp.1

Since lookup of classes and definitions is based on filename, take care to always rename both at the��
same time.

Generated Module Documentation
If you decide to make your modules available to others (and please do!), then please also make sure
you document your module so others can understand and use them. Most importantly, make sure
the dependencies on other defines and classes not in your module are clear.�

From Puppet version 0.24.7 you can generate automated documentation from resources, classes
and modules using the puppetdoc tool. You can find more detail at the �Puppet Manifest
Documentation page.

See Also
Distributing custom facts and types via modules: Plugins In Modules

Writing module tests: Module Smoke Testing

Using Parameterized Classes
Use parameterized classes to write more effective, versatile, and encapsulated code.�

1. Puppet actually always loads the init.pp manifest, so sometimes you can cheat and just write all your moduleʼs classes in
there. This makes it harder for people to find where your class or define lives, though, so we donʼt recommend it.��↩

Puppet Documentation • Using Parameterized Classes 65/311

http://projects.puppetlabs.com/projects/puppet/wiki/Puppet_Manifest_Documentation

Why, and Some History
Well-written and reusable classes often have to change their behavior based on where and how
theyʼre declared. However, due to the organic way the Puppet language grew, there was a long
period where it didnʼt have a specific means to do this.�

Most Puppet coders solved this by using dynamic variable lookup to pass parameters into classes.
By making the classʼs effects pivot on a handful of variables not defined in the class, you could later��
set those variables at node scope or in another class, then declare the class and assign its parent
scope; at that point, the class would go looking for the information it needed and react accordingly.

This approach did the job and solved some really important problems, but it had major drawbacks:

It basically exploded all variables into the global namespace. Since classes had to look outside
their own scope for parameters, parameters were effectively global. That meant you had to�
anticipate what every other module author was going to name their variables and try to guess
something safe.
Understanding how to declare a class was not exactly straightforward. There was no built-in way
to tell what parameters a class needed to have set, so you were on your own for documenting it
and following the rules to the letter. Optional parameters in particular could bite you at exactly
the wrong time.
It was just plain confusing. The rules for how a parent scope is assigned can fit on an index card,�
but they can interact in some extraordinarily hairy ways. (ibid.)

So to shorten a long story, Puppet 2.6 introduced a better and more direct way to pass parameters
into a class.

Philosophy
A class that depends on dynamic scope for its parameters has to do its own research. Instead, you
should supply it with a full dossier when you declare it. Start thinking in terms of passing
information to the class, instead of in terms of setting variables and getting scope to act right.

Using Parameterized Classes
Writing a Parameterized Class

Parameterized classes are declared just like classical classes, but with a list of parameters (in
parentheses) between the class name and the opening bracket:

				class	webserver($vhost_dir,	$packages)	{
						...
				}

The parameters you name can be used as normal local variables throughout the class definition. In�
fact, the first step in converting a class to use parameters is to just locate all the variables youʼre�
expecting to find in an outer scope and call them out as parameters — you wonʼt have to change�
how theyʼre used inside the class at all.

Puppet Documentation • Using Parameterized Classes 66/311

				class	webserver($vhost_dir,	$packages)	{
						packages	{	$packages:	ensure	=>	present	}
					
						file	{	'vhost_dir'
								path			=>	$vhost_dir,
								ensure	=>	directory,
								mode			=>	'0750',
								owner		=>	'www-data',
								group		=>	'root',
						}
				}

You can also give default values for any parameter in the list:

				class	webserver($vhost_dir	=	'/etc/httpd/conf.d',	$packages	=	'httpd')	{
						...
				}

Any parameter with a default value can be safely omitted when declaring the class.

Declaring a Parameterized Class

This can be easy to forget when using the shorthand include function, but class instances are just
resources. Since include wasnʼt designed for use with parameterized classes, you have to declare
them like a normal resource: type, name, and attributes, in their normal order. The parameters you
named when defining the class become the attributes you use when declaring it:�

				class	{'webserver':
						packages		=>	'apache2',
						vhost_dir	=>	'/etc/apache2/sites-enabled',
				}

Or, if declaring with all default values:

				class	{'webserver':	}

As of Puppet 2.6.5, parameterized classes can be declared by external node classifiers; see the �ENC
documentation for details.

Site Design and Composition With Parameterized Classes

Once your classes are converted to use parameters, thereʼs some work remaining to make sure
your classes can work well together.

A common pattern with standard classes is to include any other classes that the class requires.
Since include ensures a class is declared without redeclaring it, this has been a convenient way to
satisfy dependencies. This wonʼt work well with parameterized classes, though, for the reasons
weʼve mentioned above.

Instead, you should explicitly state your classʼs dependencies inside its definition using the�
relationship chaining syntax:
Puppet Documentation • Using Parameterized Classes 67/311

relationship chaining syntax:

				class	webserver($vhost_dir,	$packages)	{
						...
						#	Make	sure	our	ports	are	configured	correctly:
						Class['iptables::webserver']	->	Class['webserver']
				}

Instead of implicitly declaring the required class, this will make sure that compilation throws an
error if itʼs absent. From one perspective, this is less convenient; from another, itʼs less magical and
more knowable. For those who prefer implicit declaration, weʼre working on a safe way to implicitly
declare parameterized classes, but the design work isnʼt finished at the time of this writing.�

Once youʼve stated your classʼs dependencies, youʼll need to declare the required classes when
composing your node or wrapper class:

				class	tacoma_webguide_application_server	{
						class	{'webserver':	
								packages		=>	'apache2',
								vhost_dir	=>	'/etc/apache2/sites-enabled',
						}
						class	{'iptables::webserver':}
				}

The general rule of thumb here is that you should only be declaring other classes in your outermost
node or class definitions.�

Further Reading
For more information on modern Puppet class and module design, see the Puppet Labs style guide.

Appendix: Smart Parameter Defaults
This design pattern can make for significantly cleaner code while enabling some really�
sophisticated behavior around default values.

				#	/etc/modules/webserver/manifests/params.pp
				
				class	webserver::params	{
					$packages	=	$operatingsystem	?	{
							/(?i-mx:ubuntu|debian)/								=>	'apache2',
							/(?i-mx:centos|fedora|redhat)/	=>	'httpd',
					}
					$vhost_dir	=	$operatingsystem	?	{
							/(?i-mx:ubuntu|debian)/								=>	'/etc/apache2/sites-enabled',
							/(?i-mx:centos|fedora|redhat)/	=>	'/etc/httpd/conf.d',
					}
				}
				
				#	/etc/modules/webserver/manifests/init.pp
				
				class	webserver(
					$packages		=	$webserver::params::packages,
					$vhost_dir	=	$webserver::params::vhost_dir

Puppet Documentation • Using Parameterized Classes 68/311

)	inherits	$webserver::params	{
				
					packages	{	$packages:	ensure	=>	present	}
				
					file	{	'vhost_dir'
							path			=>	$vhost_dir,
							ensure	=>	directory,
							mode			=>	'0750',
							owner		=>	'www-data',
							group		=>	'root',
					}
				}

To summarize whatʼs happening here: When a class inherits from another class, it implicitly
declares the base class. Since the base classʼs local scope already exists before the new classʼs
parameters get declared, those parameters can be set based on information in the base class.

This is functionally equivalent to doing the following:

				#	/etc/modules/webserver/manifests/init.pp
				
				class	webserver($packages	=	'UNSET',	$vhost_dir	=	'UNSET')	{
					
					if	$packages	==	'UNSET'	{
							$real_packages	=	$operatingsystem	?	{
									/(?i-mx:ubuntu|debian)/								=>	'apache2',
									/(?i-mx:centos|fedora|redhat)/	=>	'httpd',
							}
					}
					else	{
								$real_packages	=	$packages
					}
					
					if	$vhost_dir	==	'UNSET'	{
							$real_vhost_dir	=	$operatingsystem	?	{
									/(?i-mx:ubuntu|debian)/								=>	'/etc/apache2/sites-enabled',
									/(?i-mx:centos|fedora|redhat)/	=>	'/etc/httpd/conf.d',
							}
					}
					else	{
								$real_vhost_dir	=	$vhost_dir
				}
					
					packages	{	$real_packages:	ensure	=>	present	}
				
					file	{	'vhost_dir'
							path			=>	$real_vhost_dir,
							ensure	=>	directory,
							mode			=>	'0750',
							owner		=>	'www-data',
							group		=>	'root',
					}
				}

… but itʼs a significant readability win, especially if the amount of logic or the number of�
parameters gets any higher than whatʼs shown in the example.

Puppet Documentation • Using Parameterized Classes 69/311

Module Smoke Testing
Learn to write and run tests for each manifest in your Puppet module.

Doing some basic “Has it exploded?” testing on your Puppet modules is extremely easy, has
obvious benefits during development, and can serve as a condensed form of documentation.�

Testing in Brief
The baseline for module testing used by Puppet Labs is that each manifest should have a
corresponding test manifest that declares that class or defined type.�

Tests are then run by using puppet	apply	--noop (to check for compilation errors and view a log
of events) or by fully applying the test in a virtual environment (to compare the resulting system
state to the desired state).

Writing Tests
A well-formed Puppet module implements each of its classes or defined types in separate files in its��
manifests directory. Thus, ensuring each class or type has a test will result in the tests directory
being a complete mirror image of the manifests directory.

A test for a class is just a manifest that declares the class. Often, this is going to be as simple as
include	apache::ssl. For parameterized classes, the test must declare the class with all of its
required attributes set:

				class	{'ntp':
						servers	=>	['0.pool.ntp.org',	'1.pool.ntp.org'],
				}

Tests for defined resource types may increase test coverage by declaring multiple instances of the�
type, with varying values for their attributes:

				dotfiles::user	{'root':	
						overwrite	=>	false,
				}
				dotfiles::user	{'nick':
						overwrite	=>	append,
				}
				dotfiles::user	{'guest':
						overwrite	=>	true,
				}

If a class (or type) depends on any other classes, the test will have to declare those as well:

				#	git/manifests/gitosis.pp
				class	git::gitosis	{
						package	{'gitosis':

Puppet Documentation • Module Smoke Testing 70/311

								ensure	=>	present,
						}
						Class['::git']	->	Class['git::gitosis']
				}
				
				#	git/tests/gitosis.pp
				class{'git':}
				class{'git::gitosis':}

Running Tests
Run tests by applying the test manifests with puppet apply.

For basic smoke testing, you can apply the manifest with --noop. This will ensure that a catalog can
be properly compiled from your code, and itʼll show a log of the RAL events that would have been
performed; depending on how simple the class is, these are often enough to ensure that itʼs doing
what you expect.

For more advanced coverage, you can apply the manifest to a live system, preferably a VM. You can
expand your coverage further by maintaining a stable of snapshotted environments in various
states, to ensure that your classes do whatʼs expected in all the situations where theyʼre likely to be
applied.

Automating all this is going to depend on your preferred tools and processes, and is thus left as an
exercise for the reader.

Reading Tests
Since module tests declare their classes with all required attributes and with all prerequisites
declared, they can serve as a form of drive-by documentation: if youʼre in a hurry, you can often
figure out how to use a module (or just refresh your memory) by skimming through the tests�
directory.

This doesnʼt get anyone off the hook for writing real documentation, but itʼs a good reason to write�
tests even if your module is already working as expected.

Exploring Further
This form of testing is extremely basic, and still requires a human reader to determine whether the
right RAL events are being generated or the right system configuration is being enforced. For more�
advanced testing, you may want to investigate cucumber-puppet or cucumber-nagios.

Scope and Puppet as of 2.7
Puppet 2.7 issues deprecation warnings for dynamic variable and resource defaults lookup. Find
out why, and learn how to adapt your Puppet code for the future!

Puppet Documentation • Scope and Puppet as of 2.7 71/311

https://github.com/nistude/cucumber-puppet
http://auxesis.github.com/cucumber-nagios/

Whatʼs Changing?
Dynamic scope will be removed from the Puppet language in a future version. This will be a major
and backwards-incompatible change. Currently, if an unqualified variable isnʼt defined in the local��
scope, Puppet looks it up along a chain of parent scopes, eventually ending at top scope; resource
defaults (File{	owner	=>	root,	}, e.g.) travel in much the same way. In the future, Puppet will
only examine the local scope and top scope when resolving an unqualified variable or a resource�
default; intervening scopes will be ignored. In effect, all variables will be either strictly local or�
strictly global. The one exception will be derived classes, which will continue to consult the scope of
the base class they inherit from.

To ease the transition, Puppet 2.7 issues deprecation warnings whenever dynamic variable lookup
occurs. You should strongly consider refactoring your code to eliminate these warnings.

Why?
Dynamic scope is confusing and dangerous, and often causes unexpected behavior. There are
already better methods for accomplishing everything dynamic scope currently does, but even if
youʼre being good, it can step in to “help” at inopportune moments. Dynamic scope interacts really
badly with class inheritance, and it makes the boundaries between classes a lot more porous than
good programming practice demands.

Thus, itʼs time to bid it a fond farewell.

Making the Switch
So youʼve installed Puppet 2.7 and are ready to start going after those deprecation warnings. What
do you do?

Qualify Your Variables!

Whenever you need to refer to a variable in another class, give the variable an explicit namespace:
instead of simply referring to $packagelist, use $git::core::packagelist. This is a win in
readability — any casual observer can tell exactly where the variable is being set, without having to
model your code in their head — and it saves you from accidentally getting the value of some
completely unrelated $packagelist variable.

If youʼre referring explicitly to a top-scope variable, use the empty namespace (e.g.
$::packagelist) for extra clarity.

Declare Resource Defaults Per-File!

If youʼre using dynamic scope to share resource defaults, thereʼs no way around it: youʼll have to
repeat yourself in each file that the defaults apply to.�

But this is not a bad thing! Resource defaults are really just code compression, and were designed
to make a single file of Puppet code more concise. By making sure your defaults are always on the�
same page as the resources they apply to, youʼll make your code vastly more legible and
predictable.

Puppet Documentation • Scope and Puppet as of 2.7 72/311

If you need to apply resource defaults more broadly, you can still set them at top scope in your
primary site manifest. If you need the resource defaults in a class to change depending on where
the class is being declared, you need parameterized classes.

All told, itʼs more likely that defaults have been traveling through scopes without your knowledge,
and the eventual elimination of dynamic scope will just make them act like you thought they were
acting.

Use Parameterized Classes!

If you need a class to dynamically change its behavior depending on where and how you declare it,
it should be rewritten as a parameterized class; see our guide to using parameterized classes for
more details.

Appendix: How Scope Works in Puppet ≤ 2.7.x
(Note that nodes defined in the Puppet DSL function identically to classes.)�

Classes, nodes, and instances of defined types introduce new scopes.�
When you declare a variable in a scope, it is local to that scope.
Every scope has one and only one “parent scope.”

If itʼs a class that inherits from a base class, its parent scope is the base class.
Otherwise, its parent scope is the FIRST scope where that class was declared. (If you are
declaring classes in multiple places with include, this can be unpredictable. Furthermore,
declaring a derived class will implicitly declare the base class in that same scope.)

If you try to resolve a variable that doesnʼt exist in the current local scope, lookup proceeds
through the chain of parent scopes — its parent, the parentʼs parent, and so on, stopping at the
first place it finds that variable.��

These rules seem simple enough, so an example is in order:

#	manifests/site.pp
$nodetype	=	"base"

node	"base"	{
				include	postfix
				...snip...

}

node	"www01",	"www02",	...	,	"www10"	inherits	"base"	{
					$nodetype	=	"wwwnode"
					include	postfix::custom

}

#	modules/postfix/manifests/init.pp
class	postfix	{
					package	{"postfix":	ensure	=>	installed}
					file	{"/etc/postfix/main.cf":
										content	=>	template("puppet:///files/main.cf.erb")
					}

Puppet Documentation • Scope and Puppet as of 2.7 73/311

}

#	modules/postfix/manifests/custom.pp
class	postfix::custom	inherits	postfix	{
					File	["/etc/postfix/main.cf"]	{
										content	=>	undef,
										source	=>	["puppet:///files/$hostname/main.cf",
																											"puppet:///files/$nodetype/main.cf"]
					}

}	

When nodes www01 through www10 connect to the puppet master, $nodetype will always be set to
“base” and main.cf will always be served from files/base/. This is because �postfix::customʼs chain
of parent scopes is postfix::custom	<	postfix	<	base	<	top-scope; the combination of
inheritance and dynamic scope causes lookup of the $nodetype variable to bypass node	01-10
entirely.

Thanks to Ben Beuchler for contributing this example.

The Puppet File Server
This guide covers the use of Puppetʼs file serving capability.�

The puppet	master service includes a file server for transferring static files. If a ��file resource
declaration contains a puppet: URI in its source attribute, nodes will retrieve that file from the�
masterʼs file server:�

#	copy	a	remote	file	to	/etc/sudoers
file	{	"/etc/sudoers":
				mode	=>	440,
				owner	=>	root,
				group	=>	root,
				source	=>	"puppet:///modules/module_name/sudoers"
}

All puppet file server URIs are structured as follows:�

puppet://{server	hostname	(optional)}/{mount	point}/{remainder	of	path}

If a server hostname is omitted (i.e. puppet:///{mount	point}/{path}; note the triple-slash), the
URI will resolve to whichever server the evaluating node considers to be its master. As this makes
manifest code more portable and reusable, hostnames should be omitted whenever possible.

The remainder of the puppet: URI maps to the serverʼs filesystem in one of two ways, depending on�
whether the files are provided by a module or exposed through a custom mount point.�

Puppet Documentation • The Puppet File Server 74/311

Serving Module Files
As the vast majority of file serving should be done through �modules, the Puppet file server provides�
a special and semi-magical mount point called modules, which is available by default. If a URIʼs
mount point is modules, Puppet will:

Interpret the next segment of the path as the name of a module…1

… locate that module in the serverʼs modulepath (as described here under “Module Lookup”)…
… and resolve the remainder of the path starting in that moduleʼs files/ directory.

That is to say, if a module named test_module is installed in the central serverʼs
/etc/puppet/modules directory, the following puppet: URI…

puppet:///modules/test_module/testfile.txt

…will resolve to the following absolute path:

/etc/puppet/modules/test_module/files/testfile.txt

If test_module were installed in /usr/share/puppet/modules, the same URI would instead resolve
to:

/usr/share/puppet/modules/test_module/files/testfile.txt

Although no additional configuration is required to use the �modules mount point, some access
controls can be specified in the file server configuration by adding a ���[modules] configuration block;�
see Security.

Serving Files From Custom Mount Points
Puppet can also serve files from arbitrary mount points specified in the serverʼs file server���
configuration (see below). When serving files from a custom mount point, Puppet does not perform��
the additional URI abstraction used in the modules mount, and will resolve the path following the
mount name as a simple directory structure.

File Server Configuration�
The default location for the file serverʼs configuration data is /etc/puppet/fileserver.conf; this can���
be changed by passing the --fsconfig flag to �puppet	master.

The format of the fileserver.conf file is almost exactly like that of ��rsync, and roughly resembles an
INI file:�

[mount_point]
				path	/path/to/files

Puppet Documentation • The Puppet File Server 75/311

http://localhost:9292/modules.html
http://localhost:9292/modules.html
http://samba.anu.edu.au/rsync/

				allow	*.domain.com
				deny	*.wireless.domain.com

The following options can currently be specified for a given mount point:�

The path to the mountʼs location on the disk
Any number of allow directives
Any number of deny directives

path is the only required option, but since the default security configuration is to deny all access, a�
mount point with no allow directives would not be available to any nodes.

The path can contain any or all of %h, %H, and %d, which are dynamically replaced by the clientʼs
hostname, its fully qualified domain name and its domain name, respectively. All are taken from the�
clientʼs SSL certificate (so be careful if youʼve got hostname/certname mismatches). This is useful in�
creating modules where files for each client are kept completely separately, e.g. for private ssh host�
keys. For example, with the configuration�

[private]
				path	/data/private/%h
				allow	*

the request for file /private/file.txt from client client1.example.com will look for a file���
/data/private/client1/file.txt, while the same request from client2.example.com will try to retrieve�
the file /data/private/client2/file.txt on the fileserver.���

Currently paths cannot contain trailing slashes or an error will result. Also take care that in
puppet.conf you are not specifying directory locations that have trailing slashes.

Security
Securing the Puppet file server consists of allowing and denying access (at varying levels of�
specificity) per mount point. Groups of nodes can be identified for permission or denial in three��
ways: by IP address, by name, or by a single global wildcard (*). Custom mount points default to
denying all access.

In addition to custom mount points, there are two special mount points which can be managed with
fileserver.conf: modules and plugins. Neither of these mount points should have a path option
specified. The behavior of the �modules mount point is described above under Serving Files From
Custom Mount Points. The plugins mount is not a true mount point, but is rather a hook to allow
fileserver.conf to specify which nodes are permitted to sync plugins from the Puppet Master.
Both of these mount points exist by default, and both default to allowing all access; if any allow or
deny directives are set for one of these special mounts, its security settings will behave like those of
a normal mount (i.e., it will default to denying all access). Note that these are the only mount points
for which deny	* is not redundant.

If nodes are not connecting to the Puppet file server directly, e.g. using a reverse proxy and�
Puppet Documentation • The Puppet File Server 76/311

Mongrel (see Using Mongrel), then the file server will see all the connections as coming from the�
proxy serverʼs IP address rather than that of the Puppet Agent node. In this case, it is best to restrict
access based on hostname. Additionally, the machine(s) acting as reverse proxy (usually
127.0.0.0/8) will need to be allowed to access the applicable mount points.

Priority

More specific �deny and allow statements take precedence over less specific statements; that is, an�
allow statement for node.domain.com would let it connect despite a deny statement for
*.domain.com. At a given level of specificity, �deny statements take precedence over allow
statements.

Unpredictable behavior can result from mixing IP address directives with hostname and domain
name directives, so try to avoid doing that. (Currently, if node.domain.comʼs IP address is
192.168.1.80 and fileserver.conf contains allow	192.168.1.80 and deny	node.domain.com, the
IP-based allow directive will actually take precedence. This behavior may be changed in the future
and should not be relied upon.)

Host Names

Host names can be specified using either a complete hostname, or specifying an entire domain�
using the * wildcard:

[export]
				path	/export
				allow	host.domain1.com
				allow	*.domain2.com
				deny	badhost.domain2.com

IP Addresses

IP address can be specified similarly to host names, using either complete IP addresses or�
wildcarded addresses. You can also use CIDR-style notation:

[export]
				path	/export
				allow	127.0.0.1
				allow	192.168.0.*
				allow	192.168.1.0/24

Global allow

Specifying a single wildcard will let any node access a mount point:

[export]
				path	/export
				allow	*

Note that the default behavior for custom mount points is equivalent to deny	*.

Puppet Documentation • The Puppet File Server 77/311

Style Guide
Style Guide Metadata

Version 1.0.2

Terminology
The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD
NOT”, “RECOMMENDED”, ”MAY”, and “OPTIONAL” in this document are to be interpreted as
described in RFC 2119.

Puppet Version
This style guide is largely specific to Puppet versions 2.6.x; some of its recommendations are based�
on some language features that became available in version 2.6.0 and later.

Why a Style Guide?
Puppet Labs develops modules for customers and the community, and these modules should
represent the best known practice for module design and style. Since these modules are developed
by many people across the organisation, a central reference was needed to ensure a consistent
pattern, design, and style.

General Philosophies
No style manual can cover every possible circumstance. When a judgement call becomes necessary,
keep in mind the following general ideas:

1. Older versions of Puppet generated individual mount points for each installed module; to reduce namespace conflicts, these�
were changed to subdirectories of the catch-all modules mount point in version 0.25.0.↩

1. Readability matters. If you have to choose between two equally effective alternatives, pick the�
more readable one. This is, of course, subjective, but if you can read your own code three
months from now, thatʼs a great start.

2. Inheritance should be avoided. In general, inheritance leads to code that is harder to read. Most
use cases for inheritance can be replaced by exposing class parameters that can be used to
configure resource attributes. See the �Class Inheritance section for more details.

3. Modules must work with an ENC without requiring one. An internal survey yielded near
consensus that an ENC should not be required. At the same time, every module we write should
work well with an ENC.

4. Classes should generally not declare other classes. Declare classes as close to node scope as
possible. Classes which require other classes should not directly declare them and should
instead allow the system to fail if they are not declared by some other means. (Although the
include function allows multiple declarations of classes, it can result in non-deterministic
scoping issues due to the way parent scopes are assigned. We might revisit this philosophy in the
future if class multi-declarations can be made deterministic, but for now, be conservative with
declarations.)

Puppet Documentation • Style Guide 78/311

http://www.faqs.org/rfcs/rfc2119.html

Module Metadata
Every module must have Metadata defined in the Modulefile data file and outputted as the���
metadata.json file. The following Metadata should be provided for all modules:�

name	'myuser-mymodule'
version	'0.0.1'
author	'Author	of	the	module	-	for	shared	modules	this	is	Puppet	Labs'
summary	'One	line	description	of	the	module'
description	'Longer	description	of	the	module	including	an	example'
license	'The	license	the	module	is	release	under	-	generally	GPLv2	or	Apache'
project_page	'The	URL	where	the	module	source	is	located'
dependency	'otheruser-othermodule',	'1.2.3'

A more complete guide to the Modulefile format can be found in the �puppet-module-tool README.

Style Versioning

This style guide will be versioned, which will allow modules to comply with a specific version of the�
style guide.

A future version of the puppet-module tool may permit the relevant style guide version to be
embedded as metadata in the Modulefile, and the metadata in turn may be used for automated�
linting.

Spacing, Indentation, & Whitespace
Module manifests complying with this style guide:

Must use two-space soft tabs
Must not use literal tab characters
Must not contain trailing white space
Should not exceed an 80 character line width
Should align fat comma arrows (=>) within blocks of attributes

Comments
Although the Puppet language allows multiple comment types, we prefer hash/octothorpe
comments (#	This	is	a	comment) because theyʼre generally the most visible to text editors and
other code lexers.

Quoting
All strings that do not contain variables should be enclosed in single quotes. Double quotes should
be used when variable interpolation is required. Quoting is optional when the string is an
alphanumeric bare word and is not a resource title.

1. Should use #	... for comments
2. Should not use //	... or /*	...	*/ for comments

Puppet Documentation • Style Guide 79/311

https://github.com/puppetlabs/puppet-module-tool/blob/master/README.markdown

All variables should be enclosed in braces when interpolated in a string. For example:

Good:

				"/etc/${file}.conf"
				"${operatingsystem}	is	not	supported	by	${module_name}"

Bad:

				"/etc/$file.conf"
				"$operatingsystem	is	not	supported	by	$module_name"

Variables standing by themselves should not be quoted. For example:

Good:

				mode	=>	$my_mode

Bad:

				mode	=>	"$my_mode"
				mode	=>	"${my_mode}"

Resources
Resource Names

All resource titles should be quoted. (Puppet supports unquoted resource titles if they do not
contain spaces or hyphens, but you should avoid them in the interest of consistent look-and-feel.)

Good:

				package	{	'openssh':	ensure	=>	present	}

Bad:

				package	{	openssh:	ensure	=>	present	}

Arrow Alignment

All of the fat comma arrows (=>) in a resourceʼs attribute/value list should be aligned. The arrows
should be placed one space ahead of the longest attribute name.

Good:

				exec	{	'blah':
						path	=>	'/usr/bin',

Puppet Documentation • Style Guide 80/311

						cwd		=>	'/tmp',
				}

				exec	{	'test':
						subscribe			=>	File['/etc/test'],
						refreshonly	=>	true,
				}

Bad:

				exec	{	'blah':
					path	=>	'/usr/bin',
					cwd	=>	'/tmp',
				}

				exec	{	'test':
						subscribe	=>	File['/etc/test'],
						refreshonly	=>	true,
				}

Attribute Ordering

If a resource declaration includes an ensure attribute, it should be the first attribute specified.��

Good:

				file	{	'/tmp/readme.txt':
						ensure	=>	file,
						owner		=>	'0',
						group		=>	'0',
						mode			=>	'0644',
				}

(This recommendation is solely in the interest of readability, as Puppet ignores attribute order when
syncing resources.)

Compression

Within a given manifest, resources should be grouped by logical relationship to each other, rather
than by resource type. Use of the semicolon syntax to declare multiple resources within a set of
curly braces is not recommended, except in the rare cases where it would improve readability.

Good:

				file	{	'/tmp/a':
						content	=>	'a',
				}

				exec	{	'change	contents	of	a':
						command	=>	'sed	-i.bak	s/a/A/g	/tmp/a',
				}

				file	{	'/tmp/b':
						content	=>	'b',

Puppet Documentation • Style Guide 81/311

				}

				exec	{	'change	contents	of	b':
						command	=>	'sed	-i.bak	s/b/B/g	/tmp/b',
				}

Bad:

				file	{
						"/tmp/a":
								content	=>	"a";
						"/tmp/b":
								content	=>	"b";
				}

				exec	{
						"change	contents	of	a":
								command	=>	"sed	-i.bak	s/b/B/g	/tmp/a";
						"change	contents	of	b":
								command	=>	"sed	-i.bak	s/b/B/g	/tmp/b";
				}

Symbolic Links

In the interest of clarity, symbolic links should be declared by using an ensure value of ensure	=>
link and explicitly specifying a value for the target attribute. Using a path to the target as the
ensure value is not recommended.

Good:

				file	{	'/var/log/syslog':
						ensure	=>	link,
						target	=>	'/var/log/messages',
				}

Bad:

				file	{	'/var/log/syslog':
						ensure	=>	'/var/log/messages',
				}

File Modes

File modes should be represented as 4 digits rather than 3, to explicitly show that they are octal
values.

In addition, file modes should be specified as single-quoted strings instead of bare word numbers.��

Good:

				file	{	'/var/log/syslog':
						ensure	=>	present,

Puppet Documentation • Style Guide 82/311

						mode			=>	'0644',
				}

Bad:

				file	{	'/var/log/syslog':
						ensure	=>	present,
						mode			=>	644,
				}

Resource Defaults

Resource defaults should be used in a very controlled manner, and should only be declared at the
edges of your manifest ecosystem. Specifically, they may be declared:�

At top scope in site.pp
In a class which is guaranteed to never declare another class and never be inherited by another
class.

This is due to the way resource defaults propagate through dynamic scope, which can have
unpredictable effects far away from where the default was declared.�

Good:

				#	/etc/puppetlabs/puppet/manifests/site.pp:
				File	{
						mode			=>	'0644',
						owner		=>	'root',
						group		=>	'root',
				}

Bad:

				#	/etc/puppetlabs/puppet/modules/ssh/manifests/init.pp
				File	{
						mode			=>	'0600',
						owner		=>	'nobody',
						group		=>	'nogroup',
				}

				class	{'ssh::client':
						ensure	=>	present,
				}

Conditionals
Keep Resource Declarations Simple

You should not intermingle conditionals with resource declarations. When using conditionals for
data assignment, you should separate conditional code from the resource declarations.

Good:
Puppet Documentation • Style Guide 83/311

Good:

				$file_mode	=	$operatingsystem	?	{
						debian	=>	'0007',
						redhat	=>	'0776',
						fedora	=>	'0007',
				}

				file	{	'/tmp/readme.txt':
							content	=>	"Hello	World\n",
							mode				=>	$file_mode,
				}

Bad:

				file	{	'/tmp/readme.txt':
						mode	=>	$operatingsystem	?	{
								debian	=>	'0777',
								redhat	=>	'0776',
								fedora	=>	'0007',
						}
				}

Defaults for Case Statements and Selectors

Case statements should have default cases. Additionally, the default case should fail the catalog
compilation when the resulting behavior cannot be predicted on the majority of platforms the
module will be used on. If you want the default case to be “do nothing,” include it as an explicit
default:	{} for clarityʼs sake.

For selectors, default selections should only be omitted if you explicitly want catalog compilation to
fail when no value matches.

The following example follows the recommended style:

				case	$operatingsystem	{
						centos:	{
								$version	=	'1.2.3'
						}
						solaris:	{
								$version	=	'3.2.1'
						}
						default:	{
								fail("Module	$module_name	is	not	supported	on	$operatingsystem")
						}
				}

Classes
Separate Files

All classes and resource type definitions must be in separate files in the ��manifests directory of their
module. For example:

Puppet Documentation • Style Guide 84/311

				#	/etc/puppetlabs/puppet/modules/apache/manifests

				#	init.pp
						class	apache	{	}
				#	ssl.pp
						class	apache::ssl	{	}
				#	virtual_host.pp
						define	apache::virtual_host	()	{	}

This is functionally identical to declaring all classes and defines in init.pp, but highlights the�
structure of the module and makes everything more legible.

Internal Organization of a Class

Classes should be organised with a consistent structure and style. In the below list there is an
implicit statement of “should be at this relative location” for each of these items. The word “may”
should be interpreted as “If there are any Xʼs they should be here”.

The following example follows the recommended style:

				class	myservice($ensure='running')	{

						if	$ensure	in	[running,	stopped]	{
								$ensure_real	=	$ensure
						}	else	{
								fail('ensure	parameter	must	be	running	or	stopped')
						}

						case	$operatingsystem	{
								centos:	{
										$package_list	=	'openssh-server'
								}
								solaris:	{
										$pacakge_list	=	[SUNWsshr,	SUNWsshu]
								}
								default:	{
										fail("module	$module_name	does	not	support	$operatingsystem")
								}
						}

						$variable	=	'something'

						Package	{	ensure	=>	present,	}

1. Should define the class and parameters�
2. Should validate any class parameters and fail catalog compilation if any parameters are invalid
3. Should default any validated parameters to the most general case
4. May declare local variables
5. May declare relationships to other classes Class['apache']	->	Class['local_yum']
6. May override resources
7. May declare resource defaults
8. May declare resources; resources of defined and custom types should go before those of core�

types
9. May declare resource relationships inside of conditionals

Puppet Documentation • Style Guide 85/311

						File	{	owner	=>	'0',	group	=>	'0',	mode	=>	'0644'	}

						package	{	$package_list:	}

						file	{	"/tmp/${variable}":
								ensure	=>	present,
						}

						service	{	'myservice':
								ensure				=>	$ensure_real,
								hasstatus	=>	true,
						}
				}

Relationship Declarations

Relationship declarations with the chaining syntax should only be used in the “left to right”
direction.

Good:

Package['httpd']	->	Service['httpd']

Bad:

Service['httpd']	<-	Package['httpd']

When possible, you should prefer metaparameters to relationship declarations. One example where
metaparameters arenʼt desirable is when subclassing would be necessary to override behavior; in
this situation, relationship declarations inside of conditionals should be used.

Classes and Defined Resource Types Within Classes�

Classes and defined resource types must not be defined within other classes.��

Bad:

				class	apache	{
						class	ssl	{	...	}
				}

Also bad:

				class	apache	{
						define	config()	{	...	}
				}

Class Inheritance

Inheritance may be used within a module, but must not be used across module namespaces. Cross-

Puppet Documentation • Style Guide 86/311

module dependencies should be satisfied in a more portable way that doesnʼt violate the concept of�
modularity, such as with include statements or relationship declarations.

Good:

				class	ssh	{	...	}

				class	ssh::client	inherits	ssh	{	...	}

				class	ssh::server	inherits	ssh	{	...	}

				class	ssh::server::solaris	inherits	ssh::server	{	...	}

Bad:

				class	ssh	inherits	server	{	...	}

				class	ssh:client	inherits	workstation	{	...	}

				class	wordpress	inherits	apache	{	...	}

Inheritance in general should be avoided when alternatives are viable. For example, instead of
using inheritance to override relationships in an existing class when stopping a service, consider
using a single class with an ensure parameter and conditional relationship declarations:

				class	bluetooth($ensure=present,	$autoupgrade=false)	{
							#	Validate	class	parameter	inputs.	(Fail	early	and	fail	hard)

							if	!	($ensure	in	["present",	"absent"])	{
									fail("bluetooth	ensure	parameter	must	be	absent	or	present")
							}

							if	!	($autoupgrade	in	[true,	false])	{
									fail("bluetooth	autoupgrade	parameter	must	be	true	or	false")
							}

							#	Set	local	variables	based	on	the	desired	state

							if	$ensure	==	"present"	{
									$service_enable	=	true
									$service_ensure	=	running
									if	$autoupgrade	==	true	{
											$package_ensure	=	latest
									}	else	{
											$package_ensure	=	present
									}
							}	else	{
									$service_enable	=	false
									$service_ensure	=	stopped
									$package_ensure	=	absent
							}

							#	Declare	resources	without	any	relationships	in	this	section

							package	{	["bluez-libs",	"bluez-utils"]:
									ensure	=>	$package_ensure,

Puppet Documentation • Style Guide 87/311

									ensure	=>	$package_ensure,
							}

							service	{	hidd:
									enable									=>	$service_enable,
									ensure									=>	$service_ensure,
									status									=>	"source	/etc/init.d/functions;	status	hidd",
									hasstatus						=>	true,
									hasrestart					=>	true,
						}

						#	Finally,	declare	relations	based	on	desired	behavior

						if	$ensure	==	"present"	{
								Package["bluez-libs"]		->	Package["bluez-utils"]
								Package["bluez-libs"]		~>	Service[hidd]
								Package["bluez-utils"]	~>	Service[hidd]
						}	else	{
								Service["hidd"]								->	Package["bluez-utils"]
								Package["bluez-utils"]	->	Package["bluez-libs"]
						}
				}

(This example makes several assumptions and is based on an example provided in the Puppet
Master training for managing bluetooth.)

In summary:

Class inheritance is only useful for overriding resource attributes; any other use case is better
accomplished with other methods.
If you just need to override relationship metaparameters, you should use a single class with
conditional relationship declarations instead of inheritance.
In many cases, even other attributes (e.g. ensure and enable) may have their behavior changed
with variables and conditional logic instead of inheritance.

Namespacing Variables

When using top-scope variables, including facts, Puppet modules should explicitly specify the
empty namespace (i.e., $::operatingsystem, not $operatingsystem) to prevent accidental scoping
issues.

Display Order of Class Parameters

In parameterized class and defined resource type declarations, parameters that are required should�
be listed before optional parameters (i.e. parameters with defaults).

Good:

				class	ntp	(
						$servers,
						$options	=	"iburst",
						$multicast	=	false
)	{}

Bad:

Puppet Documentation • Style Guide 88/311

				class	ntp	(
						$options	=	"iburst",
						$servers,
						$multicast	=	false
)	{}

Tests
All manifests should have a corresponding test manifest in the moduleʼs tests directory.

modulepath/apache/manifests/{init,ssl}.pp
modulepath/apache/tests/{init,ssl}.pp

The test manifest should provide a clear example of how to declare the class or defined resource�
type. In addition, the test manifest should also declare any classes required by the corresponding
class to ensure puppet	apply works in a limited, stand alone manner.

Puppet Doc
Classes and defined resource types should be documented inline using the following conventions:�

For classes:

				#	Full	description	of	class	here.
				#
				#	==	Parameters
				#
				#	Document	parameters	here
				#
				#	[*servers*]
				#			Description	of	servers	class	parameter.		e.g.	"Specify	one	or	more
				#			upstream	ntp	servers	as	an	array."
				#
				#	==	Variables
				#
				#	Here	you	should	define	a	list	of	variables	that	this	module	would	
require.
				#
				#	[*$enc_ntp_servers*]
				#					Description	of	this	variable.		e.g.	"The	parameter	enc_ntp_servers
				#	must	be	set	by	the	External	Node	Classifier	as	a	comma	separated	list	of
				#	hostnames."		(Note,	global	variables	should	not	be	used	in	preference	to
				#	class	parameters	as	of	Puppet	2.6.)
				#
				#	==	Examples
				#
				#	Put	some	examples	on	how	to	use	your	class	here.
				#
				#			$example_var	=	"blah"
				#			include	example_class
				#
				#	==	Authors
				#
				#	Author	Name	<author@domain.com\>

Puppet Documentation • Style Guide 89/311

				#
				#	==	Copyright
				#
				#	Copyright	2011	Company	Name	Inc,	unless	otherwise	noted.
				#
				class	example_class	{
						...
				}

For defined resources:�

				#	Description	of	resource	here
				#
				#	==	Parameters
				#
				#	Document	parameters	here
				#
				#	[*namevar*]
				#			If	there	is	a	parameter	that	defaults	to	the	value	of	the	title	string
				#	when	not	explicitly	set,	you	must	always	say	so.		This	parameter	can	be
				#	referred	to	as	a	"namevar,"	since	it's	functionally	equivalent	to	the
				#	namevar	of	a	core	resource	type.
				#
				#	[*basedir*]
				#			Description	of	this	variable.		For	example,	"This	parameter	sets	the
				#	base	directory	for	this	resource	type.		It	should	not	contain	a	trailing
				#	slash."
				#
				#	==	Examples
				#
				#	Provide	some	examples	on	how	to	use	this	type:
				#
				#			example_class::example_resource{
				#					"namevar":
				#							sample_param	=>	"value",
				#			}
				#
				define	example_class::example_resource($example_var)	{
						...
				}

This will allow documentation to be automatically extracted with the puppet doc tool.

The extlookup() Function
Modules should avoid the use of extlookup() in favor of ENCs or other alternatives.

Best Practices
This guide includes some tips to getting the most out of Puppet. It is derived from the best practices
section of the Wiki and other sources. It is intended to cover high-level best practices and may not
extend into lower level details.

Puppet Documentation • Best Practices 90/311

http://projects.puppetlabs.com/projects/puppet/wiki/Puppet_Best_Practice

Use Modules When Possible
Puppet modules are something everyone should use. If you have an application you are managing,
add a module for it, so that you can keep the manifests, plugins (if any), source files, and templates�
together.

Keep Your Puppet Content In Version Control
Keep your Puppet manifests in version control. You can pick your favorite systems — popular
choices include git and svn.

Naming Conventions
Node names should match the hostnames of the nodes.

When naming classes, a class that disables ssh should be inherited from the ssh class and be
named “ssh::disabled”

Style
For recommendations on syntax and formatting, follow the Style Guide

Classes Vs Defined Types�
Classes are not to be thought of in the ʻobject orientedʼ meaning of a class. This means a machine
belongs to a particular class of machine.

For instance, a generic webserver would be a class. You would include that class as part of any
node that needed to be built as a generic webserver. That class would drop in whatever packages,
etc, it needed to do.

Defined types on the other hand (created with ʻdefineʼ) can have many instances on a machine, and��
can encapsulate classes and other resources. They can be created using user supplied variables.
For instance, to manage iptables, a defined type may wrap each rule in the iptables file, and the��
iptables configuration could be built out of fragments generated by those defined types.��

Usage of classes and defined types, in addition to the built-in managed types, is very helpful�
towards having a managable Puppet infrastructure.

Work In Progress
This document is a stub. You can help Puppet by submitting contributions to it.

Using Puppet Templates
Learn how to template out configuration files with Puppet, filling in variables from the client system���
from facter.

Puppet Documentation • Using Puppet Templates 91/311

Puppet supports templates and templating via ERB, which is part of the Ruby standard library and is
used for many other projects including Ruby on Rails. While it is a Ruby templating system, you do
not need to understand much Ruby to use ERB.

Templates allow you to manage the content of template files, for example configuration files that���
cannot yet be managed directly by a built-in Puppet type. This might include an Apache
configuration file, Samba configuration file, etc.����

Evaluating templates
Templates are evaluated via a simple function:

$value	=	template("mytemplate.erb")

You can specify the full path to your template, or you can put all your templates in Puppetʼs
templatedir, which usually defaults to /var/puppet/templates (you can find out what it is on your�
system by running puppet	--configprint	templatedir). Best practices indicates including the
template in the templates directory inside your module.

Templates are always evaluated by the parser, not by the client. This means that if you are using
puppetmasterd, then the templates only need to be on the server, and you never need to download
them to the client. Thereʼs no difference that the client sees between using a template and�
specifying all of the text of the file as a string. This also means that any client-specific variables��
(facts) are learned first by puppetmasterd during the client start-up phase, then those variables are�
available for substitution within templates.

Using templates
Here is an example for generating the Apache configuration for �Trac sites:

define	tracsite($cgidir,	$tracdir)	{
				file	{	"trac-$name":
								path	=>	"/etc/apache2/trac/$name.conf",
								owner	=>	root,
								group	=>	root,
								mode	=>	644,
								require	=>	File[apacheconf],
								content	=>	template("tracsite.erb"),
								notify	=>	Service[apache2]
				}

				symlink	{	"tracsym-$name":
								path	=>	"$cgidir/$name.cgi",
								ensure	=>	"/usr/share/trac/cgi-bin/trac.cgi"
				}
}

And then hereʼs the template:

<Location	"/cgi-bin/	<%=	name	%>.cgi">

Puppet Documentation • Using Puppet Templates 92/311

http://www.ruby-doc.org/stdlib/libdoc/erb/rdoc/
http://trac.edgewall.org/

				SetEnv	TRAC_ENV	"/export/svn/trac/<%=	name	%>"
</Location>

#	You	need	something	like	this	to	authenticate	users
<Location	"/cgi-bin/<%=	name	%>.cgi/login">
				AuthType	Basic
				AuthName	"Trac"
				AuthUserFile	/etc/apache2/auth/svn
				Require	valid-user
</Location>

This puts each Trac configuration into a separate file, and then we just tell Apache to load all of��
these files:�

Include	/etc/apache2/trac/[^.#]*

Combining templates
You can also concatentate several templates together as follows:

	template('/path/to/template1','/path/to/template2')

Iteration
Puppetʼs templates also support array iteration. If the variable you are accessing is an array, you can
iterate over it in a loop. Given Puppet manifest code like this:

$values	=	[val1,	val2,	otherval]

You could have a template like this:

<%	values.each	do	|val|	-%>
Some	stuff	with	<%=	val	%>
<%	end	-%>

This would produce:

Some	stuff	with	val1
Some	stuff	with	val2
Some	stuff	with	otherval

Note that normally, ERB template lines that just have code on them would get translated into blank
lines. This is because ERB generates newlines by default. To prevent this, we use the closing tag -
%> instead of %>.

As we mentioned, erb is a Ruby system, but you donʼt need to know Ruby well to use ERB. Internally,
Puppetʼs values get translated to real Ruby values, including true and false, so you can be pretty

Puppet Documentation • Using Puppet Templates 93/311

confident that variables will behave as you might expect.�

Conditionals
The ERB templating supports conditionals. The following construct is a quick and easy way to
conditionally put content into a file:�

<%	if	broadcast	!=	"NONE"	%>								broadcast	<%=	broadcast	%>	<%	end	%>

Templates and variables
You can also use templates to fill in variables in addition to filling out file contents.���

myvariable	=	template('/var/puppet/template/myvar')

Undefined variables�
If you need to test to see if a variable is defined before using it, the following works:�

<%	if	has_variable?("myvar")	then	%>
myvar	has	<%=	myvar	%>	value
<%	end	%>

Out of scope variables
You can access out of scope variables explicitly with the lookupvar function:

<%=	scope.lookupvar('apache::user')	%>

Access to defined tags and classes�
In Puppet version 0.24.6 and later, it is possible from a template to get the list of defined classes,�
the list of tags in the current scope, and the list of all tags as ruby arrays. For example:

This snippet will print all the tags defined in the current scope:�

<%	tags.each	do	|tag|	-%>
The	tag	<%=	tag	%>	is	part	of	the	current	scope
<%	end	-%>

This snippet will print all the defined tags in the catalog:�

<%	all_tags.each	do	|tag|	-%>
The	tag	<%=	tag	%>	is	defined
<%	end	-%>

Puppet Documentation • Using Puppet Templates 94/311

This snippet will print all the defined classes in the catalog:�

<%	classes.each	do	|klass|	-%>
The	class	<%=	klass	%>	is	defined
<%	end	-%>

Access to variables and Puppet functions with the scope
object
Inside templates you have access to a scope object. All of the functions that you can access in the
puppet manifests can be accessed via that scope object, although not via the same name.

Variables defined in the current scope are available as entries in the hash returned by the scope�
objectʼs to_hash method. This snippet will print all of the variable names defined in the current�
scope:

<%	scope.to_hash.keys.each	do	|k|	-%>
<%=	k	%>
<%	end	-%>

Puppet functions can be called by prepending “function_” to the beginning of the function name.
For example, including one template inside another:

<%=	scope.function_template("module/template2.erb")	%>

Syntax Checking
ERB files are easy to syntax check. For a file mytemplate.erb, run��

erb	-x	-T	'-'	mytemplate.erb	|	ruby	-c

Virtual Resources
Referencing an entity from more than one place.

About Virtual Resources
By default, any resource you describe in a clientʼs Puppet config will get sent to the client and be�
managed by that client. However, resources can be specified in a way that marks them as virtual,�
meaning that they will not be sent to the client by default. You mark a resource as virtual by
prefixing @ to the resource specification; for instance, the following code defines a virtual user:���

@user	{	luke:	ensure	=>	present	}

Puppet Documentation • Virtual Resources 95/311

If you include this code (or something similar) in your configuration then the user will never get�
sent to your clients without some extra effort.�

How This Is Useful
Puppet enforces configuration normalization, meaning that a given resource can only be specified��
in one part of your configuration. You canʼt configure user johnny in both the solaris and freebsd��
classes.

For most cases, this is fine, because most resources are distinctly related to a single Puppet class —�
they belong in the webserver class, mailserver class, or whatever. Some resources can not be
cleanly tied to a specific class, though; multiple otherwise-unrelated classes might need a specific��
resource. For instance, if you have a user who is both a database administrator and a Unix
sysadmin, you want the user installed on all machines that have either database administrators or
Unix administrators.

You canʼt specify the user in the dba class nor in the sysadmin class, because that would not get the
user installed for all cases that matter.

In these cases, you can specify the user as a virtual resource, and then mark the user as real in both
classes. Thus, the user is still specified in only one part of your configuration, but multiple parts of��
your configuration verify that the user will be installed on the client.�

The important point here is that you can take a virtual resource and mark it non-virtual as many
times as you want in a configuration; itʼs only the specification itself that must be normalized to one��
specific part of your configuration.��

How to Realize Resources
There are two ways to mark a virtual resource so that it gets sent to the client: You can use a special
syntax called a collection, or you can use the simple function realize. Collections provide a simple
syntax for marking virtual objects as real, such that they should be sent to the client. Collections
require the type of resource you are collecting and zero or more attribute comparisons to
specifically select resources. For instance, to find our mythical user, we would use:��

User	<|	title	==	luke	|>

As promised, weʼve got the user type (capitalized, because weʼre performing a type-level
operation), and weʼre looking for the user whose title is luke. “Title” is special here — it is the value
before the colon when you specify the user. This is somewhat of an inconsistency in Puppet,
because this value is often referred to as the name, but many types have a name parameter and
they could have both a title and a name.

If no comparisons are specified, all virtual resources of that type will be marked real.�

This attribute querying syntax is currently very simple. The only comparisons available are equality
and non-equality (using the == and != operators, respectively), and you can join these

Puppet Documentation • Virtual Resources 96/311

comparisons using or and and. You can also parenthesize these statements, as you might expect.
So, a more complicated collection might look like:

User	<|	(group	==	dba	or	group	==	sysadmin)	or	title	==	luke	|>

Realizing Resources
Puppet provides a simple form of syntactic sugar for marking resource non-virtual by title, the
realize function:

realize	User[luke]
realize(User[johnny],	User[billy])

The function follows the same syntax as other functions in the language, except that only resource
references are valid values.

Virtual Define-Based Resources�
Since version 0.23, define-based resources may also be made virtual. For example:�

define	msg($arg)	{
		notify	{	"$name:	$arg":	}
}
@msg	{	test1:	arg	=>	arg1	}
@msg	{	test2:	arg	=>	arg2	}

With the above definitions, neither of the msg resources will be applied to a node unless it realizes�
them, e.g.:

realize(Msg[test1],	Msg[test2])

Keep in mind that resources inside virtualized define-based resources must have unique names.�
The following example will fail, complaining that File[foo] is defined twice:�

				define	basket($arg)	{
												file{'foo':
																				ensure		=>	present,
																				content	=>	"$arg",
																				}
												}
				@basket	{	'fruit':	arg	=>	'apple'	}
				@basket	{	'berry':	arg	=>	'watermelon'	}

				realize(Basket[fruit],	Basket[berry])

Hereʼs a working example:

Puppet Documentation • Virtual Resources 97/311

				define	basket($arg)	{
								file{"$name":
												ensure		=>	present,
												content	=>	"$arg",
												}
								}
				@basket	{	'fruit':	arg	=>	'apple'	}
				@basket	{	'berry':	arg	=>	'watermelon'	}

				realize(Basket[fruit],	Basket[berry])

Note that the working example will result in two File resources, named fruit and berry.

Exporting and Collecting Resources
Exporting and collecting resources is an extension of Virtual Resources . Puppet provides an
experimental superset of virtual resources, using a similar syntax. In addition to these resources
being virtual, theyʼre also “exported” to other hosts on your network.

About Exported Resources
While virtual resources can only be collected by the host that specified them, exported resources�
can be collected by any host. You must set the storeconfigs setting to true to enable this�
functionality (you can see information about stored configuration on the �Using Stored
Configuration� wiki page, and Puppet will automatically create a database for storing configurations�
(using Ruby on Rails).

[puppetmasterd]
storeconfigs	=	true

This allows one host to configure another host; for instance, a host could configure its services��
using Puppet, and then could export Nagios configurations to monitor those services.�

The key syntactical difference between virtual and exported resources is that the special sigils (�@
and <|	|>) are doubled (@@ and <<|	|>>) when referring to an exported resource.

Here is an example with exported resources:

class	ssh	{
				@@sshkey	{	$hostname:	type	=>	dsa,	key	=>	$sshdsakey	}
				Sshkey	<<|	|>>
}

As promised, we use two @ sigils here, and the angle brackets are doubled in the collection.

The above code would have every host export its SSH public key, and then collect every hostʼs key
and install it in the ssh_known_hosts file (which is what the sshkey type does); this would include�
the host doing the exporting.
Puppet Documentation • Exporting and Collecting Resources 98/311

http://projects.puppetlabs.com/projects/1/wiki/Using_Stored_Configuration
http://rubyonrails.org/

Itʼs important to mention here that you will only get exported resources from hosts whose
configurations have been compiled. If hostB exports a resource but hostB has never connected to�
the server, then no host will get that exported resource. The act of compiling a given hostʼs
configuration puts the resources into the database, and only resources in the database are�
available for collection.

Letʼs look at another example, this time using a File resource:

node	a	{
				@@file	{	"/tmp/foo":	content	=>	"fjskfjs\n",	tag	=>	"foofile",	}
}
node	b	{
				File	<<|	tag	==	'foofile'	|>>
}

This will create /tmp/foo on node b. Note that the tag is not required, it just allows you to control
which resources you want to import.

Exported Resources with Nagios
Puppet includes native types for managing Nagios configuration files. These types become very��
powerful when you export and collect them. For example, you could create a class for something
like Apache that adds a service definition on your Nagios host, automatically monitoring the web�
server:

class	nagios-target	{
			@@nagios_host	{	$fqdn:
								ensure	=>	present,
								alias	=>	$hostname,
								address	=>	$ipaddress,
								use	=>	"generic-host",
			}
			@@nagios_service	{	"check_ping_${hostname}":
								check_command	=>	"check_ping!100.0,20%!500.0,60%",
								use	=>	"generic-service",
								host_name	=>	"$fqdn",
								notification_period	=>	"24x7",
								service_description	=>	"${hostname}_check_ping"
			}
}
class	nagios-monitor	{
				package	{	[nagios,	nagios-plugins]:	ensure	=>	installed,	}
				service	{	nagios:
								ensure	=>	running,
								enable	=>	true,
								#subscribe	=>	File[$nagios_cfgdir],
								require	=>	Package[nagios],
				}
				#	collect	resources	and	populate	/etc/nagios/nagios_*.cfg
				Nagios_host	<<||>>
				Nagios_service	<<||>>
}

Puppet Documentation • Exporting and Collecting Resources 99/311

Exported Resources Override
Beginning in version 0.25, some new syntax has been introduced that allows creation of collections
of any resources, not just virtual ones, based on filter conditions, and override of attributes in the�
created collection. This feature is not constrained to the override in inherited context, as is the case
in the usual resource override.

Ordinary resource collections can now be defined by filter conditions, in the same way as��
collections of virtual or exported resources. For example:

file	{
				"/tmp/testing":	content	=>	"whatever"
}

File<|	|>	{
				mode	=>	0600
}

The filter condition goes in the middle of the �<|	|> sigils. In the above example the condition is
empty, so all file resources (not just virtual ones) are selected, and all file resources will have their��
modes overridden to 0600.

In the past this syntax only collected virtual resources. It now collects all matching resources, virtual
or no, and allows you to override attributes in any of the collection so defined.�

As another example, one can write:

file	{	"/tmp/a":	content	=>	"a"	}
file	{	"/tmp/b":	content	=>	"b"	}

File	<|	title	!=	"/tmp/b"	|>	{
				require	=>	File["/tmp/b"]
}

This means that every File resource requires /tmp/b, except /tmp/b itself. Moreover, it is now
possible to define resource overriding without respecting the override on inheritance rule:�

class	a	{
				file	{
								"/tmp/testing":	content	=>	"whatever"
				}
}

class	b	{
				include	a
				File<|	|>	{
								mode	=>	0600
				}
}
include	b

Puppet Documentation • Exporting and Collecting Resources 100/311

Environments
Manage development, stage, and production differences.�

Using Multiple Environments
As of 0.24.0, Puppet has support for multiple environments, along the same lines as Ruby on Rails.
The idea behind these environments is to provide an easy mechanism for managing machines at
different levels of SLA — some machines need to be up constantly and thus cannot tolerate�
disruptions and usually use older software, while other machines are more up to date and are used
for testing upgrades to more important machines.

Puppet allows you to define whatever environments you want, but it is recommended that you stick�
to production, testing, and development for community consistency.

Puppet defaults to not using an environment, and if you do not set one on either the client or
server, then it will behave as though environments do not exist at all, so you can safely ignore this
feature if you do not need it.

Please note: Not using environments doesnʼt mean the client doesnʼt have an environment set. The
clientʼs environment is per default set to production and will only be changed by changing the
clientʼs configuration or specifying the environment on the command line. You canʼt set it to a�
default value on the server side. For a more detailed discussion, have a look at: environment default
setting thread on the mailing list.

Goal of Environments
The main goal of a set-up split by environments could be that puppet can have different sources�
for modules and manifests for different environments on the same Puppet master.�

For example, you could have a stable and a testing branch of your manifests and modules. You
could then test changes to your configuration in your testing environment without impacting nodes�
in your production environment.

You could also use environments to deploy infrastructure to different segments of your network,�
for example a dmz environment and a core environment. You could also use environments to
specify different physical locations,�

Using Environments on the Puppet Master
The point of the environment is to choose which manifests, templates, and files are sent to the�
client. Thus, Puppet must be configured to provide environment-specific sources for this��
information.

Puppet environments are implemented rather simply: You add per-environment sections to the
serverʼs puppet.conf configuration file, choosing different configuration sources for each����
environment. These per-environment sections are then used in preference to the main sections.
For instance:

Puppet Documentation • Environments 101/311

http://wiki.rubyonrails.org/rails/pages/Environments
http://groups.google.com/group/puppet-users/browse_thread/thread/f97bfad1e46c83c4?hl=en#

[main]
				manifest			=	/usr/share/puppet/site.pp
				modulepath	=	/usr/share/puppet/modules

[development]
				manifest			=	/usr/share/puppet/development/site.pp
				modulepath	=	/usr/share/puppet/development/modules

In this case, any clients in the development environment will use the site.pp file located in the�
directory /usr/share/puppet/development and Puppet would search for any modules under the
/usr/share/puppet/development/modules directory.

Running with any other environment or without an environment would default to the site.pp file�
and directory specified in the �manifest and modulepath values in the [main] configuration section.�

Only certain settings make sense to be configured per-environment, and all of those settings�
revolve around specifying what files to use to compile a clientʼs configuration. Those settings are:��

modulepath: Where to look for modules. Itʼs best to have a standard module directory that all
environments share and then a per-environment directory where custom modules can be stored.
templatedir: Where to look for templates. The modulepath should be preferred to this setting,
but it allows you to have different versions of a given template in each environment.�
manifest: Which file to use as the main entry point for the configuration. The Puppet parser looks��
for other files to compile in the same directory as this manifest, so this setting also determines�
where other per-environment Puppet manifests should be stored. With a separate module path,
it should be easy to use the same simple manifest in all environments.

Note that using multiple environments works much better if you rely largely on modules, and youʼll
find it easier to migrate changes between environments by encapsulating related files into a��
module. It is recommended that you switch as much as possible to modules if you plan on using
environments.

Additionally, the file server uses an environment-specific module path; if you do your file serving���
from modules, instead of separately mounted directories, your clients will be able to get
environment-specific files.��

Finally, the current environment is also available as the variable $environment within your
manifests, so you can use the same manifests everywhere and behave differently internally�
depending on the environment.

Setting The Clientʼs Environment
To specify which environment the Puppet client uses you can specify a value for the environment
configuration variable in the clientʼs �puppet.conf file:�

[puppetd]
				environment	=	development

Puppet Documentation • Environments 102/311

This will inform the server which environment the client is in, here development.

You can also specify this on the command line:

#	puppetd	--environment=development

Alternatively, rather than specifying this statically in the configuration file, you could create a��
custom fact that set the client environment based upon some other client attribute or an external
data source.

The preferred way of setting the environment is to use an external node configuration tool; these�
tools can directly specify a nodeʼs environment and are generally much better at specifying node
information than Puppet is.

Puppet Search Path
When determining what configuration to apply, Puppet uses a simple search path for picking which�
value to use:

Values specified on the command line�
Values specified in an environment-specific section��
Values specified in an executable-specific section��
Values specified in the main section�

Reporting
How to learn more about the activity of your nodes.

Reports and Reporting
Puppet clients can be configured to send reports at the end of every configuration run. Because the��
Transaction interals of Puppet are responsible for creating and sending the reports, these are
called transaction reports. Currently, these reports include all of the log messages generated
during the configuration run, along with some basic metrics of what happened on that run. �In
Rowlf, more detailed reporting information will be available, allowing users to see detailed change
information regarding what happened on nodes.

Logs

The bulk of the report is every log message generated during the transaction. This is a simple way
to send almost all client logs to the Puppet server; you can use the log report to send all of these
client logs to syslog on the server.

Metrics

The rest of the report contains some basic metrics describing what happened in the transaction.
There are three types of metrics in each report, and each type of metric has one or more values:

Puppet Documentation • Reporting 103/311

Time: Keeps track of how long things took.
Total: Total time for the configuration run�
File:
Exec:
User:
Group:
Config Retrieval�: How long the configuration took to retrieve�
Service:
Package:

Resources: Keeps track of the following stats:
Total: The total number of resources being managed
Skipped: How many resources were skipped, because of either tagging or scheduling
restrictions
Scheduled: How many resources met any scheduling restrictions
Out of Sync: How many resources were out of sync
Applied: How many resources were attempted to be fixed�
Failed: How many resources were not successfully fixed�
Restarted: How many resources were restarted because their dependencies changed
Failed Restarts: How many resources could not be restarted

Changes: The total number of changes in the transaction.

Setting Up Reporting
By default, the client does not send reports, and the server only is only configured to store reports,�
which just stores recieved YAML-formatted report in the reportdir.

Clients default to sending reports to the same server they get their configurations from, but you�
can change that by setting reportserver on the client, so if you have load-balanced Puppet servers
you can keep all of your reports consolidated on a single machine.

Sending Reports

In order to turn on reporting on the client-side (puppetd), the report argument must be given to
the puppetd executable either by passing the argument to the executable on the command line,
like this:

$	puppetd	--report

or by including the configuration parameter in the Puppet configuration file, usually located in���
/etc/puppet/puppet.conf:

#
#		/etc/puppet/puppet.conf
#

Puppet Documentation • Reporting 104/311

[puppetd]
				report	=	true

With this setting enabled, the client will then send the report to the puppetmasterd server at the
end of every transaction.

If you are using namespaceauth.conf, you must allow the clients to access the name space:

#
#	/etc//puppet/namespaceauth.conf
#
[puppetreports.report]
				allow	*

Note: some explanations of namespaceauth.conf are due in this documentation.

Processing Reports

As previously mentioned, by default the server stores incoming YAML reports to disk. There are
other reports types available that can process each report as it arrives, or you can write a separate
processor that handles the reports on your own schedule.
USING BUILTIN REPORTS

As with the rest of Puppet, you can configure the server to use different reports with either��
command-line arguments or configuration file changes. ��The value you need to change is called
reports, and it must be a comma-separated list of the reports you want to use. Hereʼs how youʼd
configure extra reports on the command line:�

$	puppetmasterd	--reports	tagmail,store,log

Note that weʼre still specifying store here; any reports you specify replace the default, so you must
still manually specify store if you want it. You can also specify none if you want the reports to just
be thrown away.

Or we can include these configuration parameters in the configuration file, typically���
/etc/puppet/puppet.conf. For example:

#
#		/etc/puppet/puppet.conf
#
[puppetmasterd]
				reports	=	tagmail,store,log

Note that in the configuration file, the list of reports should be comma-separated and not enclosed��
in quotes (which is otherwise acceptable for a command-line invocation).
WRITING CUSTOM REPORTS

You can easily write your own report processor in place of any of the built-in reports. Just drop the
report into lib/puppet/reports, using the existing reports as an example. This is only necessary on

Puppet Documentation • Reporting 105/311

the server, as the report reciever does not run on the clients.
USING EXTERNAL REPORT PROCESSORS

Many people are only using the store report and writing an external report processor that
processes many reports at once and produces summary pages. This is easiest if these processors
are written in Ruby, since you can just read the YAML files in and de-serialize them into Ruby�
objects. Then, you can just do whatever you need with the report objects.

Available reports
Read the Report Reference for a list of available reports and how to configure them. It is�
automatically generated from the reports available in Puppet, and includes documentation on how
to use each report.

Getting Started With Puppet CloudPack
Learn how to install and start using CloudPack, Puppetʼs preview Faces extension for node
bootstrapping.

Overview
Puppet CloudPack is a Puppet extension that adds new actions for creating and puppetizing new
machines, especially Amazon AWS EC2 instances.

CloudPack gives you an easy command line interface to the following tasks:

Create a new Amazon EC2 instance
Install Puppet Enterprise on a remote machine of your choice
Add a new puppet agent node to a Puppet Dashboard node group
Do all of the above (plus sign the new nodeʼs certificate) with a single �puppet	node	bootstrap
invocation

Installing
To install Puppet CloudPack, simply clone the repository on your control node and add its lib
directory to your $RUBYLIB or Ruby load path.

Prerequisites
Puppet CloudPack has several requirements beyond those of Puppet.

Software

CloudPack can only be used with Puppet 2.7 or greater. Classification of new nodes requires Puppet�
Dashboard 1.1.2 (unreleased at the time of this writing) or greater.

CloudPack also requires Fog, a Ruby cloud services library. Youʼll need to ensure that Fog is
installed on the machine running CloudPack:
Puppet Documentation • Getting Started With Puppet CloudPack 106/311

https://github.com/puppetlabs/puppet-cloudpack
http://fog.io/

#	gem	install	fog

Depending on your operating system and Ruby environment, you may need to manually install
some of Fogʼs dependencies.

If you wish to use CloudPack to install Puppet on new nodes, youʼll also need a copy of the Puppet
Enterprise universal tarball. As of this writing, the distro-specific tarballs are not supported.�

The machine running the CloudPack faces will need a working /usr/bin/uuidgen binary.

Services

Currently, Amazon EC2 is the only supported cloud platform for creating new machine instances;
youʼll need a pre-existing Amazon EC2 account to use this feature.

Configuration�
Fog

For CloudPack to work, Fog needs to be configured with your AWS access key ID and secret access�
key. Create a ~/.fog file as follows:�

:default:
		:aws_access_key_id:					XXXXXXXXXXXXXXXXXXXXX
		:aws_secret_access_key:	Xx+xxXX+XxxXXXXXXxxXxxXXXXxxxXXxXXxxxxXX

To test whether Fog is working, execute the following command:

$	ruby	-rubygems	-e	'require	"fog"'	-e	'puts	Fog::Compute.new(:provider	=>	
"AWS").servers.length	>	0'

This should return “true.”

EC2

Your EC2 account will need to have at least one 32-bit AMI of a supported Puppet Enterprise OS,1
at least one Amazon-managed SSH keypair, and a security group that allows outbound traffic on��
port 8140 and SSH traffic from the machine running the CloudPack actions.�� As of this writing, all of
these resources must be in the us-east-1 region; this will change in a later release of the
CloudPack. We also hope to support 64-bit AMIs at a later date.

Your puppet master server will also have to be reachable from your newly created instances.

Provisioning

In order to use the install action, any newly provisioned instances will need to have their root user
enabled, or will need a user account configured to �sudo as root without a password.

Puppet Documentation • Getting Started With Puppet CloudPack 107/311

http://info.puppetlabs.com/download

puppet master

If you want to automatically sign certificates with the CloudPack, youʼll have to allow the computer�
running the CloudPack actions to access the puppet masterʼs certificate_status REST endpoint.
This can be configured in the masterʼs �auth.conf file:�

path	/certificate_status
method	save
auth	yes
allow	{certname}

If youʼre running the CloudPack actions on a machine other than your puppet master, youʼll have to
ensure it can communicate with the puppet master over port 8140 and your Puppet Dashboard
server over port 3000.

Certificates and Keys�

Youʼll also have to make sure the control node has a certificate signed by the puppet masterʼs CA. If�
the control node is already known to the puppet master (e.g. it is or was a puppet agent node),
youʼll be able to use the existing certificate, but we recommend generating a per-user certificate��
for a more explicit and readable security policy. On the control node, run:

puppet	certificate	generate	{certname}	--ca-location	remote

Then sign the certificate as usual on the master (�puppet	cert	sign	{certname}). On the control
node again, run:

puppet	certificate	find	ca	--ca-location	remote
puppet	certificate	find	{certname}	--ca-location	remote

This should let you operate under the new certname when you run puppet commands with the –
certname {certname} option.

The control node will also need a private key to allow SSH access to the new machine; for EC2
nodes, this is the private key from the keypair used to create the instance. If you are working with
non-EC2 nodes, please note that the install action does not currently support keys with
passphrases.

Installer Configuration�

To install Puppet Enterprise on a node, youʼll need a complete answers file to be read by the�
installer. See the PE documentation for more details. Note that the certname from the answers file is�
ignored, and the new instance will be given a UUID as its certname.

Usage
Puppet CloudPack provides five new actions on the �node face:

create: Creates a new EC2 machine instance.
Puppet Documentation • Getting Started With Puppet CloudPack 108/311

install: Installʼs Puppet Enterprise on an arbitrary machine, including non-cloud hardware.
classify: Add a new node to a Puppet Dashboard node group.
init: Perform the install and classify actions, and automatically sign the new agent nodeʼs
certificate.�
bootstrap: Create a new EC2 machine instance and perform the init action on it.
terminate: Tear down an EC2 machine instance.

puppet node create

Argument(s): none.

Options:

--image,	-i — The name of the AMI to use when creating the instance. Required.
--keypair — The Amazon-managed SSH keypair to use for accessing the instance. Required.
--group,	-g,	--security-group — The security group(s) to apply to the instance. Can be a
single group or a path-separator (colon, on *nix systems) separated list of groups.

Example:

$	puppet	node	create	--image	ami-XxXXxXXX	--keypair	puppetlabs.admin

Creates a new EC2 machine instance, prints its SSH host key fingerprints, and returns its DNS name.�
If the process fails, Puppet will automatically clean up after itself and tear down the instance.

For security reasons, SSH fingerprints are obtained by observing the AWS console for the machine.�
This entails a noticeable wait, and the console output is sometimes not provided; if this happens,
the instance will be kept alive and you will have to obtain host fingerprints through AWS.�

puppet node install

Argument(s): the hostname of the system to install Puppet on.

Options:

--login,	-l,	--username — The user to log in as. Required.
--keyfile — The SSH private key file to use. This key cannot require a passphrase. �Required.
--installer-payload,	--puppet — The location of the Puppet Enterprise universal tarball.
Required.
--installer-answers — The location of an answers file to use with the PE installer. �Required.

Example:

puppet	node	install	ec2-XXX-XXX-XXX-XX.compute-1.amazonaws.com	\
--login	root	--keyfile	~/.ssh/puppetlabs-ec2_rsa	\
--installer-payload	~/puppet-enterprise-1.0-all.tar.gz	\
--installer-answers	~/pe-agent-answers

Puppet Documentation • Getting Started With Puppet CloudPack 109/311

http://info.puppetlabs.com/download

Install Puppet Enterprise on an arbitrary system and return the new agent nodeʼs certname. This
action currently requires the universal PE tarball; per-distro tarballs are not supported.

Interactive installation is not supported, so youʼll need an answers file. See the PE manual for�
complete documentation of the answers file format.�

This action is not restricted to cloud machine instances, and will install PE on any machine
accessible by SSH.

puppet node classify

Argument(s): the certname of the agent node to classify.

Options:

--node-group,	--as — The Puppet Dashboard node group to use. Required.
--report_server — The hostname of your Puppet Dashboard server. Required unless properly
configured in puppet.conf. This is a global Puppet option.�
--report_port — The port on which Puppet Dashboard is listening. Required unless properly
configured in puppet.conf. This is a global Puppet option.�
--certname — The certname (Subject CN) of a certificate authorized by the puppet master to�
remotely sign CSRs. Required unless properly configured in puppet.conf. This is a global Puppet�
option.

Example:

puppet	node	classify	ec2-XXX-XXX-XXX-XX.compute-1.amazonaws.com	\
--as	webserver_generic	--report_server	dashboard.puppetlabs.lan	\
--report_port	3000	--certname	cloud_admin

Make Puppet Dashboard aware of a newly created agent node and add it to a node group, thus
allowing it to receive proper configurations on its next run. This action will have no material effect��
unless youʼre using Puppet dashboard for node classification.�

This action is not restricted to cloud machine instances. It can be run multiple times for a single
node.

puppet node init

Argument(s): the hostname of the system to install Puppet on.

Options: See “install” and “classify.”

Example:

puppet	node	init	ec2-XXX-XXX-XXX-XX.compute-1.amazonaws.com	\
--login	root	--keyfile	~/.ssh/puppetlabs-ec2_rsa	\
--installer-payload	~/puppet-enterprise-1.0-all.tar.gz\
	--installer-answers	~/pe-agent-answers	--as	webserver_generic	\
--report_server	dashboard.puppetlabs.lan	--report_port	3000	--certname	
cloud_admin

Puppet Documentation • Getting Started With Puppet CloudPack 110/311

Install Puppet Enterprise on an arbitrary system (see “install”), classify it in Dashboard (see
“classify”), and automatically sign its certificate request (using the �certificate faceʼs sign action).

puppet node bootstrap

Argument(s): none.

Options: See “create,” “install,” and “classify.”

Example:

puppet	node	bootstrap	--image	ami-XxXXxXXX	--keypair	\
puppetlabs.admin	--login	root	--keyfile	~/.ssh/puppetlabs-ec2_rsa	\
--installer-payload	~/puppet-enterprise-1.0-all.tar.gz	\
--installer-answers	~/pe-agent-answers	--as	webserver_generic	\
--report_server	dashboard.puppetlabs.lan	--report_port	3000	\
--certname	cloud_admin

Create a new EC2 machine instance and pass the new nodeʼs hostname to the init action.

puppet node terminate

Argument(s): the hostname of the machine instance to tear down.

Options: none.

Example:

puppet	node	terminate	init	ec2-XXX-XXX-XXX-XX.compute-1.amazonaws.com

Tear down an EC2 machine instance.

External Nodes
Do you have an external database (or LDAP? or File?) that lists which of your machines should fulfill�
certain functions? Puppetʼs external nodes feature helps you tie that data into Puppet, so you have
less data to enter and manage.

Whatʼs an External Node?
External nodes allow you to store your node definitions in an external data source. For example, a�
database or other similar repository. When the Puppet client connects the master queries the
external node script and asks “Do you have a host called insertnamehere” by passing the name of
the host as the first argument to the external nodes script.�

This allows you to:

1. Currently, the supported platforms for Puppet Enterprise are CentOS 5, RHEL 5, Debian 5, and Ubuntu 10.04 LTS.↩

Puppet Documentation • External Nodes 111/311

A subtle advantage of using a external nodes tool is that parameters assigned to nodes in a an
external node tool are set a top scope not in the scope created by the node assignment in
language. This leaves you free to set default parameters for a base node assignment and define�
whatever inheritance model you wish for parameters set in the children. In the end, Puppet accepts
a list of parameters for the node and those parameters when set using an External Node tool are
set at top scope.

How to use External Nodes
To use an external node classifier, in addition to or rather than having to define a node entry for��
each of your hosts, you need to create a script that can take a certname as an argument and return
information about that host for puppet to use.

NOTE: You can use node entries in your manifests together with external nodes. You cannot
however use external nodes and LDAP nodes together. You must use one of the two types.

For external nodes to function, you must either have no nodes defined in your manifests, or youʼll�
need every node to match a node definition (which can be easily accomplished by setting a default�
node). In other words, there must be either no manifest nodes or enough for everyone.

Although the certname is the only information that is passed directly to the ENC, you can also
access fact values in your node classifier. �In Puppet version 2.6.7 or later, you should query the
inventory service. Prior to 2.6.7, you can read the $vardir/yaml/facts/{node certname}.yaml file,�
which is populated with fact values before the ENC is called.

Limitations of External Nodes
External nodes canʼt specify resources of any kind - they can only specify class membership,
environments and attributes. Those classes can be in hierarchies however, so inheritance is
available.

Configuring puppetmasterd�
First, configure your puppetmasterd to use an external nodes script in your�
/etc/puppet/puppet.conf:

[main]
external_nodes	=	/usr/local/bin/puppet_node_classifier
node_terminus	=	exec

There are two different versions of External Node support, the format of the output required from�
the script changed drastically (and got a lot better) in version 0.23. In both versions, after
outputting the information about the node, you should exit with code 0 to indicate success, if you
want a node to not be recognized, and to be treated as though it was not included in the

1. to avoid defining each node in a Puppet manifest and allowing a greater flexibility of��
maintenance.

2. potentially query external data sources (such as LDAP or asset management stores) that already
know about your hosts meaning you only maintain said information in one place.

Puppet Documentation • External Nodes 112/311

configuration, your script should exit with a non-zero exit code.�

External node scripts for version 0.23 and later
Starting with version 0.23, the script must produce YAML output of a hash. This hash may contain
the keys classes, parameters, and environment, and must contain at least either classes or
parameters.

The value of the classes key can be either an array of class names or a hash whose keys are class
names. That is, the following are equivalent:

classes:
		-	common
		-	puppet
		-	dns
		-	ntp

classes:
		common:
		puppet:
		dns:
		ntp:

When using the hash key syntax, standard classes have empty objects for their hash values. The
value for a parameterized class must be a hash whose keys and values represent the attributes and
values you would use when declaring the class. That is:

classes:
				common:
				puppet:
				ntp:
								ntpserver:	0.pool.ntp.org
				aptsetup:
								additional_apt_repos:
												-	deb	localrepo.magpie.lan/ubuntu	lucid	production
												-	deb	localrepo.magpie.lan/ubuntu	lucid	vendor

Parameterized classes cannot be used with the array syntax for the classes key.

The value of the parameters key is a hash of variables to set at top scope.

The value of the environment key is a string representing the masterʼs preferred environment for
this agent node. The interaction between agent-specified and master-specified environments is��
currently under active design consideration.

If your script doesnʼt produce any output, it may be called again with a different hostname, in�
testing with an unspecified version of Puppet, the script would be called up to three times, first with��
hostname.example.com as an argument, then just with hostname, and finally with default. It will�
only be called with the shorter hostname or with default if the earlier run didnʼt produce any
output:

Puppet Documentation • External Nodes 113/311

http://www.yaml.org/

#!/bin/sh
#	Super-simple	external_node	script	for	versions	0.23	and	later
cat	<<"END"

classes:
		-	common
		-	puppet
		-	dns
		-	ntp
environment:	production
parameters:
		puppet_server:	puppet.example.com
		dns_server:	ns.example.com
		mail_server:	mail.example.com
END
exit	0

This example will produce results basically equivalent to this node entry:

node	default	{
				$puppet_server	=	'puppet.example.com'
				$dns_server	=	'ns.example.com'
				$mail_server	=	'mail.example.com'
				include	common,	puppet,	dns,	ntp
}

The resulting node will also be located in the “production” environment.

The script should exit with code 0 after producing the desired output. Exit with a non-zero exit
code if you want the node to be treated as though it was not found in the configuration.�

External node scripts for versions before 0.23
Before 0.23, the script had to output two lines: a parent node, and a list of classes.

#!/bin/sh
#	Super-simple	external_node	script	for	versions	of	puppet	prior	to	0.23
echo	"basenode"
echo	"common	puppet	dns	ntp"
exit	0

This sample script is essentially the same as this node definition:�

node	default	inherits	basenode	{
		include	common,	puppet,	dns,	ntp
}

ENC scripts for versions prior to 0.23 should also exit with code 0 after producing the desired
output.

Puppet Documentation • External Nodes 114/311

Inventory Service
Set up and begin using the inventory service with one or more puppet master servers. This
document refers to a feature currently under development.

Puppet 2.6.7 adds support for maintaining, reading, and searching an inventory of nodes. This can
be used to generate reports about the composition of your site, to drastically extend the
capabilities of your external node classifier, and probably to do a lot of things we havenʼt even�
thought of yet. This service is designed as a hackable public API.

Why
In order to compile and serve a catalog to an agent node, the puppet master has to collect a large
amount of information about that node, in the form of Facter facts. If that info is written to a
persistent store whenever itʼs collected, it suddenly becomes a fairly detailed inventory of every
node that Puppet controls or has controlled at a given site! This can be tremendously useful:
Imagine being able to instantly find out which computers are still running CentOS 4.5 and need to�
be upgraded, or which computers have less than a certain amount of physical memory, or what
percentage of your current infrastructure is in the cloud on EC2 instances. Build a good enough
interface to the inventory, and the data becomes knowledge. That knowledge can then drive other
tools; for example, you could let your provisioning system or node classifier make decisions about�
new hardware based on the properties of the existing infrastructure.

Several users have built custom inventory functionality by directly reading either the puppet
masterʼs YAML fact cache or the optional storeconfigs� database. But both of these approaches were
non-optimal:

The YAML cache is strictly local to one puppet master, and isnʼt an accurate inventory in multi-
master environments. Furthermore, repeatedly deserializing YAML is terribly slow, which can
cause real problems depending on the use case. (Searching by fact, in particular, is basically not
an option.)
Storeconfigs, on the other hand, is global to the site, but itʼs essentially a private API: Since the�
only officially supported use of it is for sharing exported resources, the only way to get fact data��
out of it is to read the database directly, and thereʼs been no guarantee against the schema
changing. Furthermore, storeconfigs is too heavyweight for users who just want an inventory,�
since it stores every resource and tag in each nodeʼs catalog in addition to the nodeʼs facts, and
even the “thin” storeconfigs option stores a LOT of data. Implementing storeconfigs at a��
reasonable scale demands setting up a message queue, and even that extra infrastructure
doesnʼt necessarily make it viable at a very large scale.

Thus, the Puppet inventory service: a relatively speedy implementation that does one thing well and
exposes a public network API.

What It Is
The inventory is a collection of node facts. The inventory service is a retrieval, storage, and search
API exposed to the network by the puppet master.

The puppet master updates the inventory when agent nodes report their facts, which happens every
Puppet Documentation • Inventory Service 115/311

http://projects.puppetlabs.com/projects/1/wiki/Using_Stored_Configuration

time puppet agent requests a catalog. Optionally, additional puppet masters can use the REST API
to send facts from their agents to the central inventory.

Other tools, including Puppet Dashboard, can query the inventory via the puppet masterʼs REST API.
An API call can return:

Complete facts for a single node

or

A list of nodes whose facts meet some search condition

Information in the inventory is never automatically expired, but it is timestamped.

Consumers of the Inventory Service

The inventory service is primarily meant for external applications, and its data is not currently read
by any part of Puppet. The only application which currently consumes the inventory data is Puppet
Dashboard version 1.1.0, which can display facts in node views and provides a web interface for
searching the inventory by fact.

Using the Inventory Service
The inventory service is plain vanilla REST: Submit HTTP requests, get back structured fact or host
data.

To read from the inventory, submit secured HTTP requests to the puppet masterʼs facts and
facts_search REST endpoints in the appropriate environment. Your API client will have to have an
SSL certificate signed by the puppet masterʼs CA.�

Full documentation of these endpoints can be found here, but a summary follows:

To retrieve the facts for testnode.localdomain, send a GET request to
https://puppet:8140/production/facts/testnode.localdomain.
To retrieve a list of all Ubuntu nodes with two or more processors, send a GET request to
https://puppet:8140/production/facts_search/search?facts.processorcount.ge=2&
facts.operatingsystem=Ubuntu.

In both cases, be sure to specify an Accept:	pson or Accept:	yaml header.

Setting Up the Inventory Service
Configuring the Inventory Backend�

The inventory serviceʼs backend is configured with the �facts_terminus setting in the puppet
masterʼs section of puppet.conf.

FOR PROTOTYPING: YAML

[master]
				facts_terminus	=	yaml

Puppet Documentation • Inventory Service 116/311

https://puppet:8140/production/facts/testnode.localdomain
https://puppet:8140/production/facts_search/search?facts.processorcount.ge=2&facts.operatingsystem=Ubuntu

You can actually start using the inventory service with the YAML backend immediately — yaml is the
default value for facts_terminus, and the YAML cache of any previously used puppet master will
already be populated with fact information. Just configure access (see below) and youʼre good to�
go.
FOR PRODUCTION: DATABASE

[master]
				facts_terminus	=	inventory_active_record
				dblocation	=	{sqlite	file	path	(sqlite	only)}
				dbadapter	=	{sqlite3|mysql|postgresql|oracle_enhanced}
				dbname	=	{database	name	(all	but	sqlite)}
				dbuser	=	{database	user	(all	but	sqlite)}
				dbpassword	=	{database	password	(all	but	sqlite)}
				dbserver	=	{database	server	(MySQL	and	PostgreSQL	only)}
				dbsocket	=	{database	socket	file	(MySQL	only;	optional)}

Before using the database facts backend, youʼll have to fulfill a number of requirements:�

Puppet master will need access to both a database and a user account with all privileges on that
database; setting that up is outside the scope of this document. The database server can be
remote or on the local host.
Youʼll need to ensure that the copy of Ruby in use by puppet master is able to communicate with
your chosen type of database server. This will always entail ensuring that Rails is installed, and
will likely require installing a specific Ruby library to interface with the database (e.g. the�
libmysql-ruby package on Debian and Ubuntu or the mysql gem on other operating systems).

These requirements are essentially identical to those used by storeconfigs, so �the Puppet wiki page
for storeconfigs� can be helpful. Getting MySQL on the local host configured is very well-�
documented; other options, less so.
FOR MULTIPLE PUPPET MASTERS: REST

[master]
				facts_terminus	=	rest
				inventory_server	=	{inventorying	puppet	master;	defaults	to	"puppet"}
				inventory_port	=	8140	(unless	changed)

In addition to writing to its local YAML cache, any puppet master with a facts_terminus of rest will
submit facts to another puppet master, which is hopefully using the inventory_active_record
backend.

Configuring Access�

By default, the inventory service is not accessible! This is sane. The inventory service exposes
sensitive information about your infrastructure over the network, so youʼll need to carefully control
access with the rest_authconfig (a.k.a. auth.conf) file.�

For prototyping your inventory application on a scratch puppet master, you can just permit all
access to the facts endpoint:

Puppet Documentation • Inventory Service 117/311

http://projects.puppetlabs.com/projects/1/wiki/Using_Stored_Configuration

path	/facts
method	find,	search
allow	*

(Note that this will allow access to both facts and facts_search, since the path is read as a prefix.)�

For production deployment, youʼll need to allow find and search access for your application, allow�
save access for any other puppet masters at your site (so they can submit their nodesʼ facts), and
deny access to all other machines. (Since agent nodes submit their facts as part of their request to
the catalog resource, they donʼt require access to the facts or facts_search resources.) One such
possible ACL set would be:

path	/facts
auth	yes
method	find,	search
allow	custominventorybrowser.puppetlabs.lan

path	/facts
auth	yes
method	save
allow	puppetmaster1.puppetlabs.lan,	puppetmaster2.puppetlabs.lan,	
puppetmaster3.puppetlabs.lan

Configuring Certificates��

To connect your application securely, youʼll need a certificate signed by your siteʼs puppet CA.�
There are two main ways to get this:

On the puppet master:
Run puppet	cert	--generate	{certname	for	application}.
Then, retrieve the private key ({ssldir}/certs/{certname}.pem) and the signed certificate�
({ssldir}/private_keys/{certname}.pem) and move them to your application server.

Manually:
Generate an RSA private key: openssl	genrsa	-out	{certname}.pem	1024.
Generate a certificate signing request (CSR): �openssl	req	-new	-key	{certname}.pem	-subj
"/CN={certname}"	-out	request.csr.
Submit the CSR to the puppet master for signing: curl	-k	-X	PUT	-H	"Content-Type:
text/plain"	--data-binary	@request.csr

https://puppet:8140/production/certificate_request/no_key.
Sign the certificate on the puppet master: �puppet	cert	--sign	{certname}.
Retrieve the certificate: �curl	-k	-H	-o	{certname}.pem	"Accept:	s"
https://puppet:8140/production/certificate/{certname}

For one-off applications, generating it on the master is obviously easier, but if youʼre building a�
tool for distribution elsewhere, your users will appreciate it if you script the manual method and
emulate the way puppet agent gets a cert.

Puppet Documentation • Inventory Service 118/311

Protect your applicationʼs private key appropriately, since itʼs the gateway to your inventory data.

In the event of a security breach, the applicationʼs certificate is revokable the same way any puppet�
agent certificate would be.�

Testing the Inventory Service
On a machine that youʼve authorized to access the facts and facts_search resources, you can test
the API using curl, as described in the REST API docs. To retrieve facts for a node:

curl	-k	-H	"Accept:	yaml"	https://puppet:8140/production/facts/{node	certname}

To insert facts for a fictional node into the inventory:�

curl	-k	-X	PUT	-H	'Content-Type:	text/yaml'	--data-binary	
@/var/lib/puppet/yaml/facts/hostname.yaml	
https://puppet:8140/production/facts/{node	certname}

To find out which nodes at your site are Intel Macs:�

curl	-k	-H	"Accept:	pson"	https://puppet:8140/production/facts_search/search?
facts.hardwaremodel=i386&facts.kernel=Darwin

Plugins in Modules
Learn how to distribute custom facts and types from the server to managed clients automatically.

Details
This page describes the deployment of custom facts and types for use by the client via modules.

Custom types and facts are stored in modules. These custom types and facts are then gathered
together and distributed via a file mount on your Puppet master called plugins.�

This technique can also be used to bundle functions for use by the server when the manifest is
being compiled. Doing so is a two step process which is described further on in this document.

To enable module distribution you need to make changes on both the Puppet master and the
clients.

Note: Plugins in modules is supported in 0.24.x onwards and modifies the pluginsync model�
supported in releases prior to 0.24.x. It is NOT supported in earlier releases of Puppet but may be
present as a patch in some older Debian Puppet packages. The older 0.24.x configuration for�
plugins in modules is documented at the end of this page.

Module structure for 0.25.x and later
Puppet Documentation • Plugins in Modules 119/311

In Puppet version 0.25.x and later, plugins are stored in the lib directory of a module, using an
internal directory structure that mirrors that of the Puppet code:

{modulepath}
└──	{module}
				└──	lib
								├──	facter
								└──	puppet
												├──	parser
												│			└──	functions
												├──	provider
																├──	exec
																├──	package
																└──	etc...	(any	resource	type)
												└──	type

As the directory tree suggests, custom facts should go in lib/facter/, custom types should go in
lib/puppet/type/, custom providers should go in lib/puppet/provider/{type}/, and custom
functions should go in lib/puppet/parser/functions/.

For example:

A custom user provider:

{modulepath}/{module}/lib/puppet/provider/user/custom_user.rb

A custom package provider:

{modulepath}/{module}/lib/puppet/provider/package/custom_pkg.rb

A custom type for bare Git repositories:

{modulepath}/{module}/lib/puppet/type/gitrepo.rb

A custom fact for the root of all home directories (that is, /home on Linux, /Users on Mac OS X, etc.):

{modulepath}/{module}/lib/facter/homeroot.rb

And so on.

Most types and facts should be stored in which ever module they are related to; for example, a Bind
fact might be distributed in your Bind module. If you wish to centrally deploy types and facts you
could create a separate module just for this purpose, for example one called custom. This module
needs to be a valid module (with the correct directory structure and an init.pp file).�

So, if we are using our custom module and our modulepath is /etc/puppet/modules then types and
facts would be stored in the following directories:
Puppet Documentation • Plugins in Modules 120/311

/etc/puppet/modules/custom/lib/puppet/type
/etc/puppet/modules/custom/lib/puppet/provider
/etc/puppet/modules/custom/lib/puppet/parser/functions
/etc/puppet/modules/custom/lib/facter

Note: 0.25.x versions of Puppet have a known bug whereby plugins are instead loaded from the
deprecated plugins directories of modules when applying a manifest locally with the puppet
command, even though puppetmasterd will correctly serve the contents of lib/ directories to agent
nodes. This bug is fixed in Puppet 2.6.�

Enabling Pluginsync
After setting up the directory structure, we then need to turn on pluginsync in our puppet.conf
configuration file on both the master and the clients:��

[main]
pluginsync	=	true

Note on Usage for Server Custom Functions
Functions are executed on the server while compiling the manifest. A module defined in the�
manifest can include functions in the plugins directory. The custom function will need to be placed
in the proper location within the manifest first:�

{modulepath}/{module}/lib/puppet/parser/functions

Note that this location is not within the puppetmasterʼs $libdir path. Placing the custom function
within the module plugins directory will not result in the puppetmasterd loading the new custom
function. The puppet client can be used to help deploy the custom function by copying it from
modulepath/module/lib/puppet/parser/functions to the proper $libdir location. To do so run the
puppet client on the server. When the client runs it will download the custom function from the
moduleʼs lib directory and deposit it within the correct location in $libdir. The next invocation of
the Puppet master by a client will autoload the custom function.

As always custom functions are loaded once by the Puppet master. Simply replacing a custom
function with a new version will not cause Puppet master to automatically reload the function. You
must restart the Puppet master.

Legacy 0.24.x and Plugins in Modules
For older Puppet release the lib directory was called plugins.

So for types you would place them in:

{modulepath}/{module}/plugins/puppet/type

Puppet Documentation • Plugins in Modules 121/311

For providers you place them in:

{modulepath}/{module}/plugins/puppet/provider

Similarly, Facter facts belong in the facter subdirectory of the library directory:

{modulepath}/{module}/plugins/facter

If we are using our custom module and our modulepath is /etc/puppet/modules then types and
facts would be stored in the following directories:

/etc/puppet/modules/custom/plugins/puppet/type
/etc/puppet/modules/custom/plugins/puppet/provider
/etc/puppet/modules/custom/plugins/facter

Enabling pluginsync for 0.24.x versions
For 0.24.x versions you may need to specify some additional options:

[main]
pluginsync=true
factsync=true
factpath	=	$vardir/lib/facter

Custom Facts
Extend facter by writing your own custom facts to provide information to Puppet.

Adding Custom Facts to Facter
Sometimes you need to be able to write conditional expressions based on site-specific data that�
just isnʼt available via Facter (or use a variable in a template that isnʼt there). A solution can be
achieved by adding a new fact to Facter. These additional facts can then be distributed to Puppet
clients and are available for use in manifests.

The Concept
You can add new facts by writing a snippet of Ruby code on the Puppet master. We then use Plugins
In Modules to distribute our facts to the client.

An Example
Letʼs say we need to get the output of uname -i to single out a specific type of workstation. To do�
these we create a fact. We start by giving the fact a name, in this case, hardware_platform, and

Puppet Documentation • Custom Facts 122/311

create our new fact in a file, �hardware_platform.rb, on the Puppet master server:

#	hardware_platform.rb

Facter.add("hardware_platform")	do
								setcode	do
																%x{/bin/uname	-i}.chomp
								end
end

Note that the chomp is required to provide clean data.

We then use the instructions in Plugins In Modules page to copy our new fact to a module and
distribute it. During your next Puppet run the value of our new fact will be available to use in your
manifests.

The best place to get ideas about how to write your own custom facts is to look at the existing
Facter fact code. You will find lots of examples of how to interpret different types of system data��
and return useful facts.

You may not be able to view your custom fact when running facter on the client node. If you are
unable to view the custom fact, try adding the “factpath” to the FACTERLIB environmental variable:

export	FACTERLIB=/var/lib/puppet/lib/facter

Using other facts
You can write a fact which uses other facts by accessing Facter.value(“somefact”) or simply
Facter.somefact. The former will return nil for unknown facts, the latter will raise an exception. An
example:

Facter.add("osfamily")	do
				setcode	do
								begin
												Facter.lsbdistid
								rescue
												Facter.loadfacts()
								end
								distid	=	Facter.value('lsbdistid')
								if	distid.match(/RedHatEnterprise|CentOS|Fedora/)
												family	=	"redhat"
								elsif	distid	==	"ubuntu"
												family	=	"debian"
								else
												family	=	distid
								end
								family
				end
end

Here it is important to note that running facter myfact on the command line will not load other

Puppet Documentation • Custom Facts 123/311

facts, hence the above code calls Facter.loadfacts to work in this mode, too. loadfacts will only load
the default facts.

To still test your custom puppet facts, which are usually only loaded by puppetd, there is a small
hack:

						mkdir	rubylib
						cd	rubylib
						ln	-s	/path/to/puppet/facts	facter
						RUBYLIB=.	facter

Testing
Of course, we can test that our code works before adding it to Puppet.

Create a directory called facter/ somewhere (we often use ~/lib/ruby/facter), and set the
environment variable $RUBYLIB to its parent directory. You can then run facter, and it will import
your code:

$	mkdir	-p	~/lib/ruby/facter	;	export	RUBYLIB=~/lib/ruby
$	cp	/path/to/hardware_platform.rb	$RUBYLIB/facter
$	facter	hardware_platform
SUNW,Sun-Blade-1500

Adding this path to your $RUBYLIB also means you can see this fact when you run Puppet. Hence,
you should now see the following when running puppetd:

#	puppetd	-vt	--factsync
info:	Retrieving	facts
info:	Loading	fact	hardware_platform
...

Alternatively, you can set $FACTERLIB to a directory with your new facts in, and they will be
recognised on the Puppet master.

It is important to note that to use the facts on your clients you will still need to distribute them
using the Plugins In Modules method.

Viewing Fact Values
You can also determine what facts (and their values) your clients return by checking the contents of
the clientʼs yaml output. To do this we check the $yamldir (by default $vardir/yaml/) on the
Puppet master:

#	grep	kernel	/var/lib/puppet/yaml/node/puppetslave.example.org.yaml
		kernel:	Linux
		kernelrelease:	2.6.18-92.el5
		kernelversion:	2.6.18

Puppet Documentation • Custom Facts 124/311

Legacy Fact Distribution
For Puppet versions prior to 0.24.0:

On older versions of Puppet, prior to 0.24.0, a different method called factsync was used for custom�
fact distribution. Puppet would look for custom facts on puppet://$server/facts by default and you
needed to run puppetd with --factsync option (or add factsync	=	true to puppetd.conf). This
would enable the syncing of these files to the local file system and loading them within puppetd.��

Facts were synced to a local directory ($vardir/facts, by default) before facter was run, so they
would be available the first time. If $factsource was unset, the �--factsync option is equivalent to:

file	{	$factdir:	source	=>	"puppet://puppet/facts",	recurse	=>	true	}

After the facts were downloaded, they were loaded (or reloaded) into memory.

Some additional options were avaialble to configure this legacy method:�

The following command line or config file options are available (default options shown):��

factpath ($vardir/facts): Where Puppet should look for facts. Multiple directories should be
colon-separated, like normal PATH variables. By default, this is set to the same value as factdest,
but you can have multiple fact locations (e.g., you could have one or more on NFS).
factdest ($vardir/facts): Where Puppet should store facts that it pulls down from the central
server.
factsource (puppet://$server/facts): From where to retrieve facts. The standard Puppet file type�
is used for retrieval, so anything that is a valid file source can be used here.�
factsync (false): Whether facts should be synced with the central server.
factsignore (.svn CVS): What files to ignore when pulling down facts.�

Remember the approach described above for factsync is now deprecated and replaced by the
plugin approach described in the Plugins In Modules page.

Custom Functions
Extend the Puppet interpreter by writing your own custom functions.

Writing your own functions
The Puppet language and interpreter is very extensible. One of the places you can extend Puppet is
in creating new functions to be executed on the puppet master at the time that the manifest is
compiled. To give you an idea of what you can do with these functions, the built-in template and
include functions are implemented in exactly the same way as the functions youʼre learning to write
here.

Custom functions are written in Ruby, so youʼll need a working understanding of the language
Puppet Documentation • Custom Functions 125/311

puppet:/facts
puppet:/facts

before you begin.

Gotchas

There are a few things that can trip you up when youʼre writing your functions:

Your function will be executed on the server. This means that any files or other resources you�
reference must be available on the server, and you canʼt do anything that requires direct access
to the client machine.
There are actually two completely different types of functions available — �rvalues (which return a
value) and statements (which do not). If you are writing an rvalue function, you must pass :type
=>	:rvalue when creating the function; see the examples below.
The name of the file containing your function must be the same as the name of function;�
otherwise it wonʼt get automatically loaded.
To use a fact about a client, use lookupvar('{fact	name}') instead of Facter['{fact
name}'].value. See examples below.

Where to put your functions

Functions are implemented in individual .rb files (whose filenames must match the names of their��
respective functions), and should be distributed in modules. Put custom functions in the
lib/puppet/parser/functions subdirectory of your module; see Plugins in Modules for additional
details (including compatibility with versions of Puppet prior to 0.25.0).

If you are using a version of Puppet prior to 0.24.0, or have some other compelling reason to not
use plugins in modules, functions can also be loaded from .rb files in the following locations:�

$libdir/puppet/parser/functions

puppet/parser/functions sub-directories in your Ruby $LOAD_PATH

First Function — small steps
New functions are defined by executing the newfunction method inside the�
Puppet::Parser::Functions module. You pass the name of the function as a symbol to newfunction,
and the code to be run as a block. So a trivial function to write a string to a file in /tmp might look�
like this:

module	Puppet::Parser::Functions
		newfunction(:write_line_to_file)	do	|args|
				filename	=	args[0]
				str	=	args[1]
				File.open(args[0],	'a')	{|fd|	fd.puts	str	}
		end
end

To use this function, itʼs as simple as using it in your manifest:

write_line_to_file('/tmp/some_file',	"Hello	world!")

Puppet Documentation • Custom Functions 126/311

(Note that this is not a useful function by any stretch of the imagination.)

The arguments to the function are passed into the block via the args argument to the block. This is
simply an array of all of the arguments given in the manifest when the function is called. Thereʼs no
real parameter validation, so youʼll need to do that yourself.

This simple write_line_to_file function is an example of a statement function. It performs an
action, and does not return a value. The other type of function is an rvalue function, which you
must use in a context which requires a value, such as an if statement, a case statement, or a
variable or attribute assignment. You could implement a rand function like this:

module	Puppet::Parser::Functions
		newfunction(:rand,	:type	=>	:rvalue)	do	|args|
				rand(vals.empty?	?	0	:	args[0])
		end
end

This function works identically to the Ruby built-in rand function. Randomising things isnʼt quite as
useful as you might think, though. The first use for a �rand function that springs to mind is probably
to vary the minute of a cron job. For instance, to stop all your machines from running a job at the
same time, you might do something like:

cron	{	run_some_job_at_a_random_time:
		command	=>	"/usr/local/sbin/some_job",
		minute	=>	rand(60)
}

But the problem here is quite simple: every time the Puppet client runs, the rand function gets re-
evaluated, and your cron job moves around. The moral: just because a function seems like a good
idea, donʼt be so quick to assume that itʼll be the answer to all your problems.

Using Facts and Variables
Which raises the question: what should you do if you want to splay your cron jobs on different�
machines? The trick is to tie the minute value to something thatʼs invariant in time, but different�
across machines. Perhaps the MD5 hash of the hostname, modulo 60, or maybe the IP address of
the host converted to an integer, modulo 60. Neither guarantees uniqueness, but you canʼt really
expect that with a range of no more than 60 anyway.

But given that functions are run on the puppet master, how do you get at the hostname or IP
address of the agent node? The answer is that facts returned by facter can be used in our functions.

Example 1

require	'ipaddr'

module	Puppet::Parser::Functions
		newfunction(:minute_from_address,	:type	=>	:rvalue)	do	|args|
				IPAddr.new(lookupvar('ipaddress')).to_i	%	60

Puppet Documentation • Custom Functions 127/311

		end
end

Example 2

require	'md5'

module	Puppet::Parser::Functions
		newfunction(:hour_from_fqdn,	:type	=>	:rvalue)	do	|args|
				MD5.new(lookupvar('fqdn')).to_s.hex	%	24
		end
end

Basically, to get a factʼs or variableʼs value, you just call lookupvar('{fact	name}').

Calling Functions from Functions
Functions can be accessed from other functions by prefixing them with �function_.

Example

module	Puppet::Parser::Functions
		newfunction(:myfunc2,	:type	=>	:rvalue)	do	|args|
				function_myfunc1(...)
		end
end

Handling Errors
To throw a parse/compile error in your function, in a similar manner to the fail() function:

raise	Puppet::ParseError,	"my	error"

Troubleshooting Functions
If youʼre experiencing problems with your functions loading, thereʼs a couple of things you can do
to see what might be causing the issue:

1 - Make sure your function is parsing correctly, by running:

ruby	-rpuppet	my_funct.rb

This should return nothing if the function is parsing correctly, otherwise youʼll get an exception
which should help troubleshoot the problem.

2 - Check that the function is available to Puppet:

irb

Puppet Documentation • Custom Functions 128/311

>	require	'puppet'
>	require	'/path/to/puppet/functions/my_funct.rb'
>	Puppet::Parser::Functions.function(:my_funct)
=>	"function_my_funct"

Substitute :my_funct with the name of your function, and it should return something similar to
“function_my_funct” if the function is seen by Puppet. Otherwise it will just return false, indicating
that you still have a problem (and youʼll more than likely get a “Unknown Function” error on your
clients).

Referencing Custom Functions In Templates
To call a custom function within a Puppet Template, you can do:

<%=	scope.function_namegoeshere(["one","two"])	%>

Replace “namegoeshere” with the function name, and even if there is only one argument, still
include the array brackets.

Notes on Backward Compatibility
Accessing Files With Older Versions of Puppet

In Puppet 2.6.0 and later, functions can access files with the expectation that it will just work. In�
versions prior to 2.6.0, functions that accessed files had to explicitly warn the parser to recompile�
the configuration if the files they relied on changed.��

If you find yourself needing to write custom functions for older versions of Puppet, the relevant�
instructions are preserved below.
ACCESSING FILES IN PUPPET 0.23.2 THROUGH 0.24.9

Until Puppet 0.25.0, safe file access was achieved by adding �self.interp.newfile($filename) to
the function. E.g., to accept a file name and return the last line of that file:��

module	Puppet::Parser::Functions
		newfunction(:file_last_line,	:type	=>	:rvalue)	do	|args|
				self.interp.newfile(args[0])
				lines	=	IO.readlines(args[0])
				lines[lines.length	-	1]
		end
end

ACCESSING FILES IN PUPPET 0.25.X

In release 0.25.0, the necessary code changed to:

parser	=	Puppet::Parser::Parser.new(environment)
parser.watch_file($filename)

This new code was used identically to the older code:
Puppet Documentation • Custom Functions 129/311

module	Puppet::Parser::Functions
		newfunction(:file_last_line,	:type	=>	:rvalue)	do	|args|
				parser	=	Puppet::Parser::Parser.new(environment)
				parser.watch_file($filename)
				lines	=	IO.readlines(args[0])
				lines[lines.length	-	1]
		end
end

Custom Types
Learn how to create your own custom types & providers in Puppet

Organizational Principles

When creating a new Puppet type, you will be create two things: The resource type itself, which we
normally just call a ʻtypeʼ, and the provider(s) for that type. While Puppet does not require Ruby
experience to use, extending Puppet with new Puppet types and providers does require some
knowledge of the Ruby programming language, as is the case with new functions and facts. If
youʼre new to Ruby, what is going on should still be somewhat evident from the examples below,
and it is easy to learn.

The resource types provide the model for what you can do; they define what parameters are�
present, handle input validation, and they determine what features a provider can (or should)
provide.

The providers implement support for that type by translating calls in the resource type to
operations on the system. As mentioned in our Introduction and language guide, an example
would be that “yum” and “apt” are both different providers that fulfill the “package” type.��

Deploying Code
Once you have your code, you will need to have it both on the server and also distributed to clients.

The best place to put this content is within Puppetʼs configured �libdir. The libdir is special
because you can use the pluginsync system to copy all of your plugins from the fileserver to all of�
your clients (and seperate Puppetmasters, if they exist)). To enable pluginsync, set
Puppet Documentation • Custom Types 130/311

pluginsync=true in puppet.conf and, if necessary, set the pluginsource setting. The contents of
pluginsource will be copied directly into libdir, so make sure you make a puppet/type directory in
your pluginsource, too.

In Puppet 0.24 and later, the “old” pluginsync function has been deprecated and you should see
the Plugins In Modules page for details of distributing custom types and facts via modules.

The internals of how types are created have changed over Puppetʼs lifetime, and this document will
focus on best practices, skipping over all the things you can but probably shouldnʼt do.

Resource Types
When defining the resource type, focus on what the resource can do, not how it does it (that is the�
job for providers!).

The first thing you have to figure out is what ��properties the resource has. Properties are the
changeable bits, like a fileʼs owner or a userʼs UID.�

After adding properties, Then you need to add any other necessary parameters, which can affect�
how the resource behaves but do not directly manage the resource itself. Parameters handle things
like whether to recurse when managing files or where to look for service init scripts.�

Resource types also support special parameters, called MetaParameters, that are supported by all
resource types, but you can safely ignore these since they are already defined and you wonʼt�
normally add more. You may remember that things like require are metaparameters.

Types are created by calling the newtype method on Puppet::Type, with the name of the type as the
only required argument. You can optionally specify a parent class; otherwise, Puppet::Type is used
as the parent class. You must also provide a block of code used to define the type:�

You may wish to read up on “Ruby blocks” to understand more about the syntax. Blocks are a very
powerful feature of Ruby and are not surfaced in most programming languages.

Puppet::Type.newtype(:database)	do
				@doc	=	"Create	a	new	database."
				...	the	code	...
end

The above code should be stored in puppet/type/database.rb (within the libpath), because of the
name of the type weʼre creating (“database”).

A normal type will define multiple properties and possibly some parameters. Once these are�
defined, as long as the type is put into lib/puppet/type anywhere in Rubyʼs search path, Puppet will�
autoload the type when you reference it in the Puppet language.

We have already mentioned Puppet provides a libdir setting where you can copy the files outside�
the Ruby search path. See also Plugins In Modules

All types should also provide inline documention in the @doc class instance variable. The text

Puppet Documentation • Custom Types 131/311

format is in Restructured Text.

Properties

Hereʼs where we define how the resource really works. In most cases, itʼs the properties that�
interact with your resourceʼs providers. If you define a property named owner, then when you are�
retrieving the state of your resource, then the owner property will call the owner method on the
provider. In turn, when you are setting the state (because the resource is out of sync), then the
owner property will call the owner= method to set the state on disk.

Thereʼs one common exception to this: The ensure property is special because itʼs used to create
and destroy resources. You can set this property up on your resource type just by calling the
ensurable method in your type definition:�

Puppet::Type.newtype(:database)	do
				ensurable
				...
end

This property uses three methods on the provider: create, destroy, and exists?. The last method,
somewhat obviously, is a boolean to determine if the resource current exists. If a resourceʼs ensure
property is out of sync, then no other properties will be checked or modified.�

You can modify how ensure behaves, such as by adding other valid values and determining what
methods get called as a result; see existing types like package for examples.

The rest of the properties are defined a lot like you define the types, with the newproperty method,��
which should be called on the type:

Puppet::Type.newtype(:database)	do
				ensurable
				newproperty(:owner)	do
								desc	"The	owner	of	the	database."
								...
				end
end

Note the call to desc; this sets the documentation string for this property, and for Puppet types that
get distributed with Puppet, it is extracted as part of the Type reference.

When Puppet was first developed, there would normally be a lot of code in this property definition.��
Now, however, you normally only define valid values or set up validation and munging. If you�
specify valid values, then Puppet will only accept those values, and it will automatically handle
accepting either strings or symbols. In most cases, you only define allowed values for ensure, but it�
works for other properties, too:

newproperty(:enable)	do
				newvalue(:true)
				newvalue(:false)
end

Puppet Documentation • Custom Types 132/311

You can attach code to the value definitions (this code would be called instead of the property=�
method), but itʼs normally unnecessary.

For most properties, though, it is sufficient to set up validation:��

newproperty(:owner)	do
				validate	do	|value|
								unless	value	=~	/^\w+/
												raise	ArgumentError,	"%s	is	not	a	valid	user	name"	%	value
								end
				end
end

Note that the order in which you define your properties can be important: Puppet keeps track of the�
definition order, and it always checks and fixes properties in the order they are defined.���
CUSTOMIZING BEHAVIOUR

By default, if a property is assigned multiple values in an array, it is considered in sync if any of
those values matches the current value. If, instead, the property should only be in sync if all values
match the current value (e.g., a list of times in a cron job), you can declare this:

newproperty(:minute,	:array_matching	=>	:all)	do	#	defaults	to	:first
				...
end

You can also customize how information about your property gets logged. You can create an
is_to_s method to change how the current values are described, should_to_s to change how the
desired values are logged, and change_to_s to change the overall log message for changes. See
current types for examples.
HANDLING PROPERTY VALUES

Handling values set on properties is currently somewhat confusing, and will hopefully be fixed in�
the future. When a resource is created with a list of desired values, those values are stored in each
property in its @should instance variable. You can retrieve those values directly by calling should on
your resource (although note that when array_matching is set to first you get the first value in the��
array, otherwise you get the whole array):

myval	=	should(:color)

When youʼre not sure (or donʼt care) whether youʼre dealing with a property or parameter, itʼs best
to use value:

myvalue	=	value(:color)

Parameters

Parameters are defined essentially exactly the same as properties; the only difference between them��
is that parameters never result in methods being called on providers.
Puppet Documentation • Custom Types 133/311

Like ensure, one parameter you will always want to define is the one used for naming the resource.�
This is nearly always called name:

newparam(:name)	do
				desc	"The	name	of	the	database."
end

You can name your naming parameter something else, but you must declare it as the namevar:

newparam(:path,	:namevar	=>	true)	do
				...
end

In this case, path and name are both accepted by Puppet, and it treats them equivalently.

If your parameter has a fixed list of valid values, you can declare them all at once:�

newparam(:color)	do
				newvalues(:red,	:green,	:blue,	:purple)
end

You can specify regexes in addition to literal values; matches against regexes always happen after
equality comparisons against literal values, and those matches are not converted to symbols. For
instance, given the following definition:�

newparam(:color)	do
				desc	"Your	color,	and	stuff."

				newvalues(:blue,	:red,	/.+/)
end

If you provide blue as the value, then your parameter will get set to :blue, but if you provide green,
then it will get set to “green”.
VALIDATION AND MUNGING

If your parameter does not have a defined list of values, or you need to convert the values in some�
way, you can use the validate and munge hooks:

newparam(:color)	do
				desc	"Your	color,	and	stuff."

				newvalues(:blue,	:red,	/.+/)

				validate	do	|value|
								if	value	==	"green"
												raise	ArgumentError,
																"Everyone	knows	green	databases	don't	have	enough	RAM"
								else
												super
								end

Puppet Documentation • Custom Types 134/311

				end

				munge	do	|value|
								case	value
								when	:mauve,	:violet	#	are	these	colors	really	any	different?
												:purple
								else
												super
								end
				end
end

The default validate method looks for values defined using newvalues and if there are any values�
defined it accepts only those values (this is exactly how allowed values are validated). The default�
munge method converts any values that are specifically allowed into symbols. If you override either�
of these methods, note that you lose this value handling and symbol conversion, which youʼll have
to call super for.

Values are always validated before theyʼre munged.

Lastly, validation and munging only* happen when a value is assigned. They have no role to play at
all during use of a given value, only during assignment.

Automatic Relationships

Your type can specify automatic relationships it can have with resources. You use the autorequire
hook, which requires a resource type as an argument, and your code should return a list of
resource names that your resource could be related to:

autorequire(:file)	do
		["/tmp",	"/dev"]
end

Note that this wonʼt throw an error if resources with those names do not exist; the purpose of this
hook is to make sure that if any required resources are being managed, they get applied before the
requiring resource.

Providers
Look at the Provider Development page for intimate detail; this document will only cover how the
resource types and providers need to interact.Because the properties call getter and setter methods
on the providers, except in the case of ensure, the providers must define getters and setters for�
each property.

Provider Features

A recent development in Puppet (around 0.22.3) is the ability to declare what features providers can
have. The type declares the features and whatʼs required to make them work, and then the
providers can either be tested for whether they suffice or they can declare that they have the��
features. Additionally, individual properties and parameters in the type can declare that they
require one or more specific features, and Puppet will throw an error if those prameters are used�

Puppet Documentation • Custom Types 135/311

with providers missing those features:

newtype(:coloring)	do
				feature	:paint,	"The	ability	to	paint.",	:methods	=>	[:paint]
				feature	:draw,	"The	ability	to	draw."

				newparam(:color,	:required_features	=>	%w{paint})	do
								...
				end
end

The first argument to the feature method is the name of the feature, the second argument is its�
description, and after that is a hash of options that help Puppet determine whether the feature is
available. The only option currently supported is specifying one or more methods that must be
defined on the provider. If no methods are specified, then the provider needs to specifically declare���
that it has that feature:

Puppet::Type.type(:coloring).provide(:drawer)	do
				has_feature	:draw
end

The provider can specify multiple available features at once with has_features.

When you define features on your type, Puppet automatically defines a bunch of class methods on��
the provider:

feature?: Passed a feature name, will return true if the feature is available or false otherwise.
features: Returns a list of all supported features on the provider.
satisfies?: Passed a list of feature, will return true if they are all available, false otherwise.�

Additionally, each feature gets a separate boolean method, so the above example would result in a
paint? method on the provider.

Complete Resource Example
This document walks through the definition of a very simple resource type and one provider. Weʼll�
build the resource up slowly, and the provider along with it. See Custom Types and Provider
Development for more information on the individual classes. As with creating Custom Facts and
Custom Functions, these examples involve Ruby programming.

Resource Creation
Nearly every resource needs to be able to be created and destroyed, and resources have to have
names, so weʼll start with those two features. Puppetʼs property support has a helper method called
ensurable that handles modeling creation and destruction; it creates an ensure property and adds
absent and present values for it, which in turn require three methods on the provider, create,

Puppet Documentation • Complete Resource Example 136/311

destroy, and exists?. Hereʼs the first start to the resource. �Weʼre going to create one called ʻfileʼ —�
this is an example of how weʼd create a resource for something Puppet already has. You can see
how this would be extensible to handle one of your own ideas:

Puppet::Type.newtype(:file)	do
				@doc	=	"Manage	a	file	(the	simple	version)."

				ensurable

				newparam(:name)	do
								desc	"The	full	path	to	the	file."
				end
end

Here we have provided the resource type name (itʼs file), a simple documentation string (which
should be in Restructured Text format), a parameter for the name of the file, and weʼve used the�
ensurable method to say that our file is both createable and destroyable.�

To see how we would use this on the provider side, letʼs look at a simple provider:

Puppet::Type.type(:file).provide(:posix)	do
				desc	"Normal	Unix-like	POSIX	support	for	file	management."

				def	create
								File.open(@resource[:name],	"w")	{	|f|	f.puts	""	}	#	Create	an	empty	
file
				end

				def	destroy
								File.unlink(@resource[:name])
				end

				def	exists?
								File.exists?(@resource[:name])
				end
end

Here you can see that the providers use a different way of specifying their documentation, which is�
not something that has been unified in Puppet yet.�

In addition to the docs and the provider name, we provide the three methods that the ensure
property requires. You can see that in this case weʼre just using Rubyʼs built-in File abilities to
create an empty file, remove the file, or test whether the file exists.���

Letʼs enhance our resource somewhat by adding the ability to manage the file mode. �Hereʼs the
code we need to add to the resource:

newproperty(:mode)	do
				desc	"Manage	the	file's	mode."

				defaultto	"640"
end

Puppet Documentation • Complete Resource Example 137/311

http://en.wikipedia.org/wiki/ReStructuredText

Notice that weʼre specifying a default value, and that it is a string instead of an integer (file modes�
are in octal, and most of us are used to specifying integers in decimal). You can pass a block to
defaultto instead of a value, if you donʼt have a simple value. (For more about blocks, see the Ruby
language documentation).

Hereʼs the code we need to add to the provider to understand modes:

def	create
				File.open(@resource[:name],	"w")	{	|f|	f.puts	""	}	#	Create	an	empty	file
				#	Make	sure	the	mode	is	correct
				should_mode	=	@resource.should(:mode)
				unless	self.mode	==	should_mode
								self.mode	=	should_mode
				end
end

#	Return	the	mode	as	an	octal	string,	not	as	an	integer.
def	mode
				if	File.exists?(@resource[:name])
								"%o"	%	(File.stat(@resource[:name]).mode	&	007777)
				else
								:absent
				end
end

#	Set	the	file	mode,	converting	from	a	string	to	an	integer.
def	mode=(value)
				File.chmod(Integer("0"	+	value),	@resource[:name])
end

Note that the getter method returns the value, it doesnʼt attempt to modify the resource itself. Also,
when the setter gets passed the value it is supposed to set; it doesnʼt attempt to figure out the�
appropriate value to use. This should always be true of how providers are implemented.

Also notice that the ensure property, when created by the ensurable method, behaves differently�
because it uses methods for creation and destruction of the file, whereas normal properties use�
getter and setter methods. When a resource is being created, Puppet expects the create method
(or, actually, any changes done within ensure) to make any other necessary changes. This is
because most often resources are created already configured correctly, so it doesnʼt make sense for�
Puppet to test it manually (e.g., useradd support is set up to add all specified properties when�
useradd is run, so usermod doesnʼt need to be run afterward).

You can see how the absent and present values are defined by looking in the property.rb file;��
hereʼs the most important snippet:

newvalue(:present)	do
				if	@resource.provider	and	@resource.provider.respond_to?(:create)
								@resource.provider.create
				else
								@resource.create
				end
				nil	#	return	nil	so	the	event	is	autogenerated
end

Puppet Documentation • Complete Resource Example 138/311

newvalue(:absent)	do
				if	@resource.provider	and	@resource.provider.respond_to?(:destroy)
								@resource.provider.destroy
				else
								@resource.destroy
				end
				nil	#	return	nil	so	the	event	is	autogenerated
end

There are a lot of other options in creating properties, parameters, and providers, but this should
provide a decent starting point.

See Also
Provider Development
Creating Custom Types

Provider Development
Information about writing providers to provide implementation for types.

About
The core of Puppetʼs cross-platform support is via Resource Providers, which are essentially back-
ends that implement support for a specific implementation of a given resource type. For instance,�
there are more than 20 package providers, including providers for package formats like dpkg and
rpm along with high-level package managers like apt and yum. A providerʼs main job is to wrap
client-side tools, usually by just calling out to those tools with the right information.

Not all resource types have or need providers, but any resource type concerned about portability
will likely need them.

We will use the apt and dpkg package providers as examples throughout this document, and the
examples used are current as of 0.23.0.

Declaration
Providers are always associated with a single resource type, so they are created by calling the
provide class method on that resource type. When declarating a provider, you can specify a parent
class — for instance, all package providers have a common parent class:

Puppet::Type.type(:package).provide	:dpkg,	:parent	=>	Puppet::Provider::Package	
do
				desc	"..."
				...
end

Puppet Documentation • Provider Development 139/311

Note the call desc there; it sets the documentation for this provider, and should include everything
necessary for someone to use this provider.

Providers can also specify another provider (from the same resource type) as their parent:

Puppet::Type.type(:package).provide	:apt,	:parent	=>	:dpkg,	:source	=>	:dpkg	do
				...
end

Note that weʼre also specifying that this provider uses the dpkg source; this tells Puppet to
deduplicate packages from dpkg and apt, so the same package does not show up in an instance list
from each provider type. Puppet defaults to creating a new source for each provider type, so you
have to specify when a provider subclass shares a source with its parent class.

Suitability
The first question to ask about a new provider is where it will be functional, which Puppet describes�
as suitable. Unsuitable providers cannot be used to do any work, although weʼre working on
making the suitability test late-binding, meaning that you could have a resource in your
configuration that made a provider suitable. If you start puppetd or puppet in debug mode, youʼll�
see the results of failed provider suitability tests for the resource types youʼre using.

Puppet providers include some helpful class-level methods you can use to both document and
declare how to determine whether a given provider is suitable. The primary method is commands,
which actually does two things for you: It declares that this provider requires the named binary, and
it sets up class and instance methods with the name provided that call the specified binary. The�
binary can be fully qualified, in which case that specific path is required, or it can be unqualified, in���
which case Puppet will find the binary in the shell path and use that. If the binary cannot be found,�
then the provider is considered unsuitable. For example, here is the header for the dpkg provider
(as of 0.23.0):

commands	:dpkg	=>	"/usr/bin/dpkg"
commands	:dpkg_deb	=>	"/usr/bin/dpkg-deb"
commands	:dpkgquery	=>	"/usr/bin/dpkg-query"

In addition to looking for binaries, Puppet can compare Facter facts, test for the existence of a file,�
or test whether a given value is true or false. For file extistence, truth, or false, just call the confine��
class method with exists, true, or false as the name of the test and your test as the value:

confine	:exists	=>	"/etc/debian_release"
confine	:true	=>	Puppet.features.rrd?
confine	:false	=>	Puppet.features.rails?

To test Facter values, just use the name of the fact:

confine	:operatingsystem	=>	[:debian,	:solaris]
confine	:puppetversion	=>	"0.23.0"

Puppet Documentation • Provider Development 140/311

Note that case doesnʼt matter in the tests, nor does it matter whether the values are strings or
symbols. It also doesnʼt matter whether you specify an array or a single value — Puppet does an OR
on the list of values.

Default Providers
Providers are generally meant to be hidden from the users, allowing them to focus on resource
specification rather than implementation details. Toward this end, Puppet does what it can to�
choose an appropriate default provider for each resource type.

This is generally done by a single provider declaring that it is the default for a given set of facts,
using the defaultfor class method. For instance, this is the apt providerʼs declaration:

defaultfor	:operatingsystem	=>	:debian

The same fact matching functionality is used, so again case does not matter.

Provider/Resource API
Providers never do anything on their own; all of their action is triggered through an associated
resource (or, in special cases, from the transaction). Because of this, resource types are essentially
free to define their own provider interface if necessary, and providers were initially developed�
without a clear resource/provider API (mostly because it wasnʼt clear whether such an API was
necessary or what it would look like). At this point, however, there is a default interface between the
resource type and the provider.

This interface consists entirely of getter and setter methods. When the resource is retrieving its
current state, it iterates across all of its properties and calls the getter method on the provider for
that property. For instance, when a user resource is having its state retrieved and its uid and shell
properties are being managed, then the resource will call uid and shell on the provider to figure out�
what the current state of each of those properties is. This method call is in the retrieve method in
Puppet::Property.

When a resource is being modified, it calls the equivalent setter method for each property on the�
provider. Again using our user example, if the uid was in sync but the shell was not, then the
resource would call shell=(value) with the new shell value.

The transaction is responsible for storing these returned values and deciding which value to
actually send, and it does its work through a PropertyChange instance. It calls sync on each of the
properties, which in turn just call the setter by default.

You can override that interface as necessary for your resource type, but in the hopefully-near
future this API will become more solidified.�

Note that all providers must define an instances class method that returns a list of provider�
instances, one for each existing instance of that provider. For instance, the dpkg provider should
return a provider instance for every package in the dpkg database.

Puppet Documentation • Provider Development 141/311

Provider Methods
By default, you have to define all of your getter and setter methods. For simple cases, this is�
sufficient — you just implement the code that does the work for that property.��

However, because things are rarely so simple, Puppet attempts to help in a few ways.

Prefetching

First, Puppet transactions will prefetch provider information by calling prefetch on each used
provider type. This calls the instances method in turn, which returns a list of provider instances with
the current resource state already retrieved and stored in a @property_hash instance variable. The
prefetch method then tries to find any matching resources, and assigns the retrieved providers to�
found resources. This way you can get information on all of the resources youʼre managing in just a
few method calls, instead of having to call all of the getter methods for every property being
managed. Note that it also means that providers are often getting replaced, so you cannot maintain
state in a provider.

Resource Methods

For providers that directly modify the system when a setter method is called, thereʼs no substitute
for defining them manually. But for resources that get flushed to disk in one step, such as the��
ParsedFile providers, there is a mk_resource_methods class method that creates a getter and setter
for each property on the resource. These methods just retrieve and set the appropriate value in the
@property_hash variable.

Flushing

Many providers model files or parts of files, so it makes sense to save all of the writes up and do��
them in one run. Providers in need of this functionality can define a flush instance method to do��
this. The transaction will call this method after all values are synced (which means that the provider
should have them all in its @property_hash variable) but before refresh is called on the resource (if
appropriate).

Using Puppet From Source
Puppet is implemented in Ruby and uses standard Ruby libraries. You should be able to run Puppet
on any Unix-style host with ruby. Windows support is planned for future releases.

Before you Begin
Make sure your host has Ruby version 1.8.2 or later:

$	ruby	-v

and, if you want to run the tests, rake:

Puppet Documentation • Using Puppet From Source 142/311

$	rake	-V

While Puppet should work with ruby 1.8.1, there have been many reports of problems with this
version.

Make sure you have Git:

$	git	--version

Get the Source
Puppet relies on another Puppet Labs library, Facter. Create a working directory and get them both:

$	SETUP_DIR=~/git
$	mkdir	-p	$SETUP_DIR
$	cd	$SETUP_DIR
$	git	clone	git://github.com/puppetlabs/facter
$	git	clone	git://github.com/puppetlabs/puppet

You will need to periodically run:

$	git	pull	--rebase	origin

From your repositories to periodically update your clone to the latest code.

If you want access to all of the tags in the git repositories, so that you can compare releases, for
instance, do the following from within the repository:

$	git	fetch	--tags

Then you can compare two releases with something like this:

$	git	diff	0.25.1	0.25.2

Most of the development on puppet is done in branches based either on features or the major
revision lines. Currently the “stable” branch is 0.25.x and development is in the “master” branch.
You can change to and track branches by using the following:

git	checkout	--track	-b	0.25.x	origin/0.25.x

Tell Ruby How to Find Puppet and Facter
Finally, we need to put the puppet binaries into our path and make the Puppet and Facter libraries
available to Ruby:

Puppet Documentation • Using Puppet From Source 143/311

http://git.or.cz/
http://puppetlabs.com/products/facter

$	PATH=$PATH:$SETUP_DIR/facter/bin:$SETUP_DIR/puppet/bin
$	RUBYLIB=$SETUP_DIR/facter/lib:$SETUP_DIR/puppet/lib
$	export	PATH	RUBYLIB

Note: environment variables (depending on your OS) can get stripped when running as sudo. If you
experience problems, you may want to simply execute things as root.

Next we must install facter. Facter changes far less often than Puppet and is a very minimal
tool/library:

$	cd	facter
$	sudo	ruby	./install.rb

Development Lifecycle
If youʼd like to work on Puppet and submit a contribution, weʼd be glad to have you.

Since this information changes often, please see the Puppet Wiki for the latest details.

REST API
Both puppet master and puppet agent have RESTful APIʼs that they use to communicate. The basic
structure of the url to access this API is

https://yourpuppetmaster:8140/{environment}/{resource}/{key}
https://yourpuppetclient:8139/{environment}/{resource}/{key}

Details about what resources are available and the formats they return are below.

REST API Security
Puppet usually takes care of security and SSL certificate management for you, but if you want to use�
the RESTful API outside of that youʼll need to manage certificates yourself when you connect. This�
can be done by using a pre-existing signed agent certificate, by generating and signing a certificate��
on the puppet master and manually distributing it to the connecting host, or by re-implementing
puppet agentʼs generate / submit signing request / received signed certificate behavior in your�
custom app.

The security policy for the REST API can be controlled through the rest_authconfig file. For testing�
purposes, it is also possible to permit unauthenticated connections from all hosts or a subset of
hosts; see the rest_authconfig documentation for more details.

Testing the REST API using curl
An example of how you can use the REST API to retrieve the catalog for a node can be seen using
Puppet Documentation • Development Lifecycle 144/311

http://projects.puppetlabs.com/projects/puppet/wiki/Development_Lifecycle

curl.

curl	--cert	/etc/puppet/ssl/certs/mymachine.pem	--key	
/etc/puppet/ssl/private_keys/mymachine.pem	--cacert	
/etc/puppet/ssl/ca/ca_crt.pem	-H	'Accept:	yaml'	
https://puppetmaster:8140/production/catalog/mymachine

Most of this command consists of pointing curl to the appropriate SSL certificates, which will be�
different depending on your ssldir location and your nodeʼs certname. For simplicity and brevity,�
future invocations of curl will be provided in insecure mode, which is specified with the �-k or --
insecure flag. Insecure connections can be enabled for one or more nodes in the �rest_authconfig
file. The above curl invocation without certificates would be as follows:��

curl	--insecure	-H	'Accept:	yaml'	
https://puppetmaster:8140/production/catalog/mymachine

Basically we just send a header specifying the format or formats we want back, and the RESTful URI
for getting a catalog for mymachine in the production environment. Hereʼs a snippet of the output
you might get back:

---	&id001	!ruby/object:Puppet::Resource::Catalog
		aliases:	{}
				applying:	false
						classes:	[]
						...

Another example to get back the CA Certificate of the puppetmaster doesnʼt require you to be�
authenticated with your own signed SSL Certificates, since thatʼs something you would need before�
you authenticate.

curl	--insecure	-H	'Accept:	s'	
https://puppetmaster:8140/production/certificate/ca

-----BEGIN	CERTIFICATE-----
MIICHTCCAYagAwIBAgIBATANBgkqhkiG9w0BAQUFADAXMRUwEwYDVQQDDAxwdXBw

The master and agent shared API
Resources

Returns a list of resources, like executing puppet	resource (ralsh) on the command line.

GET /{environment}/resource/{resource_type}/{resource_name}

GET /{environment}/resources/{resource_type}

Example:

Puppet Documentation • Development Lifecycle 145/311

http://en.wikipedia.org/wiki/CURL

curl	-k	-H	"Accept:	yaml"	
https://puppetmaster:8140/production/resource/user/puppet
curl	-k	-H	"Accept:	yaml"	https://puppetclient:8139/production/resources/user

Certificate�

Get a certficate or the masterʼs CA certificate.��

GET /certificate/{ca,	other}

Example:

curl	-k	-H	"Accept:	s"	https://puppetmaster:8140/production/certificate/ca
curl	-k	-H	"Accept:	s"	
https://puppetclient:8139/production/certificate/puppetclient

The master REST API
A valid and signed certificate is required to retrieve these resources.�

Catalogs

Get a catalog from the node.

GET /{environment}/catalog/{node	certificate	name}

Example:

curl	-k	-H	"Accept:	pson"	https://puppetmaster:8140/production/catalog/myclient

Certificate Revocation List�

Get the certificate revocation list.�

GET /certificate_revocation_list/ca

Example:

curl	-k	-H	"Accept:	s"	
https://puppetmaster:8140/production/certificate_revocation_list/ca

Certificate Request�

Retrieve or save certificate requests.�

GET /{environment}/certificate_requests/no_key

GET /{environment}/certificate_request/{node	certificate	name}

PUT /{environment}/certificate_request/no_key

Example:
Puppet Documentation • Development Lifecycle 146/311

curl	-k	-H	"Accept:	yaml"	
https://puppetmaster:8140/production/certificate_requests/all
curl	-k	-H	"Accept:	yaml"	
https://puppetmaster:8140/production/certificate_request/{agent	certname}
curl	-k	-X	PUT	-H	"Content-Type:	text/plain"	--data-binary	@cert_request.csr	
https://puppetmaster:8140/production/certificate_request/no_key

To manually generate a CSR from an existing private key:

openssl	req	-new	-key	private_key.pem	-subj	"/CN={node	certname}"	-out	
request.csr

The subject can only include a /CN=, nothing else. Puppet master will determine the certname from
the body of the cert, so the request can be pointed to any key for this endpoint.

Certificate Status�

Puppet 2.7.0 and later.

Read or alter the status of a certificate or pending certificate request. This endpoint is roughly��
equivalent to the puppet cert command; rather than returning complete certificates, signing�
requests, or revocation lists, this endpoint returns information about the various certificates (and�
potential and former certificates) known to the CA.�

GET /{environment}/certificate_status/{certname}

Retrieve a PSON hash containing information about the specified hostʼs certificate. Similar to ��puppet
cert	--list	{certname}.

GET /{environment}/certificate_statuses/no_key

Retrieve a list of PSON hashes containing information about all known certificates. Similar to �puppet
cert	--list	--all.

PUT /{environment}/certificate_status/{certname}

Change the status of the specified hostʼs certificate. The desired state is sent in the body of the PUT��
request as a one-item PSON hash; the two allowed complete hashes are
{"desired_state":"signed"} (for signing a certificate signing request; similar to �puppet	cert	--
sign) and {"desired_state":"revoked"} (for revoking a certificate; similar to �puppet	cert	--
revoke); see examples below for details.

When revoking certificates, you may wish to use a DELETE request instead, which will also clean up�
other info about the host.

DELETE /{environment}/certificate_status/{hostname}

Cause the certificate authority to discard all SSL information regarding a host (including any�
certificates, certificate requests, and keys). This ��does not revoke the certificate if one is present; if�

Puppet Documentation • Development Lifecycle 147/311

you wish to emulate the behavior of puppet	cert	--clean, you must PUT a desired_state of
revoked before deleting the hostʼs SSL information.

Examples:

curl	-k	-H	"Accept:	pson"	
https://puppetmaster:8140/production/certificate_status/testnode.localdomain
curl	-k	-H	"Accept:	pson"	
https://puppetmaster:8140/production/certificate_statuses/all
curl	-k	-X	PUT	-H	"Content-Type:	text/pson"	--data	'{"desired_state":"signed"}'	
https://puppetmaster:8140/production/certificate_status/client.network.address
curl	-k	-X	PUT	-H	"Content-Type:	text/pson"	--data	
'{"desired_state":"revoked"}'	
https://puppetmaster:8140/production/certificate_status/client.network.address
curl	-k	-X	DELETE	-H	"Accept:	pson"	
https://puppetmaster:8140/production/certificate_status/client.network.address

Reports

Submit a report.

PUT /{environment}/report/{node	certificate	name}

Example:

curl	-k	-X	PUT	-H	"Content-Type:	text/yaml"	-d	"{key:value}"	
https://puppetclient:8139/production/report/puppetclient

Resource Types

Return a list of resources from the master

GET /{environment}/resource_type/{hostclass,definition,node}

GET /{environment}/resource_types/*

Example:

curl	-k	-H	"Accept:	yaml"	
https://puppetmaster:8140/production/resource_type/puppetclient
curl	-k	-H	"Accept:	yaml"	https://puppetmaster:8140/production/resource_types/*

File Bucket

Get or put a file into the file bucket.��

GET /{environment}/file_bucket_file/md5/{checksum}

PUT /{environment}/file_bucket_file/md5/{checksum}

GET /{environment}/file_bucket_file/md5/{checksum}?diff_with={checksum} (diff 2 files;��
Puppet 2.6.5 and later)

Puppet Documentation • Development Lifecycle 148/311

HEAD /{environment}/file_bucket_file/md5/{checksum} (determine if a file is present; �Puppet
2.6.5 and later)

Examples:

curl	-k	-H	"Accept:	s"	
https://puppetmaster:8140/production/file_bucket_file/md5/e30d4d879e34f64e33c10377e65bbce6

curl	-k	-X	PUT	-H	"Content-Type:	text/plain"	Accept:	s"	
https://puppetmaster:8140/production/file_bucket_file/md5/e30d4d879e34f64e33c10377e65bbce6
--data-binary	@foo.txt
curl	-k	-H	"Accept:	s"	
https://puppetmaster:8140/production/file_bucket_file/md5/e30d4d879e34f64e33c10377e65bbce6?
diff_with=6572b5dc4c56366aaa36d996969a8885
curl	-k	-I	-H	"Accept:	s"	
https://puppetmaster:8140/production/file_bucket_file/md5/e30d4d879e34f64e33c10377e65bbce6

File Server

Get a file from the file server.��

GET /file_{metadata,	content}/{file}

File serving is covered in more depth on the wiki

Node

Returns the Puppet::Node information (including facts) for the specified node�

GET /{environment}/node/{node	certificate	name}

Example:

curl	-k	-H	"Accept:	yaml"	
https://puppetmaster:8140/production/node/puppetclient

Status

Just used for testing

GET /{environment}/status/no_key

Example:

curl	-k	-H	"Accept:	pson"	
https://puppetmaster:8140/production/status/puppetclient

Facts

GET /{environment}/facts/{node	certname}

Puppet Documentation • Development Lifecycle 149/311

http://projects.puppetlabs.com/projects/puppet/wiki/File_Serving_Configuration

curl	-k	-H	"Accept:	yaml"	https://puppetmaster:8140/production/facts/{node	
certname}

PUT /{environment}/facts/{node	certname}

curl	-k	-X	PUT	-H	'Content-Type:	text/yaml'	--data-binary	
@/var/lib/puppet/yaml/facts/hostname.yaml	
https://localhost:8140/production/facts/{node	certname}

Facts Search

GET /{environment}/facts_search/search?{facts	search	string}

curl	-k	-H	"Accept:	pson"	
https://puppetmaster:8140/production/facts_search/search?
facts.processorcount.ge=2&facts.operatingsystem=Ubuntu

Facts search strings are constructed as a series of terms separated by &; if there is more than one
term, the search combines the terms with boolean AND. There is currently no API for searching with
boolean OR. Each term is composed as follows:

facts.{name	of	fact}.{comparison	type}={string	for	comparison}

If you leave off the �.{comparison	type}, the comparison will default to simple equality. The
following comparison types are available:
STRING/GENERAL COMPARISON

eq — == (default)
ne — !=

NUMERIC COMPARISON

lt — <
le — <=
gt — >
ge — >=

The agent REST API
By default, puppet agent is set not to listen to HTTP requests. To enable this you must set listen	=
true in the puppet.conf or pass --listen	true to puppet agent when starting. Due to a known bug
in the 2.6.x releases of Puppet, puppet agent will not start with listen	=	true unless a
namespaceauth.conf file exists, even though this file is not consulted. The nodeʼs ��rest_authconfig�
file must also allow access to the agentʼs resources, which isnʼt permitted by default.�

Facts

Puppet Documentation • Development Lifecycle 150/311

GET /{environment}/facts/no_key

Example:

curl	-k	-H	"Accept:	yaml"	https://puppetclient:8139/production/facts/no_key

Run

Cause the client to update like puppetrun or puppet kick

PUT /{environment}/run/no_key

Example:

curl	-k	-X	PUT	-H	"Content-Type:	text/pson"	-d	"{}"	
https://puppetclient:8139/production/run/no_key

Language Guide
The purpose of Puppetʼs language is to make it easy to specify the resources you need to manage
on the machines youʼre managing.

This guide will show you how the language works, going through some basic concepts.
Understanding the Puppet language is key, as itʼs the main driver of how you tell your Puppet
managed machines what to do.

Ready To Dive In?
Puppet language is really relatively simple compared to many programming languages. As you are
reading over this guide, it may also be helpful to look over various Puppet modules people have
already written. Complete real world examples can serve as a great introduction to Puppet. See the
Modules page for more information and some links to list of community developed Puppet content.

Language Feature by Release
Feature 0.23.1 0.24.6 0.24.7 0.25.0 2.6.0

Plusignment operator (+>) X X X X X

Multiple Resource relationships X X X X

Class Inheritance Overrides X X X X

Appending to Variables (+=) X X X X

Class names starting with 0-9 X X X X

Multi-line C-style comments X X X

Node regular expressions X X

Puppet Documentation • Language Guide 151/311

Expressions in Variables X X

RegExes in conditionals X X

Elsif in conditionals X

Chaining Resources X

Hashes X

Parameterised Class X

Run Stages X

The “in” syntax X

Resources
The fundamental unit of modelling in Puppet is a resource. Resources describe some aspect of a
system; it might be a file, a service, a package, or perhaps even a custom resource that you have�
developed. Weʼll show later how resources can be aggregated together with “defines” and “classes”,�
and even show how to organize things with “modules”, but resources are what we should start with
first.�

Each resource has a type, a title, and a list of attributes — each resource in Puppet can support
various attributes, though many of them will have reasonable defaults and you wonʼt have to
specify all of them.

You can find all of the supported resource types, their valid attributes, and documentation for all of�
it in the References.

Letʼs get started. Hereʼs a simple example of a resource in Puppet, where we are describing the
permissions and ownership of a file:�

				file	{	'/etc/passwd':
								owner	=>	root,
								group	=>	root,
								mode		=>	644,
				}

Any machine on which this snippet is executed will use it to verify that the passwd file is configured��
as specified. The field before the colon is the resourceʼs ��title, which can be used to refer to the
resource in other parts of the Puppet configuration.�

For simple resources that donʼt vary much, a single name is sufficient. ��However, what happens if a
filename is different between operating systems? ��For these cases, Puppet allows you to specify a
local name in addition to the title:

				file	{	'sshdconfig':
								name	=>	$operatingsystem	?	{
												solaris	=>	'/usr/local/etc/ssh/sshd_config',
												default	=>	'/etc/ssh/sshd_config',
								},
								owner	=>	root,

Puppet Documentation • Language Guide 152/311

								owner	=>	root,
								group	=>	root,
								mode		=>	644,
				}

By using the title, which is always the same, itʼs easy to refer to the file resource elsewhere in our�
configuration without having to repeat that OS specific logic.��

For instance, letʼs add a service that depends on the file:�

				service	{	'sshd':
								subscribe	=>	File[sshdconfig],
				}

This will cause the sshd service to get restarted when the sshdconfig file changes. Youʼll notice that�
when we reference a resource we capitalise the name of the resource, for example
File[sshdconfig]. When you see an uppercase resource type, thatʼs always a reference. A
lowercase version is a declaration. Since resources can only be declared once, repeating the same
declaration twice will cause an error. This is an important feature of Puppet that makes sure your
configuration is well modelled.�

What happens if our resource depends on multiple resources? From Puppet version 0.24.6 you can
specify multiple relationships like so:

				service	{	'sshd':
								require	=>	File['sshdconfig',	'sshconfig',	'authorized_keys']
				}

Itʼs important to note here that the title alone identifies the resource. Even if the resource seems to�
conceptually point to the same entity, itʼs the title that matters. The following is possible in Puppet,
but is to be avoided as it can lead to errors once things get sent down to the client.

				file	{	'sshdconfig':
								name		=>	'/usr/local/etc/ssh/sshd_config',
								owner	=>	'root',
				}

				file	{	'/usr/local/etc/ssh/sshd_config':
								owner	=>	'sshd',
				}

Metaparameters

In addition to the attributes specific to each Resource Type Puppet also has global attributes called�
metaparameters. Metaparameters are parameters that work with any resource type.

In the examples in the section above we used two metaparameters, subscribe and require, both of
which build relationships between resources. You can see the full list of all metaparameters in the
Metaparameter Reference, though weʼll point out additional ones we use as we continue the guide.

Puppet Documentation • Language Guide 153/311

Resource Defaults

Sometimes you will need to specify a default parameter value for a set of resources; Puppet
provides a syntax for doing this, using a capitalized resource specification that has no title. �For
instance, in the example below, weʼll set the default path for all execution of commmands:

				Exec	{	path	=>	'/usr/bin:/bin:/usr/sbin:/sbin'	}
				exec	{	'echo	this	works':	}

The first statement in this snippet provides a default value for �exec resources; Exec resources
require either fully qualified paths or a path in which to look for the executable. Individual�
resources can still override this path when needed, but this saves typing. This way you can specify a
single default path for your entire configuration, and then override that value as necessary.�

Defaults work with any resource type in Puppet.

Defaults are not global — they only affect the current scope and scopes below the current one. �If
you want a default setting to affect your entire configuration, your only choice currently is to specify��
them outside of any class. Weʼll mention classes in the next section.

Resource Collections

Aggregation is a powerful concept in Puppet. There are two ways to combine multiple resources
into one easier to use resource: Classes and defined resource types. Classes model fundamental�
aspects of nodes, they say “this node IS a webserver” or “this node is one of these”. In programming
terminology classes are singletons — they only ever get evaluated once per node.

Defined resource types, on the other hand, can be reused many times on the same node. �They
essentially work as if you created your own Puppet type just by using the language. They are meant
to be evaluated multiple times, with different inputs each time. �This means you can pass variable
values into the defines.�

Both classes and defines are very useful and you should make use of them when building out your�
puppet infrastructure.
CLASSES

Classes are introduced with the class keyword, and their contents are wrapped in curly braces. The
following simple example creates a simple class that manages two separate files:�

				class	unix	{
								file	{
												'/etc/passwd':
																owner	=>	'root',
																group	=>	'root',
																mode		=>	644;
												'/etc/shadow':
																owner	=>	'root',
																group	=>	'root',
																mode		=>	440;
								}
				}

Puppet Documentation • Language Guide 154/311

Youʼll notice we introduced some shorthand here. This is the same as saying:

				class	unix	{
								file	{	'/etc/passwd':
													owner	=>	'root',
													group	=>	'root',
													mode		=>	644;
								}
								file	{	'/etc/shadow':
													owner	=>	'root',
													group	=>	'root',
													mode		=>	440;
								}
				}

Classes also support a simple form of object inheritance. For those not acquainted with
programming terms, this means that we can extend the functionality of the previous class without
copy/pasting the entire class. Inheritance allows subclasses to override resource settings defined in�
parent classes. A class can only inherit from one other class, not more than one. In programming
terms, this is called ʻsingle inheritanceʼ.

				class	freebsd	inherits	unix	{
								File['/etc/passwd']	{	group	=>	wheel	}
								File['/etc/shadow']	{	group	=>	wheel	}
				}

If we needed to undo some logic specified in a parent class, we can use undef like so:�

				class	freebsd	inherits	unix	{
								File['/etc/passwd']	{	group	=>	undef	}
				}

In the above example, nodes which include the unix class will have the password fileʼs group set to�
root, while nodes including freebsd would have the password file group ownership left�
unmodified.�

In Puppet version 0.24.6 and higher, you can specify multiple overrides like so:

				class	freebsd	inherits	unix	{
								File['/etc/passwd',	'/etc/shadow']	{	group	=>	wheel	}
				}

There are other ways to use inheritance. In Puppet 0.23.1 and higher, itʼs possible to add values to
resource parameters using the ʻ+>ʼ (ʻplusignmentʼ) operator:

				class	apache	{
								service	{	'apache':	require	=>	Package['httpd']	}
				}

				class	apache-ssl	inherits	apache	{

Puppet Documentation • Language Guide 155/311

								#	host	certificate	is	required	for	SSL	to	function
								Service[apache]	{	require	+>	File['apache.pem']	}
				}

The above example makes the second class require all the packages in the first, with the addition of�
ʻapache.pemʼ.

To append multiple requires, use array brackets and commas:

				class	apache	{
								service	{	'apache':	require	=>	Package['httpd']	}
				}

				class	apache-ssl	inherits	apache	{
								Service[apache]	{	require	+>	[File['apache.pem'],	
File['/etc/httpd/conf/httpd.conf']]	}
				}

The above would make the require parameter in the apache-ssl class equal to

				[Package['httpd'],	File['apache.pem'],	File['/etc/httpd/conf/httpd.conf']]

Like resources, you can also create relationships between classes with ʻrequireʼ, like so:

				class	apache	{
								service	{	'apache':	require	=>	Class['squid']	}
				}

The above example uses the require metaparameter to make the apache class dependent on the
squid class.

In Puppet version 0.24.6 and higher, you can specify multiple relationships like so:

				class	apache	{
								service	{	'apache':
																						require	=>	Class['squid',	'xml',	'jakarta']
				}

Itʼs not dangerous to reference a class with a require more than once. Classes are evaluated using
the include function (which we will mention later). If a class has already been evaluated once, then
include essentially does nothing.

PARAMETERISED CLASSES

In Puppet release 2.6.0 and later, classes are extended to allow the passing of parameters into
classes.

To create a class with parameters you can now specify:

				class	apache($version)	{

Puppet Documentation • Language Guide 156/311

						...	class	contents	...
				}

Classes with parameters are not declared using the include function but with an alternate syntax
similar to a resource declaration:

				node	webserver	{
						class	{	apache:	version	=>	"1.3.13"	}
				}

You can also specify default parameter values in your class like so:

				class	apache($version="1.3.13",$home="/var/www")	{
						...	class	contents	...
				}

RUN STAGES

Run stage were added in Puppet version 2.6.0, you now have the ability to specify any number of
stages which provide another method to control the ordering of resource management in puppet. If
you have a large number of resources in your catalog it may become tedious and cumbersome to
explicitly manage every relationship between the resources where order is important. In this
situation, run-stages provides you the ability to associate a class to a single stage. Puppet will
guarantee stages run in a specific predictable order every catalog run.�

In order to use run-stages, you must first declare additional stages beyond the already present�
main stage. You can then configure puppet to manage each stage in a specific order using the��
same resource relationship syntax, before, require, “->” and “<-“. The relationship of stages will
then guarantee the ordering of classes associated with each stage.

By default there is only one stage named “main” and all classes are automatically associated with
this stage. Unless explicitly stated, a class will be associated with the main stage. With only one
stage the effect of run stages is the same as previous versions of puppet since resources within a�
stage are managed in arbitrary order unless they have explicit relationships declared.

In order to declare additional stage resources, follow the same consistent and simple declarative
syntax of the puppet language:

				stage	{	"first":	before	=>	Stage[main]	}
				stage	{	"last":	require	=>	Stage[main]	}

All classes associated with the first stage are to be managed before the classes associated with the�
main stage. All classes associated with the last stage are to be managed after the classes associated
with the main stage.

Once stages have been declared, a class may be associated with a stage other than main using the
“stage” class parameter.

				class	{

Puppet Documentation • Language Guide 157/311

						"apt-keys":	stage	=>	first;
						"sendmail":	stage	=>	main;
						"apache":			stage	=>	last;
				}

Associate all resources in the class apt-keys with the first run stage, all resources in the class�
sendmail with the main stage, and all resources in the apache class with the last stage.

This short declaration guarantees resources in the apt-keys class are managed before resources in
the sendmail class, which in turn is managed before resources in the apache class.

Please note that stage is not a metaparameter. The run stage must be specified as a class parameter�
and as such classes must use the resource declaration syntax as shown rather than the “include”
statement.
DEFINED RESOURCE TYPES

Defined resource types follow the same basic form as classes, but they are introduced with the�
define keyword (not class) and they support arguments but no inheritance. As mentioned
previously, defined resource types take parameters and can be reused multiple times on the same�
system. Suppose we want to create a resource collection that creates source control repositories.
We probably would want to create multiple repositories on the same system, so we would use a
defined type, not a class. �Hereʼs an example:

				define	svn_repo($path)	{
								exec	{	"/usr/bin/svnadmin	create	$path/$title":
												unless	=>	"/bin/test	-d	$path",
								}
				}

				svn_repo	{	puppet_repo:	path	=>	'/var/svn_puppet'	}
				svn_repo	{	other_repo:		path	=>	'/var/svn_other'	}

Note how parameters specified in the definition (��define	svn_repo($path)) must appear as
resource attributes (path	=>	'/var/svn_puppet') whenever a resource of the new type is declared
and are available as variables (unless	=>	"/bin/test	-d	$path") within the definition. Multiple�
variables (separated by commas) can be specified. Default values can also be specified for any��
parameter with =, and any parameter which has a default becomes non-mandatory when a
resource of the new type is declared.

Defined types have a number of built-in variables available, including �$name and $title, which are
set to the title of the resource when it is declared. (The reasons for having two identical variables
with this information are outside the scope of this document, and these two special variables
cannot be used the same way in classes or other resources.) As of Puppet 2.6.5, the $name and
$title variables can also be used as default values for parameters:

define	svn_repo($path	=	"/var/$name")	{...}

Any metaparameters used when a defined resource is declared are also made available in the�

Puppet Documentation • Language Guide 158/311

definition as variables:�

				define	svn_repo($path)	{
								exec	{"create_repo_${name}":
												command	=>	"/usr/bin/svnadmin	create	$path/$title",
												unless	=>	"/bin/test	-d	$path",
								}
								if	$require	{
												Exec["create_repo_${name}"]{
																require	+>	$require,
												}
								}
				}

				svn_repo	{	puppet:
							path	=>	'/var/svn',
							require	=>	Package[subversion],
				}

The above is perhaps not a perfect example, as most likely we would know that subversion was
always required for svn checkouts, but it illustrates how require and other metaparameters can be
used in defined types.�
CLASSES VS. DEFINED RESOURCE TYPES

Classes and defined types are created similarly, but they are used very differently.��

Defined types are used to define reusable objects which will have multiple instances on a given��
host, so they cannot include any resources that will only have one instance. For instance, multiple
uses of the same define cannot create the same file.��

Classes, on the other hand, are guaranteed to be singletons — you can include them as many times
as you want and youʼll only ever get one copy of the resources.

Most often, services will be defined in a class, where the serviceʼs package, configuration files, and���
running service will all be gathered, because there will normally be one copy of each on a given
host. (This idiom is sometimes referred to as “service-package-file”).�

Defined types would be used to manage resources like virtual hosts, of which you can have many,�
or to encode some simple information in a reusable wrapper to save typing.
MODULES

You can (and should!) combine collections of classes, defined types, and resources into modules.�
Modules are portable collections of configuration, for example a module might contain all the�
resources required to configure Postfix or Apache. You can find out more on the ���Modules Page

Chaining resources

As of puppet version 2.6.0, resources may be chained together to declare relationships between
and among them.

You can now specify relationships directly as statements in addition to the before and require
resource metaparameters of previous versions:

Puppet Documentation • Language Guide 159/311

				File["/etc/ntp.conf"]	->	Service[ntpd]

Manage the ntp configuration file before the ntpd service��

You can specify a “notify” relationship by employing the tilde instead of the hyphen:

				File["/etc/ntp.conf"]	~>	Service[ntpd]

This manages the ntp configuration file before the ntpd service and notifies the service of changes���
to the ntp configuration file.��

You can also do relationship chaining, specifying multiple relationships on a single line:

				Package[ntp]	->	File["/etc/ntp.conf"]	->	Service[ntpd]

Here we first manage the ntp package, second manage the ntp configuration file, and third manage���
the ntpd service.

Note that while itʼs confusing, you donʼt have to have all of the arrows be the same direction:

				File["/etc/ntp.conf"]	->	Service[ntpd]	<-	Package[ntp]

Here the ntpd service requires /etc/ntp.conf and the ntp package.

Please note, relationships declared in this manner are between adjacent resources. In this example,
the ntp package and the ntp configuration file are related to each other and puppet may try to��
manage the configuration file before the package is even installed, which may not be the desired��
behavior.

Chaining in this manner can provide some succinctness at the cost of readability.

You can also specify relationships when resources are declared, in addition to the above resource
reference examples:

				package	{	"ntp":	}	->	file	{	"/etc/ntp.conf":	}

Here we manage the ntp package before the ntp configuration file.��

But wait! Thereʼs more! You can also specify a collection on either side of the relationship marker:

				yumrepo	{	localyumrepo:	}
				package	{	ntp:	provider	=>	yum,	...	}
				Yumrepo	<|	|>	->	Package	<|	provider	==	yum	|>

This manages all yum repository resources before managing all package resources using the yum
provider.

This, finally, provides easy many to many relationships in Puppet, but it also opens the door to�
Puppet Documentation • Language Guide 160/311

massive dependency cycles. This last feature is a very powerful stick, and you can considerably hurt
yourself with it.

Nodes

Having knowledge of resources, classes, defines, and modules gets you to understanding of most�
of Puppet. Nodes are a very simple remaining step, which are how we map the what we define (“this�
is what a webserver looks like”) to what machines are chosen to fulfill those instructions.�

Node definitions look just like classes, including supporting inheritance, but they are special in that�
when a node (a managed computer running the Puppet client) connects to the Puppet master
daemon, its name will be looked for in the list of defined nodes. �The information found for the
node will then be evaluated for that node, and then node will be sent that configuration.�

Node names can be the short host name, or the fully qualified domain name (FQDN). �Some names,
especially fully qualified ones, need to be quoted, so it is a best practice to quote all of them. Hereʼs�
an example:

				node	'www.testing.com'	{
							include	common
							include	apache,	squid
				}

The previous node definition creates a node called �www.testing.com and includes the common,
apache and squid classes.

You can also specify that multiple nodes receive an identical configuration by separating each with�
a comma:

				node	'www.testing.com',	'www2.testing.com',	'www3.testing.com'	{
							include	common
							include	apache,	squid
				}

The previous examples creates three identical nodes: www.testing.com, www2.testing.com, and
www3.testing.com.

MATCHING NODES WITH REGULAR EXPRESSIONS

In Puppet 0.25.0 and later, nodes can also be matched by regular expressions, which is much more
convenient than listing them individually, one-by-one:

				node	/^www\d+$/	{
								include	common
				}

The above would match any host called www and ending with one or more digits. Hereʼs another
example:

Puppet Documentation • Language Guide 161/311

				node	/^(foo|bar)\.testing\.com$/	{
								include	common
				}

The above example would match either host foo or bar in the testing.com domain.

What happens if there are multiple regular expressions or node definitions set in the same file?��

If there is a node without a regular expression that matches the current client connecting, that
will be used first.�
Otherwise the first matching regular expression wins.�

NODE INHERITANCE

Nodes support a limited inheritance model. Like classes, nodes can only inherit from one other
node:

				node	'www2.testing.com'	inherits	'www.testing.com'	{
								include	loadbalancer
				}

In this node definition the �www2.testing.com inherits any configuration specified for the��
www.testing.com node in addition to including the loadbalancer class. In other words, it does
everything “www.testing.com” does, but also takes on some additional functionality.
DEFAULT NODES

If you create a node named default, the node configuration for default will be used if no other�
node matches are found.
EXTERNAL NODES

In some cases you may already have an external list of machines and what roles they perform. This
may be in LDAP, version control, or a database. You may also need to pass some variables to those
nodes (more on variables later).

In these cases, writing an External Nodes script can help, and that can take the place of your node
definitions. �See that section for more information.

Additional Language Features
Weʼve already gone over features such as ordering and grouping, though thereʼs still a few more
things to learn.

Puppet is not a programming language, it is a way of describing your IT infrastructure as a model.
This is usually quite sufficient to get the job done, and prevents you from having to write a lot of��
programming code.

Quoting

Most of the time, you donʼt have to quote strings in Puppet. Any alphanumeric string starting with a
letter (hyphens are also allowed), can leave out the quotes, though itʼs a best practice to quote
strings for any non-native value.

Puppet Documentation • Language Guide 162/311

Variable Interpolation With Quotes

So far, weʼve mentioned variables in terms of defines. �If you need to use those variables within a
string, use double quotes, not single quotes. Single-quoted strings will not do any variable
interpolation, double-quoted strings will. Variables in strings can also be bracketed with {} which
makes them easier to use together, and also a bit cleaner to read:

				$value	=	"${one}${two}"

To put a quote character or $ in a double-quoted string where it would normally have a special
meaning, precede it with an escaping \. For an actual \, use \\.

We recommend using single quotes for all strings that do not require variable interpolation. Use
double quotes for those strings that require variable interpolation.

Capitalization

Capitalization of resources is used in three major ways:

Referencing: when you want to reference an already declared resource, usually for dependency
purposes, you have to capitalize the name of the resource, for example

				`require	=>	File[sshdconfig]`.

Inheritance. When overwriting the resource settings of a parent class from a subclass, use the
uppercase versions of the resource names. Using the lowercase versions will result in an error.
See the inheritance section above for an example of this.
Setting default attribute values: Resource Defaults. As mentioned previously, using a capitalized
resource with no title works to set the defaults for that resource. Our previous example was
setting the default path for command executions.

Arrays

As mentioned in the class and resource examples above, Puppet allows usage of arrays in various
areas. Arrays defined in puppet look like this:�

				['one',	'two',	'three']

You can access array entries by their index, for example:

				$foo	=	['one',	'two',	'three']
				notice	$foo[1]

Would return two.

Several type members, such as ʻaliasʼ in the ʻhostʼ definition accept arrays as their value. A host�
resource with multiple aliases would look like this:
Puppet Documentation • Language Guide 163/311

				host	{	'one.example.com':
								alias		=>	['satu',	'dua',	'tiga'],
								ip					=>	'192.168.100.1',
								ensure	=>	present,
				}

This would add a host ʻone.example.comʼ to the hosts list with the three aliases ʻsatuʼ, ʻduaʼ, and
ʻtigaʼ.

Or, for example, if you want a resource to require multiple other resources, the way to do this
would be like this:

				resource	{	'baz':
								require		=>	[Package['foo'],	File['bar']],
				}

Another example for array usage is to call a custom defined resource multiple times, like this:�

				define	php::pear()	{
								package	{	"`php-${name}":	ensure	=>	installed	}
				}

				php::pear	{	['ldap',	'mysql',	'ps',	'snmp',	'sqlite',	'tidy',	'xmlrpc']:	}

Of course, this can be used for native types as well:

				file	{	['foo',	'bar',	'foobar']:
								owner	=>	root,
								group	=>	root,
								mode		=>	600,
				}

Hashes

Since Puppet version 2.6.0, hashes have been supported in the language. These hashes are defined�
like Ruby hashes using the form:

				{	key1	=>	val1,	key2	=>	val2,	...	}

The hash keys are strings, but hash values can be any possible RHS values allowed in the language
like function calls, variables, etc.

It is possible to assign hashes to a variable like so:

				$myhash	=	{	key1	=>	"myval",	key2	=>	$b	}

And to access hash members (recursively) from a variable containing a hash (this also works for

Puppet Documentation • Language Guide 164/311

arrays too):

				$myhash	=	{	key	=>	{	subkey	=>	"b"	}}
				notice($myhash[key][subkey])

You can also use a hash member as a resource title, as a default definition parameter, or potentially�
as the value of a resource parameter,

Variables

Puppet supports variables like most other languages you may be familiar with. Puppet variables are
denoted with $:

				$content	=	'some	content\n'

				file	{	'/tmp/testing':	content	=>	$content	}

Puppet language is a declarative language, which means that its scoping and assignment rules are
somewhat different than a normal imperative language. The primary difference is that you cannot��
change the value of a variable within a single scope, because that would rely on order in the file to�
determine the value of the variable. Order does not matter in a declarative language. Doing so will
result in an error:

				$user	=	root
				file	{	'/etc/passwd':
								owner	=>	$user,
				}
				$user	=	bin
				file	{	'/bin':
								owner			=>	$user,
								recurse	=>	true,
				}

Rather than reassigning variables, instead use the built in conditionals:

				$group	=	$operatingsystem	?	{
								solaris	=>	'sysadmin',
								default	=>	'wheel',
				}

A variable may only be assigned once per scope. However you still can set the same variable in non-
overlapping scopes. For example, to set top-level configuration values:�

				node	a	{
								$setting	=	'this'
								include	class_using_setting
				}
				node	b	{
								$setting	=	'that'
								include	class_using_setting

Puppet Documentation • Language Guide 165/311

				}

In the above example, nodes “a” and “b” have different scopes, so this is not reassignment of the�
same variable.
VARIABLE SCOPE

Scoping may initially seem like a foreign concept, though in reality it is pretty simple. A scope
defines where a variable is valid. �Unlike early programming languages like BASIC, variables are only
valid and accessible in certain places in a program. Using the same variable name in different parts�
of the language do not refer to the same value.

Classes and nodes introduce new scopes. Puppet is currently dynamically scoped, which means that
scope hierarchies are created based on where the code is evaluated instead of where the code is
defined.�

For example:

				$test	=	'top'
				class	myclass	{
								exec	{	"/bin/echo	$test":	logoutput	=>	true	}
				}

				class	other	{
								$test	=	'other'
								include	myclass
				}

				include	other

In this case, thereʼs a top-level scope, a new scope for other, and the a scope below that for
myclass. When this code is evaluated, $test evaluates to other, not top.

QUALIFIED VARIABLES

Puppet supports qualification of variables inside a class. This allows you to use variables defined in��
other classes.

For example:

				class	myclass	{
								$test	=	'content'
				}

				class	anotherclass	{
								$other	=	$myclass::test
				}

In this example, the value of the $other variable evaluates to content. Qualified variables are read-�
only — you cannot set a variableʼs value from other class.

Variable qualification is dependent on the evaluation order of your classes. Class �myclass must be
evaluated before class anotherclass for variables to be set correctly.

Puppet Documentation • Language Guide 166/311

FACTS AS VARIABLES

In addition to user-defined variables, the facts generated by Facter are also available as variables.�
This allows values that you would see by running facter on a client system within Puppet manifests
and also within Puppet templates. To use a fact as a variable prefix the name of the fact with �$. For
example, the value of the operatingsystem and puppetversion facts would be available as the
variables $operatingsystem and $puppetversion.

VARIABLE EXPRESSIONS

In Puppet 0.24.6 and later, arbitrary expressions can be assigned to variables, for example:

				$inch_to_cm	=	2.54
				$rack_length_cm	=	19	*	$inch_to_cm
				$gigabyte	=	1024	*	1024	*	1024
				$can_update	=	($ram_gb	*	$gigabyte)	>	1	<<	24

See the Expression section later on this page for further details of the expressions that are now
available.
APPENDING TO VARIABLES

In Puppet 0.24.6 and later, values can be appended to array variables:

				$ssh_users	=	['myself',	'someone']

				class	test	{
							$ssh_users	+=	['someone_else']
				}

Here the $ssh_users variable contains an array with the elements myself and someone. Using the
variable append syntax, +=, we added another element, someone_else to the array.

Please note, variables cannot be modified in the same scope because of the declarative nature of�
Puppet. As a result, $ssh_users contains the element ʻsomeone_elseʼ only in the scope of class test
and not outside scopes. Resources outside of this scope will “see” the original array containing only
myself and someone.

Conditionals

At some point youʼll need to use a different value based on the value of a variable, or decide to not�
do something if a particular value is set.

Puppet currently supports two types of conditionals:

The selector which can be used within resources and variable assignments to pick the correct
value for an attribute, and
statement conditionals which can be used more widely in your manifests to include additional
classes, define distinct sets of resources within a class, or make other structural decisions.�

Case statements do not return a value. Selectors do. That is the primary difference between them�
and why you would use one and not the other.

Puppet Documentation • Language Guide 167/311

SELECTORS

If youʼre familiar with programming terms, The selector syntax works like a multi-valued trinary
operator, similar to Cʼs foo	=	bar	?	1	:	0 operator where foo will be set to 1 if bar evaluates to
true and 0 if bar is false.

Selectors are useful to specify a resource attribute or assign a variable based on a fact or another
variable. In addition to any number of specified values, selectors also allow you to specify a default�
if no value matches; if no default is supplied and a selector fails to match, it will result in a parse
error.

Hereʼs a simple example of selector use:

				file	{	'/etc/config':
								owner	=>	$operatingsystem	?	{
												'sunos'			=>	'adm',
												'redhat'		=>	'bin',
												default	=>	undef,
								},
				}

If the $operatingsystem fact (sent up from ʻfacterʼ) returns sunos or redhat then the ownership of
the file is set to �adm or bin respectively. Any other result and the owner attribute will not be set,
because it is listed as undef.

Remember to quote the comparators youʼre using in the selector as the lack of quotes can cause
syntax errors.

Selectors can also be used in variable assignment:

				$owner	=	$operatingsystem	?	{
								sunos			=>	'adm',
								redhat		=>	'bin',
								default	=>	undef,
				}

In Puppet 0.25.0 and later, selectors can also be used with regular expressions:

				$owner	=	$operatingsystem	?	{
								/(redhat|debian)/			=>	'bin',
								default	=>	undef,
				}

In this last example, if $operatingsystem value matches either redhat or debian, then bin will be
the selected result, otherwise the owner will not be set (undef).

Like Perl and some other languages with regular expression support, captures in selector regular
expressions automatically create some limited scope variables ($0 to $n):

				$system	=	$operatingsystem	?	{

Puppet Documentation • Language Guide 168/311

								/(redhat|debian)/			=>	"our	system	is	$1",
								default	=>	"our	system	is	unknown",
				}

In this last example, $1 will get replaced by the content of the capture (here either redhat or
debian).

The variable $0 will contain the whole match.

CASE STATEMENT

Case is the other form of Puppetʼs two conditional statements, which can be wrapped around any
Puppet code to add decision-making logic to your manifests. Case statements, unlike selectors, do
not return a value. Also unlike selectors, a failed match without a default specified will simply skip�
the case statement instead of throwing a parse error. A common use for the case statement is to
apply different classes to a particular node based on its operating system:�

				case	$operatingsystem	{
								sunos:			{	include	solaris	}	#	apply	the	solaris	class
								redhat:		{	include	redhat		}	#	apply	the	redhat	class
								default:	{	include	generic	}	#	apply	the	generic	class
				}

Case statements can also specify multiple match conditions by separating each with a comma:

				case	$hostname	{
								jack,jill:						{	include	hill				}	#	apply	the	hill	class
								humpty,dumpty:		{	include	wall				}	#	apply	the	wall	class
								default:								{	include	generic	}	#	apply	the	generic	class
				}

Here, if the $hostname fact returns either jack or jill the hill class would be included.

In Puppet 0.25.0 and later, the case statement also supports regular expressions:

				case	$hostname	{
								/^j(ack|ill)$/:			{	include	hill				}	#	apply	the	hill	class
								/^[hd]umpty$/:				{	include	wall				}	#	apply	the	wall	class
								default:										{	include	generic	}	#	apply	the	generic	class
				}

In this last example, if $hostname matches either jack or jill, then the hill class will be included.
But if $hostname matches either humpty or dumpty, then the wall class will be included.

As with selectors (see above), regular expressions captures are also available. These create limited
scope variables $0 to $n:

				case	$hostname	{
								/^j(ack|ill)$/:			{	notice("Welcome	$1!")	}
								default:										{	notice("Welcome	stranger")	}

Puppet Documentation • Language Guide 169/311

				}

In this last example, if $host is jack or jill then a notice message will be logged with $1 replaced
by either ack or ill. $0 contains the whole match.

IF/ELSE STATEMENT

The if/else provides branching options based on the truth value of a variable:

				if	$variable	{
								file	{	'/some/file':	ensure	=>	present	}
				}	else	{
								file	{	'/some/other/file':	ensure	=>	present	}
				}

In Puppet 0.24.6 and later, the if statement can also branch based on the value of an expression:

				if	$server	==	'mongrel'	{
								include	mongrel
				}	else	{
								include	nginx
				}

In the above example, if the value of the variable $server is equal to mongrel, Puppet will include
the class mongrel, otherwise it will include the class nginx.

From version 2.6.0 and later an elsif construct was introduced into the language:

				if	$server	==	'mongrel'	{
								include	mongrel
				}	elsif	$server	==	'nginx'	{
								include	nginx
				}	else	{
								include	thin
				}

Arithmetic expressions are also possible, for example:

				if	$ram	>	1024	{
								$maxclient	=	500
				}

In the previous example if the value of the variable $ram is greater than 1024, Puppet will set the
value of the $maxclient variable to 500.

“If” statements also support the use of regular expressions and “in” expressions. More complex
expressions can also be made by combining arbitrary expressions with the Boolean and, or, and
not operators:

Puppet Documentation • Language Guide 170/311

				if	($processor_count	>	2)	and	(($ram	>=	16	*	$gigabyte)	or	($disksize	
>	1000))	{
								include	for_big_irons
				}	else	{
								include	for_small_box
				}

See the Expressions section further down for more information on expressions.

Virtual Resources

See Virtual Resources.

Virtual resources are available in Puppet 0.20.0 and later.

Virtual resources are resources that are not sent to the client unless realized.

The syntax for a virtual resource is:

				@user	{	luke:	ensure	=>	present	}

The user luke is now defined virtually. To realize that definition, you can use a ��collection:

				User	<|	title	==	luke	|>

This can be read as ʻthe user whose title is lukeʼ. This is equivalent to using the realize function:

				realize	User[luke]

Realization could also use other criteria, such as realizing Users that match a certain group, or
using a metaparameter like ʻtagʼ.

The motivation for this feature is somewhat complicated; please see the Virtual Resources page for
more information.

Exported Resources

Exported resources are an extension of virtual resources used to allow different hosts managed by�
Puppet to influence each otherʼs Puppet configuration. ��This is described in detail on the Exported
Resources page. As with virtual resources, new syntax was added to the language for this purpose.

The key syntactical difference between virtual and exported resources is that the special sigils (@�
and <| |>) are doubled (@@ and «| |>>) when referring to an exported resource.

Here is an example with exported resources that shares SSH keys between clients:

				class	ssh	{
				@@sshkey	{	$hostname:	type	=>	dsa,	key	=>	$sshdsakey	}
								Sshkey	<<|	|>>
				}

Puppet Documentation • Language Guide 171/311

In the above example, notice that fulfillment and exporting are used together, so that any node that�
gets the ʻsshkeyʼ class will have all the ssh keys of other hosts. This could be done differently so�
that the keys could be realized on different hosts.�

To actually work, the storeconfig parameter must be set to true in puppet.conf. This allows
configurations from client to be stored on the central server.�

The details of this feature are somewhat complicated; see the Exported Resources page for more
information.

Reserved Words & Acceptable Characters

Variable names can include alphanumeric characters and underscores, and are case-sensitive.

Class names, module names, and the names of defined and custom resource types should be�
restricted to lowercase alphanumeric characters and underscores, and should begin with a
lowercase letter; that is, they should match the expression [a-z][a-z0-9_]*. Although some
names that violate these restrictions currently work, using them is not recommended.

Class and defined resource type names can use �:: as a namespace separator, which is both
semantically useful and a means of directing the behavior of the module autoloader. The final�
segment of a qualified variable� name must obey the restrictions on variable names, and the
preceding segments must obey the restrictions on class names.

Parameters used in parameterized classes and defined resource types can include alphanumeric�
characters and underscores, cannot begin with an underscore, and are case-sensitive. In practice,
they should be treated as though they were under the same restrictions as class names in order to
maximize future compatibility.

There is no practical restriction on resource names.

Any word that the syntax uses for special meaning is a reserved word, meaning you cannot use it
for variable or type names. Words like true, define, inherits, and class are all reserved. If you
ever need to use a reserved word as a value, be sure to quote it.

Comments

Puppet supports two types of comments:

Unix shell style comments; they can either be on their own line or at the end of a line.
multi-line C-style comments (available in Puppet 0.24.7 and later)

Here is a shell style comment:

				#	this	is	a	comment

You can see an example of a multi-line comment:

				/*
				this	is	a	comment

Puppet Documentation • Language Guide 172/311

				*/

Expressions
Starting with version 0.24.6 the Puppet language supports arbitrary expressions in if statement
boolean tests and in the right hand value of variable assignments.

Puppet expressions can be composed of:

boolean expressions, which are combination of other expressions combined by boolean
operators (and, or and not)
comparison expressions, which consist of variables, numerical operands or other expressions
combined with comparison operators (==, !=, <, >, <=, >, >=)
arithmetic expressions, which consists of variables, numerical operands or other expressions
combined with the following arithmetic operators: +, -, /, *, <<, >>
in Puppet 0.25.0 and later, regular expression matches with the help of the regex match
operator: =~ and !~
in Puppet 2.6.0 and later, in expressions, which test whether the right operand contains the left
operand.

Expressions can be enclosed in parenthesis, (), to group expressions and resolve operator
ambiguity.

Operator precedence

The Puppet operator precedence conforms to the standard precedence in most systems, from
highest to lowest:

!	->	not
*	/	->	times	and	divide
-	+	->	minus,	plus
<<	>>	->	left	shift	and	right	shift
==	!=	->	not	equal,	equal
>=	<=	>	<	->	greater	equal,	less	or	equal,	greater	than,	less	than
and
or

Expression examples
COMPARISON EXPRESSIONS

Comparison expressions include tests for equality using the == expression:

				if	$variable	==	'foo'	{
								include	bar
				}	else	{
								include	foobar
				}

Here if $variable has a value of foo, Puppet will then include the bar class, otherwise it will include

Puppet Documentation • Language Guide 173/311

the foobar class.

Here is another example shows the use of the != (ʻnot equalʼ) comparison operator:

				if	$variable	!=	'foo'	{
								$othervariable	=	'bar'
				}	else	{
								$othervariable	=	'foobar'
				}

In our second example if $variable is not equal to a value of foo, Puppet will then set the value of
the $othervariable variable to bar, otherwise it will set the $othervariable variable to foobar.

Note that comparison of strings is case-insensitive.
ARITHMETIC EXPRESSIONS

You can also perform a variety of arithmetic expressions, for example:

				$one	=	1
				$one_thirty	=	1.30
				$two	=	2.034e-2

				$result	=	((($two	+	2)	/	$one_thirty)	+	4	*	5.45)	-	(6	<<	($two	+	4))	+	
(0x800	+	-9)

BOOLEAN EXPRESSIONS

Boolean expressions are also possible using or, and and not:

				$one	=	1
				$two	=	2
				$var	=	($one	<	$two)	and	($one	+	1	==	$two)

The exclamation mark (!) can be used as a synonym for not.

REGULAR EXPRESSIONS

In Puppet 0.25.0 and later, Puppet supports regular expression matching using =~ (match) and !~
(not-match) for example:

				if	$host	=~	/^www(\d+)\./	{
								notice('Welcome	web	server	#$1')
				}

Like case and selectors, the regex match operators create limited scope variables for each regex
capture. In the previous example, $1 will be replaced by the number following www in $host. Those
variables are valid only for the statements inside the braces of the if clause.
“IN” EXPRESSIONS

From Puppet 2.6.0, Puppet supports an “in” syntax. This operator allows you to find if the left�
operand is in the right one. The left operand must be a string, but the right operand can be:

Puppet Documentation • Language Guide 174/311

a string
an array
a hash (the search is done on the keys)

This syntax can be used in any place where an expression is supported:

				$eatme	=	'eat'
				if	$eatme	in	['ate',	'eat']	{
				...
				}

				$value	=	'beat	generation'
				if	'eat'	in	$value	{
						notice("on	the	road")
				}

Like other expressions, “in” expressions can be combined or negated with boolean operators:

				if	!	($eatme	in	['ate',	'eat'])	{	...	}

Backus Naur Form

Weʼve already covered the list of operators, though if you wish to see it, hereʼs the available
operators in Backus Naur Form:

<exp>	::=		<exp>	<arithop>	<exp>
									|	<exp>	<boolop>	<exp>
									|	<exp>	<compop>	<exp>
									|	<exp>	<matchop>	<regex>
									|	!	<exp>
									|	-	<exp>
									|	"("	<exp>	")"
									|	<rightvalue>

<arithop>	::=	"+"	|	"-"	|	"/"	|	"*"	|	"<<"	|	">>"
<boolop>		::=	"and"	|	"or"
<compop>		::=	"=="	|	"!="	|	">"	|	">="	|	"<="	|	"<"
<matchop>		::=	"=~"	|	"!~"

<rightvalue>	::=	<variable>	|	<function-call>	|	<literals>
<literals>	::=	<float>	|	<integer>	|	<hex-integer>	|	<octal-integer>	|	<quoted-
string>
<regex>	::=	'/regex/'

Functions
Puppet supports many built in functions; see the Function Reference for details — see Custom
Functions for information on how to create your own custom functions.

Some functions can be used as a statement:

Puppet Documentation • Language Guide 175/311

				notice('Something	weird	is	going	on')

(The notice function above is an example of a function that will log on the server)

Or without parentheses:

				notice	'Something	weird	is	going	on'

Some functions instead return a value:

				file	{	'/my/file':	content	=>	template('mytemplate.erb')	}

All functions run on the Puppet master, so you only have access to the file system and resources on�
that host from your functions. The only exception to this is that the value of any Facter facts that
have been sent to the master from your clients are also at your disposal. See the Tools Guide for
more information about these components.

Importing Manifests
Puppet has an import keyword for importing other manifests. Code in those external manifests
should always be stored in a class or defined resource type, or else it will be imported into the main�
scope and applied to all nodes. Currently files are only searched for within the same directory as�
the file doing the importing.�

Files can also be imported using globbing, as implemented by Rubyʼs Dir.glob method:

				import	'classes/*.pp'
				import	'packages/[a-z]*.pp'

Best practices calls for organizing manifests into Modules

Handling Compilation Errors
Puppet does not use manifests directly, it compiles them down to a internal format that the clients
can understand.

By default, when a manifest fails to compile, the previously compiled version of the Puppet manifest
is used instead.

This behavior is governed by a setting in puppet.conf called usecacheonfailure and is set by
default to true.

This may result in surprising behaviour if you are editing complex configurations.�

Running the Puppet client with --no-usecacheonfailure or with --test, or setting
usecacheonfailure	=	false in the configuration file, will disable this behaviour.��

Puppet Documentation • Language Guide 176/311

Puppet Application Manpages
View documentation for each of the Puppet executables.

puppet agent
puppet apply
puppet cert
puppet describe
puppet device
puppet doc
puppet filebucket�
puppet inspect
puppet kick
puppet master
puppet queue
puppet resource

puppet agent Manual Page
NAME
puppet-agent - The puppet agent daemon

SYNOPSIS
Retrieves the client configuration from the puppet master and applies it to the local host.�

This service may be run as a daemon, run periodically using cron (or something similar), or run
interactively for testing purposes.

USAGE
puppet agent [-D|--daemonize|--no-daemonize] [-d|--debug] [--detailed-exitcodes] [--disable]
[--enable] [-h|--help] [--certname host name] [-l|--logdest syslog|file�|console] [-o|--onetime] [-
-serve handler] [-t|--test] [--noop] [--digest digest] [--fingerprint] [-V|--version] �[-v|--verbose]
[-w|--waitforcert seconds]

DESCRIPTION
This is the main puppet client. Its job is to retrieve the local machine's configuration from a remote�
server and apply it. In order to successfully communicate with the remote server, the client must
have a certificate signed by a certificate authority that the server trusts; the recommended method��
for this, at the moment, is to run a certificate authority as part of the puppet server (which is the�
default). The client will connect and request a signed certificate, and will continue connecting until�

Puppet Documentation • Puppet Application Manpages 177/311

it receives one.

Once the client has a signed certificate, it will retrieve its configuration and apply it.��

USAGE NOTES
'puppet agent' does its best to find a compromise between interactive use and daemon use. Run�
with no arguments and no configuration, it will go into the background, attempt to get a signed�
certificate, and retrieve and apply its configuration every 30 minutes.��

Some flags are meant specifically for interactive use -- in particular, 'test', 'tags' or 'fingerprint' are���
useful. 'test' enables verbose logging, causes the daemon to stay in the foreground, exits if the
server's configuration is invalid (this happens if, for instance, you've left a syntax error on the�
server), and exits after running the configuration once (rather than hanging around as a long-�
running process).

'tags' allows you to specify what portions of a configuration you want to apply. Puppet elements are�
tagged with all of the class or definition names that contain them, and you can use the 'tags' flag to��
specify one of these names, causing only configuration elements contained within that class or�
definition to be applied. This is very useful when you are testing new configurations -- for instance,��
if you are just starting to manage 'ntpd', you would put all of the new elements into an 'ntpd' class,
and call puppet with '--tags ntpd', which would only apply that small portion of the configuration�
during your testing, rather than applying the whole thing.

'fingerprint' is a one-time flag. In this mode 'puppet agent' will run once and display on the console��
(and in the log) the current certificate (or certificate request) fingerprint. Providing the '--digest'���
option allows to use a different digest algorithm to generate the fingerprint. The main use is to��
verify that before signing a certificate request on the master, the certificate request the master��
received is the same as the one the client sent (to prevent against man-in-the-middle attacks when
signing certificates).�

OPTIONS
Note that any configuration parameter that's valid in the configuration file is also a valid long���
argument. For example, 'server' is a valid configuration parameter, so you can specify '--server�
servername' as an argument.

See the configuration file documentation at��
http://docs.puppetlabs.com/references/stable/configuration.html for the full list of acceptable�
parameters. A commented list of all configuration options can also be generated by running puppet�
agent with '--genconfig'.�

--daemonize
Send the process into the background. This is the default.
--no-daemonize
Do not send the process into the background.
--debug
Enable full debugging.
--digest
Change the certificate fingerprinting digest algorithm. The default is MD5. Valid values depends��

Puppet Documentation • Puppet Application Manpages 178/311

on the version of OpenSSL installed, but should always at least contain MD5, MD2, SHA1 and
SHA256.
--detailed-exitcodes
Provide transaction information via exit codes. If this is enabled, an exit code of '2' means there
were changes, and an exit code of '4' means that there were failures during the transaction. This
option only makes sense in conjunction with --onetime.
--disable
Disable working on the local system. This puts a lock file in place, causing 'puppet agent' not to�
work on the system until the lock file is removed. This is useful if you are testing a configuration��
and do not want the central configuration to override the local state until everything is tested�
and committed.

'puppet agent' uses the same lock file while it is running, so no more than one 'puppet agent'�
process is working at a time.

'puppet agent' exits after executing this.
--enable
Enable working on the local system. This removes any lock file, causing 'puppet agent' to start�
managing the local system again (although it will continue to use its normal scheduling, so it
might not start for another half hour).

'puppet agent' exits after executing this.
--certname
Set the certname (unique ID) of the client. The master reads this unique identifying string, which
is usually set to the node's fully-qualified domain name, to determine which configurations the��
node will receive. Use this option to debug setup problems or implement unusual node
identification schemes.�
--help
Print this help message
--logdest
Where to send messages. Choose between syslog, the console, and a log file. Defaults to sending�
messages to syslog, or the console if debugging or verbosity is enabled.
--no-client
Do not create a config client. This will cause the daemon to run without ever checking for its�
configuration automatically, and only makes sense�
--onetime
Run the configuration once. Runs a single (normally daemonized) Puppet run. Useful for�
interactively running puppet agent when used in conjunction with the --no-daemonize option.
--fingerprint�
Display the current certificate or certificate signing request fingerprint and then exit. Use the '--���
digest' option to change the digest algorithm used.
--serve
Start another type of server. By default, 'puppet agent' will start a service handler that allows
authenticated and authorized remote nodes to trigger the configuration to be pulled down and�
applied. You can specify any handler here that does not require configuration, e.g., filebucket,��
ca, or resource. The handlers are in 'lib/puppet/network/handler', and the names must match
exactly, both in the call to 'serve' and in 'namespaceauth.conf'.
--test
Enable the most common options used for testing. These are 'onetime', 'verbose', 'ignorecache',
'no-daemonize', 'no-usecacheonfailure', 'detailed-exit-codes', 'no-splay', and 'show_diff'.�
--noop
Use 'noop' mode where the daemon runs in a no-op or dry-run mode. This is useful for seeing

Puppet Documentation • Puppet Application Manpages 179/311

Use 'noop' mode where the daemon runs in a no-op or dry-run mode. This is useful for seeing
what changes Puppet will make without actually executing the changes.
--verbose
Turn on verbose reporting.
--version
Print the puppet version number and exit.
--waitforcert
This option only matters for daemons that do not yet have certificates and it is enabled by�
default, with a value of 120 (seconds). This causes 'puppet agent' to connect to the server every 2
minutes and ask it to sign a certificate request. This is useful for the initial setup of a puppet�
client. You can turn off waiting for certificates by specifying a time of 0.��

EXAMPLE
$	puppet	agent	--server	puppet.domain.com

AUTHOR
Luke Kanies

COPYRIGHT
Copyright (c) 2011 Puppet Labs, LLC Licensed under the Apache 2.0 License

puppet apply Manual Page
NAME
puppet-apply - Apply Puppet manifests locally

SYNOPSIS
Applies a standalone Puppet manifest to the local system.

USAGE
puppet apply [-h|--help] [-V|--version] [-d|--debug] [-v|--verbose] [-e|--execute] [--detailed-
exitcodes] [-l|--logdest file�] [--apply catalog] file�

DESCRIPTION
This is the standalone puppet execution tool; use it to apply individual manifests.

When provided with a modulepath, via command line or config file, puppet apply can effectively���
mimic the catalog that would be served by puppet master with access to the same modules,
although there are some subtle differences. When combined with scheduling and an automated�
system for pushing manifests, this can be used to implement a serverless Puppet site.

Puppet Documentation • puppet apply Manual Page 180/311

Most users should use 'puppet agent' and 'puppet master' for site-wide manifests.

OPTIONS
Note that any configuration parameter that's valid in the configuration file is also a valid long���
argument. For example, 'modulepath' is a valid configuration parameter, so you can specify '--tags�
class,tag' as an argument.

See the configuration file documentation at��
http://docs.puppetlabs.com/references/stable/configuration.html for the full list of acceptable�
parameters. A commented list of all configuration options can also be generated by running puppet�
with '--genconfig'.�

--debug
Enable full debugging.
--detailed-exitcodes
Provide transaction information via exit codes. If this is enabled, an exit code of '2' means there
were changes, and an exit code of '4' means that there were failures during the transaction.
--help
Print this help message
--loadclasses
Load any stored classes. 'puppet agent' caches configured classes (usually at�
/etc/puppet/classes.txt), and setting this option causes all of those classes to be set in your
puppet manifest.
--logdest
Where to send messages. Choose between syslog, the console, and a log file. Defaults to sending�
messages to the console.
--execute
Execute a specific piece of Puppet code�
--verbose
Print extra information.
--apply
Apply a JSON catalog (such as one generated with 'puppet master --compile'). You can either
specify a JSON file or pipe in JSON from standard input.�

EXAMPLE
$	puppet	apply	-l	/tmp/manifest.log	manifest.pp
$	puppet	apply	--modulepath=/root/dev/modules	-e	"include	ntpd::server"

AUTHOR
Luke Kanies

COPYRIGHT
Copyright (c) 2011 Puppet Labs, LLC Licensed under the Apache 2.0 License

Puppet Documentation • puppet apply Manual Page 181/311

puppet cert Manual Page
NAME
puppet-cert - Manage certificates and requests�

SYNOPSIS
Standalone certificate authority. Capable of generating certificates, but mostly used for signing��
certificate requests from puppet clients.�

USAGE
puppet cert action [-h|--help] [-V|--version] [-d|--debug] [-v|--verbose] [--digest digest] [host]

DESCRIPTION
Because the puppet master service defaults to not signing client certificate requests, this script is�
available for signing outstanding requests. It can be used to list outstanding requests and then
either sign them individually or sign all of them.

ACTIONS
Every action except 'list' and 'generate' requires a hostname to act on, unless the '--all' option is
set.

clean
Revoke a host's certificate (if applicable) and remove all files related to that host from puppet��
cert's storage. This is useful when rebuilding hosts, since new certificate signing requests will�
only be honored if puppet cert does not have a copy of a signed certificate for that host. If '--all'�
is specified then all host certificates, both signed and unsigned, will be removed.��
fingerprint�
Print the DIGEST (defaults to md5) fingerprint of a host's certificate.��
generate
Generate a certificate for a named client. A certificate/keypair will be generated for each client��
named on the command line.
list
List outstanding certificate requests. If '--all' is specified, signed certificates are also listed,���
prefixed by '+', and revoked or invalid certificates are prefixed by '-' (the verification outcome is����
printed in parenthesis).
print
Print the full-text version of a host's certificate.�
revoke
Revoke the certificate of a client. The certificate can be specified either by its serial number���
(given as a decimal number or a hexadecimal number prefixed by '0x') or by its hostname. The�
certificate is revoked by adding it to the Certificate Revocation List given by the 'cacrl'��
configuration option. Note that the puppet master needs to be restarted after revoking�
certificates.�
sign
Sign an outstanding certificate request.�

Puppet Documentation • puppet cert Manual Page 182/311

verify
Verify the named certificate against the local CA certificate.��

OPTIONS
Note that any configuration parameter that's valid in the configuration file is also a valid long���
argument. For example, 'ssldir' is a valid configuration parameter, so you can specify '--ssldir�
directory' as an argument.

See the configuration file documentation at��
http://docs.puppetlabs.com/references/stable/configuration.html for the full list of acceptable�
parameters. A commented list of all configuration options can also be generated by running puppet�
cert with '--genconfig'.�

--all
Operate on all items. Currently only makes sense with the 'sign', 'clean', 'list', and 'fingerprint'�
actions.
--digest
Set the digest for fingerprinting (defaults to md5). Valid values depends on your openssl and�
openssl ruby extension version, but should contain at least md5, sha1, md2, sha256.
--debug
Enable full debugging.
--help
Print this help message
--verbose
Enable verbosity.
--version
Print the puppet version number and exit.

EXAMPLE
$	puppet	cert	list
culain.madstop.com
$	puppet	cert	sign	culain.madstop.com

AUTHOR
Luke Kanies

COPYRIGHT
Copyright (c) 2011 Puppet Labs, LLC Licensed under the Apache 2.0 License

puppet describe Manual Page
NAME
puppet-describe - Display help about resource types

Puppet Documentation • puppet describe Manual Page 183/311

SYNOPSIS
Prints help about Puppet resource types, providers, and metaparameters.

USAGE
puppet describe [-h|--help] [-s|--short] [-p|--providers] [-l|--list] [-m|--meta]

OPTIONS
--help
Print this help text
--providers
Describe providers in detail for each type
--list
List all types
--meta
List all metaparameters
--short
List only parameters without detail

EXAMPLE
$	puppet	describe	--list
$	puppet	describe	file	--providers
$	puppet	describe	user	-s	-m

AUTHOR
David Lutterkort

COPYRIGHT
Copyright (c) 2011 Puppet Labs, LLC Licensed under the Apache 2.0 License

puppet device Manual Page
NAME
puppet-device - Manage remote network devices

SYNOPSIS
Retrieves all configurations from the puppet master and apply them to the remote devices�
configured in /etc/puppet/device.conf.�

Currently must be run out periodically, using cron or something similar.

Puppet Documentation • puppet device Manual Page 184/311

USAGE
puppet device [-d|--debug] [--detailed-exitcodes] [-V|--version]

												[-h|--help]	[-l|--logdest	syslog|<file>|console]
												[-v|--verbose]	[-w|--waitforcert	<seconds>]

DESCRIPTION
Once the client has a signed certificate for a given remote device, it will retrieve its configuration��
and apply it.

USAGE NOTES
One need a /etc/puppet/device.conf file with the following content:�

[remote.device.fqdn] type type url url

where: * type: the current device type (the only value at this time is cisco) * url: an url allowing to
connect to the device

Supported url must conforms to: scheme://user:password@hostname/?query

with: * scheme: either ssh or telnet * user: username, can be omitted depending on the
switch/router configuration �* password: the connection password * query: this is device specific.�
Cisco devices supports an enable parameter whose value would be the enable password.

OPTIONS
Note that any configuration parameter that's valid in the configuration file is also a valid long���
argument. For example, 'server' is a valid configuration parameter, so you can specify '--server�
servername' as an argument.

--debug
Enable full debugging.
--detailed-exitcodes
Provide transaction information via exit codes. If this is enabled, an exit code of '2' means there
were changes, and an exit code of '4' means that there were failures during the transaction. This
option only makes sense in conjunction with --onetime.
--help
Print this help message
--logdest
Where to send messages. Choose between syslog, the console, and a log file. Defaults to sending�
messages to syslog, or the console if debugging or verbosity is enabled.
--verbose
Turn on verbose reporting.
--waitforcert
This option only matters for daemons that do not yet have certificates and it is enabled by�
default, with a value of 120 (seconds). This causes +puppet agent+ to connect to the server
every 2 minutes and ask it to sign a certificate request. �This is useful for the initial setup of a
puppet client. You can turn off waiting for certificates by specifying a time of 0.��

Puppet Documentation • puppet device Manual Page 185/311

EXAMPLE
		$	puppet	device	--server	puppet.domain.com

AUTHOR
Brice Figureau

COPYRIGHT
Copyright (c) 2011 Puppet Labs, LLC Licensed under the Apache 2.0 License

puppet doc Manual Page
NAME
puppet-doc - Generate Puppet documentation and references

SYNOPSIS
Generates a reference for all Puppet types. Largely meant for internal Puppet Labs use.

USAGE
puppet doc [-a|--all] [-h|--help] [-o|--outputdir rdoc-outputdir] [-m|--mode text|pdf|rdoc] [-r|-
-reference reference-name] [--charset charset] [manifest-file�]

DESCRIPTION
If mode is not 'rdoc', then this command generates a Markdown document describing all installed
Puppet types or all allowable arguments to puppet executables. It is largely meant for internal use
and is used to generate the reference document available on the Puppet Labs web site.

In 'rdoc' mode, this command generates an html RDoc hierarchy describing the manifests that are in
'manifestdir' and 'modulepath' configuration directives. The generated documentation directory is�
doc by default but can be changed with the 'outputdir' option.

If the command is run with the name of a manifest file as an argument, puppet doc will output a�
single manifest's documentation on stdout.

OPTIONS
--all
Output the docs for all of the reference types. In 'rdoc' modes, this also outputs documentation
for all resources
--help
Print this help message

Puppet Documentation • puppet doc Manual Page 186/311

--outputdir
Specifies the directory where to output the rdoc documentation in 'rdoc' mode.�
--mode
Determine the output mode. Valid modes are 'text', 'pdf' and 'rdoc'. The 'pdf' mode creates PDF
formatted files in the /tmp directory. The default mode is 'text'. In 'rdoc' mode you must provide�
'manifests-path'
--reference
Build a particular reference. Get a list of references by running 'puppet doc --list'.
--charset
Used only in 'rdoc' mode. It sets the charset used in the html files produced.�

EXAMPLE
$	puppet	doc	-r	type	>	/tmp/type_reference.markdown

or

$	puppet	doc	--outputdir	/tmp/rdoc	--mode	rdoc	/path/to/manifests

or

$	puppet	doc	/etc/puppet/manifests/site.pp

or

$	puppet	doc	-m	pdf	-r	configuration

AUTHOR
Luke Kanies

COPYRIGHT
Copyright (c) 2011 Puppet Labs, LLC Licensed under the Apache 2.0 License

puppet filebucket Manual Page�
NAME
puppet-filebucket - Store and retrieve files in a filebucket��

SYNOPSIS
A stand-alone Puppet filebucket client.�

Puppet Documentation • puppet filebucket Manual Page 187/311

USAGE
puppet filebucket �mode [-h|--help] [-V|--version] [-d|--debug] [-v|--verbose] [-l|--local] [-r|--
remote] [-s|--server server] [-b|--bucket directory] file� file� ...

Puppet filebucket can operate in three modes, with only one mode per call:�

backup: Send one or more files to the specified file bucket. Each sent file is ����printed with its resulting
md5 sum.

get: Return the text associated with an md5 sum. The text is printed to stdout, and only one file can�
be retrieved at a time.

restore: Given a file path and an md5 sum, store the content associated with �the sum into the
specified file path. You can specify an entirely new ��path to this argument; you are not restricted to
restoring the content to its original location.

DESCRIPTION
This is a stand-alone filebucket client for sending files to a local or central filebucket.���

Note that 'filebucket' defaults to using a network-based filebucket available on the server named��
'puppet'. To use this, you'll have to be running as a user with valid Puppet certificates. Alternatively,�
you can use your local file bucket by specifying '--local'.�

OPTIONS
Note that any configuration parameter that's valid in the configuration file is also a valid long���
argument. For example, 'ssldir' is a valid configuration parameter, so you can specify '--ssldir�
directory' as an argument.

See the configuration file documentation at��
http://docs.puppetlabs.com/references/stable/configuration.html for the full list of acceptable�
parameters. A commented list of all configuration options can also be generated by running puppet�
with '--genconfig'.�

--debug
Enable full debugging.
--help
Print this help message
--local
Use the local filebucket. This will use the default configuration information.��
--remote
Use a remote filebucket. This will use the default configuration information.��
--server
The server to send the file to, instead of locally.�
--verbose
Print extra information.
--version
Print version information.

EXAMPLE
Puppet Documentation • puppet filebucket Manual Page 188/311

$	puppet	filebucket	backup	/etc/passwd
/etc/passwd:	429b225650b912a2ee067b0a4cf1e949
$	puppet	filebucket	restore	/tmp/passwd	429b225650b912a2ee067b0a4cf1e949

AUTHOR
Luke Kanies

COPYRIGHT
Copyright (c) 2011 Puppet Labs, LLC Licensed under the Apache 2.0 License

puppet inspect Manual Page
NAME
puppet-inspect - Send an inspection report

SYNOPSIS
Prepares and submits an inspection report to the puppet master.

USAGE
puppet inspect

DESCRIPTION
This command uses the cached catalog from the previous run of 'puppet agent' to determine which
attributes of which resources have been marked as auditable with the 'audit' metaparameter. It then
examines the current state of the system, writes the state of the specified resource attributes to a�
report, and submits the report to the puppet master.

Puppet inspect does not run as a daemon, and must be run manually or from cron.

OPTIONS
Any configuration setting which is valid in the configuration file is also a valid long argument, e.g. '-���
-server=master.domain.com'. See the configuration file documentation at��
http://docs.puppetlabs.com/references/latest/configuration.html for the full list of acceptable�
settings.

AUTHOR
Puppet Labs

Puppet Documentation • puppet inspect Manual Page 189/311

COPYRIGHT
Copyright (c) 2011 Puppet Labs, LLC Licensed under the Apache 2.0 License

puppet kick Manual Page
NAME
puppet-kick - Remotely control puppet agent

SYNOPSIS
Trigger a puppet agent run on a set of hosts.

USAGE
puppet kick [-a|--all] [-c|--class class] [-d|--debug] [-f|--foreground] [-h|--help] [--host host] [-
-no-fqdn] [--ignoreschedules] [-t|--tag tag] [--test] [-p|--ping] host [host [...]]

DESCRIPTION
This script can be used to connect to a set of machines running 'puppet agent' and trigger them to
run their configurations. The most common usage would be to specify a class of hosts and a set of�
tags, and 'puppet kick' would look up in LDAP all of the hosts matching that class, then connect to
each host and trigger a run of all of the objects with the specified tags.�

If you are not storing your host configurations in LDAP, you can specify hosts manually.�

You will most likely have to run 'puppet kick' as root to get access to the SSL certificates.�

'puppet kick' reads 'puppet master''s configuration file, so that it can copy things like LDAP settings.��

USAGE NOTES
Puppet kick is useless unless puppet agent is listening for incoming connections and allowing
access to the run endpoint. This entails starting the agent with listen	=	true in its puppet.conf
file, and allowing access to the �/run path in its auth.conf file; see�
http://docs.puppetlabs.com/guides/rest_auth_conf.html for more details.

Additionally, due to a known bug, you must make sure a namespaceauth.conf file exists in puppet�
agent's $confdir. This file will not be consulted, and may be left empty.�

OPTIONS
Note that any configuration parameter that's valid in the configuration file is also a valid long���
argument. For example, 'ssldir' is a valid configuration parameter, so you can specify '--ssldir�
directory' as an argument.

Puppet Documentation • puppet kick Manual Page 190/311

See the configuration file documentation at��
http://docs.puppetlabs.com/references/latest/configuration.html for the full list of acceptable�
parameters. A commented list of all configuration options can also be generated by running puppet�
master with '--genconfig'.�

--all
Connect to all available hosts. Requires LDAP support at this point.
--class
Specify a class of machines to which to connect. This only works if you have LDAP configured, at�
the moment.
--debug
Enable full debugging.
--foreground
Run each configuration in the foreground; that is, when connecting to a host, do not return until�
the host has finished its run. The default is false.�
--help
Print this help message
--host
A specific host to which to connect. This flag can be specified more than once.���
--ignoreschedules
Whether the client should ignore schedules when running its configuration. This can be used to�
force the client to perform work it would not normally perform so soon. The default is false.
--parallel
How parallel to make the connections. Parallelization is provided by forking for each client to
which to connect. The default is 1, meaning serial execution.
--tag
Specify a tag for selecting the objects to apply. Does not work with the --test option.
--test
Print the hosts you would connect to but do not actually connect. This option requires LDAP
support at this point.
--ping
Do a ICMP echo against the target host. Skip hosts that don't respond to ping.

EXAMPLE
$	sudo	puppet	kick	-p	10	-t	remotefile	-t	webserver	host1	host2

AUTHOR
Luke Kanies

COPYRIGHT
Copyright (c) 2011 Puppet Labs, LLC Licensed under the Apache 2.0 License

puppet master Manual Page
NAME
Puppet Documentation • puppet master Manual Page 191/311

puppet-master - The puppet master daemon

SYNOPSIS
The central puppet server. Functions as a certificate authority by default.�

USAGE
puppet master [-D|--daemonize|--no-daemonize] [-d|--debug] [-h|--help] [-l|--logdest
file�|console|syslog] [-v|--verbose] [-V|--version] [--compile node-name]

DESCRIPTION
This command starts an instance of puppet master, running as a daemon and using Ruby's built-in
Webrick webserver. Puppet master can also be managed by other application servers; when this is
the case, this executable is not used.

OPTIONS
Note that any configuration parameter that's valid in the configuration file is also a valid long���
argument. For example, 'ssldir' is a valid configuration parameter, so you can specify '--ssldir�
directory' as an argument.

See the configuration file documentation at��
http://docs.puppetlabs.com/references/stable/configuration.html for the full list of acceptable�
parameters. A commented list of all configuration options can also be generated by running puppet�
master with '--genconfig'.�

--daemonize
Send the process into the background. This is the default.
--no-daemonize
Do not send the process into the background.
--debug
Enable full debugging.
--help
Print this help message.
--logdest
Where to send messages. Choose between syslog, the console, and a log file. Defaults to sending�
messages to syslog, or the console if debugging or verbosity is enabled.
--verbose
Enable verbosity.
--version
Print the puppet version number and exit.
--compile
Compile a catalogue and output it in JSON from the puppet master. Uses facts contained in the
$vardir/yaml/ directory to compile the catalog.

EXAMPLE
puppet master

Puppet Documentation • puppet master Manual Page 192/311

AUTHOR
Luke Kanies

COPYRIGHT
Copyright (c) 2011 Puppet Labs, LLC Licensed under the Apache 2.0 License

puppet queue Manual Page
NAME
puppet-queue - Queuing daemon for asynchronous storeconfigs�

SYNOPSIS
Retrieves serialized storeconfigs records from a queue and processes them in order.�

USAGE
puppet queue [-d|--debug] [-v|--verbose]

DESCRIPTION
This application runs as a daemon and processes storeconfigs data, retrieving the data from a�
stomp server message queue and writing it to a database.

For more information, including instructions for properly setting up your puppet master and
message queue, see the documentation on setting up asynchronous storeconfigs at:�
http://projects.puppetlabs.com/projects/1/wiki/Using_Stored_Configuration�

OPTIONS
Note that any configuration parameter that's valid in the configuration file is also a valid long���
argument. For example, 'server' is a valid configuration parameter, so you can specify '--server�
servername' as an argument.

See the configuration file documentation at��
http://docs.puppetlabs.com/references/stable/configuration.html for the full list of acceptable�
parameters. A commented list of all configuration options can also be generated by running puppet�
queue with '--genconfig'.�

--debug
Enable full debugging.
--help
Print this help message
--verbose
Turn on verbose reporting.
--version

Puppet Documentation • puppet queue Manual Page 193/311

Print the puppet version number and exit.

EXAMPLE
$	puppet	queue

AUTHOR
Luke Kanies

COPYRIGHT
Copyright (c) 2011 Puppet Labs, LLC Licensed under the Apache 2.0 License

puppet resource Manual Page
NAME
puppet-resource - The resource abstraction layer shell

SYNOPSIS
Uses the Puppet RAL to directly interact with the system.

USAGE
puppet resource [-h|--help] [-d|--debug] [-v|--verbose] [-e|--edit] [-H|--host host] [-p|--param
parameter] [-t|--types] type [name] [attribute=value ...]

DESCRIPTION
This command provides simple facilities for converting current system state into Puppet code, along
with some ability to modify the current state using Puppet's RAL.

By default, you must at least provide a type to list, in which case puppet resource will tell you
everything it knows about all resources of that type. You can optionally specify an instance name,
and puppet resource will only describe that single instance.

If given a type, a name, and a series of attribute=value pairs, puppet resource will modify the state
of the specified resource. Alternately, if given a type, a name, and the '--edit' flag, puppet resource��
will write its output to a file, open that file in an editor, and then apply the saved file as a Puppet���
transaction.

OPTIONS
Note that any configuration parameter that's valid in the configuration file is also a valid long���
argument. For example, 'ssldir' is a valid configuration parameter, so you can specify '--ssldir�
Puppet Documentation • puppet resource Manual Page 194/311

directory' as an argument.

See the configuration file documentation at��
http://docs.puppetlabs.com/references/stable/configuration.html for the full list of acceptable�
parameters. A commented list of all configuration options can also be generated by running puppet�
with '--genconfig'.�

--debug
Enable full debugging.
--edit
Write the results of the query to a file, open the file in an editor, and read the file back in as an���
executable Puppet manifest.
--host
When specified, connect to the resource server on the named host and retrieve the list of�
resouces of the type specified.�
--help
Print this help message.
--param
Add more parameters to be outputted from queries.
--types
List all available types.
--verbose
Print extra information.

EXAMPLE
This example uses puppet	resource to return a Puppet configuration for the user �luke:

$	puppet	resource	user	luke
user	{	'luke':
	home	=>	'/home/luke',
	uid	=>	'100',
	ensure	=>	'present',
	comment	=>	'Luke	Kanies,,,',
	gid	=>	'1000',
	shell	=>	'/bin/bash',
	groups	=>	['sysadmin','audio','video','puppet']
}

AUTHOR
Luke Kanies

COPYRIGHT
Copyright (c) 2011 Puppet Labs, LLC Licensed under the Apache 2.0 License

REST Access Control
Learn how to configure access to Puppetʼs REST API using the �rest_authconfig file, a.k.a.�

Puppet Documentation • REST Access Control 195/311

auth.conf. This document is currently being checked for accuracy. If you note any errors, please
email them to faq@puppetlabs.com.

REST
Puppet master and puppet agent communicate with each other over a RESTful network API. By
default, the usage of this API is limited to the standard types of master/agent communications.
However, it can be exposed to other processes and used to build advanced tools on top of Puppetʼs
existing infrastructure and functionality. (REST API calls are formatted as
https://{server}:{port}/{environment}/{resource}/{key}.)

As you might guess, this can be turned into a security hazard, so access to the REST API is strictly
controlled by a special configuration file.��

auth.conf
The official name of the file controlling REST API access, taken from the ���configuration option� that
sets its location, is rest_authconfig, but itʼs more frequently known by its default filename of�
auth.conf. If you donʼt set a different location for it, Puppet will look for the file at��
$confdir/auth.conf.

You cannot configure different environments to use multiple ��rest_authconfig files.�

File Format
The auth.conf file consists of a series of ACLs (Access Control Lists); ACLs should be separated by�
double newlines. Lines starting with # are interpreted as comments.

#	This	is	a	comment
path	/facts
method	find,	search
auth	yes
allow	custominventory.site.net,	devworkstation.site.net

path	/
auth	any
allow	devworkstation.site.net

Due to a known bug, trailing whitespace is not permitted after any line in auth.conf.

ACL format
Each auth.conf ACL is formatted as follows:

path	[~]	{/path/to/resource|regex}
[environment	{list	of	environments}]
[method	{list	of	methods}]
[auth[enthicated]	{yes|no|on|off|any}]
[allow	{hostname|certname|*}]

Puppet Documentation • REST Access Control 196/311

mailto:faq@puppetlabs.com

Lists of values are comma-separated, with an optional space after the comma.

Path

An ACLʼs path is interpreted as either a regular expression (with tilde) or a path prefix (no tilde).�
The root of the path in an ACL is AFTER the environment in a REST API call URL; that is, only put the
/{resource}/{key} portion of the URL in the path. ACLs without a resource path are not permitted.

Environment

The environment directive can contain a single environment or a list. If environment isnʼt explicitly
specified, it will default to all environments.�

Method

Available methods are find, search, save, and destroy; you can specify one method or a list of
them. If method isnʼt explicitly specified, it will default to all methods.�

Auth

Each REST API call is either unauthenticated or authenticated with an SSL certificate; most�
communications between puppet agent and puppet master are authenticated. The value of auth
canʼt be a list; it must be “yes” (or “on”), “no” (or “off”), or “any.”�

Allow

The node or nodes allowed to access this type of request. Can be a hostname, a certificate common�
name, a list of hostnames/certnames, or * (which matches all nodes). If the path for this ACL was a
regular expression, allow directives may include backreferences to captured groups (e.g. $1).

An ACL may include multiple allow directives, which has the same effect as a single �allow directive
with a list. No globbing of hostnames/certnames is available in allow directives. Nodes cannot be
allowed by IP address, unless the nodeʼs IP address is also its certname.

Any nodes which arenʼt specifically allowed to access the resource will be denied.�

Deny

A deny directive is syntactically permitted, but has no effect.�

Matching ACLs to Requests
Puppet composes a full list of ACLs by combining auth.conf with a list of default ACLs. When a
request is received, ACLs are tested in their order of appearance, and matching will stop at the first�
ACL that matches the request.

An ACL matches a request only if its path, environment, method, and authentication all match that
of the request. These four elements are equal peers in determining the match.

Matching Paths

If an ACLʼs path does not start with a tilde and a space, it matches the beginning of the resource
Puppet Documentation • REST Access Control 197/311

path; an ACL with the line:

path	/file

…will match both /file_metadata and /file_content resources.

Regular expression paths donʼt have to match from the beginning of the resource path, but itʼs
good practice to use positional anchors.

path	~	^/catalog/([^/]+)$
method	find
allow	$1

Captured groups from a regex path are available in the allow directive. The ACL above will allow
nodes to retrieve their own catalog but prevent them from accessing other catalogs.

Determining Whether a Request is Allowed

Once an ACL has been determined to match an incoming request, Puppet consults the allow
directive(s). If the request was unauthenticated, reverse DNS is used to determine the requesting
nodeʼs hostname; the request is allowed if that hostname is allowed. If the request was
authenticated, the certificate common name is read from the SSL certificate, and the hostname is��
ignored; the request is allowed if that certname is allowed.

Consequences of ACL Matching Behavior
Since ACLs are matched in linear order, auth.conf has to be manually arranged with the most
specific paths at the top and the least specific paths at the bottom, lest the whole search get short-��
circuited and the (usually restrictive) fallback rule be applied to every request. Furthermore, since
the default ACLs required for normal Puppet functionality are appended to the ACLs read from
auth.conf, you must manually interleave copies of the default ACLs into your auth.conf if you are
specifying any ACLs that are less specific than any of the default ACLs.�

Default ACLs
Puppet appends a list of default ACLs to the ACLs read from auth.conf. However, if any custom ACLs
have a path identical to that of a default ACL, that default ACL will be omitted when composing the
full list of ACLs. Note that this is not the same criteria for determining whether the two ACLs match
the same requests, as only the paths are compared:

#	A	custom	ACL
path	/file
auth	no
allow	magpie.lan

#	This	default	ACL	will	not	be	appended	to	the	rules
path	/file
allow	*

Puppet Documentation • REST Access Control 198/311

These two ACLs match completely disjoint sets of requests (unauthenticated for the custom one,
authenticated for the default one), but since the mechanism that appends default ACLs is not
examining the authentication/methods/environments of the ACLs, it considers the one to override
the other, even though theyʼre effectively unrelated. Puppet agent will break if you only declare the�
custom ACL, will work if you manually declare the default ACL, and will work if you only declare the
custom one but change its path to /fil. When in doubt, manually re-declare all default ACLs in
your auth.conf file.�

The following is a list of the default ACLs used by Puppet:

#	Allow	authenticated	nodes	to	retrieve	their	own	catalogs:

path	~	^/catalog/([^/]+)$
method	find
allow	$1

#	Allow	authenticated	nodes	to	access	any	file	services	---	in	practice,	this	
results	in	fileserver.conf	being	consulted:

path	/file
allow	*

#	Allow	authenticated	nodes	to	access	the	certificate	revocation	list:

path	/certificate_revocation_list/ca
method	find
allow	*

#	Allow	authenticated	nodes	to	send	reports:

path	/report
method	save
allow	*

#	Allow	unauthenticated	access	to	certificates:

path	/certificate/ca
auth	no
method	find
allow	*

path	/certificate/
auth	no
method	find
allow	*

#	Allow	unauthenticated	nodes	to	submit	certificate	signing	requests:

path	/certificate_request
auth	no
method	find,	save
allow	*

#	Deny	all	other	requests:

path	/
auth	any

Puppet Documentation • REST Access Control 199/311

An example auth.conf file containing these rules is provided in the Puppet source, in�
conf/auth.conf.

Danger Mode
If you want to test the REST API for application prototyping without worrying about specifying your
final set of ACLs ahead of time, you can set a completely permissive auth.conf:�

path	/
auth	any
allow	*

authconfig / namespaceauth.conf�
Older versions of Puppet communicated over an XMLRPC interface instead of the current RESTful
interface, and access to these APIs was governed by a file known as �authconfig (after the
configuration option listing its location) or �namespaceauth.conf (after its default filename). This�
legacy file will not be fully documented, but an example namespaceauth.conf file can be found in��
the puppet source in conf/namespaceauth.conf.

puppet agent and the REST API
If started with the listen	=	true configuration option, puppet agent will accept incoming REST API�
requests. This is most frequently used to trigger puppet runs with the run endpoint. Several caveats
apply:

A known bug in the 2.6.x releases of Puppet prevents puppet agent from being started with the
listen	=	true option unless namespaceauth.conf is present, even though the file is never�
consulted. The workaround is to create an empty file: �#	touch	$(puppet	agent	--configprint
authconfig)

Puppet agent uses the same default ACLs as puppet master, which allow access to several
useless endpoints while denying access to any agent-specific ones. For best results, you should�
short-circuit the defaults by denying access to / at the end of your auth.conf file.�

Type Reference
This page is autogenerated; any changes will get overwritten (last generated on Sat Mar 26
08:52:11 +1100 2011)

Resource Types
The namevar is the parameter used to uniquely identify a type instance. This is the parameter
that gets assigned when a string is provided before the colon in a type declaration. In general,
only developers will need to worry about which parameter is the namevar.

Puppet Documentation • Type Reference 200/311

http://github.com/puppetlabs/puppet/blob/2.6.x/conf/auth.conf
http://github.com/puppetlabs/puppet/blob/2.6.x/conf/namespaceauth.conf
http://projects.puppetlabs.com/issues/6442

In the following code:

file	{	"/etc/passwd":
		owner	=>	root,
		group	=>	root,
		mode	=>	644
}

/etc/passwd is considered the title of the file object (used for things like dependency handling),�
and because path is the namevar for file, that string is assigned to the path parameter.
Parameters determine the specific configuration of the instance. ��They either directly modify the
system (internally, these are called properties) or they affect how the instance behaves (e.g.,�
adding a search path for exec instances or determining recursion on file instances).
Providers provide low-level functionality for a given resource type. This is usually in the form of
calling out to external commands.

When required binaries are specified for providers, fully qualifed paths indicate that the binary�
must exist at that specific path and unqualified binaries indicate that Puppet will search for the��
binary using the shell path.
Features are abilities that some providers might not support. You can use the list of supported
features to determine how a given provider can be used.

Resource types define features they can use, and providers can be tested to see which features�
they provide.

augeas

Apply the changes (single or array of changes) to the filesystem via the augeas tool.�

Requires:

augeas to be installed (http://www.augeas.net)
ruby-augeas bindings

Sample usage with a string:

augeas{"test1"	:
		context	=>	"/files/etc/sysconfig/firstboot",
		changes	=>	"set	RUN_FIRSTBOOT	YES",
		onlyif		=>	"match	other_value	size	>	0",
}

Sample usage with an array and custom lenses:

augeas{"jboss_conf":
		context	=>	"/files",
		changes	=>	[
				"set	/etc/jbossas/jbossas.conf/JBOSS_IP	$ipaddress",

Puppet Documentation • Type Reference 201/311

				"set	/etc/jbossas/jbossas.conf/JAVA_HOME	/usr"
],
		load_path	=>	"$/usr/share/jbossas/lenses",
}

FEATURES

execute_changes: Actually make the changes
need_to_run?: If the command should run
parse_commands: Parse the command string

Provider execute changes need to run? parse commands

augeas X X X

PARAMETERS
CHANGES
The changes which should be applied to the filesystem. This can be either a string which contains a�
command or an array of commands. Commands supported are:

set	[PATH]	[VALUE]												Sets	the	value	VALUE	at	loction	PATH
rm	[PATH]																					Removes	the	node	at	location	PATH
remove	[PATH]																	Synonym	for	rm
clear	[PATH]																		Keeps	the	node	at	PATH,	but	removes	the	value.
ins	[LABEL]	[WHERE]	[PATH]				Inserts	an	empty	node	LABEL	either	
[WHERE={before|after}]	PATH.
insert	[LABEL]	[WHERE]	[PATH]	Synonym	for	ins

If the parameter ʻcontextʼ is set that value is prepended to PATH
CONTEXT
Optional context path. This value is prepended to the paths of all changes if the path is relative. If
INCL is set, defaults to ʻ/filesʼ + INCL, otherwise the empty string�
FORCE
Optional command to force the augeas type to execute even if it thinks changes will not be made.
This does not overide the only setting. If onlyif is set, then the foce setting will not override that
result
INCL
Load only a specific file, e.g. ��/etc/hosts. When this parameter is set, you must also set the lens
parameter to indicate which lens to use.
LENS
Use a specific lens, e.g. �Hosts.lns. When this parameter is set, you must also set the incl parameter
to indicate which file to load. Only that file will be loaded, which greatly speeds up execution of the��
type
LOAD_PATH
Optional colon separated list of directories; these directories are searched for schema definitions�
NAME
The name of this task. Used for uniqueness

Puppet Documentation • Type Reference 202/311

ONLYIF
Optional augeas command and comparisons to control the execution of this type. Supported onlyif
syntax:

get	[AUGEAS_PATH]	[COMPARATOR]	[STRING]
match	[MATCH_PATH]	size	[COMPARATOR]	[INT]
match	[MATCH_PATH]	include	[STRING]
match	[MATCH_PATH]	not_include	[STRING]
match	[MATCH_PATH]	==	[AN_ARRAY]
match	[MATCH_PATH]	!=	[AN_ARRAY]

where:

AUGEAS_PATH	is	a	valid	path	scoped	by	the	context
MATCH_PATH	is	a	valid	match	synatx	scoped	by	the	context
COMPARATOR	is	in	the	set	[>	>=	!=	==	<=	<]
STRING	is	a	string
INT	is	a	number
AN_ARRAY	is	in	the	form	['a	string',	'another']

PROVIDER
The specific backend for provider to use. You will seldom need to specify this – Puppet will usually�
discover the appropriate provider for your platform. Available providers are:

augeas: Supported features: execute_changes, need_to_run?, parse_commands.

RETURNS
The expected return code from the augeas command. Should not be set
ROOT
A file system path; all files loaded by Augeas are loaded underneath ROOT��
TYPE_CHECK
Set to true if augeas should perform typechecking. Optional, defaults to false Valid values are true,
false.

computer

Computer object management using DirectoryService on OS X.

Note that these are distinctly different kinds of objects to ʻhostsʼ, as they require a MAC address and�
can have all sorts of policy attached to them.

This provider only manages Computer objects in the local directory service domain, not in remote
directories.

If you wish to manage /etc/hosts file on Mac OS X, then simply use the host type as per other�
platforms.

This type primarily exists to create localhost Computer objects that MCX policy can then be
attached to.

Puppet Documentation • Type Reference 203/311

Autorequires: If Puppet is managing the plist file representing a Computer object (located at�
/var/db/dslocal/nodes/Default/computers/{name}.plist), the Computer resource will
autorequire it.
PARAMETERS
EN_ADDRESS
The MAC address of the primary network interface. Must match en0.
ENSURE
Control the existences of this computer record. Set this attribute to present to ensure the
computer record exists. Set it to absent to delete any computer records with this name Valid values
are present, absent.
IP_ADDRESS
The IP Address of the Computer object.
NAME
The authoritative ʻshortʼ name of the computer record.
PROVIDER
The specific backend for provider to use. You will seldom need to specify this – Puppet will usually�
discover the appropriate provider for your platform. Available providers are:

directoryservice: Computer object management using DirectoryService on OS X. Note that these
are distinctly different kinds of objects to ʻhostsʼ, as they require a MAC address and can have all�
sorts of policy attached to them.

This provider only manages Computer objects in the local directory service domain, not in
remote directories.

If you wish to manage /etc/hosts on Mac OS X, then simply use the host type as per other
platforms. Default for operatingsystem == darwin.

REALNAME
The ʻlongʼ name of the computer record.

cron

Installs and manages cron jobs. All fields except the command and the user are optional, although�
specifying no periodic fields would result in the command being executed every minute. �While the
name of the cron job is not part of the actual job, it is used by Puppet to store and retrieve it.

If you specify a cron job that matches an existing job in every way except name, then the jobs will
be considered equivalent and the new name will be permanently associated with that job. Once this
association is made and synced to disk, you can then manage the job normally (e.g., change the
schedule of the job).

Example:

cron	{	logrotate:
		command	=>	"/usr/sbin/logrotate",
		user	=>	root,

Puppet Documentation • Type Reference 204/311

		hour	=>	2,
		minute	=>	0
}

Note that all cron values can be specified as an array of values:�

cron	{	logrotate:
		command	=>	"/usr/sbin/logrotate",
		user	=>	root,
		hour	=>	[2,	4]
}

Or using ranges, or the step syntax */2 (although thereʼs no guarantee that your cron daemon
supports it):

cron	{	logrotate:
		command	=>	"/usr/sbin/logrotate",
		user	=>	root,
		hour	=>	['2-4'],
		minute	=>	'*/10'
}

PARAMETERS
COMMAND
The command to execute in the cron job. The environment provided to the command varies by
local system rules, and it is best to always provide a fully qualified command. �The userʼs profile is�
not sourced when the command is run, so if the userʼs environment is desired it should be sourced
manually.

All cron parameters support absent as a value; this will remove any existing values for that field.�
ENSURE
The basic property that the resource should be in. Valid values are present, absent.
ENVIRONMENT
Any environment settings associated with this cron job. They will be stored between the header and
the job in the crontab. There can be no guarantees that other, earlier settings will not also affect a�
given cron job.

Also, Puppet cannot automatically determine whether an existing, unmanaged environment setting
is associated with a given cron job. If you already have cron jobs with environment settings, then
Puppet will keep those settings in the same place in the file, but will not associate them with a�
specific job.�

Settings should be specified exactly as they should appear in the crontab, e.g.,�
PATH=/bin:/usr/bin:/usr/sbin.
HOUR
The hour at which to run the cron job. Optional; if specified, must be between 0 and 23, inclusive.�
MINUTE
The minute at which to run the cron job. Optional; if specified, must be between 0 and 59, inclusive.�
Puppet Documentation • Type Reference 205/311

The minute at which to run the cron job. Optional; if specified, must be between 0 and 59, inclusive.�
MONTH
The month of the year. Optional; if specified must be between 1 and 12 or the month name (e.g.,�
December).
MONTHDAY
The day of the month on which to run the command. Optional; if specified, must be between 1 and�
31.
NAME
The symbolic name of the cron job. This name is used for human reference only and is generated
automatically for cron jobs found on the system. This generally wonʼt matter, as Puppet will do its
best to match existing cron jobs against specified jobs (and Puppet adds a comment to cron jobs it�
adds), but it is at least possible that converting from unmanaged jobs to managed jobs might
require manual intervention.
PROVIDER
The specific backend for provider to use. You will seldom need to specify this – Puppet will usually�
discover the appropriate provider for your platform. Available providers are:

crontab: Required binaries: crontab.

SPECIAL
Special schedules
TARGET
Where the cron job should be stored. For crontab-style entries this is the same as the user and
defaults that way. Other providers default accordingly.
USER
The user to run the command as. This user must be allowed to run cron jobs, which is not currently
checked by Puppet.

The user defaults to whomever Puppet is running as.
WEEKDAY
The weekday on which to run the command. Optional; if specified, must be between 0 and 7,�
inclusive, with 0 (or 7) being Sunday, or must be the name of the day (e.g., Tuesday).

exec

Executes external commands. It is critical that all commands executed using this mechanism can be
run multiple times without harm, i.e., they are idempotent. One useful way to create idempotent
commands is to use the checks like creates to avoid running the command unless some condition
is met.

Note that you can restrict an exec to only run when it receives events by using the refreshonly
parameter; this is a useful way to have your configuration respond to events with arbitrary�
commands.

Note also that if an exec receives an event from another resource, it will get executed again (or
execute the command specified in �refresh, if there is one).

Puppet Documentation • Type Reference 206/311

There is a strong tendency to use exec to do whatever work Puppet canʼt already do; while this is
obviously acceptable (and unavoidable) in the short term, it is highly recommended to migrate work
from exec to native Puppet types as quickly as possible. If you find that you are doing a lot of work�
with exec, please at least notify us at Puppet Labs what you are doing, and hopefully we can work
with you to get a native resource type for the work you are doing.

Autorequires: If Puppet is managing an execʼs cwd or the executable file used in an execʼs�
command, the exec resource will autorequire those files. If Puppet is managing the user that an�
exec should run as, the exec resource will autorequire that user.
PARAMETERS
COMMAND

namevar

The actual command to execute. Must either be fully qualified or a search path for the command�
must be provided. If the command succeeds, any output produced will be logged at the instanceʼs
normal log level (usually notice), but if the command fails (meaning its return code does not match
the specified code) then any output is logged at the �err log level.
CREATES
A file that this command creates. �If this parameter is provided, then the command will only be run if
the specified file does not exist:��

exec	{	"tar	xf	/my/tar/file.tar":
		cwd	=>	"/var/tmp",
		creates	=>	"/var/tmp/myfile",
		path	=>	["/usr/bin",	"/usr/sbin"]
}

CWD
The directory from which to run the command. If this directory does not exist, the command will
fail.
ENV
This parameter is deprecated. Use ʻenvironmentʼ instead.
ENVIRONMENT
Any additional environment variables you want to set for a command. Note that if you use this to set
PATH, it will override the path attribute. Multiple environment variables should be specified as an�
array.
GROUP
The group to run the command as. This seems to work quite haphazardly on different platforms – it�
is a platform issue not a Ruby or Puppet one, since the same variety exists when running
commnands as different users in the shell.�
LOGOUTPUT
Whether to log output. Defaults to logging output at the loglevel for the exec resource. Use
on_failure to only log the output when the command reports an error. Values are true, false,
on_failure, and any legal log level. Valid values are true, false, on_failure.

Puppet Documentation • Type Reference 207/311

ONLYIF
If this parameter is set, then this exec will only run if the command returns 0. For example:

exec	{	"logrotate":
		path	=>	"/usr/bin:/usr/sbin:/bin",
		onlyif	=>	"test	`du	/var/log/messages	|	cut	-f1`	-gt	100000"
}

This would run logrotate only if that test returned true.

Note that this command follows the same rules as the main command, which is to say that it must
be fully qualified if the path is not set.�

Also note that onlyif can take an array as its value, e.g.:

onlyif	=>	["test	-f	/tmp/file1",	"test	-f	/tmp/file2"]

This will only run the exec if /all/ conditions in the array return true.
PATH
The search path used for command execution. Commands must be fully qualified if no path is�
specified. �Paths can be specified as an array or as a colon-separated list.�
REFRESH
How to refresh this command. By default, the exec is just called again when it receives an event
from another resource, but this parameter allows you to define a different command for refreshing.��
REFRESHONLY
The command should only be run as a refresh mechanism for when a dependent object is changed.
It only makes sense to use this option when this command depends on some other object; it is
useful for triggering an action:

#	Pull	down	the	main	aliases	file
file	{	"/etc/aliases":
		source	=>	"puppet://server/module/aliases"
}

#	Rebuild	the	database,	but	only	when	the	file	changes
exec	{	newaliases:
		path	=>	["/usr/bin",	"/usr/sbin"],
		subscribe	=>	File["/etc/aliases"],
		refreshonly	=>	true
}

Note that only subscribe and notify can trigger actions, not require, so it only makes sense to
use refreshonly with subscribe or notify. Valid values are true, false.
RETURNS
The expected return code(s). An error will be returned if the executed command returns something
else. Defaults to 0. Can be specified as an array of acceptable return codes or a single value.�
TIMEOUT

Puppet Documentation • Type Reference 208/311

The maximum time the command should take. If the command takes longer than the timeout, the
command is considered to have failed and will be stopped. Use any negative number to disable the
timeout. The time is specified in seconds.�
TRIES
The number of times execution of the command should be tried. Defaults to ʻ1ʼ. This many
attempts will be made to execute the command until an acceptable return code is returned. Note
that the timeout paramater applies to each try rather than to the complete set of tries.
TRY_SLEEP
The time to sleep in seconds between ʻtriesʼ.
UNLESS
If this parameter is set, then this exec will run unless the command returns 0. For example:

exec	{	"/bin/echo	root	>>	/usr/lib/cron/cron.allow":
		path	=>	"/usr/bin:/usr/sbin:/bin",
		unless	=>	"grep	root	/usr/lib/cron/cron.allow	2>/dev/null"
}

This would add root to the cron.allow file (on Solaris) unless �grep determines itʼs already there.

Note that this command follows the same rules as the main command, which is to say that it must
be fully qualified if the path is not set.�
USER
The user to run the command as. Note that if you use this then any error output is not currently
captured. This is because of a bug within Ruby. If you are using Puppet to create this user, the exec
will automatically require the user, as long as it is specified by name.�

file�

Manages local files, including setting ownership and permissions, creation of both files and��
directories, and retrieving entire files from remote servers. �As Puppet matures, it expected that the
file resource will be used less and less to manage content, and instead native resources will be
used to do so.

If you find that you are often copying files in from a central location, rather than using native��
resources, please contact Puppet Labs and we can hopefully work with you to develop a native
resource to support what you are doing.

Autorequires: If Puppet is managing the user or group that owns a file, the file resource will��
autorequire them. If Puppet is managing any parent directories of a file, the file resource will��
autorequire them.
PARAMETERS
BACKUP
Whether files should be backed up before being replaced. �The preferred method of backing files up�
is via a filebucket, which stores files by their MD5 sums and allows easy retrieval without littering�
directories with backups. You can specify a local filebucket or a network-accessible server-based�
filebucket by setting �backup	=>	bucket-name. Alternatively, if you specify any value that begins with
Puppet Documentation • Type Reference 209/311

filebucket by setting �backup	=>	bucket-name. Alternatively, if you specify any value that begins with
a . (e.g., .puppet-bak), then Puppet will use copy the file in the same directory with that value as�
the extension of the backup. Setting backup	=>	false disables all backups of the file in question.�

Puppet automatically creates a local filebucket named �puppet and defaults to backing up there. To
use a server-based filebucket, you must specify one in your configuration��

		filebucket	{	main:
				server	=>	puppet
		}

The puppet	master daemon creates a filebucket by default, so you can usually back up to your�
main server with this configuration. �Once youʼve described the bucket in your configuration, you�
can use it in any file�

		file	{	"/my/file":
				source	=>	"/path/in/nfs/or/something",
				backup	=>	main
		}

This will back the file up to the central server.�

At this point, the benefits of using a filebucket are that you do not have backup files lying around���
on each of your machines, a given version of a file is only backed up once, and you can restore any�
given file manually, no matter how old. �Eventually, transactional support will be able to
automatically restore filebucketed files.��
CHECKSUM
The checksum type to use when checksumming a file.�

The default checksum parameter, if checksums are enabled, is md5. Valid values are md5, md5lite,
mtime, ctime, none.
CONTENT
Specify the contents of a file as a string. �Newlines, tabs, and spaces can be specified using the�
escaped syntax (e.g., \n for a newline). The primary purpose of this parameter is to provide a kind
of limited templating:

define	resolve(nameserver1,	nameserver2,	domain,	search)	{
				$str	=	"search	$search
								domain	$domain
								nameserver	$nameserver1
								nameserver	$nameserver2
								"

				file	{	"/etc/resolv.conf":
						content	=>	$str
				}
}

This attribute is especially useful when used with templating.

Puppet Documentation • Type Reference 210/311

CTIME
A read-only state to check the file ctime.�
ENSURE
Whether to create files that donʼt currently exist. Possible values are �absent, present, file�, and
directory. Specifying present will match any form of file existence, and if the file is missing will��
create an empty file. Specifying �absent will delete the file (and directory if recurse => true).�

Anything other than those values will create a symlink. In the interest of readability and clarity, you
should use ensure	=>	link and explicitly specify a target; however, if a target attribute isnʼt
provided, the value of the ensure attribute will be used as the symlink target:

#	(Useful	on	Solaris)
#	Less	maintainable:	
file	{	"/etc/inetd.conf":
		ensure	=>	"/etc/inet/inetd.conf",
}

#	More	maintainable:
file	{	"/etc/inetd.conf":
		ensure	=>	link,
		target	=>	"/etc/inet/inetd.conf",
}

These two declarations are equivalent. Valid values are absent (also called false), file, present,
directory, link. Values can match /./.
FORCE
Force the file operation. �Currently only used when replacing directories with links. Valid values are
true, false.
GROUP
Which group should own the file. �Argument can be either group name or group ID.
IGNORE
A parameter which omits action on files matching specified patterns during recursion. ��Uses Rubyʼs
builtin globbing engine, so shell metacharacters are fully supported, e.g. [a-z]*. Matches that
would descend into the directory structure are ignored, e.g., */*.
LINKS
How to handle links during file actions. �During file copying, �follow will copy the target file instead�
of the link, manage will copy the link itself, and ignore will just pass it by. When not copying, manage
and ignore behave equivalently (because you cannot really ignore links entirely during local
recursion), and follow will manage the file to which the link points. �Valid values are follow,
manage.
MODE
Mode the file should be. �Currently relatively limited: you must specify the exact mode the file should�
be.

Note that when you set the mode of a directory, Puppet always sets the search/traverse (1) bit

Puppet Documentation • Type Reference 211/311

anywhere the read (4) bit is set. This is almost always what you want: read allows you to list the
entries in a directory, and search/traverse allows you to access (read/write/execute) those entries.)
Because of this feature, you can recursively make a directory and all of the files in it world-readable�
by setting e.g.:

file	{	'/some/dir':
		mode	=>	644,
		recurse	=>	true,
}

In this case all of the files underneath �/some/dir will have mode 644, and all of the directories will
have mode 755.
MTIME
A read-only state to check the file mtime.�
OWNER
To whom the file should belong. �Argument can be user name or user ID.
PATH

namevar

The path to the file to manage. �Must be fully qualified.�
PROVIDER
The specific backend for provider to use. You will seldom need to specify this – Puppet will usually�
discover the appropriate provider for your platform. Available providers are:

microsoft_windows: Uses Microsoft Windows functionality to manage fileʼs users and rights.�
posix: Uses POSIX functionality to manage fileʼs users and rights.�

PURGE
Whether unmanaged files should be purged. �If you have a filebucket configured the purged files���
will be uploaded, but if you do not, this will destroy data. Only use this option for generated files�
unless you really know what you are doing. This option only makes sense when recursively
managing directories.

Note that when using purge with source, Puppet will purge any files that are not on the remote�
system. Valid values are true, false.
RECURSE
Whether and how deeply to do recursive management. Valid values are true, false, inf, remote.
Values can match /^[0-9]+$/.
RECURSELIMIT
How deeply to do recursive management. Values can match /^[0-9]+$/.
REPLACE
Whether or not to replace a file that is sourced but exists. �This is useful for using file sources purely�
for initialization. Valid values are true (also called yes), false (also called no).
SELINUX_IGNORE_DEFAULTS
If this is set then Puppet will not ask SELinux (via matchpathcon) to supply defaults for the SELinux
Puppet Documentation • Type Reference 212/311

If this is set then Puppet will not ask SELinux (via matchpathcon) to supply defaults for the SELinux
attributes (seluser, selrole, seltype, and selrange). In general, you should leave this set at its default
and only set it to true when you need Puppet to not try to fix SELinux labels automatically. �Valid
values are true, false.
SELRANGE
What the SELinux range component of the context of the file should be. Any valid SELinux range�
component is accepted. For example s0 or SystemHigh. If not specified it defaults to the value�
returned by matchpathcon for the file, if any exists. �Only valid on systems with SELinux support
enabled and that have support for MCS (Multi-Category Security).
SELROLE
What the SELinux role component of the context of the file should be. Any valid SELinux role�
component is accepted. For example role_r. If not specified it defaults to the value returned by�
matchpathcon for the file, if any exists. �Only valid on systems with SELinux support enabled.
SELTYPE
What the SELinux type component of the context of the file should be. Any valid SELinux type�
component is accepted. For example tmp_t. If not specified it defaults to the value returned by�
matchpathcon for the file, if any exists. �Only valid on systems with SELinux support enabled.
SELUSER
What the SELinux user component of the context of the file should be. Any valid SELinux user�
component is accepted. For example user_u. If not specified it defaults to the value returned by�
matchpathcon for the file, if any exists. �Only valid on systems with SELinux support enabled.
SOURCE
Copy a file over the current file. ��Uses checksum to determine when a file should be copied. �Valid
values are either fully qualified paths to files, or URIs. ��Currently supported URI types are puppet and
file�.

This is one of the primary mechanisms for getting content into applications that Puppet does not
directly support and is very useful for those configuration files that donʼt change much across��
sytems. For instance:

class	sendmail	{
		file	{	"/etc/mail/sendmail.cf":
				source	=>	"puppet://server/modules/module_name/sendmail.cf"
		}
}

You can also leave out the server name, in which case puppet	agent will fill in the name of its�
configuration server and �puppet	apply will use the local filesystem. �This makes it easy to use the
same configuration in both local and centralized forms.�

Currently, only the puppet scheme is supported for source URLʼs. Puppet will connect to the file�
server running on server to retrieve the contents of the file. If the �server part is empty, the
behavior of the command-line interpreter (puppet	apply) and the client demon (puppet	agent)
differs slightly: �apply will look such a file up on the module path on the local host, whereas �agent
will connect to the puppet server that it received the manifest from.
Puppet Documentation • Type Reference 213/311

See the fileserver configuration documentation�� for information on how to configure and use file��
services within Puppet.

If you specify multiple file sources for a file, then the first source that exists will be used. ���This allows
you to specify what amount to search paths for files:�

file	{	"/path/to/my/file":
		source	=>	[
				"/modules/nfs/files/file.$host",
				"/modules/nfs/files/file.$operatingsystem",
				"/modules/nfs/files/file"
]
}

This will use the first found file as the source.��

You cannot currently copy links using this mechanism; set links to follow if any remote sources
are links.
SOURCESELECT
Whether to copy all valid sources, or just the first one. �This parameter is only used in recursive
copies; by default, the first valid source is the only one used as a recursive source, but if this�
parameter is set to all, then all valid sources will have all of their contents copied to the local host,
and for sources that have the same file, the source earlier in the list will be used. �Valid values are
first, all.
TARGET
The target for creating a link. Currently, symlinks are the only type supported.

You can make relative links:

#	(Useful	on	Solaris)
file	{	"/etc/inetd.conf":
		ensure	=>	link,
		target	=>	"inet/inetd.conf",
}

You can also make recursive symlinks, which will create a directory structure that maps to the target
directory, with directories corresponding to each directory and links corresponding to each file.�
Valid values are notlink. Values can match /./.
TYPE
A read-only state to check the file type.�

filebucket�

A repository for backing up files. �If no filebucket is defined, then files will be backed up in their���
current directory, but the filebucket can be either a host- or site-global repository for backing up. �It
stores files and returns the MD5 sum, which can later be used to retrieve the file if restoration��
becomes necessary. A filebucket does not do any work itself; instead, it can be specified as the��

Puppet Documentation • Type Reference 214/311

http://projects.puppetlabs.com/projects/puppet/wiki/File_Serving_Configuration

value of backup in a file� object.

Currently, filebuckets are only useful for manual retrieval of accidentally removed files (e.g., you��
look in the log for the md5 sum and retrieve the file with that sum from the filebucket), but when��
transactions are fully supported filebuckets will be used to undo transactions.�

You will normally want to define a single filebucket for your whole network and then use that as the��
default backup location:

#	Define	the	bucket
filebucket	{	main:	server	=>	puppet	}

#	Specify	it	as	the	default	target
File	{	backup	=>	main	}

Puppetmaster servers create a filebucket by default, so this will work in a default configuration.��
PARAMETERS
NAME
The name of the filebucket.�
PATH
The path to the local filebucket. �If this is unset, then the bucket is remote. The parameter server
must can be specified to set the remote server.�
PORT
The port on which the remote server is listening. Defaults to the normal Puppet port, 8140.
SERVER
The server providing the remote filebucket. �If this is not specified then �path is checked. If it is set,
then the bucket is local. Otherwise the puppetmaster server specified in the config or at the��
commandline is used.

group

Manage groups. On most platforms this can only create groups. Group membership must be
managed on individual users.

On some platforms such as OS X, group membership is managed as an attribute of the group, not
the user record. Providers must have the feature ʻmanages_membersʼ to manage the ʻmembersʼ
property of a group record.
FEATURES

manages_members: For directories where membership is an attribute of groups not users.

Provider manages members

directoryservice X

groupadd

ldap

pw

Puppet Documentation • Type Reference 215/311

PARAMETERS
ALLOWDUPE
Whether to allow duplicate GIDs. This option does not work on FreeBSD (contract to the pw man
page). Valid values are true, false.
AUTH_MEMBERSHIP
whether the provider is authoritative for group membership.
ENSURE
Create or remove the group. Valid values are present, absent.
GID
The group ID. Must be specified numerically. �If not specified, a number will be picked, which can�
result in ID differences across systems and thus is not recommended. �The GID is picked according
to local system standards.
MEMBERS
The members of the group. For directory services where group membership is stored in the group
objects, not the users. Requires features manages_members.
NAME
The group name. While naming limitations vary by system, it is advisable to keep the name to the
degenerate limitations, which is a maximum of 8 characters beginning with a letter.
PROVIDER
The specific backend for provider to use. You will seldom need to specify this – Puppet will usually�
discover the appropriate provider for your platform. Available providers are:

directoryservice: Group management using DirectoryService on OS X.

Required binaries: /usr/bin/dscl. Default for operatingsystem == darwin. Supported features:
manages_members.
groupadd: Group management via groupadd and its ilk.

The default for most platforms

Required binaries: groupmod, groupdel, groupadd.
ldap: Group management via ldap.

This provider requires that you have valid values for all of the ldap-related settings, including
ldapbase. You will also almost definitely need settings for �ldapuser and ldappassword, so that
your clients can write to ldap.

Note that this provider will automatically generate a GID for you if you do not specify one, but it
is a potentially expensive operation, as it iterates across all existing groups to pick the
appropriate next one.
pw: Group management via pw.

Only works on FreeBSD.

Required binaries: /usr/sbin/pw. Default for operatingsystem == freebsd.
Puppet Documentation • Type Reference 216/311

host

Installs and manages host entries. For most systems, these entries will just be in /etc/hosts, but
some systems (notably OS X) will have different solutions.�
PARAMETERS
ENSURE
The basic property that the resource should be in. Valid values are present, absent.
HOST_ALIASES
Any aliases the host might have. Multiple values must be specified as an array.�
IP
The hostʼs IP address, IPv4 or IPv6.
NAME
The host name.
PROVIDER
The specific backend for provider to use. You will seldom need to specify this – Puppet will usually�
discover the appropriate provider for your platform. Available providers are:

parsed:

TARGET
The file in which to store service information. �Only used by those providers that write to disk. On
most systems this defaults to /etc/hosts.

k5login

Manage the .k5login file for a user. �Specify the full path to the .k5login file as the name and an�
array of principals as the property principals.
PARAMETERS
ENSURE
The basic property that the resource should be in. Valid values are present, absent.
MODE
Manage the k5login fileʼs mode�
PATH

namevar

The path to the file to manage. �Must be fully qualified.�
PRINCIPALS
The principals present in the .k5login file.�
PROVIDER
The specific backend for provider to use. You will seldom need to specify this – Puppet will usually�
discover the appropriate provider for your platform. Available providers are:

k5login: The k5login provider is the only provider for the k5login type.
Puppet Documentation • Type Reference 217/311

macauthorization

Manage the Mac OS X authorization database. See the Apple developer site for more information.

Autorequires: If Puppet is managing the /etc/authorization file, each macauthorization resource�
will autorequire it.
PARAMETERS
ALLOW_ROOT
Corresponds to ʻallow-rootʼ in the authorization store, renamed due to hyphens being problematic.
Specifies whether a right should be allowed automatically if the requesting process is running with�
uid == 0. AuthorizationServices defaults this attribute to false if not specified �Valid values are true,
false.
AUTH_CLASS
Corresponds to ʻclassʼ in the authorization store, renamed due to ʻclassʼ being a reserved word.
Valid values are user, evaluate-mechanisms, allow, deny, rule.
AUTH_TYPE
type - can be a ʻrightʼ or a ʻruleʼ. ʻcommentʼ has not yet been implemented. Valid values are right,
rule.
AUTHENTICATE_USER
Corresponds to ʻauthenticate-userʼ in the authorization store, renamed due to hyphens being
problematic. Valid values are true, false.
COMMENT
The ʻcommentʼ attribute for authorization resources.
ENSURE
The basic property that the resource should be in. Valid values are present, absent.
GROUP
The user must authenticate as a member of this group. This attribute can be set to any one group.
K_OF_N
k-of-n describes how large a subset of rule mechanisms must succeed for successful
authentication. If there are ʻnʼ mechanisms, then ʻkʼ (the integer value of this parameter)
mechanisms must succeed. The most common setting for this parameter is ʻ1ʼ. If k-of-n is not set,
then ʻn-of-nʼ mechanisms must succeed.
MECHANISMS
an array of suitable mechanisms.
NAME
The name of the right or rule to be managed. Corresponds to ʻkeyʼ in Authorization Services. The
key is the name of a rule. A key uses the same naming conventions as a right. The Security Server
uses a ruleʼs key to match the rule with a right. Wildcard keys end with a ʻ.ʼ. The generic rule has an
empty key value. Any rights that do not match a specific rule use the generic rule.�
PROVIDER
The specific backend for provider to use. You will seldom need to specify this – Puppet will usually�

Puppet Documentation • Type Reference 218/311

http://developer.apple.com/documentation/Security/Conceptual/Security_Overview/Security_Services/chapter_4_section_5.html

discover the appropriate provider for your platform. Available providers are:

macauthorization: Manage Mac OS X authorization database rules and rights.

Required binaries: /usr/bin/security, /usr/bin/sw_vers. Default for operatingsystem ==
darwin.

RULE
The rule(s) that this right refers to.
SESSION_OWNER
Corresponds to ʻsession-ownerʼ in the authorization store, renamed due to hyphens being
problematic. Whether the session owner automatically matches this rule or right. Valid values are
true, false.
SHARED
If this is set to true, then the Security Server marks the credentials used to gain this right as shared.
The Security Server may use any shared credentials to authorize this right. For maximum security,
set sharing to false so credentials stored by the Security Server for one application may not be used
by another application. Valid values are true, false.
TIMEOUT
The credential used by this rule expires in the specified number of seconds. For maximum security�
where the user must authenticate every time, set the timeout to 0. For minimum security, remove
the timeout attribute so the user authenticates only once per session.
TRIES
The number of tries allowed.

mailalias

Creates an email alias in the local alias database.
PARAMETERS
ENSURE
The basic property that the resource should be in. Valid values are present, absent.
NAME
The alias name.
PROVIDER
The specific backend for provider to use. You will seldom need to specify this – Puppet will usually�
discover the appropriate provider for your platform. Available providers are:

aliases:

RECIPIENT
Where email should be sent. Multiple values should be specified as an array.�
TARGET
The file in which to store the aliases. �Only used by those providers that write to disk.

maillist

Puppet Documentation • Type Reference 219/311

Manage email lists. This resource type currently can only create and remove lists, it cannot
reconfigure them.�
PARAMETERS
ADMIN
The email address of the administrator.
DESCRIPTION
The description of the mailing list.
ENSURE
The basic property that the resource should be in. Valid values are present, absent, purged.
MAILSERVER
The name of the host handling email for the list.
NAME
The name of the email list.
PASSWORD
The admin password.
PROVIDER
The specific backend for provider to use. You will seldom need to specify this – Puppet will usually�
discover the appropriate provider for your platform. Available providers are:

mailman: Required binaries: /usr/lib/mailman/mail/mailman, /usr/lib/mailman/bin/newlist,
/usr/lib/mailman/bin/list_lists, /usr/lib/mailman/bin/rmlist.

WEBSERVER
The name of the host providing web archives and the administrative interface.

mcx

MCX object management using DirectoryService on OS X.

The default provider of this type merely manages the XML plist as reported by the dscl -mcxexport
command. This is similar to the content property of the file type in Puppet.�

The recommended method of using this type is to use Work Group Manager to manage users and
groups on the local computer, record the resulting puppet manifest using the command puppet
resource	mcx, then deploy it to other machines.

Autorequires: If Puppet is managing the user, group, or computer that these MCX settings refer to,
the MCX resource will autorequire that user, group, or computer.
FEATURES

manages_content: The provider can manage MCXSettings as a string.

Provider manages content

mcxcontent X

PARAMETERS

Puppet Documentation • Type Reference 220/311

CONTENT
The XML Plist. The value of MCXSettings in DirectoryService. This is the standard output from the
system command:

dscl	localhost	-mcxexport	/Local/Default/<ds_type>/ds_name

Note that ds_type is capitalized and plural in the dscl command. Requires features
manages_content.
DS_NAME
The name to attach the MCX Setting to. e.g. ʻlocalhostʼ when ds_type => computer. This setting is
not required, as it may be parsed so long as the resource name is parseable. e.g. /Groups/admin
where ʻgroupʼ is the dstype.
DS_TYPE
The DirectoryService type this MCX setting attaches to. Valid values are user, group, computer,
computerlist.
ENSURE
Create or remove the MCX setting. Valid values are present, absent.
NAME
The name of the resource being managed. The default naming convention follows Directory Service
paths:

/Computers/localhost
/Groups/admin
/Users/localadmin

The ds_type and ds_name type parameters are not necessary if the default naming convention is
followed.
PROVIDER
The specific backend for provider to use. You will seldom need to specify this – Puppet will usually�
discover the appropriate provider for your platform. Available providers are:

mcxcontent: MCX Settings management using DirectoryService on OS X.

This provider manages the entire MCXSettings attribute available to some directory services
nodes. This management is ʻall or nothingʼ in that discrete application domain key value pairs
are not managed by this provider.

It is recommended to use WorkGroup Manager to configure Users, Groups, Computers, or�
ComputerLists, then use ʻralsh mcxʼ to generate a puppet manifest from the resulting
configuration.�

Original Author: Jeff McCune (mccune.jeff@gmail.com)��

Required binaries: /usr/bin/dscl. Default for operatingsystem == darwin. Supported features:
manages_content.

Puppet Documentation • Type Reference 221/311

mount

Manages mounted filesystems, including putting mount information into the mount table. The�
actual behavior depends on the value of the ʻensureʼ parameter.

Note that if a mount receives an event from another resource, it will try to remount the filesystems if�
ensure is set to mounted.

FEATURES

refreshable: The provider can remount the filesystem.�

Provider refreshable

parsed X

PARAMETERS
ATBOOT
Whether to mount the mount at boot. Not all platforms support this.
BLOCKDEVICE
The device to fsck. This is property is only valid on Solaris, and in most cases will default to the
correct value.
DEVICE
The device providing the mount. This can be whatever device is supporting by the mount, including
network devices or devices specified by UUID rather than device path, depending on the operating�
system.
DUMP
Whether to dump the mount. Not all platform support this. Valid values are 1 or 0. or 2 on FreeBSD,
Default is 0. Values can match /(0|1)/, /(0|1)/.
ENSURE
Control what to do with this mount. Set this attribute to umounted to make sure the filesystem is in�
the filesystem table but not mounted (if the filesystem is currently mounted, it will be unmounted).��
Set it to absent to unmount (if necessary) and remove the filesystem from the fstab. �Set to mounted
to add it to the fstab and mount it. Set to present to add to fstab but not change mount/unmount
status Valid values are defined (also called present), unmounted, absent, mounted.
FSTYPE
The mount type. Valid values depend on the operating system. This is a required option.
NAME
The mount path for the mount.
OPTIONS
Mount options for the mounts, as they would appear in the fstab.
PASS
The pass in which the mount is checked.
PATH
The deprecated name for the mount point. Please use name now.
Puppet Documentation • Type Reference 222/311

PROVIDER
The specific backend for provider to use. You will seldom need to specify this – Puppet will usually�
discover the appropriate provider for your platform. Available providers are:

parsed: Required binaries: mount, umount. Supported features: refreshable.

REMOUNTS
Whether the mount can be remounted mount	-o	remount. If this is false, then the filesystem will be�
unmounted and remounted manually, which is prone to failure. Valid values are true, false.
TARGET
The file in which to store the mount table. �Only used by those providers that write to disk.

nagios_command

The Nagios type command. This resource type is autogenerated using the model developed in
Naginator, and all of the Nagios types are generated using the same code and the same library.

This type generates Nagios configuration statements in Nagios-parseable configuration files. ���By
default, the statements will be added to /etc/nagios/nagios_command.cfg, but you can send them
to a different file by setting their ��target attribute.

You can purge Nagios resources using the resources type, but only in the default file locations.�
This is an architectural limitation.
PARAMETERS
COMMAND_LINE
Nagios configuration file parameter.��
COMMAND_NAME

namevar

The name parameter for Nagios type command
ENSURE
The basic property that the resource should be in. Valid values are present, absent.
PROVIDER
The specific backend for provider to use. You will seldom need to specify this – Puppet will usually�
discover the appropriate provider for your platform. Available providers are:

naginator:

TARGET
target
USE
Nagios configuration file parameter.��

nagios_contact

The Nagios type contact. This resource type is autogenerated using the model developed in

Puppet Documentation • Type Reference 223/311

Naginator, and all of the Nagios types are generated using the same code and the same library.

This type generates Nagios configuration statements in Nagios-parseable configuration files. ���By
default, the statements will be added to /etc/nagios/nagios_contact.cfg, but you can send them
to a different file by setting their ��target attribute.

You can purge Nagios resources using the resources type, but only in the default file locations.�
This is an architectural limitation.
PARAMETERS
ADDRESS1
Nagios configuration file parameter.��
ADDRESS2
Nagios configuration file parameter.��
ADDRESS3
Nagios configuration file parameter.��
ADDRESS4
Nagios configuration file parameter.��
ADDRESS5
Nagios configuration file parameter.��
ADDRESS6
Nagios configuration file parameter.��
ALIAS
Nagios configuration file parameter.��
CAN_SUBMIT_COMMANDS
Nagios configuration file parameter.��
CONTACT_NAME

namevar

The name parameter for Nagios type contact
CONTACTGROUPS
Nagios configuration file parameter.��
EMAIL
Nagios configuration file parameter.��
ENSURE
The basic property that the resource should be in. Valid values are present, absent.
HOST_NOTIFICATION_COMMANDS
Nagios configuration file parameter.��
HOST_NOTIFICATION_OPTIONS
Nagios configuration file parameter.��
HOST_NOTIFICATION_PERIOD
Nagios configuration file parameter.��
HOST_NOTIFICATIONS_ENABLED

Puppet Documentation • Type Reference 224/311

Nagios configuration file parameter.��
PAGER
Nagios configuration file parameter.��
PROVIDER
The specific backend for provider to use. You will seldom need to specify this – Puppet will usually�
discover the appropriate provider for your platform. Available providers are:

naginator:

REGISTER
Nagios configuration file parameter.��
RETAIN_NONSTATUS_INFORMATION
Nagios configuration file parameter.��
RETAIN_STATUS_INFORMATION
Nagios configuration file parameter.��
SERVICE_NOTIFICATION_COMMANDS
Nagios configuration file parameter.��
SERVICE_NOTIFICATION_OPTIONS
Nagios configuration file parameter.��
SERVICE_NOTIFICATION_PERIOD
Nagios configuration file parameter.��
SERVICE_NOTIFICATIONS_ENABLED
Nagios configuration file parameter.��
TARGET
target
USE
Nagios configuration file parameter.��

nagios_contactgroup

The Nagios type contactgroup. This resource type is autogenerated using the model developed in
Naginator, and all of the Nagios types are generated using the same code and the same library.

This type generates Nagios configuration statements in Nagios-parseable configuration files. ���By
default, the statements will be added to /etc/nagios/nagios_contactgroup.cfg, but you can send
them to a different file by setting their ��target attribute.

You can purge Nagios resources using the resources type, but only in the default file locations.�
This is an architectural limitation.
PARAMETERS
ALIAS
Nagios configuration file parameter.��
CONTACTGROUP_MEMBERS
Nagios configuration file parameter.��

Puppet Documentation • Type Reference 225/311

CONTACTGROUP_NAME
namevar

The name parameter for Nagios type contactgroup
ENSURE
The basic property that the resource should be in. Valid values are present, absent.
MEMBERS
Nagios configuration file parameter.��
PROVIDER
The specific backend for provider to use. You will seldom need to specify this – Puppet will usually�
discover the appropriate provider for your platform. Available providers are:

naginator:

REGISTER
Nagios configuration file parameter.��
TARGET
target
USE
Nagios configuration file parameter.��

nagios_host

The Nagios type host. This resource type is autogenerated using the model developed in Naginator,
and all of the Nagios types are generated using the same code and the same library.

This type generates Nagios configuration statements in Nagios-parseable configuration files. ���By
default, the statements will be added to /etc/nagios/nagios_host.cfg, but you can send them to
a different file by setting their ��target attribute.

You can purge Nagios resources using the resources type, but only in the default file locations.�
This is an architectural limitation.
PARAMETERS
ACTION_URL
Nagios configuration file parameter.��
ACTIVE_CHECKS_ENABLED
Nagios configuration file parameter.��
ADDRESS
Nagios configuration file parameter.��
ALIAS
Nagios configuration file parameter.��
CHECK_COMMAND
Nagios configuration file parameter.��
CHECK_FRESHNESS

Puppet Documentation • Type Reference 226/311

Nagios configuration file parameter.��
CHECK_INTERVAL
Nagios configuration file parameter.��
CHECK_PERIOD
Nagios configuration file parameter.��
CONTACT_GROUPS
Nagios configuration file parameter.��
CONTACTS
Nagios configuration file parameter.��
DISPLAY_NAME
Nagios configuration file parameter.��
ENSURE
The basic property that the resource should be in. Valid values are present, absent.
EVENT_HANDLER
Nagios configuration file parameter.��
EVENT_HANDLER_ENABLED
Nagios configuration file parameter.��
FAILURE_PREDICTION_ENABLED
Nagios configuration file parameter.��
FIRST_NOTIFICATION_DELAY
Nagios configuration file parameter.��
FLAP_DETECTION_ENABLED
Nagios configuration file parameter.��
FLAP_DETECTION_OPTIONS
Nagios configuration file parameter.��
FRESHNESS_THRESHOLD
Nagios configuration file parameter.��
HIGH_FLAP_THRESHOLD
Nagios configuration file parameter.��
HOST_NAME

namevar

The name parameter for Nagios type host
HOSTGROUPS
Nagios configuration file parameter.��
ICON_IMAGE
Nagios configuration file parameter.��
ICON_IMAGE_ALT
Nagios configuration file parameter.��
INITIAL_STATE
Nagios configuration file parameter.��
Puppet Documentation • Type Reference 227/311

LOW_FLAP_THRESHOLD
Nagios configuration file parameter.��
MAX_CHECK_ATTEMPTS
Nagios configuration file parameter.��
NOTES
Nagios configuration file parameter.��
NOTES_URL
Nagios configuration file parameter.��
NOTIFICATION_INTERVAL
Nagios configuration file parameter.��
NOTIFICATION_OPTIONS
Nagios configuration file parameter.��
NOTIFICATION_PERIOD
Nagios configuration file parameter.��
NOTIFICATIONS_ENABLED
Nagios configuration file parameter.��
OBSESS_OVER_HOST
Nagios configuration file parameter.��
PARENTS
Nagios configuration file parameter.��
PASSIVE_CHECKS_ENABLED
Nagios configuration file parameter.��
PROCESS_PERF_DATA
Nagios configuration file parameter.��
PROVIDER
The specific backend for provider to use. You will seldom need to specify this – Puppet will usually�
discover the appropriate provider for your platform. Available providers are:

naginator:

REGISTER
Nagios configuration file parameter.��
RETAIN_NONSTATUS_INFORMATION
Nagios configuration file parameter.��
RETAIN_STATUS_INFORMATION
Nagios configuration file parameter.��
RETRY_INTERVAL
Nagios configuration file parameter.��
STALKING_OPTIONS
Nagios configuration file parameter.��
STATUSMAP_IMAGE
Nagios configuration file parameter.��
Puppet Documentation • Type Reference 228/311

TARGET
target
USE
Nagios configuration file parameter.��
VRML_IMAGE
Nagios configuration file parameter.��

nagios_hostdependency

The Nagios type hostdependency. This resource type is autogenerated using the model developed
in Naginator, and all of the Nagios types are generated using the same code and the same library.

This type generates Nagios configuration statements in Nagios-parseable configuration files. ���By
default, the statements will be added to /etc/nagios/nagios_hostdependency.cfg, but you can
send them to a different file by setting their ��target attribute.

You can purge Nagios resources using the resources type, but only in the default file locations.�
This is an architectural limitation.
PARAMETERS
_NAGINATOR_NAME

namevar

The name parameter for Nagios type hostdependency
DEPENDENCY_PERIOD
Nagios configuration file parameter.��
DEPENDENT_HOST_NAME
Nagios configuration file parameter.��
DEPENDENT_HOSTGROUP_NAME
Nagios configuration file parameter.��
ENSURE
The basic property that the resource should be in. Valid values are present, absent.
EXECUTION_FAILURE_CRITERIA
Nagios configuration file parameter.��
HOST_NAME
Nagios configuration file parameter.��
HOSTGROUP_NAME
Nagios configuration file parameter.��
INHERITS_PARENT
Nagios configuration file parameter.��
NOTIFICATION_FAILURE_CRITERIA
Nagios configuration file parameter.��
PROVIDER

Puppet Documentation • Type Reference 229/311

The specific backend for provider to use. You will seldom need to specify this – Puppet will usually�
discover the appropriate provider for your platform. Available providers are:

naginator:

REGISTER
Nagios configuration file parameter.��
TARGET
target
USE
Nagios configuration file parameter.��

nagios_hostescalation

The Nagios type hostescalation. This resource type is autogenerated using the model developed in
Naginator, and all of the Nagios types are generated using the same code and the same library.

This type generates Nagios configuration statements in Nagios-parseable configuration files. ���By
default, the statements will be added to /etc/nagios/nagios_hostescalation.cfg, but you can
send them to a different file by setting their ��target attribute.

You can purge Nagios resources using the resources type, but only in the default file locations.�
This is an architectural limitation.
PARAMETERS
_NAGINATOR_NAME

namevar

The name parameter for Nagios type hostescalation
CONTACT_GROUPS
Nagios configuration file parameter.��
CONTACTS
Nagios configuration file parameter.��
ENSURE
The basic property that the resource should be in. Valid values are present, absent.
ESCALATION_OPTIONS
Nagios configuration file parameter.��
ESCALATION_PERIOD
Nagios configuration file parameter.��
FIRST_NOTIFICATION
Nagios configuration file parameter.��
HOST_NAME
Nagios configuration file parameter.��
HOSTGROUP_NAME
Nagios configuration file parameter.��

Puppet Documentation • Type Reference 230/311

LAST_NOTIFICATION
Nagios configuration file parameter.��
NOTIFICATION_INTERVAL
Nagios configuration file parameter.��
PROVIDER
The specific backend for provider to use. You will seldom need to specify this – Puppet will usually�
discover the appropriate provider for your platform. Available providers are:

naginator:

REGISTER
Nagios configuration file parameter.��
TARGET
target
USE
Nagios configuration file parameter.��

nagios_hostextinfo

The Nagios type hostextinfo. This resource type is autogenerated using the model developed in
Naginator, and all of the Nagios types are generated using the same code and the same library.

This type generates Nagios configuration statements in Nagios-parseable configuration files. ���By
default, the statements will be added to /etc/nagios/nagios_hostextinfo.cfg, but you can send
them to a different file by setting their ��target attribute.

You can purge Nagios resources using the resources type, but only in the default file locations.�
This is an architectural limitation.
PARAMETERS
ENSURE
The basic property that the resource should be in. Valid values are present, absent.
HOST_NAME

namevar

The name parameter for Nagios type hostextinfo
ICON_IMAGE
Nagios configuration file parameter.��
ICON_IMAGE_ALT
Nagios configuration file parameter.��
NOTES
Nagios configuration file parameter.��
NOTES_URL
Nagios configuration file parameter.��
PROVIDER
The specific backend for provider to use. You will seldom need to specify this – Puppet will usually�
Puppet Documentation • Type Reference 231/311

discover the appropriate provider for your platform. Available providers are:

naginator:

REGISTER
Nagios configuration file parameter.��
STATUSMAP_IMAGE
Nagios configuration file parameter.��
TARGET
target
USE
Nagios configuration file parameter.��
VRML_IMAGE
Nagios configuration file parameter.��

nagios_hostgroup

The Nagios type hostgroup. This resource type is autogenerated using the model developed in
Naginator, and all of the Nagios types are generated using the same code and the same library.

This type generates Nagios configuration statements in Nagios-parseable configuration files. ���By
default, the statements will be added to /etc/nagios/nagios_hostgroup.cfg, but you can send
them to a different file by setting their ��target attribute.

You can purge Nagios resources using the resources type, but only in the default file locations.�
This is an architectural limitation.
PARAMETERS
ACTION_URL
Nagios configuration file parameter.��
ALIAS
Nagios configuration file parameter.��
ENSURE
The basic property that the resource should be in. Valid values are present, absent.
HOSTGROUP_MEMBERS
Nagios configuration file parameter.��
HOSTGROUP_NAME

namevar

The name parameter for Nagios type hostgroup
MEMBERS
Nagios configuration file parameter.��
NOTES
Nagios configuration file parameter.��
NOTES_URL

Puppet Documentation • Type Reference 232/311

Nagios configuration file parameter.��
PROVIDER
The specific backend for provider to use. You will seldom need to specify this – Puppet will usually�
discover the appropriate provider for your platform. Available providers are:

naginator:

REGISTER
Nagios configuration file parameter.��
TARGET
target
USE
Nagios configuration file parameter.��

nagios_service

The Nagios type service. This resource type is autogenerated using the model developed in
Naginator, and all of the Nagios types are generated using the same code and the same library.

This type generates Nagios configuration statements in Nagios-parseable configuration files. ���By
default, the statements will be added to /etc/nagios/nagios_service.cfg, but you can send them
to a different file by setting their ��target attribute.

You can purge Nagios resources using the resources type, but only in the default file locations.�
This is an architectural limitation.
PARAMETERS
_NAGINATOR_NAME

namevar

The name parameter for Nagios type service
ACTION_URL
Nagios configuration file parameter.��
ACTIVE_CHECKS_ENABLED
Nagios configuration file parameter.��
CHECK_COMMAND
Nagios configuration file parameter.��
CHECK_FRESHNESS
Nagios configuration file parameter.��
CHECK_INTERVAL
Nagios configuration file parameter.��
CHECK_PERIOD
Nagios configuration file parameter.��
CONTACT_GROUPS
Nagios configuration file parameter.��

Puppet Documentation • Type Reference 233/311

CONTACTS
Nagios configuration file parameter.��
DISPLAY_NAME
Nagios configuration file parameter.��
ENSURE
The basic property that the resource should be in. Valid values are present, absent.
EVENT_HANDLER
Nagios configuration file parameter.��
EVENT_HANDLER_ENABLED
Nagios configuration file parameter.��
FAILURE_PREDICTION_ENABLED
Nagios configuration file parameter.��
FIRST_NOTIFICATION_DELAY
Nagios configuration file parameter.��
FLAP_DETECTION_ENABLED
Nagios configuration file parameter.��
FLAP_DETECTION_OPTIONS
Nagios configuration file parameter.��
FRESHNESS_THRESHOLD
Nagios configuration file parameter.��
HIGH_FLAP_THRESHOLD
Nagios configuration file parameter.��
HOST_NAME
Nagios configuration file parameter.��
HOSTGROUP_NAME
Nagios configuration file parameter.��
ICON_IMAGE
Nagios configuration file parameter.��
ICON_IMAGE_ALT
Nagios configuration file parameter.��
INITIAL_STATE
Nagios configuration file parameter.��
IS_VOLATILE
Nagios configuration file parameter.��
LOW_FLAP_THRESHOLD
Nagios configuration file parameter.��
MAX_CHECK_ATTEMPTS
Nagios configuration file parameter.��
NORMAL_CHECK_INTERVAL
Nagios configuration file parameter.��

Puppet Documentation • Type Reference 234/311

NOTES
Nagios configuration file parameter.��
NOTES_URL
Nagios configuration file parameter.��
NOTIFICATION_INTERVAL
Nagios configuration file parameter.��
NOTIFICATION_OPTIONS
Nagios configuration file parameter.��
NOTIFICATION_PERIOD
Nagios configuration file parameter.��
NOTIFICATIONS_ENABLED
Nagios configuration file parameter.��
OBSESS_OVER_SERVICE
Nagios configuration file parameter.��
PARALLELIZE_CHECK
Nagios configuration file parameter.��
PASSIVE_CHECKS_ENABLED
Nagios configuration file parameter.��
PROCESS_PERF_DATA
Nagios configuration file parameter.��
PROVIDER
The specific backend for provider to use. You will seldom need to specify this – Puppet will usually�
discover the appropriate provider for your platform. Available providers are:

naginator:

REGISTER
Nagios configuration file parameter.��
RETAIN_NONSTATUS_INFORMATION
Nagios configuration file parameter.��
RETAIN_STATUS_INFORMATION
Nagios configuration file parameter.��
RETRY_CHECK_INTERVAL
Nagios configuration file parameter.��
RETRY_INTERVAL
Nagios configuration file parameter.��
SERVICE_DESCRIPTION
Nagios configuration file parameter.��
SERVICEGROUPS
Nagios configuration file parameter.��
STALKING_OPTIONS
Nagios configuration file parameter.��

Puppet Documentation • Type Reference 235/311

TARGET
target
USE
Nagios configuration file parameter.��

nagios_servicedependency

The Nagios type servicedependency. This resource type is autogenerated using the model
developed in Naginator, and all of the Nagios types are generated using the same code and the
same library.

This type generates Nagios configuration statements in Nagios-parseable configuration files. ���By
default, the statements will be added to /etc/nagios/nagios_servicedependency.cfg, but you can
send them to a different file by setting their ��target attribute.

You can purge Nagios resources using the resources type, but only in the default file locations.�
This is an architectural limitation.
PARAMETERS
_NAGINATOR_NAME

namevar

The name parameter for Nagios type servicedependency
DEPENDENCY_PERIOD
Nagios configuration file parameter.��
DEPENDENT_HOST_NAME
Nagios configuration file parameter.��
DEPENDENT_HOSTGROUP_NAME
Nagios configuration file parameter.��
DEPENDENT_SERVICE_DESCRIPTION
Nagios configuration file parameter.��
ENSURE
The basic property that the resource should be in. Valid values are present, absent.
EXECUTION_FAILURE_CRITERIA
Nagios configuration file parameter.��
HOST_NAME
Nagios configuration file parameter.��
HOSTGROUP_NAME
Nagios configuration file parameter.��
INHERITS_PARENT
Nagios configuration file parameter.��
NOTIFICATION_FAILURE_CRITERIA
Nagios configuration file parameter.��
PROVIDER

Puppet Documentation • Type Reference 236/311

The specific backend for provider to use. You will seldom need to specify this – Puppet will usually�
discover the appropriate provider for your platform. Available providers are:

naginator:

REGISTER
Nagios configuration file parameter.��
SERVICE_DESCRIPTION
Nagios configuration file parameter.��
TARGET
target
USE
Nagios configuration file parameter.��

nagios_serviceescalation

The Nagios type serviceescalation. This resource type is autogenerated using the model developed
in Naginator, and all of the Nagios types are generated using the same code and the same library.

This type generates Nagios configuration statements in Nagios-parseable configuration files. ���By
default, the statements will be added to /etc/nagios/nagios_serviceescalation.cfg, but you can
send them to a different file by setting their ��target attribute.

You can purge Nagios resources using the resources type, but only in the default file locations.�
This is an architectural limitation.
PARAMETERS
_NAGINATOR_NAME

namevar

The name parameter for Nagios type serviceescalation
CONTACT_GROUPS
Nagios configuration file parameter.��
CONTACTS
Nagios configuration file parameter.��
ENSURE
The basic property that the resource should be in. Valid values are present, absent.
ESCALATION_OPTIONS
Nagios configuration file parameter.��
ESCALATION_PERIOD
Nagios configuration file parameter.��
FIRST_NOTIFICATION
Nagios configuration file parameter.��
HOST_NAME
Nagios configuration file parameter.��

Puppet Documentation • Type Reference 237/311

HOSTGROUP_NAME
Nagios configuration file parameter.��
LAST_NOTIFICATION
Nagios configuration file parameter.��
NOTIFICATION_INTERVAL
Nagios configuration file parameter.��
PROVIDER
The specific backend for provider to use. You will seldom need to specify this – Puppet will usually�
discover the appropriate provider for your platform. Available providers are:

naginator:

REGISTER
Nagios configuration file parameter.��
SERVICE_DESCRIPTION
Nagios configuration file parameter.��
SERVICEGROUP_NAME
Nagios configuration file parameter.��
TARGET
target
USE
Nagios configuration file parameter.��

nagios_serviceextinfo

The Nagios type serviceextinfo. This resource type is autogenerated using the model developed in
Naginator, and all of the Nagios types are generated using the same code and the same library.

This type generates Nagios configuration statements in Nagios-parseable configuration files. ���By
default, the statements will be added to /etc/nagios/nagios_serviceextinfo.cfg, but you can
send them to a different file by setting their ��target attribute.

You can purge Nagios resources using the resources type, but only in the default file locations.�
This is an architectural limitation.
PARAMETERS
_NAGINATOR_NAME

namevar

The name parameter for Nagios type serviceextinfo
ACTION_URL
Nagios configuration file parameter.��
ENSURE
The basic property that the resource should be in. Valid values are present, absent.
HOST_NAME
Nagios configuration file parameter.��
Puppet Documentation • Type Reference 238/311

ICON_IMAGE
Nagios configuration file parameter.��
ICON_IMAGE_ALT
Nagios configuration file parameter.��
NOTES
Nagios configuration file parameter.��
NOTES_URL
Nagios configuration file parameter.��
PROVIDER
The specific backend for provider to use. You will seldom need to specify this – Puppet will usually�
discover the appropriate provider for your platform. Available providers are:

naginator:

REGISTER
Nagios configuration file parameter.��
SERVICE_DESCRIPTION
Nagios configuration file parameter.��
TARGET
target
USE
Nagios configuration file parameter.��

nagios_servicegroup

The Nagios type servicegroup. This resource type is autogenerated using the model developed in
Naginator, and all of the Nagios types are generated using the same code and the same library.

This type generates Nagios configuration statements in Nagios-parseable configuration files. ���By
default, the statements will be added to /etc/nagios/nagios_servicegroup.cfg, but you can send
them to a different file by setting their ��target attribute.

You can purge Nagios resources using the resources type, but only in the default file locations.�
This is an architectural limitation.
PARAMETERS
ACTION_URL
Nagios configuration file parameter.��
ALIAS
Nagios configuration file parameter.��
ENSURE
The basic property that the resource should be in. Valid values are present, absent.
MEMBERS
Nagios configuration file parameter.��

Puppet Documentation • Type Reference 239/311

NOTES
Nagios configuration file parameter.��
NOTES_URL
Nagios configuration file parameter.��
PROVIDER
The specific backend for provider to use. You will seldom need to specify this – Puppet will usually�
discover the appropriate provider for your platform. Available providers are:

naginator:

REGISTER
Nagios configuration file parameter.��
SERVICEGROUP_MEMBERS
Nagios configuration file parameter.��
SERVICEGROUP_NAME

namevar

The name parameter for Nagios type servicegroup
TARGET
target
USE
Nagios configuration file parameter.��

nagios_timeperiod

The Nagios type timeperiod. This resource type is autogenerated using the model developed in
Naginator, and all of the Nagios types are generated using the same code and the same library.

This type generates Nagios configuration statements in Nagios-parseable configuration files. ���By
default, the statements will be added to /etc/nagios/nagios_timeperiod.cfg, but you can send
them to a different file by setting their ��target attribute.

You can purge Nagios resources using the resources type, but only in the default file locations.�
This is an architectural limitation.
PARAMETERS
ALIAS
Nagios configuration file parameter.��
ENSURE
The basic property that the resource should be in. Valid values are present, absent.
EXCLUDE
Nagios configuration file parameter.��
FRIDAY
Nagios configuration file parameter.��
MONDAY
Nagios configuration file parameter.��
Puppet Documentation • Type Reference 240/311

PROVIDER
The specific backend for provider to use. You will seldom need to specify this – Puppet will usually�
discover the appropriate provider for your platform. Available providers are:

naginator:

REGISTER
Nagios configuration file parameter.��
SATURDAY
Nagios configuration file parameter.��
SUNDAY
Nagios configuration file parameter.��
TARGET
target
THURSDAY
Nagios configuration file parameter.��
TIMEPERIOD_NAME

namevar

The name parameter for Nagios type timeperiod
TUESDAY
Nagios configuration file parameter.��
USE
Nagios configuration file parameter.��
WEDNESDAY
Nagios configuration file parameter.��

notify

Sends an arbitrary message to the agent run-time log.
PARAMETERS
MESSAGE
The message to be sent to the log.
NAME
An arbitrary tag for your own reference; the name of the message.
WITHPATH
Whether to not to show the full object path. Valid values are true, false.

package

Manage packages. There is a basic dichotomy in package support right now: Some package types
(e.g., yum and apt) can retrieve their own package files, while others (e.g., rpm and sun) cannot. �For
those package formats that cannot retrieve their own files, you can use the �source parameter to
point to the correct file.�
Puppet Documentation • Type Reference 241/311

Puppet will automatically guess the packaging format that you are using based on the platform you
are on, but you can override it using the provider parameter; each provider defines what it�
requires in order to function, and you must meet those requirements to use a given provider.

Autorequires: If Puppet is managing the files specified as a packageʼs ��adminfile, responsefile, or
source, the package resource will autorequire those files.�

FEATURES

holdable: The provider is capable of placing packages on hold such that they are not
automatically upgraded as a result of other package dependencies unless explicit action is taken
by a user or another package. Held is considered a superset of installed.
installable: The provider can install packages.
purgeable: The provider can purge packages. This generally means that all traces of the package
are removed, including existing configuration files. ��This feature is thus destructive and should
be used with the utmost care.
uninstallable: The provider can uninstall packages.
upgradeable: The provider can upgrade to the latest version of a package. This feature is used
by specifying latest as the desired value for the package.
versionable: The provider is capable of interrogating the package database for installed
version(s), and can select which out of a set of available versions of a package to install if asked.

Provider holdable installable purgeable uninstallable upgradeable versionable

aix X X X X

appdmg X

apple X

apt X X X X X X

aptitude X X X X X X

aptrpm X X X X X

blastwave X X X

darwinport X X X

dpkg X X X X X

fink� X X X X X X

freebsd X X

gem X X X X

hpux X X

nim X X X X

openbsd X X X

pkg X X X

pkgdmg X

Puppet Documentation • Type Reference 242/311

portage X X X X

ports X X X

portupgrade X X X

rpm X X X X

rug X X X X

sun X X X

sunfreeware X X X

up2date X X X

urpmi X X X X

yum X X X X X

zypper X X X X

PARAMETERS
ADMINFILE
A file containing package defaults for installing packages. This is currently only used on Solaris.�
The value will be validated according to system rules, which in the case of Solaris means that it
should either be a fully qualified path or it should be in �/var/sadm/install/admin.
ALLOWCDROM
Tells apt to allow cdrom sources in the sources.list file. Normally apt will bail if you try this. �Valid
values are true, false.
CATEGORY
A read-only parameter set by the package.
CONFIGFILES
Whether configfiles should be kept or replaced. ��Most packages types do not support this
parameter. Valid values are keep, replace.
DESCRIPTION
A read-only parameter set by the package.
ENSURE
What state the package should be in. latest only makes sense for those packaging formats that can
retrieve new packages on their own and will throw an error on those that cannot. For those
packaging systems that allow you to specify package versions, specify them here. Similarly, purged
is only useful for packaging systems that support the notion of managing configuration files��
separately from ʻnormalʼ system files. �Valid values are present (also called installed), absent,
purged, held, latest. Values can match /./.
FLAVOR
Newer versions of OpenBSD support ʻflavorsʼ, which are further specifications for which type of��
package you want.
INSTANCE
A read-only parameter set by the package.
NAME

Puppet Documentation • Type Reference 243/311

The package name. This is the name that the packaging system uses internally, which is sometimes
(especially on Solaris) a name that is basically useless to humans. If you want to abstract package
installation, then you can use aliases to provide a common name to packages:

#	In	the	'openssl'	class
$ssl	=	$operatingsystem	?	{
		solaris	=>	SMCossl,
		default	=>	openssl
}

#	It	is	not	an	error	to	set	an	alias	to	the	same	value	as	the
#	object	name.
package	{	$ssl:
		ensure	=>	installed,
		alias	=>	openssl
}

.	etc.	.

$ssh	=	$operatingsystem	?	{
		solaris	=>	SMCossh,
		default	=>	openssh
}

#	Use	the	alias	to	specify	a	dependency,	rather	than
#	having	another	selector	to	figure	it	out	again.
package	{	$ssh:
		ensure	=>	installed,
		alias	=>	openssh,
		require	=>	Package[openssl]
}

PLATFORM
A read-only parameter set by the package.
PROVIDER
The specific backend for provider to use. You will seldom need to specify this – Puppet will usually�
discover the appropriate provider for your platform. Available providers are:

aix: Installation from AIX Software directory Required binaries: /usr/sbin/installp,
/usr/bin/lslpp. Default for operatingsystem == aix. Supported features: installable,
uninstallable, upgradeable, versionable.
appdmg: Package management which copies application bundles to a target. Required binaries:
/usr/bin/hdiutil, /usr/bin/curl, /usr/bin/ditto. Supported features: installable.
apple: Package management based on OS Xʼs builtin packaging system. This is essentially the
simplest and least functional package system in existence – it only supports installation; no
deletion or upgrades. The provider will automatically add the .pkg extension, so leave that off�
when specifying the package name. Required binaries: /usr/sbin/installer. Supported
features: installable.
apt: Package management via apt-get. Required binaries: /usr/bin/apt-get, /usr/bin/apt-
cache, /usr/bin/debconf-set-selections. Default for operatingsystem == debianubuntu.
Supported features: holdable, installable, purgeable, uninstallable, upgradeable,
versionable.

Puppet Documentation • Type Reference 244/311

versionable.
aptitude: Package management via aptitude. Required binaries: /usr/bin/aptitude,
/usr/bin/apt-cache. Supported features: holdable, installable, purgeable, uninstallable,
upgradeable, versionable.
aptrpm: Package management via apt-get ported to rpm. Required binaries: rpm, apt-get, apt-
cache. Supported features: installable, purgeable, uninstallable, upgradeable, versionable.
blastwave: Package management using Blastwave.orgʼs pkg-get command on Solaris. Required
binaries: pkg-get. Supported features: installable, uninstallable, upgradeable.
darwinport: Package management using DarwinPorts on OS X. Required binaries:
/opt/local/bin/port. Supported features: installable, uninstallable, upgradeable.
dpkg: Package management via dpkg. Because this only uses dpkg and not apt, you must specify
the source of any packages you want to manage. Required binaries: /usr/bin/dpkg-deb,
/usr/bin/dpkg-query, /usr/bin/dpkg. Supported features: holdable, installable, purgeable,
uninstallable, upgradeable.
fink�: Package management via fink. Required binaries: /sw/bin/dpkg-query, /sw/bin/fink,
/sw/bin/apt-get, /sw/bin/apt-cache. Supported features: holdable, installable, purgeable,
uninstallable, upgradeable, versionable.
freebsd: The specific form of package management on FreeBSD. �This is an extremely quirky
packaging system, in that it freely mixes between ports and packages. Apparently all of the tools
are written in Ruby, so there are plans to rewrite this support to directly use those libraries.
Required binaries: /usr/sbin/pkg_info, /usr/sbin/pkg_add, /usr/sbin/pkg_delete.
Supported features: installable, uninstallable.
gem: Ruby Gem support. If a URL is passed via source, then that URL is used as the remote gem
repository; if a source is present but is not a valid URL, it will be interpreted as the path to a local
gem file. �If source is not present at all, the gem will be installed from the default gem
repositories. Required binaries: gem. Supported features: installable, uninstallable,
upgradeable, versionable.
hpux: HP-UXʼs packaging system. Required binaries: /usr/sbin/swinstall, /usr/sbin/swlist,
/usr/sbin/swremove. Default for operatingsystem == hp-ux. Supported features: installable,
uninstallable.
nim: Installation from NIM LPP source Required binaries: /usr/sbin/nimclient. Supported
features: installable, uninstallable, upgradeable, versionable.
openbsd: OpenBSDʼs form of pkg_add support. Required binaries: pkg_info, pkg_add,
pkg_delete. Default for operatingsystem == openbsd. Supported features: installable,
uninstallable, versionable.
pkg: OpenSolaris image packaging system. See pkg(5) for more information Required binaries:
/usr/bin/pkg. Supported features: installable, uninstallable, upgradeable.
pkgdmg: Package management based on Appleʼs Installer.app and DiskUtility.app. This package
works by checking the contents of a DMG image for Apple pkg or mpkg files. Any number of pkg�
or mpkg files may exist in the root directory of the DMG file system. Sub directories are not��
checked for packages. See the	wiki	docs
<http://projects.puppetlabs.com/projects/puppet/wiki/Package_Management_With_Dmg_Patterns>

for more detail. Required binaries: /usr/bin/hdiutil, /usr/bin/curl, /usr/sbin/installer.
Puppet Documentation • Type Reference 245/311

Default for operatingsystem == darwin. Supported features: installable.
portage: Provides packaging support for Gentooʼs portage system. Required binaries:
/usr/bin/emerge, /usr/bin/eix, /usr/bin/eix-update. Default for operatingsystem ==
gentoo. Supported features: installable, uninstallable, upgradeable, versionable.
ports: Support for FreeBSDʼs ports. Again, this still mixes packages and ports. Required binaries:
/usr/sbin/pkg_info, /usr/local/sbin/portupgrade, /usr/local/sbin/portversion,
/usr/local/sbin/pkg_deinstall. Default for operatingsystem == freebsd. Supported
features: installable, uninstallable, upgradeable.
portupgrade: Support for FreeBSDʼs ports using the portupgrade ports management software.
Use the portʼs full origin as the resource name. eg (ports-mgmt/portupgrade) for the
portupgrade port. Required binaries: /usr/sbin/pkg_info, /usr/local/sbin/portupgrade,
/usr/local/sbin/portinstall, /usr/local/sbin/portversion,
/usr/local/sbin/pkg_deinstall. Supported features: installable, uninstallable,
upgradeable.
rpm: RPM packaging support; should work anywhere with a working rpm binary. Required
binaries: rpm. Supported features: installable, uninstallable, upgradeable, versionable.
rug: Support for suse rug package manager. Required binaries: rpm, /usr/bin/rug. Default for
operatingsystem == susesles. Supported features: installable, uninstallable, upgradeable,
versionable.
sun: Sunʼs packaging system. Requires that you specify the source for the packages youʼre
managing. Required binaries: /usr/bin/pkginfo, /usr/sbin/pkgadd, /usr/sbin/pkgrm. Default
for operatingsystem == solaris. Supported features: installable, uninstallable,
upgradeable.
sunfreeware: Package management using sunfreeware.comʼs pkg-get command on Solaris. At
this point, support is exactly the same as blastwave support and has not actually been tested.
Required binaries: pkg-get. Supported features: installable, uninstallable, upgradeable.
up2date: Support for Red Hatʼs proprietary up2date package update mechanism. Required
binaries: /usr/sbin/up2date-nox. Default for operatingsystem == redhatoelovm and
lsbdistrelease == 2.134. Supported features: installable, uninstallable, upgradeable.
urpmi: Support via urpmi. Required binaries: urpmi, rpm, urpmq. Default for operatingsystem ==
mandrivamandrake. Supported features: installable, uninstallable, upgradeable,
versionable.
yum: Support via yum. Required binaries: python, rpm, yum. Default for operatingsystem ==
fedoracentosredhat. Supported features: installable, purgeable, uninstallable,
upgradeable, versionable.
zypper: Support for SuSE zypper package manager. Found in SLES10sp2+ and SLES11 Required
binaries: /usr/bin/zypper, rpm. Supported features: installable, uninstallable, upgradeable,
versionable.

RESPONSEFILE
A file containing any necessary answers to questions asked by the package. �This is currently used
on Solaris and Debian. The value will be validated according to system rules, but it should generally

Puppet Documentation • Type Reference 246/311

be a fully qualified path.�
ROOT
A read-only parameter set by the package.
SOURCE
Where to find the actual package. �This must be a local file (or on a network file system) or a URL��
that your specific packaging type understands; Puppet will not retrieve files for you.��
STATUS
A read-only parameter set by the package.
TYPE
Deprecated form of provider.
VENDOR
A read-only parameter set by the package.

resources

This is a metatype that can manage other resource types. Any metaparams specified here will be�
passed on to any generated resources, so you can purge umanaged resources but set noop to true
so the purging is only logged and does not actually happen.
PARAMETERS
NAME
The name of the type to be managed.
PURGE
Purge unmanaged resources. This will delete any resource that is not specified in your�
configuration and is not required by any specified resources. ��Valid values are true, false.
UNLESS_SYSTEM_USER
This keeps system users from being purged. By default, it does not purge users whose UIDs are less
than or equal to 500, but you can specify a different UID as the inclusive limit. �Valid values are true,
false. Values can match /^\d+$/.

schedule

Defined schedules for Puppet. �The important thing to understand about how schedules are
currently implemented in Puppet is that they can only be used to stop a resource from being
applied, they never guarantee that it is applied.

Every time Puppet applies its configuration, it will collect the list of resources whose schedule does�
not eliminate them from running right then, but there is currently no system in place to guarantee
that a given resource runs at a given time. If you specify a very restrictive schedule and Puppet
happens to run at a time within that schedule, then the resources will get applied; otherwise, that
work may never get done.

Thus, it behooves you to use wider scheduling (e.g., over a couple of hours) combined with periods
and repetitions. For instance, if you wanted to restrict certain resources to only running once,
between the hours of two and 4 AM, then you would use this schedule:

Puppet Documentation • Type Reference 247/311

schedule	{	maint:
		range	=>	"2	-	4",
		period	=>	daily,
		repeat	=>	1
}

With this schedule, the first time that Puppet runs between 2 and 4 AM, all resources with this�
schedule will get applied, but they wonʼt get applied again between 2 and 4 because they will have
already run once that day, and they wonʼt get applied outside that schedule because they will be
outside the scheduled range.

Puppet automatically creates a schedule for each valid period with the same name as that period
(e.g., hourly and daily). Additionally, a schedule named puppet is created and used as the default,
with the following attributes:

schedule	{	puppet:
		period	=>	hourly,
		repeat	=>	2
}

This will cause resources to be applied every 30 minutes by default.
PARAMETERS
NAME
The name of the schedule. This name is used to retrieve the schedule when assigning it to an
object:

schedule	{	daily:
		period	=>	daily,
		range	=>	"2	-	4",
}
		
exec	{	"/usr/bin/apt-get	update":
		schedule	=>	daily
}

PERIOD
The period of repetition for a resource. Choose from among a fixed list of �hourly, daily, weekly, and
monthly. The default is for a resource to get applied every time that Puppet runs, whatever that
period is.

Note that the period defines how often a given resource will get applied but not when; if you would�
like to restrict the hours that a given resource can be applied (e.g., only at night during a
maintenance window) then use the range attribute.

If the provided periods are not sufficient, you can provide a value to the ��repeat attribute, which will
cause Puppet to schedule the affected resources evenly in the period the specified number of times.��
Take this schedule:

Puppet Documentation • Type Reference 248/311

schedule	{	veryoften:
		period	=>	hourly,
		repeat	=>	6
}

This can cause Puppet to apply that resource up to every 10 minutes.

At the moment, Puppet cannot guarantee that level of repetition; that is, it can run up to every 10
minutes, but internal factors might prevent it from actually running that often (e.g., long-running
Puppet runs will squash conflictingly scheduled runs).�

See the periodmatch attribute for tuning whether to match times by their distance apart or by their
specific value. �Valid values are hourly, daily, weekly, monthly, never.
PERIODMATCH
Whether periods should be matched by number (e.g., the two times are in the same hour) or by
distance (e.g., the two times are 60 minutes apart). Valid values are number, distance.
RANGE
The earliest and latest that a resource can be applied. This is always a range within a 24 hour
period, and hours must be specified in numbers between 0 and 23, inclusive. �Minutes and seconds
can be provided, using the normal colon as a separator. For instance:

schedule	{	maintenance:
		range	=>	"1:30	-	4:30"
}

This is mostly useful for restricting certain resources to being applied in maintenance windows or
during off-peak hours.�
REPEAT
How often the application gets repeated in a given period. Defaults to 1. Must be an integer.

selboolean

Manages SELinux booleans on systems with SELinux support. The supported booleans are any of
the ones found in /selinux/booleans/.

PARAMETERS
NAME
The name of the SELinux boolean to be managed.
PERSISTENT
If set true, SELinux booleans will be written to disk and persist accross reboots. The default is
false. Valid values are true, false.
PROVIDER
The specific backend for provider to use. You will seldom need to specify this – Puppet will usually�
discover the appropriate provider for your platform. Available providers are:

getsetsebool: Manage SELinux booleans using the getsebool and setsebool binaries. Required
binaries: /usr/sbin/getsebool, /usr/sbin/setsebool.

Puppet Documentation • Type Reference 249/311

VALUE
Whether the the SELinux boolean should be enabled or disabled. Valid values are on, off.

selmodule

Manages loading and unloading of SELinux policy modules on the system. Requires SELinux
support. See man semodule(8) for more information on SELinux policy modules.

Autorequires: If Puppet is managing the file containing this SELinux policy module (which is either�
explicitly specified in the �selmodulepath attribute or will be found at {selmoduledir}/{name}.pp),
the selmodule resource will autorequire that file.�
PARAMETERS
ENSURE
The basic property that the resource should be in. Valid values are present, absent.
NAME
The name of the SELinux policy to be managed. You should not include the customary trailing .pp
extension.
PROVIDER
The specific backend for provider to use. You will seldom need to specify this – Puppet will usually�
discover the appropriate provider for your platform. Available providers are:

semodule: Manage SELinux policy modules using the semodule binary. Required binaries:
/usr/sbin/semodule.

SELMODULEDIR
The directory to look for the compiled pp module file in. Currently defaults to�
/usr/share/selinux/targeted. If selmodulepath is not specified the module will be looked for in�
this directory in a in a file called NAME.pp, where NAME is the value of the name parameter.�
SELMODULEPATH
The full path to the compiled .pp policy module. You only need to use this if the module file is not�
in the directory pointed at by selmoduledir.
SYNCVERSION
If set to true, the policy will be reloaded if the version found in the on-disk file differs from the��
loaded version. If set to false (the default) the the only check that will be made is if the policy is
loaded at all or not. Valid values are true, false.

service

Manage running services. Service support unfortunately varies widely by platform – some platforms
have very little if any concept of a running service, and some have a very codified and powerful�
concept. Puppetʼs service support will generally be able to make up for any inherent shortcomings
(e.g., if there is no ʻstatusʼ command, then Puppet will look in the process table for a command
matching the service name), but the more information you can provide the better behaviour you will
get. Or, you can just use a platform that has very good service support.

Puppet Documentation • Type Reference 250/311

Note that if a service receives an event from another resource, the service will get restarted. The
actual command to restart the service depends on the platform. You can provide a special
command for restarting with the restart attribute.

FEATURES

controllable: The provider uses a control variable.
enableable: The provider can enable and disable the service
refreshable: The provider can restart the service.

Provider controllable enableable refreshable

base X

bsd X X

daemontools X X

debian X X

freebsd X X

gentoo X X

init X

launchd X X

redhat X X

runit X X

smf X X

src X

PARAMETERS
BINARY
The path to the daemon. This is only used for systems that do not support init scripts. This binary
will be used to start the service if no start parameter is provided.
CONTROL
The control variable used to manage services (originally for HP-UX). Defaults to the upcased service
name plus START replacing dots with underscores, for those providers that support the
controllable feature.
ENABLE
Whether a service should be enabled to start at boot. This property behaves quite differently�
depending on the platform; wherever possible, it relies on local tools to enable or disable a given
service. Valid values are true, false. Requires features enableable.
ENSURE
Whether a service should be running. Valid values are stopped (also called false), running (also
called true).
HASRESTART
Specify that an init script has a restart option. Otherwise, the init scriptʼs stop and start methods

Puppet Documentation • Type Reference 251/311

are used. Valid values are true, false.
HASSTATUS
Declare the the serviceʼs init script has a functional status command. Based on testing, it was found
that a large number of init scripts on different platforms do not support any kind of status�
command; thus, you must specify manually whether the service you are running has such a
command (or you can specify a specific command using the �status parameter).

If you do not specify anything, then the service name will be looked for in the process table. Valid
values are true, false.
MANIFEST
Specify a command to config a service, or a path to a manifest to do so.�
NAME
The name of the service to run. This name is used to find the service in whatever service subsystem�
it is in.
PATH
The search path for finding init scripts. �Multiple values should be separated by colons or provided
as an array.
PATTERN
The pattern to search for in the process table. This is used for stopping services on platforms that
do not support init scripts, and is also used for determining service status on those service whose
init scripts do not include a status command.

If this is left unspecified and is needed to check the status of a service, then the service name will be�
used instead.

The pattern can be a simple string or any legal Ruby pattern.
PROVIDER
The specific backend for provider to use. You will seldom need to specify this – Puppet will usually�
discover the appropriate provider for your platform. Available providers are:

base: The simplest form of service support.

You have to specify enough about your service for this to work; the minimum you can specify is a
binary for starting the process, and this same binary will be searched for in the process table to
stop the service. It is preferable to specify start, stop, and status commands, akin to how you
would do so using init.

Required binaries: kill. Supported features: refreshable.
bsd: FreeBSDʼs (and probably NetBSD?) form of init-style service management.

Uses rc.conf.d for service enabling and disabling.

Supported	features:	`enableable`,	`refreshable`.

daemontools: Daemontools service management.

Puppet Documentation • Type Reference 252/311

This provider manages daemons running supervised by D.J.Bernstein daemontools. It tries to
detect the service directory, with by order of preference:

/service
/etc/service
/var/lib/svscan

The daemon directory should be placed in a directory that can be by default in:

/var/lib/service
/etc

or this can be overriden in the service resource parameters::

service	{	"myservice":	provider	=>	"daemontools",	path	=>	"/path/to/daemons",
}

This provider supports out of the box:

start/stop (mapped to enable/disable)
enable/disable
restart
status

If a service has ensure	=>	"running", it will link /path/to/daemon to /path/to/service, which
will automatically enable the service.

If a service has ensure	=>	"stopped", it will only down the service, not remove the
/path/to/service link.

Required binaries: /usr/bin/svc, /usr/bin/svstat. Supported features: enableable,
refreshable.
debian: Debianʼs form of init-style management.

The only difference is that this supports service enabling and disabling via �update-rc.d and
determines enabled status via invoke-rc.d.

Required binaries: /usr/sbin/update-rc.d, /usr/sbin/invoke-rc.d. Default for
operatingsystem == debianubuntu. Supported features: enableable, refreshable.
freebsd: Provider for FreeBSD. Makes use of rcvar argument of init scripts and parses/edits rc
files. �Default for operatingsystem == freebsd. Supported features: enableable, refreshable.
gentoo: Gentooʼs form of init-style service management.

Uses rc-update for service enabling and disabling.

Required binaries: /sbin/rc-update. Default for operatingsystem == gentoo. Supported
features: enableable, refreshable.

Puppet Documentation • Type Reference 253/311

init: Standard init service management.

This provider assumes that the init script has no status command, because so few scripts do, so
you need to either provide a status command or specify via hasstatus that one already exists in
the init script.

Supported	features:	`refreshable`.

launchd: launchd service management framework.

This provider manages jobs with launchd, which is the default service framework for Mac OS X
and is potentially available for use on other platforms.

See:

http://developer.apple.com/macosx/launchd.html
http://launchd.macosforge.org/

This provider reads plists out of the following directories:

/System/Library/LaunchDaemons
/System/Library/LaunchAgents
/Library/LaunchDaemons
/Library/LaunchAgents

…and builds up a list of services based upon each plistʼs “Label” entry.

This provider supports:

ensure => running/stopped,
enable => true/false
status
restart

Here is how the Puppet states correspond to launchd states:

stopped — job unloaded
started — job loaded
enabled — ʻDisableʼ removed from job plist file�
disabled — ʻDisableʼ added to job plist file�

Note that this allows you to do something launchctl canʼt do, which is to be in a state of
“stopped/enabled or “running/disabled”.

Required binaries: /bin/launchctl, /usr/bin/plutil, /usr/bin/sw_vers. Default for
operatingsystem == darwin. Supported features: enableable, refreshable.
redhat: Red Hatʼs (and probably many others) form of init-style service management:

Puppet Documentation • Type Reference 254/311

Uses chkconfig for service enabling and disabling.

Required binaries: /sbin/service, /sbin/chkconfig. Default for operatingsystem ==
redhatfedorasusecentosslesoelovm. Supported features: enableable, refreshable.
runit: Runit service management.

This provider manages daemons running supervised by Runit. It tries to detect the service
directory, with by order of preference:

/service
/var/service
/etc/service

The daemon directory should be placed in a directory that can be by default in:

/etc/sv

or this can be overriden in the service resource parameters::

service	{	"myservice":	provider	=>	"runit",	path	=>	"/path/to/daemons",
}

This provider supports out of the box:

start/stop
enable/disable
restart
status

Required binaries: /usr/bin/sv. Supported features: enableable, refreshable.
smf: Support for Sunʼs new Service Management Framework.

Starting a service is effectively equivalent to enabling it, so there is only support for starting and�
stopping services, which also enables and disables them, respectively.

By specifying manifest => “/path/to/service.xml”, the SMF manifest will be imported if it does
not exist.

Required binaries: /usr/sbin/svcadm, /usr/bin/svcs, /usr/sbin/svccfg. Default for
operatingsystem == solaris. Supported features: enableable, refreshable.
src: Support for AIXʼs System Resource controller.

Services are started/stopped based on the stopsrc and startsrc commands, and some services
can be refreshed with refresh command.

Enabling and disableing services is not supported, as it requires modifications to /etc/inittab.�
Starting and stopping groups of subsystems is not yet supported Required binaries:

Puppet Documentation • Type Reference 255/311

/usr/bin/stopsrc, /usr/bin/refresh, /usr/bin/startsrc, /usr/bin/lssrc. Default for
operatingsystem == aix. Supported features: refreshable.

RESTART
Specify a restart command manually. If left unspecified, the service will be stopped and then started.�
START
Specify a start command manually. Most service subsystems support a start command, so this will
not need to be specified.�
STATUS
Specify a status command manually. This command must return 0 if the service is running and a
nonzero value otherwise. Ideally, these return codes should conform to the LSBʼs specification for�
init script status actions, but puppet only considers the difference between 0 and nonzero to be�
relevant.

If left unspecified, the status method will be determined automatically, usually by looking for the�
service in the process table.
STOP
Specify a stop command manually.

ssh_authorized_key

Manages SSH authorized keys. Currently only type 2 keys are supported.

Autorequires: If Puppet is managing the user account in which this SSH key should be installed, the
ssh_authorized_key resource will autorequire that user.

PARAMETERS
ENSURE
The basic property that the resource should be in. Valid values are present, absent.
KEY
The key itself; generally a long string of hex digits.
NAME
The SSH key comment. This attribute is currently used as a system-wide primary key and therefore
has to be unique.
OPTIONS
Key options, see sshd(8) for possible values. Multiple values should be specified as an array.�
PROVIDER
The specific backend for provider to use. You will seldom need to specify this – Puppet will usually�
discover the appropriate provider for your platform. Available providers are:

parsed: Parse and generate authorized_keys files for SSH.�

TARGET
The absolute filename in which to store the SSH key. This property is optional and should only be�
used in cases where keys are stored in a non-standard location (i.e.	not	in
~user/.ssh/authorized_keys`).

Puppet Documentation • Type Reference 256/311

http://refspecs.freestandards.org/LSB_3.1.1/LSB-Core-generic/LSB-Core-generic/iniscrptact.html

TYPE
The encryption type used: ssh-dss or ssh-rsa. Valid values are ssh-dss (also called dsa), ssh-rsa
(also called rsa).
USER
The user account in which the SSH key should be installed. The resource will automatically depend
on this user.

sshkey

Installs and manages ssh host keys. At this point, this type only knows how to install keys into
/etc/ssh/ssh_known_hosts. See the ssh_authorized_key type to manage authorized keys.

PARAMETERS
ENSURE
The basic property that the resource should be in. Valid values are present, absent.
HOST_ALIASES
Any aliases the host might have. Multiple values must be specified as an array.�
KEY
The key itself; generally a long string of hex digits.
NAME
The host name that the key is associated with.
PROVIDER
The specific backend for provider to use. You will seldom need to specify this – Puppet will usually�
discover the appropriate provider for your platform. Available providers are:

parsed: Parse and generate host-wide known hosts files for SSH.�

TARGET
The file in which to store the ssh key. �Only used by the parsed provider.
TYPE
The encryption type used. Probably ssh-dss or ssh-rsa. Valid values are ssh-dss (also called dsa),
ssh-rsa (also called rsa).

stage

A resource type for specifying run stages. The actual stage should be specified on resources:�

class	{	foo:	stage	=>	pre	}

And you must manually control stage order:

stage	{	pre:	before	=>	Stage[main]	}

You automatically get a ʻmainʼ stage created, and by default all resources get inserted into that
stage.
Puppet Documentation • Type Reference 257/311

You can only set stages on class resources, not normal builtin resources.
PARAMETERS
NAME
The name of the stage. This will be used as the ʻstageʼ for each resource.

tidy

Remove unwanted files based on specific criteria. ��Multiple criteria are ORʼd together, so a file that is�
too large but is not old enough will still get tidied.

If you donʼt specify either age or size, then all files will be removed.�

This resource type works by generating a file resource for every file that should be deleted and then��
letting that resource perform the actual deletion.
PARAMETERS
AGE
Tidy files whose age is equal to or greater than the specified time. ��You can choose seconds,
minutes, hours, days, or weeks by specifying the first letter of any of those words (e.g., ʻ1wʼ).�

Specifying 0 will remove all files.�
BACKUP
Whether tidied files should be backed up. �Any values are passed directly to the file resources used�
for actual file deletion, so use its backup documentation to determine valid values.�
MATCHES
One or more (shell type) file glob patterns, which restrict the list of files to be tidied to those whose��
basenames match at least one of the patterns specified. Multiple patterns can be specified using an��
array.

Example:

tidy	{	"/tmp":
		age	=>	"1w",
		recurse	=>	1,
		matches	=>	["[0-9]pub*.tmp",	"*.temp",	"tmpfile?"]
}

This removes files from �/tmp if they are one week old or older, are not in a subdirectory and match
one of the shell globs given.

Note that the patterns are matched against the basename of each file – that is, your glob patterns�
should not have any ʻ/ʼ characters in them, since you are only specifying against the last bit of the
file.�

Finally, note that you must now specify a non-zero/non-false value for recurse if matches is used,
as matches only apply to files found by recursion (thereʼs no reason to use static patterns match�
against a statically determined path). Requiering explicit recursion clears up a common source of
confusion.
Puppet Documentation • Type Reference 258/311

PATH
namevar

The path to the file or directory to manage. �Must be fully qualified.�
RECURSE
If target is a directory, recursively descend into the directory looking for files to tidy. �Valid values
are true, false, inf. Values can match /^[0-9]+$/.
RMDIRS
Tidy directories in addition to files; that is, remove directories whose age is older than the specified��
criteria. This will only remove empty directories, so all contained files must also be tidied before a�
directory gets removed. Valid values are true, false.
SIZE
Tidy files whose size is equal to or greater than the specified size. ��Unqualified values are in�
kilobytes, but b, k, and m can be appended to specify bytes, kilobytes, and megabytes, respectively.
Only the first character is significant, so the full word can also be used.��
TYPE
Set the mechanism for determining age. Valid values are atime, mtime, ctime.

user

Manage users. This type is mostly built to manage system users, so it is lacking some features
useful for managing normal users.

This resource type uses the prescribed native tools for creating groups and generally uses POSIX
APIs for retrieving information about them. It does not directly modify /etc/passwd or anything.

Autorequires: If Puppet is managing the userʼs primary group (as provided in the gid attribute), the
user resource will autorequire that group. If Puppet is managing any role accounts corresponding
to the userʼs roles, the user resource will autorequire those role accounts.
FEATURES

allows_duplicates: The provider supports duplicate users with the same UID.
manages_expiry: The provider can manage the expiry date for a user.
manages_homedir: The provider can create and remove home directories.
manages_password_age: The provider can set age requirements and restrictions for passwords.
manages_passwords: The provider can modify user passwords, by accepting a password hash.
manages_solaris_rbac: The provider can manage roles and normal users
system_users: The provider allows you to create system users with lower UIDs.

Provider allows
duplicates

manages
expiry

manages
homedir

manages
password age

manages
passwords

manages
solaris rbac

system
users

directoryservice X

hpuxuseradd X X

ldap X

Puppet Documentation • Type Reference 259/311

pw X X

user_role_add X X X X X

useradd X X X X X X

PARAMETERS
ALLOWDUPE
Whether to allow duplicate UIDs. Valid values are true, false.
AUTH_MEMBERSHIP
Whether specified auths should be treated as the only auths of which the user is a member or�
whether they should merely be treated as the minimum membership list. Valid values are
inclusive, minimum.
AUTHS
The auths the user has. Multiple auths should be specified as an array. �Requires features
manages_solaris_rbac.
COMMENT
A description of the user. Generally is a userʼs full name.
ENSURE
The basic state that the object should be in. Valid values are present, absent, role.
EXPIRY
The expiry date for this user. Must be provided in a zero padded YYYY-MM-DD format - e.g 2010-
02-19. Requires features manages_expiry.
GID
The userʼs primary group. Can be specified numerically or by name.�
GROUPS
The groups of which the user is a member. The primary group should not be listed. Multiple groups
should be specified as an array.�
HOME
The home directory of the user. The directory must be created separately and is not currently
checked for existence.
KEY_MEMBERSHIP
Whether specified key value pairs should be treated as the only attributes of the user or whether�
they should merely be treated as the minimum list. Valid values are inclusive, minimum.
KEYS
Specify user attributes in an array of keyvalue pairs Requires features manages_solaris_rbac.
MANAGEHOME
Whether to manage the home directory when managing the user. Valid values are true, false.
MEMBERSHIP
Whether specified groups should be treated as the only groups of which the user is a member or�
whether they should merely be treated as the minimum membership list. Valid values are
inclusive, minimum.
NAME

Puppet Documentation • Type Reference 260/311

User name. While limitations are determined for each operating system, it is generally a good idea
to keep to the degenerate 8 characters, beginning with a letter.
PASSWORD
The userʼs password, in whatever encrypted format the local machine requires. Be sure to enclose
any value that includes a dollar sign ($) in single quotes (ʻ). Requires features manages_passwords.
PASSWORD_MAX_AGE
The maximum amount of time in days a password may be used before it must be changed Requires
features manages_password_age.
PASSWORD_MIN_AGE
The minimum amount of time in days a password must be used before it may be changed Requires
features manages_password_age.
PROFILE_MEMBERSHIP
Whether specified roles should be treated as the only roles of which the user is a member or�
whether they should merely be treated as the minimum membership list. Valid values are
inclusive, minimum.
PROFILES
The profiles the user has. �Multiple profiles should be specified as an array. ��Requires features
manages_solaris_rbac.
PROJECT
The name of the project associated with a user Requires features manages_solaris_rbac.
PROVIDER
The specific backend for provider to use. You will seldom need to specify this – Puppet will usually�
discover the appropriate provider for your platform. Available providers are:

directoryservice: User management using DirectoryService on OS X. Required binaries:
/usr/bin/dscl. Default for operatingsystem == darwin. Supported features:
manages_passwords.
hpuxuseradd: User management for hp-ux! Undocumented switch to special usermod because
HP-UX regular usermod is TOO STUPID to change stuff while the user is logged in. �Required
binaries: /usr/sam/lbin/usermod.sam, /usr/sam/lbin/userdel.sam, /usr/sbin/useradd.
Default for operatingsystem == hp-ux. Supported features: allows_duplicates,
manages_homedir.
ldap: User management via ldap. This provider requires that you have valid values for all of the
ldap-related settings, including ldapbase. You will also almost definitely need settings �for
ldapuser and ldappassword, so that your clients can write to ldap.

Note that this provider will automatically generate a UID for you if you do not specify one, but it
is a potentially expensive operation, as it iterates across all existing users to pick the appropriate
next one. Supported features: manages_passwords.
pw: User management via pw on FreeBSD. Required binaries: pw. Default for operatingsystem ==
freebsd. Supported features: allows_duplicates, manages_homedir.
user_role_add: User management inherits useradd and adds logic to manage roles on Solaris
using roleadd. Required binaries: usermod, roleadd, roledel, passwd, rolemod, userdel,

Puppet Documentation • Type Reference 261/311

useradd. Default for operatingsystem == solaris. Supported features: allows_duplicates,
manages_homedir, manages_password_age, manages_passwords, manages_solaris_rbac.
useradd: User management via useradd and its ilk. Note that you will need to install the Shadow
Password Ruby library often known as ruby-libshadow to manage user passwords. Required
binaries: usermod, chage, userdel, useradd. Supported features: allows_duplicates,
manages_expiry, manages_homedir, manages_password_age, manages_passwords, system_users.

ROLE_MEMBERSHIP
Whether specified roles should be treated as the only roles of which the user is a member or�
whether they should merely be treated as the minimum membership list. Valid values are
inclusive, minimum.
ROLES
The roles the user has. Multiple roles should be specified as an array. �Requires features
manages_solaris_rbac.
SHELL
The userʼs login shell. The shell must exist and be executable.
SYSTEM
Whether the user is a system user with lower UID. Valid values are true, false.
UID
The user ID. Must be specified numerically. �For new users being created, if no user ID is specified�
then one will be chosen automatically, which will likely result in the same user having different IDs�
on different systems, which is not recommended. �This is especially noteworthy if you use Puppet to
manage the same user on both Darwin and other platforms, since Puppet does the ID generation
for you on Darwin, but the tools do so on other platforms.

yumrepo

The client-side description of a yum repository. Repository configurations are found by parsing�
/etc/yum.conf and the files indicated by the �reposdir option in that file �(see yum.conf(5) for
details)

Most parameters are identical to the ones documented in yum.conf(5)

Continuation lines that yum supports for example for the baseurl are not supported. No attempt is
made to access files included with the �include directive
PARAMETERS
BASEURL
The URL for this repository. Set this to ʻabsentʼ to remove it from the file completely �Valid values are
absent. Values can match /.*/.
COST
Cost of this repository. Set this to ʻabsentʼ to remove it from the file completely �Valid values are
absent. Values can match /\d+/.
DESCR
A human readable description of the repository. This corresponds to the name parameter in

Puppet Documentation • Type Reference 262/311

yum.conf(5). Set this to ʻabsentʼ to remove it from the file completely �Valid values are absent.
Values can match /.*/.
ENABLED
Whether this repository is enabled or disabled. Possible values are ʻ0ʼ, and ʻ1ʼ. Set this to ʻabsentʼ to
remove it from the file completely �Valid values are absent. Values can match /(0|1)/.
ENABLEGROUPS
Determines whether yum will allow the use of package groups for this repository. Possible values
are ʻ0ʼ, and ʻ1ʼ. Set this to ʻabsentʼ to remove it from the file completely �Valid values are absent.
Values can match /(0|1)/.
EXCLUDE
List of shell globs. Matching packages will never be considered in updates or installs for this repo.
Set this to ʻabsentʼ to remove it from the file completely �Valid values are absent. Values can match
/.*/.
FAILOVERMETHOD
Either ʻroundrobinʼ or ʻpriorityʼ. Set this to ʻabsentʼ to remove it from the file completely �Valid values
are absent. Values can match /roundrobin|priority/.
GPGCHECK
Whether to check the GPG signature on packages installed from this repository. Possible values are
ʻ0ʼ, and ʻ1ʼ.

Set this to ʻabsentʼ to remove it from the file completely �Valid values are absent. Values can match
/(0|1)/.
GPGKEY
The URL for the GPG key with which packages from this repository are signed. Set this to ʻabsentʼ to
remove it from the file completely �Valid values are absent. Values can match /.*/.
HTTP_CACHING
Either ʻpackagesʼ or ʻallʼ or ʻnoneʼ. Set this to ʻabsentʼ to remove it from the file completely �Valid
values are absent. Values can match /packages|all|none/.
INCLUDE
A URL from which to include the config. Set this to ʻabsentʼ to remove it from the file completely��
Valid values are absent. Values can match /.*/.
INCLUDEPKGS
List of shell globs. If this is set, only packages matching one of the globs will be considered for
update or install. Set this to ʻabsentʼ to remove it from the file completely �Valid values are absent.
Values can match /.*/.
KEEPALIVE
Either ʻ1ʼ or ʻ0ʼ. This tells yum whether or not HTTP/1.1 keepalive should be used with this
repository. Set this to ʻabsentʼ to remove it from the file completely �Valid values are absent. Values
can match /(0|1)/.
METADATA_EXPIRE
Number of seconds after which the metadata will expire. Set this to ʻabsentʼ to remove it from the
Puppet Documentation • Type Reference 263/311

file completely �Valid values are absent. Values can match /[0-9]+/.
MIRRORLIST
The URL that holds the list of mirrors for this repository. Set this to ʻabsentʼ to remove it from the
file completely �Valid values are absent. Values can match /.*/.
NAME
The name of the repository. This corresponds to the repositoryid parameter in yum.conf(5).
PRIORITY
Priority of this repository from 1-99. Requires that the priorities plugin is installed and enabled. Set
this to ʻabsentʼ to remove it from the file completely �Valid values are absent. Values can match /[1-
9][0-9]?/.
PROTECT
Enable or disable protection for this repository. Requires that the protectbase plugin is installed
and enabled. Set this to ʻabsentʼ to remove it from the file completely �Valid values are absent.
Values can match /(0|1)/.
PROXY
URL to the proxy server for this repository. Set this to ʻabsentʼ to remove it from the file completely�
Valid values are absent. Values can match /.*/.
PROXY_PASSWORD
Password for this proxy. Set this to ʻabsentʼ to remove it from the file completely �Valid values are
absent. Values can match /.*/.
PROXY_USERNAME
Username for this proxy. Set this to ʻabsentʼ to remove it from the file completely �Valid values are
absent. Values can match /.*/.
TIMEOUT
Number of seconds to wait for a connection before timing out. Set this to ʻabsentʼ to remove it from
the file completely �Valid values are absent. Values can match /[0-9]+/.

zfs

Manage zfs. Create destroy and set properties on zfs instances.

Autorequires: If Puppet is managing the zpool at the root of this zfs instance, the zfs resource will
autorequire it. If Puppet is managing any parent zfs instances, the zfs resource will autorequire
them.
PARAMETERS
COMPRESSION
The compression property.
COPIES
The copies property.
ENSURE
The basic property that the resource should be in. Valid values are present, absent.
MOUNTPOINT

Puppet Documentation • Type Reference 264/311

The mountpoint property.
NAME
The full name for this filesystem. (including the zpool)�
PROVIDER
The specific backend for provider to use. You will seldom need to specify this – Puppet will usually�
discover the appropriate provider for your platform. Available providers are:

solaris: Provider for Solaris zfs. Required binaries: /usr/sbin/zfs. Default for operatingsystem
== solaris.

QUOTA
The quota property.
RESERVATION
The reservation property.
SHARENFS
The sharenfs property.
SNAPDIR
The snapdir property.

zone

Solaris zones.

Autorequires: If Puppet is managing the directory specified as the root of the zoneʼs filesystem��
(with the path attribute), the zone resource will autorequire that directory.

PARAMETERS
AUTOBOOT
Whether the zone should automatically boot. Valid values are true, false.
CLONE
Instead of installing the zone, clone it from another zone. If the zone root resides on a zfs file�
system, a snapshot will be used to create the clone, is it redisides on ufs, a copy of the zone will be
used. The zone you clone from must not be running.
CREATE_ARGS
Arguments to the zonecfg create command. This can be used to create branded zones.
ENSURE
The running state of the zone. The valid states directly reflect the states that �zoneadm provides. The
states are linear, in that a zone must be configured then installed, and only then can be running.
Note also that halt is currently used to stop zones.
ID
The numerical ID of the zone. This number is autogenerated and cannot be changed.
INHERIT
The list of directories that the zone inherits from the global zone. All directories must be fully
qualified.�

Puppet Documentation • Type Reference 265/311

INSTALL_ARGS
Arguments to the zoneadm install command. This can be used to create branded zones.
IP
The IP address of the zone. IP addresses must be specified with the interface, separated by a colon,�
e.g.: bge0:192.168.0.1. For multiple interfaces, specify them in an array.
IPTYPE
The IP stack type of the zone. Can either be ʻsharedʼ or ʻexclusiveʼ. Valid values are shared,
exclusive.
NAME
The name of the zone.
PATH
The root of the zoneʼs filesystem. �Must be a fully qualified file name. ��If you include ʻ%sʼ in the path,
then it will be replaced with the zoneʼs name. At this point, you cannot use Puppet to move a zone.
POOL
The resource pool for this zone.
PROVIDER
The specific backend for provider to use. You will seldom need to specify this – Puppet will usually�
discover the appropriate provider for your platform. Available providers are:

solaris: Provider for Solaris Zones. Required binaries: /usr/sbin/zoneadm, /usr/sbin/zonecfg.
Default for operatingsystem == solaris.

REALHOSTNAME
The actual hostname of the zone.
SHARES
Number of FSS CPU shares allocated to the zone.
SYSIDCFG
The text to go into the sysidcfg file when the zone is first booted. ��The best way is to use a template:

#	$templatedir/sysidcfg
system_locale=en_US
timezone=GMT
terminal=xterms
security_policy=NONE
root_password=<%=	password	%>
timeserver=localhost
name_service=DNS	{domain_name=<%=	domain	%>	name_server=<%=	nameserver	%>}
network_interface=primary	{hostname=<%=	realhostname	%>
		ip_address=<%=	ip	%>
		netmask=<%=	netmask	%>
		protocol_ipv6=no
		default_route=<%=	defaultroute	%>}
nfs4_domain=dynamic

And then call that:

zone	{	myzone:

Puppet Documentation • Type Reference 266/311

		ip	=>	"bge0:192.168.0.23",
		sysidcfg	=>	template(sysidcfg),
		path	=>	"/opt/zones/myzone",
		realhostname	=>	"fully.qualified.domain.name"
}

The sysidcfg only matters on the first booting of the zone, so Puppet only checks for it at that time.�

zpool

Manage zpools. Create and delete zpools. The provider WILL NOT SYNC, only report differences.�

Supports vdevs with mirrors, raidz, logs and spares.
PARAMETERS
DISK
The disk(s) for this pool. Can be an array or space separated string
ENSURE
The basic property that the resource should be in. Valid values are present, absent.
LOG
Log disks for this pool. (doesnʼt support mirroring yet)
MIRROR
List of all the devices to mirror for this pool. Each mirror should be a space separated string:

mirror	=>	["disk1	disk2",	"disk3	disk4"],

POOL
namevar

The name for this pool.
PROVIDER
The specific backend for provider to use. You will seldom need to specify this – Puppet will usually�
discover the appropriate provider for your platform. Available providers are:

solaris: Provider for Solaris zpool. Required binaries: /usr/sbin/zpool. Default for
operatingsystem == solaris.

RAID_PARITY
Determines parity when using raidz property.
RAIDZ
List of all the devices to raid for this pool. Should be an array of space separated strings:

raidz	=>	["disk1	disk2",	"disk3	disk4"],

SPARE
Spare disk(s) for this pool.

Puppet Documentation • Type Reference 267/311

This page autogenerated on Sat Mar 26 08:52:15 +1100 2011

Function Reference
This page is autogenerated; any changes will get overwritten (last generated on Sat Mar 26
08:51:39 +1100 2011)

There are two types of functions in Puppet: Statements and rvalues. Statements stand on their own
and do not return arguments; they are used for performing stand-alone work like importing.
Rvalues return values and can only be used in a statement requiring a value, such as an assignment
or a case statement.

Functions execute on the Puppet master. They do not execute on the Puppet agent.
Hence they only have access to the commands and data available on the Puppet master host.

Here are the functions available in Puppet:

alert
Log a message on the server at level alert.

Type: statement

crit
Log a message on the server at level crit.

Type: statement

debug
Log a message on the server at level debug.

Type: statement

defined�
Determine whether a given class or resource type is defined. This function can also determine�
whether a specific resource has been declared. Returns true or false. Accepts class names, type�
names, and resource references.

The defined function checks both native and defined types, including types provided as plugins via�
modules. Types and classes are both checked using their names:

defined("file")
defined("customtype")
defined("foo")
defined("foo::bar")

Resource declarations are checked using resource references, e.g. defined(File['/tmp/myfile']
Puppet Documentation • Function Reference 268/311

). Checking whether a given resource has been declared is, unfortunately, dependent on the parse
order of the configuration, and the following code will not work:�

if	defined(File['/tmp/foo'])	{
				notify("This	configuration	includes	the	/tmp/foo	file.")
}
file	{"/tmp/foo":
				ensure	=>	present,
}

However, this order requirement refers to parse order only, and ordering of resources in the
configuration graph (e.g. with �before or require) does not affect the behavior of �defined.

Type: rvalue

emerg
Log a message on the server at level emerg.

Type: statement

err
Log a message on the server at level err.

Type: statement

extlookup
This is a parser function to read data from external files, this version uses CSV files but the concept��
can easily be adjust for databases, yaml or any other queryable data source.

The object of this is to make it obvious when itʼs being used, rather than magically loading data in
when an module is loaded I prefer to look at the code and see statements like:

$snmp_contact	=	extlookup("snmp_contact")

The above snippet will load the snmp_contact value from CSV files, this in its own is useful but a�
common construct in puppet manifests is something like this:

case	$domain	{
		"myclient.com":	{	$snmp_contact	=	"John	Doe	<john@myclient.com>"	}
		default:								{	$snmp_contact	=	"My	Support	<support@my.com>"	}
}

Over time there will be a lot of this kind of thing spread all over your manifests and adding an
additional client involves grepping through manifests to find all the places where you have�
constructs like this.

This is a data problem and shouldnʼt be handled in code, a using this function you can do just that.
Puppet Documentation • Function Reference 269/311

First you configure it in site.pp:�

$extlookup_datadir	=	"/etc/puppet/manifests/extdata"
$extlookup_precedence	=	["%{fqdn}",	"domain_%{domain}",	"common"]

The array tells the code how to resolve values, first it will try to find it in web1.myclient.com.csv then��
in domain_myclient.com.csv and finally in common.csv�

Now create the following data files in /etc/puppet/manifests/extdata:�

domain_myclient.com.csv:
		snmp_contact,John	Doe	<john@myclient.com>
		root_contact,support@%{domain}
		client_trusted_ips,192.168.1.130,192.168.10.0/24

common.csv:
		snmp_contact,My	Support	<support@my.com>
		root_contact,support@my.com

Now you can replace the case statement with the simple single line to achieve the exact same
outcome:

$snmp_contact = extlookup(“snmp_contact”)

The above code shows some other features, you can use any fact or variable that is in scope by
simply using %{varname} in your data files, you can return arrays by just having multiple values in�
the csv after the initial variable name.

In the event that a variable is nowhere to be found a critical error will be raised that will prevent
your manifest from compiling, this is to avoid accidentally putting in empty values etc. You can
however specify a default value:

$ntp_servers = extlookup(“ntp_servers”, “1.${country}.pool.ntp.org”)

In this case it will default to “1.${country}.pool.ntp.org” if nothing is defined in any data file.��

You can also specify an additional data file to search first before any others at use time, for��
example:

$version	=	extlookup("rsyslog_version",	"present",	"packages")
package{"rsyslog":	ensure	=>	$version	}

This will look for a version configured in packages.csv and then in the rest as configured by��
$extlookup_precedence if itʼs not found anywhere it will default to present, this kind of use case
makes puppet a lot nicer for managing large amounts of packages since you do not need to edit a
load of manifests to do simple things like adjust a desired version number.

Precedence values can have variables embedded in them in the form %{fqdn}, you could for
example do:

Puppet Documentation • Function Reference 270/311

$extlookup_precedence	=	["hosts/%{fqdn}",	"common"]

This will result in /path/to/extdata/hosts/your.box.com.csv being searched.

This is for back compatibility to interpolate variables with %. % interpolation is a workaround for a
problem that has been fixed: Puppet variable interpolation at top scope used to only happen on�
each run.

Type: rvalue

fail
Fail with a parse error.

Type: statement

file�
Return the contents of a file. �Multiple files can be passed, and the first file that exists will be read in.���

Type: rvalue

fqdn_rand
Generates random numbers based on the nodeʼs fqdn. Generated random values will be a range
from 0 up to and excluding n, where n is the first parameter. The second argument specifies a��
number to add to the seed and is optional, for example:

$random_number	=	fqdn_rand(30)
$random_number_seed	=	fqdn_rand(30,30)

Type: rvalue

generate
Calls an external command on the Puppet master and returns the results of the command. Any
arguments are passed to the external command as arguments. If the generator does not exit with
return code of 0, the generator is considered to have failed and a parse error is thrown. Generators
can only have file separators, alphanumerics, dashes, and periods in them. �This function will
attempt to protect you from malicious generator calls (e.g., those with ʻ..ʼ in them), but it can never
be entirely safe. No subshell is used to execute generators, so all shell metacharacters are passed
directly to the generator.

Type: rvalue

include
Evaluate one or more classes.

Type: statement

Puppet Documentation • Function Reference 271/311

info
Log a message on the server at level info.

Type: statement

inline_template
Evaluate a template string and return its value. See the templating docs for more information. Note
that if multiple template strings are specified, their �output is all concatenated and returned as the
output of the function.

Type: rvalue

md5
Returns a MD5 hash value from a provided string.

Type: rvalue

notice
Log a message on the server at level notice.

Type: statement

realize
Make a virtual object real. This is useful when you want to know the name of the virtual object and
donʼt want to bother with a full collection. It is slightly faster than a collection, and, of course, is a
bit shorter. You must pass the object using a reference; e.g.: realize	User[luke].

Type: statement

regsubst
Perform regexp replacement on a string or array of strings.

Parameters (in order):
target The string or array of strings to operate on. If an array, the replacement will be
performed on each of the elements in the array, and the return value will be an array.
regexp The regular expression matching the target string. If you want it anchored at the start
and or end of the string, you must do that with ^ and $ yourself.
replacement Replacement string. Can contain backreferences to what was matched using \0
(whole match), \1 (first set of parentheses), and so on.�
flags� Optional. String of single letter flags for how the regexp is interpreted:�

E Extended regexps
I Ignore case in regexps
M Multiline regexps
G Global replacement; all occurrences of the regexp in each target string will be replaced.

Puppet Documentation • Function Reference 272/311

Without this, only the first occurrence will be replaced.�

encoding Optional. How to handle multibyte characters. A single-character string with the
following values:

N None
E EUC
S SJIS
U UTF-8

Examples

Get the third octet from the nodeʼs IP address:

$i3	=	regsubst($ipaddress,'^(\d+)\.(\d+)\.(\d+)\.(\d+)$','\3')

Put angle brackets around each octet in the nodeʼs IP address:

$x	=	regsubst($ipaddress,	'([0-9]+)',	'<\1>',	'G')

Type: rvalue

require
Evaluate one or more classes, adding the required class as a dependency.

The relationship metaparameters work well for specifying relationships between individual
resources, but they can be clumsy for specifying relationships between classes. This function is a
superset of the ʻincludeʼ function, adding a class relationship so that the requiring class depends
on the required class.

Warning: using require in place of include can lead to unwanted dependency cycles.

For instance the following manifest, with ʻrequireʼ instead of ʻincludeʼ would produce a nasty
dependence cycle, because notify imposes a before between File[/foo] and Service[foo]:

class	myservice	{
		service	{	foo:	ensure	=>	running	}
}

class	otherstuff	{
		include	myservice
		file	{	'/foo':	notify	=>	Service[foo]	}
}

Note that this function only works with clients 0.25 and later, and it will fail if used with earlier
clients.

Type: statement

Puppet Documentation • Function Reference 273/311

search
Add another namespace for this class to search. This allows you to create classes with sets of
definitions and add those classes to another classʼs search path.�

Type: statement

sha1
Returns a SHA1 hash value from a provided string.

Type: rvalue

shellquote
Quote and concatenate arguments for use in Bourne shell.

Each argument is quoted separately, and then all are concatenated with spaces. If an argument is
an array, the elements of that array is interpolated within the rest of the arguments; this makes it
possible to have an array of arguments and pass that array to shellquote instead of having to
specify each argument individually in the call.

Type: rvalue

split
Split a string variable into an array using the specified split regexp.�

Example:

$string					=	'v1.v2:v3.v4'
$array_var1	=	split($string,	':')
$array_var2	=	split($string,	'[.]')
$array_var3	=	split($string,	'[.:]')

$array_var1 now holds the result ['v1.v2',	'v3.v4'], while $array_var2 holds ['v1',	'v2:v3',
'v4'], and $array_var3 holds ['v1',	'v2',	'v3',	'v4'].

Note that in the second example, we split on a literal string that contains a regexp meta-character
(.), which must be escaped. A simple way to do that for a single character is to enclose it in square
brackets; a backslash will also escape a single character.

Type: rvalue

sprintf
Perform printf-style formatting of text.

The first parameter is format string describing how the rest of the parameters should be formatted.�
See the documentation for the Kernel::sprintf function in Ruby for all the details.

Type: rvalue
Puppet Documentation • Function Reference 274/311

tag
Add the specified tags to the containing class or definition. ��All contained objects will then acquire
that tag, also.

Type: statement

tagged
A boolean function that tells you whether the current container is tagged with the specified tags.�
The tags are ANDed, so that all of the specified tags must be included for the function to return�
true.

Type: rvalue

template
Evaluate a template and return its value. See the templating docs for more information.

Note that if multiple templates are specified, their output is all concatenated and returned as the�
output of the function.

Type: rvalue

versioncmp
Compares two versions

Prototype:

$result	=	versioncmp(a,	b)

Where a and b are arbitrary version strings

This functions returns a number:

Greater than 0 if version a is greater than version b
Equal to 0 if both version are equals
Less than 0 if version a is less than version b

Example:

if	versioncmp('2.6-1',	'2.4.5')	>	0	{
				notice('2.6-1	is	>	than	2.4.5')
}

Type: rvalue

warning
Puppet Documentation • Function Reference 275/311

Log a message on the server at level warning.

Type: statement

This page autogenerated on Sat Mar 26 08:51:39 +1100 2011

Metaparameter Reference
This page is autogenerated; any changes will get overwritten (last generated on Sat Mar 26
08:51:52 +1100 2011)

Puppet Documentation • Metaparameter Reference 276/311

Metaparameters
Metaparameters are parameters that work with any resource type; they are part of the Puppet
framework itself rather than being part of the implementation of any given instance. Thus, any
defined metaparameter can be used with any instance in your manifest, including defined��
components.

Available Metaparameters
alias

Creates an alias for the object. Puppet uses this internally when you provide a symbolic name:

file	{	sshdconfig:
		path	=>	$operatingsystem	?	{
				solaris	=>	"/usr/local/etc/ssh/sshd_config",
				default	=>	"/etc/ssh/sshd_config"
		},
		source	=>	"..."
}

service	{	sshd:
		subscribe	=>	File[sshdconfig]
}

When you use this feature, the parser sets sshdconfig as the name, and the library sets that as an
alias for the file so the dependency lookup for �sshd works. You can use this parameter yourself, but
note that only the library can use these aliases; for instance, the following code will not work:

file	{	"/etc/ssh/sshd_config":
		owner	=>	root,
		group	=>	root,
		alias	=>	sshdconfig
}

file	{	sshdconfig:
		mode	=>	644
}

Thereʼs no way here for the Puppet parser to know that these two stanzas should be affecting the�
same file.�

See the Language Tutorial for more information.

audit

Marks a subset of this resourceʼs unmanaged attributes for auditing. Accepts an attribute name or a
list of attribute names.

Auditing a resource attribute has two effects: First, whenever a catalog is applied with puppet apply�
or puppet agent, Puppet will check whether that attribute of the resource has been modified,�

Puppet Documentation • Metaparameters 277/311

comparing its current value to the previous run; any change will be logged alongside any actions
performed by Puppet while applying the catalog.

Secondly, marking a resource attribute for auditing will include that attribute in inspection reports
generated by puppet inspect; see the puppet inspect documentation for more details.

Managed attributes for a resource can also be audited, but note that changes made by Puppet will
be logged as additional modifications. (I.e. if a user manually edits a file whose contents are audited��
and managed, puppet agentʼs next two runs will both log an audit notice: the first run will log the�
userʼs edit and then revert the file to the desired state, and the second run will log the edit made by�
Puppet.)

before

This parameter is the opposite of require – it guarantees that the specified object is applied later�
than the specifying object:

file	{	"/var/nagios/configuration":
		source		=>	"...",
		recurse	=>	true,
		before	=>	Exec["nagios-rebuid"]
}

exec	{	"nagios-rebuild":
		command	=>	"/usr/bin/make",
		cwd	=>	"/var/nagios/configuration"
}

This will make sure all of the files are up to date before the make command is run.�

check

Audit specified attributes of resources over time, and report if any have changed. This parameter�
has been deprecated in favor of ʻauditʼ.

loglevel

Sets the level that information will be logged. The log levels have the biggest impact when logs are
sent to syslog (which is currently the default). Valid values are debug, info, notice, warning, err,
alert, emerg, crit, verbose.

noop

Boolean flag indicating whether work should actually be done. �Valid values are true, false.

notify

This parameter is the opposite of subscribe – it sends events to the specified object:�

file	{	"/etc/sshd_config":
		source	=>	"....",
		notify	=>	Service[sshd]
}

Puppet Documentation • Metaparameters 278/311

service	{	sshd:
		ensure	=>	running
}

This will restart the sshd service if the sshd config file changes.��

require

One or more objects that this object depends on. This is used purely for guaranteeing that changes
to required objects happen before the dependent object. For instance:

#	Create	the	destination	directory	before	you	copy	things	down
file	{	"/usr/local/scripts":
		ensure	=>	directory
}

file	{	"/usr/local/scripts/myscript":
		source	=>	"puppet://server/module/myscript",
		mode	=>	755,
		require	=>	File["/usr/local/scripts"]
}

Multiple dependencies can be specified by providing a comma-seperated list of resources, enclosed�
in square brackets:

require	=>	[File["/usr/local"],	File["/usr/local/scripts"]]

Note that Puppet will autorequire everything that it can, and there are hooks in place so that itʼs
easy for resources to add new ways to autorequire objects, so if you think Puppet could be smarter
here, let us know.

In fact, the above code was redundant – Puppet will autorequire any parent directories that are
being managed; it will automatically realize that the parent directory should be created before the
script is pulled down.

Currently, exec resources will autorequire their CWD (if it is specified) plus any fully qualified paths��
that appear in the command. For instance, if you had an exec command that ran the myscript
mentioned above, the above code that pulls the file down would be automatically listed as a�
requirement to the exec code, so that you would always be running againts the most recent
version.

schedule

On what schedule the object should be managed. You must create a schedule object, and then
reference the name of that object to use that for your schedule:

schedule	{	daily:
		period	=>	daily,
		range	=>	"2-4"
}

Puppet Documentation • Metaparameters 279/311

exec	{	"/usr/bin/apt-get	update":
		schedule	=>	daily
}

The creation of the schedule object does not need to appear in the configuration before objects�
that use it.

stage

Which run stage a given resource should reside in. This just creates a dependency on or from the
named milestone. For instance, saying that this is in the ʻbootstrapʼ stage creates a dependency on
the ʻbootstrapʼ milestone.

By default, all classes get directly added to the ʻmainʼ stage. You can create new stages as
resources:

stage	{	[pre,	post]:	}

To order stages, use standard relationships:

stage	{	pre:	before	=>	Stage[main]	}

Or use the new relationship syntax:

Stage[pre]	->	Stage[main]	->	Stage[post]

Then use the new class parameters to specify a stage:

class	{	foo:	stage	=>	pre	}

Stages can only be set on classes, not individual resources. This will fail:

file	{	'/foo':	stage	=>	pre,	ensure	=>	file	}

subscribe

One or more objects that this object depends on. Changes in the subscribed to objects result in the
dependent objects being refreshed (e.g., a service will get restarted). For instance:

class	nagios	{
		file	{	"/etc/nagios/nagios.conf":
				source	=>	"puppet://server/module/nagios.conf",
				alias	=>	nagconf	#	just	to	make	things	easier	for	me
		}
		service	{	nagios:
				ensure	=>	running,
				subscribe	=>	File[nagconf]
		}

Puppet Documentation • Metaparameters 280/311

}

Currently the exec, mount and service type support refreshing.

tag

Add the specified tags to the associated resource. �While all resources are automatically tagged with
as much information as possible (e.g., each class and definition containing the resource), it can be�
useful to add your own tags to a given resource.

Tags are currently useful for things like applying a subset of a hostʼs configuration:�

puppet	agent	--test	--tags	mytag

This way, when youʼre testing a configuration you can run just the portion youʼre testing.�

This page autogenerated on Sat Mar 26 08:51:55 +1100 2011

Configuration Reference�
This page is autogenerated; any changes will get overwritten (last generated on Sat Mar 26
08:51:34 +1100 2011)

Specifying Configuration Parameters�
On The Command-Line

Every Puppet executable (with the exception of puppetdoc) accepts all of the parameters below, but
not all of the arguments make sense for every executable.

I have tried to be as thorough as possible in the descriptions of the arguments, so it should be
obvious whether an argument is appropriate or not.

These parameters can be supplied to the executables either as command-line options or in the
configuration file. ��For instance, the command-line invocation below would set the configuration�
directory to /private/puppet:

$	puppet	agent	--confdir=/private/puppet

Note that boolean options are turned on and off with a slightly different syntax on the command��
line:

$	puppet	agent	--storeconfigs

$	puppet	agent	--no-storeconfigs

The invocations above will enable and disable, respectively, the storage of the client configuration.�
Puppet Documentation • Configuration Reference 281/311

Configuration Files�

As mentioned above, the configuration parameters can also be stored in a configuration file,���
located in the configuration directory. �As root, the default configuration directory is �/etc/puppet,
and as a regular user, the default configuration directory is �~user/.puppet. As of 0.23.0, all
executables look for puppet.conf in their configuration directory (although they previously looked�
for separate files). �For example, puppet.conf is located at /etc/puppet/puppet.conf as root and
~user/.puppet/puppet.conf as a regular user by default.

All executables will set any parameters set within the [main] section, and each executable will also
use one of the [master], [agent].

FILE FORMAT

The file follows INI-style formatting. �Here is an example of a very simple puppet.conf file:�

[main]
		confdir	=	/private/puppet
		storeconfigs	=	true

Note that boolean parameters must be explicitly specified as �true or false as seen above.

If you need to change file or directory parameters (e.g., reset the mode or owner), do so within�
curly braces on the same line:

[main]
		vardir	=	/new/vardir	{owner	=	root,	mode	=	644}

If youʼre starting out with a fresh configuration, you may wish to let the executable generate a�
template configuration file for you by invoking the executable in question with the ��--genconfig
command. The executable will print a template configuration to standard output, which can be�
redirected to a file like so:�

$	puppet	agent	--genconfig	>	/etc/puppet/puppet.conf

Note that this invocation will replace the contents of any pre-existing puppet.conf file, so make a�
backup of your present config if it contains valuable information.�

Like the --genconfig argument, the executables also accept a --genmanifest argument, which will
generate a manifest that can be used to manage all of Puppetʼs directories and files and prints it to�
standard output. This can likewise be redirected to a file:�

$	puppet	agent	--genmanifest	>	/etc/puppet/manifests/site.pp

Puppet can also create user and group accounts for itself (one puppet group and one puppet user)
if it is invoked as root with the --mkusers argument:
Puppet Documentation • Configuration Reference 282/311

$	puppet	master	--mkusers

Signals
The puppet	agent and puppet	master executables catch some signals for special handling. Both
daemons catch (SIGHUP), which forces the server to restart tself. Predictably, interrupt and terminate
(SIGINT and SIGTERM) will shut down the server, whether it be an instance of puppet	agent or
puppet	master.

Sending the SIGUSR1 signal to an instance of puppet	agent will cause it to immediately begin a new
configuration transaction with the server. �This signal has no effect on �puppet	master.

Configuration Parameter Reference�
Below is a list of all documented parameters. Not all of them are valid with all Puppet executables,
but the executables will ignore any inappropriate values.

archive_file_server�

During an inspect run, the file bucket server to archive files to if archive_files is set.���

Default: $server

archive_files�

During an inspect run, whether to archive files whose contents are audited to a file bucket.��

Default: false

async_storeconfigs�

Whether to use a queueing system to provide asynchronous database integration. Requires that
puppetqd be running and that ʻPSONʼ support for ruby be installed.

Default: false

authconfig�

The configuration file that defines the rights to the different namespaces and methods. ����This can be
used as a coarse-grained authorization system for both puppet	agent and puppet	master.

Default: $confdir/namespaceauth.conf

autoflush�

Whether log files should always flush to disk.��

Default: false

autosign

Whether to enable autosign. Valid values are true (which autosigns any key request, and is a very

Puppet Documentation • Configuration Reference 283/311

bad idea), false (which never autosigns any key request), and the path to a file, which uses that�
configuration file to determine which keys to sign.��

Default: $confdir/autosign.conf

bindaddress

The address a listening server should bind to. Mongrel servers default to 127.0.0.1 and WEBrick
defaults to 0.0.0.0.

bucketdir

Where FileBucket files are stored.�

Default: $vardir/bucket

ca

Wether the master should function as a certificate authority.�

Default: true

ca_days

How long a certificate should be valid. This parameter is deprecated, use ca_ttl instead�

ca_md

The type of hash used in certificates.�

Default: md5

ca_name

The name to use the Certificate Authority certificate.��

Default: Puppet CA: $certname

ca_port

The port to use for the certificate authority.�

Default: $masterport

ca_server

The server to use for certificate authority requests. �Itʼs a separate server because it cannot and does
not need to horizontally scale.

Default: $server

ca_ttl

The default TTL for new certificates; valid values must be an integer, optionally followed by one of�
the units ʻyʼ (years of 365 days), ʻdʼ (days), ʻhʼ (hours), or ʻsʼ (seconds). The unit defaults to seconds.
If this parameter is set, ca_days is ignored. Examples are ʻ3600ʼ (one hour) and ʻ1825dʼ, which is
the same as ʻ5yʼ (5 years)

Default: 5y
Puppet Documentation • Configuration Reference 284/311

cacert

The CA certificate.�

Default: $cadir/ca_crt.pem

cacrl

The certificate revocation list (CRL) for the CA. Will be used if present but otherwise ignored.�

Default: $cadir/ca_crl.pem

cadir

The root directory for the certificate authority.�

Default: $ssldir/ca

cakey

The CA private key.

Default: $cadir/ca_key.pem

capass

Where the CA stores the password for the private key

Default: $caprivatedir/ca.pass

caprivatedir

Where the CA stores private certificate information.�

Default: $cadir/private

capub

The CA public key.

Default: $cadir/ca_pub.pem

catalog_format

(Deprecated for ʻpreferred_serialization_formatʼ) What format to use to dump the catalog. Only
supports ʻmarshalʼ and ʻyamlʼ. Only matters on the client, since it asks the server for a specific�
format.

catalog_terminus

Where to get node catalogs. This is useful to change if, for instance, youʼd like to pre-compile
catalogs and store them in memcached or some other easily-accessed store.

Default: compiler

cert_inventory

A Complete listing of all certificates�

Puppet Documentation • Configuration Reference 285/311

Default: $cadir/inventory.txt

certdir

The certificate directory.�

Default: $ssldir/certs

certdnsnames

The DNS names on the Server certificate as a colon-separated list. If itʼs anything other than an�
empty string, it will be used as an alias in the created certificate. �By default, only the server gets an
alias set up, and only for ʻpuppetʼ.

certificate_revocation�

Whether certificate revocation should be supported by downloading a Certificate Revocation List��
(CRL) to all clients. If enabled, CA chaining will almost definitely not work.�

Default: true

certname

The name to use when handling certificates. �Defaults to the fully qualified domain name.�

Default: pelin.lovedthanlost.net

classfile�

The file in which puppet agent stores a list of the classes associated with the retrieved�
configuration. �Can be loaded in the separate puppet executable using the --loadclasses option.

Default: $statedir/classes.txt

client_datadir

The directory in which serialized data is stored on the client.

Default: $vardir/client_data

clientbucketdir

Where FileBucket files are stored locally.�

Default: $vardir/clientbucket

clientyamldir

The directory in which client-side YAML data is stored.

Default: $vardir/client_yaml

code

Code to parse directly. This is essentially only used by puppet, and should only be set if youʼre
writing your own Puppet executable

color

Puppet Documentation • Configuration Reference 286/311

Whether to use colors when logging to the console. Valid values are ansi (equivalent to true), html
(mostly used during testing with TextMate), and false, which produces no color.

Default: ansi

confdir

The main Puppet configuration directory. �The default for this parameter is calculated based on the
user. If the process is running as root or the user that Puppet is supposed to run as, it defaults to a
system directory, but if itʼs running as any other user, it defaults to being in the userʼs home
directory.

Default: /etc/puppet

config�

The configuration file for doc.��

Default: $confdir/puppet.conf

config_version�

How to determine the configuration version. �By default, it will be the time that the configuration is�
parsed, but you can provide a shell script to override how the version is determined. The output of
this script will be added to every log message in the reports, allowing you to correlate changes on
your hosts to the source version on the server.

configprint�

Print the value of a specific configuration parameter. ��If a parameter is provided for this, then the
value is printed and puppet exits. Comma-separate multiple values. For a list of all values, specify
ʻallʼ. This feature is only available in Puppet versions higher than 0.18.4.

configtimeout�

How long the client should wait for the configuration to be retrieved before considering it a failure.�
This can help reduce flapping if too many clients contact the server at one time.�

Default: 120

couchdb_url

The url where the puppet couchdb database will be created

Default: http://127.0.0.1:5984/puppet

csrdir

Where the CA stores certificate requests�

Default: $cadir/requests

daemonize

Send the process into the background. This is the default.

Default: true
Puppet Documentation • Configuration Reference 287/311

dbadapter

The type of database to use.

Default: sqlite3

dbconnections

The number of database connections for networked databases. Will be ignored unless the value is a
positive integer.

dblocation

The database cache for client configurations. �Used for querying within the language.

Default: $statedir/clientconfigs.sqlite3�

dbmigrate

Whether to automatically migrate the database.

Default: false

dbname

The name of the database to use.

Default: puppet

dbpassword

The database password for caching. Only used when networked databases are used.

Default: puppet

dbport

The database password for caching. Only used when networked databases are used.

dbserver

The database server for caching. Only used when networked databases are used.

Default: localhost

dbsocket

The database socket location. Only used when networked databases are used. Will be ignored if the
value is an empty string.

dbuser

The database user for caching. Only used when networked databases are used.

Default: puppet

diff�

Which diff command to use when printing differences between files.���

Puppet Documentation • Configuration Reference 288/311

Default: diff�

diff_args�

Which arguments to pass to the diff command when printing differences between files.���

Default: -u

downcasefacts

Whether facts should be made all lowercase when sent to the server.

Default: false

dynamicfacts

Facts that are dynamic; these facts will be ignored when deciding whether changed facts should
result in a recompile. Multiple facts should be comma-separated.

Default: memorysize,memoryfree,swapsize,swapfree

environment

The environment Puppet is running in. For clients (e.g., puppet	agent) this determines the
environment itself, which is used to find modules and much more. �For servers (i.e., puppet	master)
this provides the default environment for nodes we know nothing about.

Default: production

evaltrace

Whether each resource should log when it is being evaluated. This allows you to interactively see
exactly what is being done.

Default: false

external_nodes

An external command that can produce node information. The output must be a YAML dump of a
hash, and that hash must have one or both of classes and parameters, where classes is an array
and parameters is a hash. For unknown nodes, the commands should exit with a non-zero exit
code. This command makes it straightforward to store your node mapping information in other
data sources like databases.

Default: none

factdest

Where Puppet should store facts that it pulls down from the central server.

Default: $vardir/facts/

factpath

Where Puppet should look for facts. Multiple directories should be colon-separated, like normal
PATH variables.

Puppet Documentation • Configuration Reference 289/311

Default: $vardir/lib/facter:$vardir/facts

facts_terminus

The node facts terminus.

Default: facter

factsignore

What files to ignore when pulling down facts.�

Default: .svn CVS

factsource

From where to retrieve facts. The standard Puppet file type is used for retrieval, so anything that is
a valid file source can be used here.�

Default: puppet://$server/facts/

factsync

Whether facts should be synced with the central server.

Default: false

fileserverconfig��

Where the fileserver configuration is stored.��

Default: $confdir/fileserver.conf�

filetimeout�

The minimum time to wait (in seconds) between checking for updates in configuration files. ��This
timeout determines how quickly Puppet checks whether a file (such as manifests or templates) has�
changed on disk.

Default: 15

freeze_main

Freezes the ʻmainʼ class, disallowing any code to be added to it. This essentially means that you
canʼt have any code outside of a node, class, or definition other than in the site manifest.�

Default: false

genconfig�

Whether to just print a configuration to stdout and exit. �Only makes sense when used interactively.
Takes into account arguments specified on the CLI.�

Default: false

genmanifest

Whether to just print a manifest to stdout and exit. Only makes sense when used interactively.
Takes into account arguments specified on the CLI.�
Puppet Documentation • Configuration Reference 290/311

Default: false

graph

Whether to create dot graph files for the different configuration graphs. ���These dot files can be�
interpreted by tools like OmniGraffle or dot (which is part of ImageMagick).��

Default: false

graphdir

Where to store dot-outputted graphs.

Default: $statedir/graphs

group

The group puppet master should run as.

Default: puppet

hostcert

Where individual hosts store and look for their certificates.�

Default: $certdir/$certname.pem

hostcrl

Where the hostʼs certificate revocation list can be found. This is distinct from the certificate��
authorityʼs CRL.

Default: $ssldir/crl.pem

hostcsr

Where individual hosts store and look for their certificate requests.�

Default: $ssldir/csr_$certname.pem

hostprivkey

Where individual hosts store and look for their private key.

Default: $privatekeydir/$certname.pem

hostpubkey

Where individual hosts store and look for their public key.

Default: $publickeydir/$certname.pem

http_compression

Allow http compression in REST communication with the master. This setting might improve
performance for agent -> master communications over slow WANs. Your puppetmaster needs to
support compression (usually by activating some settings in a reverse-proxy in front of the
puppetmaster, which rules out webrick). It is harmless to activate this settings if your master

Puppet Documentation • Configuration Reference 291/311

doesnʼt support compression, but if it supports it, this setting might reduce performance on high-
speed LANs.

Default: false

http_proxy_host

The HTTP proxy host to use for outgoing connections. Note: You may need to use a FQDN for the
server hostname when using a proxy.

Default: none

http_proxy_port

The HTTP proxy port to use for outgoing connections

Default: 3128

httplog

Where the puppet agent web server logs.

Default: $logdir/http.log

ignorecache

Ignore cache and always recompile the configuration. �This is useful for testing new configurations,�
where the local cache may in fact be stale even if the timestamps are up to date - if the facts change
or if the server changes.

Default: false

ignoreimport

A parameter that can be used in commit hooks, since it enables you to parse-check a single file�
rather than requiring that all files exist.�

Default: false

ignoreschedules

Boolean; whether puppet agent should ignore schedules. This is useful for initial puppet agent
runs.

Default: false

inventory_port

The port to communicate with the inventory_server.

Default: $masterport

inventory_server

The server to send facts to.

Default: $server

inventory_terminus
Puppet Documentation • Configuration Reference 292/311

inventory_terminus

Should usually be the same as the facts terminus

Default: $facts_terminus

keylength

The bit length of keys.

Default: 1024

ldapattrs

The LDAP attributes to include when querying LDAP for nodes. All returned attributes are set as
variables in the top-level scope. Multiple values should be comma-separated. The value ʻallʼ returns
all attributes.

Default: all

ldapbase

The search base for LDAP searches. Itʼs impossible to provide a meaningful default here, although
the LDAP libraries might have one already set. Generally, it should be the ʻou=Hostsʼ branch under
your main directory.

ldapclassattrs

The LDAP attributes to use to define Puppet classes. �Values should be comma-separated.

Default: puppetclass

ldapnodes

Whether to search for node configurations in LDAP. �See
http://projects.puppetlabs.com/projects/puppet/wiki/LDAP_Nodes for more information.

Default: false

ldapparentattr

The attribute to use to define the parent node.�

Default: parentnode

ldappassword

The password to use to connect to LDAP.

ldapport

The LDAP port. Only used if ldapnodes is enabled.

Default: 389

ldapserver

The LDAP server. Only used if ldapnodes is enabled.

Default: ldap
Puppet Documentation • Configuration Reference 293/311

ldapssl

Whether SSL should be used when searching for nodes. Defaults to false because SSL usually
requires certificates to be set up on the client side.�

Default: false

ldapstackedattrs

The LDAP attributes that should be stacked to arrays by adding the values in all hierarchy elements
of the tree. Values should be comma-separated.

Default: puppetvar

ldapstring

The search string used to find an LDAP node.�

Default: (&(objectclass=puppetClient)(cn=%s))

ldaptls

Whether TLS should be used when searching for nodes. Defaults to false because TLS usually
requires certificates to be set up on the client side.�

Default: false

ldapuser

The user to use to connect to LDAP. Must be specified as a full DN.�

lexical

Whether to use lexical scoping (vs. dynamic).

Default: false

libdir

An extra search path for Puppet. This is only useful for those files that Puppet will load on demand,�
and is only guaranteed to work for those cases. In fact, the autoload mechanism is responsible for
making sure this directory is in Rubyʼs search path

Default: $vardir/lib

listen

Whether puppet agent should listen for connections. If this is true, then by default only the runner
server is started, which allows remote authorized and authenticated nodes to connect and trigger
puppet	agent runs.

Default: false

localcacert

Where each client stores the CA certificate.�

Puppet Documentation • Configuration Reference 294/311

Default: $certdir/ca.pem

localconfig�

Where puppet agent caches the local configuration. �An extension indicating the cache format is
added automatically.

Default: $statedir/localconfig�

logdir

The Puppet log directory.

Default: $vardir/log

manage_internal_file_permissions�

Whether Puppet should manage the owner, group, and mode of files it uses internally�

Default: true

manifest

The entry-point manifest for puppet master.

Default: $manifestdir/site.pp

manifestdir

Where puppet master looks for its manifests.

Default: $confdir/manifests

masterhttplog

Where the puppet master web server logs.

Default: $logdir/masterhttp.log

masterlog

Where puppet master logs. This is generally not used, since syslog is the default log destination.

Default: $logdir/puppetmaster.log

masterport

Which port puppet master listens on.

Default: 8140

maximum_uid

The maximum allowed UID. Some platforms use negative UIDs but then ship with tools that do not
know how to handle signed ints, so the UIDs show up as huge numbers that can then not be fed
back into the system. This is a hackish way to fail in a slightly more useful way when that happens.

Default: 4294967290

mkusers
Puppet Documentation • Configuration Reference 295/311

Whether to create the necessary user and group that puppet agent will run as.

Default: false

modulepath

The search path for modules as a colon-separated list of directories.

Default: $confdir/modules:/usr/share/puppet/modules

name

The name of the application, if we are running as one. The default is essentially $0 without the path
or .rb.

Default: doc

node_name

How the puppetmaster determines the clientʼs identity and sets the ʻhostnameʼ, ʻfqdnʼ and ʻdomainʼ
facts for use in the manifest, in particular for determining which ʻnodeʼ statement applies to the
client. Possible values are ʻcertʼ (use the subjectʼs CN in the clientʼs certificate) and ʻfacterʼ (use the�
hostname that the client reported in its facts)

Default: cert

node_terminus

Where to find information about nodes.�

Default: plain

noop

Whether puppet agent should be run in noop mode.

Default: false

onetime

Run the configuration once, rather than as a long-running daemon. This is useful for interactively�
running puppetd.

Default: false

parseonly

Just check the syntax of the manifests.

Default: false

passfile�

Where puppet agent stores the password for its private key. Generally unused.

Default: $privatedir/password

path

Puppet Documentation • Configuration Reference 296/311

The shell search path. Defaults to whatever is inherited from the parent process.

Default: none

pidfile�

The pid file�

Default: $rundir/$name.pid

plugindest

Where Puppet should store plugins that it pulls down from the central server.

Default: $libdir

pluginsignore

What files to ignore when pulling down plugins.�

Default: .svn CVS .git

pluginsource

From where to retrieve plugins. The standard Puppet file type is used for retrieval, so anything
that is a valid file source can be used here.�

Default: puppet://$server/plugins

pluginsync

Whether plugins should be synced with the central server.

Default: false

postrun_command

A command to run after every agent run. If this command returns a non-zero return code, the
entire Puppet run will be considered to have failed, even though it might have performed work
during the normal run.

preferred_serialization_format

The preferred means of serializing ruby instances for passing over the wire. This wonʼt guarantee
that all instances will be serialized using this method, since not all classes can be guaranteed to
support this format, but it will be used for all classes that support it.

Default: pson

prerun_command

A command to run before every agent run. If this command returns a non-zero return code, the
entire Puppet run will fail.

privatedir

Where the client stores private certificate information.�

Puppet Documentation • Configuration Reference 297/311

Default: $ssldir/private

privatekeydir

The private key directory.

Default: $ssldir/private_keys

publickeydir

The public key directory.

Default: $ssldir/public_keys

puppetdlockfile�

A lock file to temporarily stop puppet agent from doing anything.�

Default: $statedir/puppetdlock

puppetdlog

The log file for puppet agent. �This is generally not used.

Default: $logdir/puppetd.log

puppetport

Which port puppet agent listens on.

Default: 8139

queue_source

Which type of queue to use for asynchronous processing. If your stomp server requires
authentication, you can include it in the URI as long as your stomp client library is at least 1.1.1

Default: stomp://localhost:61613/

queue_type

Which type of queue to use for asynchronous processing.

Default: stomp

rails_loglevel

The log level for Rails connections. The value must be a valid log level within Rails. Production
environments normally use info and other environments normally use debug.

Default: info

railslog

Where Rails-specific logs are sent�

Default: $logdir/rails.log

report

Puppet Documentation • Configuration Reference 298/311

Whether to send reports after every transaction.

Default: false

report_port

The port to communicate with the report_server.

Default: $masterport

report_server

The server to send transaction reports to.

Default: $server

reportdir

The directory in which to store reports received from the client. Each client gets a separate
subdirectory.

Default: $vardir/reports

reportfrom

The ʻfromʼ email address for the reports.

Default: report@pelin.lovedthanlost.net

reports

The list of reports to generate. All reports are looked for in puppet/reports/name.rb, and multiple
report names should be comma-separated (whitespace is okay).

Default: store

reportserver

(Deprecated for ʻreport_serverʼ) The server to which to send transaction reports.

Default: $server

reporturl

The URL used by the http reports processor to send reports

Default: http://localhost:3000/reports

req_bits

The bit length of the certificates.�

Default: 2048

requestdir

Where host certificate requests are stored.�

Default: $ssldir/certificate_requests�

Puppet Documentation • Configuration Reference 299/311

rest_authconfig�

The configuration file that defines the rights to the different rest indirections. ����This can be used as a
fine-grained authorization system for �puppet	master.

Default: $confdir/auth.conf

rrddir

The directory where RRD database files are stored. Directories for each reporting host will be�
created under this directory.

Default: $vardir/rrd

rrdinterval

How often RRD should expect data. This should match how often the hosts report back to the
server.

Default: $runinterval

run_mode

The effective ʻrun modeʼ of the application: master, agent, or user.�

Default: master

rundir

Where Puppet PID files are kept.�

Default: $vardir/run

runinterval

How often puppet agent applies the client configuration; in seconds.�

Default: 1800

sendmail

Where to find the sendmail binary with which to send email.�

Default: /usr/sbin/sendmail

serial

Where the serial number for certificates is stored.�

Default: $cadir/serial

server

The server to which server puppet agent should connect

Default: puppet

server_datadir

The directory in which serialized data is stored, usually in a subdirectory.
Puppet Documentation • Configuration Reference 300/311

Default: $vardir/server_data

servertype

The type of server to use. Currently supported options are webrick and mongrel. If you use
mongrel, you will need a proxy in front of the process or processes, since Mongrel cannot speak
SSL.

Default: webrick

show_diff�

Whether to print a contextual diff when files are being replaced. ��The diff is printed on stdout, so�
this option is meaningless unless you are running Puppet interactively. This feature currently
requires the diff/lcs Ruby library.

Default: false

signeddir

Where the CA stores signed certificates.�

Default: $cadir/signed

smtpserver

The server through which to send email reports.

Default: none

splay

Whether to sleep for a pseudo-random (but consistent) amount of time before a run.

Default: false

splaylimit

The maximum time to delay before runs. Defaults to being the same as the run interval.

Default: $runinterval

ssl_client_header

The header containing an authenticated clientʼs SSL DN. Only used with Mongrel. This header must
be set by the proxy to the authenticated clientʼs SSL DN (e.g., /CN=puppet.puppetlabs.com). See
http://projects.puppetlabs.com/projects/puppet/wiki/Using_Mongrel for more information.

Default: HTTP_X_CLIENT_DN

ssl_client_verify_header

The header containing the status message of the client verification. Only used with Mongrel. �This
header must be set by the proxy to ʻSUCCESSʼ if the client successfully authenticated, and anything
else otherwise. See http://projects.puppetlabs.com/projects/puppet/wiki/Using_Mongrel for more
information.

Puppet Documentation • Configuration Reference 301/311

Default: HTTP_X_CLIENT_VERIFY

ssldir

Where SSL certificates are kept.�

Default: $confdir/ssl

statedir

The directory where Puppet state is stored. Generally, this directory can be removed without
causing harm (although it might result in spurious service restarts).

Default: $vardir/state

statefile�

Where puppet agent and puppet master store state associated with the running configuration. �In
the case of puppet master, this file reflects the state discovered through interacting with clients.��

Default: $statedir/state.yaml

storeconfigs�

Whether to store each clientʼs configuration. �This requires ActiveRecord from Ruby on Rails.

Default: false

strict_hostname_checking

Whether to only search for the complete hostname as it is in the certificate when searching for node�
information in the catalogs.

Default: false

summarize

Whether to print a transaction summary.

Default: false

syslogfacility

What syslog facility to use when logging to syslog. Syslog has a fixed list of valid facilities, and you�
must choose one of those; you cannot just make one up.

Default: daemon

tagmap

The mapping between reporting tags and email addresses.

Default: $confdir/tagmail.conf

tags

Tags to use to find resources. �If this is set, then only resources tagged with the specified tags will�
be applied. Values must be comma-separated.

Puppet Documentation • Configuration Reference 302/311

templatedir

Where Puppet looks for template files. �Can be a list of colon-seperated directories.

Default: $vardir/templates

thin_storeconfigs�

Boolean; wether storeconfigs store in the database only the facts and exported resources. If true,�
then storeconfigs performance will be higher and still allow exported/collected resources, but�
other usage external to Puppet might not work

Default: false

trace

Whether to print stack traces on some errors

Default: false

use_cached_catalog

Whether to only use the cached catalog rather than compiling a new catalog on every run. Puppet
can be run with this enabled by default and then selectively disabled when a recompile is desired.

Default: false

usecacheonfailure

Whether to use the cached configuration when the remote configuration will not compile. ��This
option is useful for testing new configurations, where you want to fix the broken configuration���
rather than reverting to a known-good one.

Default: true

user

The user puppet master should run as.

Default: puppet

vardir

Where Puppet stores dynamic and growing data. The default for this parameter is calculated
specially, like confdir_.

Default: /var/lib/puppet

yamldir

The directory in which YAML data is stored, usually in a subdirectory.

Default: $vardir/yaml

zlib

Boolean; whether to use the zlib library

Default: true
Puppet Documentation • Configuration Reference 303/311

This page autogenerated on Sat Mar 26 08:51:34 +1100 2011

Report Reference
This page is autogenerated; any changes will get overwritten (last generated on Sat Mar 26
08:52:06 +1100 2011)

Puppet clients can report back to the server after each transaction. This transaction report is sent as
a YAML dump of the Puppet::Transaction::Report class and includes every log message that was
generated during the transaction along with as many metrics as Puppet knows how to collect. See
Reports and Reporting for more information on how to use reports.

Currently, clients default to not sending in reports; you can enable reporting by setting the report
parameter to true.

To use a report, set the reports parameter on the server; multiple reports must be comma-
separated. You can also specify none to disable reports entirely.

Puppet provides multiple report handlers that will process client reports:

http
Send report information via HTTP to the reporturl. Each host sends its report as a YAML dump and
this sends this YAML to a client via HTTP POST. The YAML is the report parameter of the request.”

log
Send all received logs to the local log destinations. Usually the log destination is syslog.

rrdgraph
Graph all available data about hosts using the RRD library. You must have the Ruby RRDtool library
installed to use this report, which you can get from the RubyRRDTool RubyForge page.
This package may also be available as ruby-rrd or rrdtool-ruby in your distributionʼs package
management system. The library and/or package will both require the binary rrdtool package
from your distribution to be installed.

This report will create, manage, and graph RRD database files for each of the metrics generated�
during transactions, and it will create a few simple html files to display the reporting hostʼs graphs.�
At this point, it will not create a common index file to display links to all hosts.�

All RRD files and graphs get created in the �rrddir directory. If you want to serve these publicly, you
should be able to just alias that directory in a web server.

If you really know what youʼre doing, you can tune the rrdinterval, which defaults to the
runinterval.

Puppet Documentation • Report Reference 304/311

http://projects.puppetlabs.com/projects/puppet/wiki/Reports_And_Reporting
http://rubyforge.org/projects/rubyrrdtool/

store
Store the yaml report on disk. Each host sends its report as a YAML dump and this just stores the
file on disk, in the �reportdir directory.

These files collect quickly – one every half hour – so it is a good idea to perform some maintenance�
on them if you use this report (itʼs the only default report).

tagmail
This report sends specific log messages to specific email addresses based on the tags in the log��
messages.

See the UsingTags tag documentation for more information on tags.

To use this report, you must create a tagmail.conf (in the location specified by �tagmap). This is a
simple file that maps tags to email addresses: �Any log messages in the report that match the
specified tags will be sent to the specified email addresses.��

Tags must be comma-separated, and they can be negated so that messages only match when they
do not have that tag. The tags are separated from the email addresses by a colon, and the email
addresses should also be comma-separated.

Lastly, there is an all tag that will always match all log messages.

Here is an example tagmail.conf:

all:	me@domain.com
webserver,	!mailserver:	httpadmins@domain.com

This will send all messages to me@domain.com, and all messages from webservers that are not also
from mailservers to httpadmins@domain.com.

If you are using anti-spam controls, such as grey-listing, on your mail server you should whitelist
the sending email (controlled by reportform configuration option) to ensure your email is not�
discarded as spam.

This page autogenerated on Sat Mar 26 08:52:06 +1100 2011

Indirection Reference
This page is autogenerated; any changes will get overwritten (last generated on Sat Mar 26
08:51:45 +1100 2011)

This is the list of all indirections, their associated terminus classes, and how you select between
them.

Puppet Documentation • Indirection Reference 305/311

http://projects.puppetlabs.com/projects/puppet/wiki/Using_Tags

In general, the appropriate terminus class is selected by the application for you (e.g., puppet	agent
would always use the rest terminus for most of its indirected classes), but some classes are tunable
via normal settings. These will have terminus	setting documentation listed with them.

catalog
Terminus Setting: catalog_terminus

active_record

compiler

Puppetʼs catalog compilation interface, and its back-end is Puppetʼs compiler

queue

rest

Find resource catalogs over HTTP via REST.

yaml

Store catalogs as flat files, serialized using YAML.��

certificate�
ca

Manage the CA collection of signed SSL certificates on disk.�

file�

Manage SSL certificates on disk.�

rest

Find and save certificates over HTTP via REST.�

certificate_request�
ca

Manage the CA collection of certificate requests on disk.�

file�

Manage the collection of certificate requests on disk.�

rest

Find and save certificate requests over HTTP via REST.�

certificate_revocation_list�
ca

Puppet Documentation • Indirection Reference 306/311

Manage the CA collection of certificate requests on disk.�

file�

Manage the global certificate revocation list.�

rest

Find and save certificate revocation lists over HTTP via REST.�

facts
Terminus Setting: facts_terminus

active_record

couch

facter

Retrieve facts from Facter. This provides a somewhat abstract interface between Puppet and Facter.
Itʼs only somewhat abstract because it always returns the local hostʼs facts, regardless of what you
attempt to find.�

inventory_active_record

memory

Keep track of facts in memory but nowhere else. This is used for one-time compiles, such as what
the stand-alone puppet does. To use this terminus, you must load it with the data you want it to
contain.

rest

Find and save facts about nodes over HTTP via REST.

yaml

Store client facts as flat files, serialized using YAML, or return deserialized facts from disk.��

file_bucket_file��
file�

Store files in a directory set based on their checksums.�

rest

This is a REST based mechanism to send/retrieve file to/from the filebucket��

file_content�
file�

Retrieve file contents from disk.�

Puppet Documentation • Indirection Reference 307/311

file_server�

Retrieve file contents using Puppetʼs fileserver.��

rest

Retrieve file contents via a REST HTTP interface.�

file_metadata�
file�

Retrieve file metadata directly from the local filesystem.��

file_server�

Retrieve file metadata using Puppetʼs fileserver.��

rest

Retrieve file metadata via a REST HTTP interface.�

key
ca

Manage the CAʼs private on disk. This terminus only works with the CA key, because thatʼs the only
key that the CA ever interacts with.

file�

Manage SSL private and public keys on disk.

node
Where to find node information. A node is composed of its name, its facts, and its environment.�

Terminus Setting: node_terminus

active_record

exec

Call an external program to get node information. See the External Nodes page for more
information.

ldap

Search in LDAP for node configuration information. �See the LDAP Nodes page for more information.
This will first search for whatever the certificate name is, then (if that name contains a ��.) for the
short name, then default.

memory

Keep track of nodes in memory but nowhere else. This is used for one-time compiles, such as what

Puppet Documentation • Indirection Reference 308/311

http://projects.puppetlabs.com/projects/puppet/wiki/Ldap_Nodes

the stand-alone puppet does. To use this terminus, you must load it with the data you want it to
contain; it is only useful for developers and should generally not be chosen by a normal user.

plain

Always return an empty node object. Assumes you keep track of nodes in flat file manifests. ��You
should use it when you donʼt have some other, functional source you want to use, as the compiler
will not work without a valid node terminus.

Note that class is responsible for merging the nodeʼs facts into the node instance before it is
returned.

rest

This will eventually be a REST-based mechanism for finding nodes. �It is currently non-functional.

yaml

Store node information as flat files, serialized using YAML, or deserialize stored YAML nodes.��

report
processor

Puppetʼs report processor. Processes the report with each of the report types listed in the ʻreportsʼ
setting.

rest

Get server report over HTTP via REST.

resource
ral

rest

resource_type
parser

Return the data-form of a resource type.

rest

Retrieve resource types via a REST HTTP interface.

status
local

rest

This page autogenerated on Sat Mar 26 08:51:47 +1100 2011
Puppet Documentation • Indirection Reference 309/311

Network Reference
This page is autogenerated; any changes will get overwritten (last generated on Sat Mar 26
08:52:01 +1100 2011)

This is a list of all Puppet network interfaces. Each interface is implemented in the form of a client
and a handler; the handler is loaded on the server, and the client knows how to call the handlerʼs
methods appropriately.

Most handlers are meant to be started on the server, usually within puppet	master, and the clients
are mostly started on the client, usually within puppet	agent.

You can find the server-side handler for each interface at �puppet/network/handler/<name>.rb and
the client class at puppet/network/client/<name>.rb.

CA
Provides an interface for signing CSRs. Accepts a CSR and returns the CA certificate and the signed�
certificate, or returns nil if the cert is not signed.�

:Prefix: puppetca :Side: Server :Methods: getcert�

FileBucket
The interface to Puppetʼs FileBucket system. Can be used to store files in and retrieve files from a��
filebucket.�

:Prefix: puppetbucket :Side: Server :Methods: addfile, getfile���

FileServer
The interface to Puppetʼs fileserving abilities.�

:Prefix: fileserver :Side: Server :Methods: describe, list, retrieve��

Master
Puppetʼs configuration interface. �Used for all interactions related to generating client
configurations.�

:Prefix: puppetmaster :Side: Server :Methods: getconfig, freshness��

Report
Accepts a Puppet transaction report and processes it.

:Prefix: puppetreports :Side: Server :Methods: report�

Puppet Documentation • Network Reference 310/311

Runner
An interface for triggering client configuration runs.�

:Prefix: puppetrunner :Side: Client :Methods: run�

Status
A simple interface for testing Puppet connectivity.

:Prefix: status :Side: Client :Methods: status�

This page autogenerated on Sat Mar 26 08:52:01 +1100 2011
© 2010 Puppet Labs info@puppetlabs.com 411 NW Park Street / Portland, OR 97209 1-877-575-
9775

Puppet Documentation • Network Reference 311/311

http://www.puppetlabs.com/
mailto:info@puppetlabs.com

	Puppet Labs Documentation
	MCollective
	Puppet Dashboard
	Drive-Thru
	Learning Puppet
	Reference Shelf
	Generated References

	Puppet Guides
	Components
	Installing and Configuring
	Tuning and Scaling
	Basic Features and Use
	Advanced Features
	Hacking and Extending
	USING APIS AND INTERFACES
	USING RUBY PLUGINS
	DEVELOPING PUPPET

	Other Resources
	Help Improve This Document
	Documentation Version

	Learning Puppet
	Welcome
	Get Equipped
	Hit the Gas
	Part one: Serverless Puppet

	Learning — Resources and the RAL
	Molecules
	Sync: Read, Check, Write
	Anatomy of a Resource
	The Resource Shell
	The Core Resource Types
	An Aside: puppet describe -s
	Next

	Learning — Manifests
	No Strings Attached
	Manifests
	An Aside: Compilation
	Resource Declarations
	Once More, With Feeling!
	Titles and Namevars
	644 = 755 For Directories
	New Ensure Values

	The Destination
	Next

	Learning — Resource Ordering
	Disorder
	Metaparameters, Resource References, and Ordering
	AN ASIDE: CAPITALIZATION
	Before and Require
	Notify and Subscribe
	Chaining
	Autorequire

	Summary
	Example: sshd
	Package/File/Service
	Next

	Learning — Variables, Conditionals, and Facts
	Variables
	Facts
	Hostname? IPaddress?

	Conditional Statements
	If
	WHAT IS FALSE?
	CONDITIONS

	Case
	CASE MATCHING

	Selectors

	Exercises
	Next

	Learning — Modules and Classes (Part One)
	Collecting and Reusing
	Classes
	Defining
	AN ASIDE: NAMES, NAMESPACES, AND SCOPE

	Declaring
	INCLUDE

	Classes In Situ
	AN ASIDE: PRINTING CONFIG

	Modules
	Module Structure
	Manifests, Namespacing, and Autoloading
	Files
	Tests
	Templates
	Lib
	Module Scaffolding

	Exercises
	Next

	Tools
	Single binary
	Manpage documentation
	puppet master (or puppetmasterd)
	puppet agent (or puppetd)
	puppet apply (or puppet)
	puppet cert (or puppetca)
	puppet doc (or puppetdoc)
	puppet resource (or ralsh)
	puppet inspect
	facter

	Introduction to Puppet
	Why Puppet
	Learning Recommendations
	System Components
	Features of the System
	Idempotency
	Cross Platform
	Model & Graph Based
	RESOURCE TYPES
	PROVIDERS
	MODIFYING THE SYSTEM
	RESOURCE RELATIONSHIPS

	Learning The Language

	Supported Platforms
	Linux
	BSD
	Other Unix
	Windows

	Installation Guide
	Before Starting
	Ruby Prerequisites
	OS Packages
	Installing Facter From Source
	Installing Puppet From Source
	Alternative Install Method: Using Ruby Gems

	Configuring Puppet

	Configuration Guide
	Open Firewall Ports On Server and Agent Node
	Configuration Files
	Configure DNS (Optional)
	Puppet Language Setup
	Create Your Site Manifest
	Example Manifest

	Start the Central Daemon
	Verifying Installation
	Scaling your Installation

	Scaling Puppet
	Are you using the default webserver?
	Delayed check in
	Triggered selective updates
	No central host
	Minimize recursive file serving

	Passenger
	Supported Versions
	Why Passenger
	What is Passenger?
	Installation Instructions for Puppet 0.25.x and 2.6.x
	Installation Instructions for Puppet 0.24.x for Debian/Ubuntu and RHEL5
	Install Apache 2, Rack and Passenger
	Install Rack/Passenger
	Enable Apache modules “ssl” and “headers”:
	Configure Apache

	Apache Configuration for Puppet 0.24.x
	The config.ru file for Puppet 0.24.x
	The config.ru file for 0.25.x
	Suggested Tweaks

	Using Mongrel
	Techniques
	How Can I Manage Whole Directories of Files Without Explicitly Listing the Files?
	How Do I Run a Command Whenever A File Changes?
	How Can I Ensure a Group Exists Before Creating a User?
	How Can I Require Multiple Resources Simultaneously?
	Can I use complex comparisons in if statements and variables?
	Can I output Facter facts in YAML?
	Can I check the syntax of my templates?

	Troubleshooting
	General
	Why hasn’t my new node configuration been noticed?
	Why don’t my certificates show as waiting to be signed on my server when I do a “puppet cert --list”?
	I keep getting “certificates were not trusted”. What’s wrong?
	I’m getting IPv6 errors; what’s wrong?
	I’m getting tlsv1 alert unknown ca errors; what’s wrong?
	Why does Puppet keep trying to start a running service?
	Why is my external node configuration failing? I get no errors by running the script by hand.

	Puppet Syntax Errors
	Syntax error at ‘}’; expected ‘}’ at manifest.pp:nnn
	Syntax error at ‘:’; expected ‘]’ at manifest.pp:nnn
	Syntax error at ‘.’; expected ‘}’ at manifest.pp:nnn
	Could not match ‘_define_name’ at manifest.pp:nnn on node nodename
	Duplicate definition: Classname::Define_name[system] is already defined in file manifest.pp at line nnn; cannot redefine at manifest.pp:nnn on node nodename
	Syntax error at ‘=>’; expected ‘)’
	err: Exported resource Blah[$some_title] cannot override local resource on node $nodename

	Common Misconceptions
	Node Inheritance and Variable Scope
	Class Inheritance and Variable Scope

	Custom Type & Provider development
	err: Could not retrieve catalog: Invalid parameter ‘foo’ for type ‘bar’

	Module Organization
	General Information
	Configuration
	Sources of Modules
	Naming
	Internal Organisation
	Example
	Module Lookup
	Module Autoloading

	Generated Module Documentation
	See Also

	Using Parameterized Classes
	Why, and Some History
	Philosophy
	Using Parameterized Classes
	Writing a Parameterized Class
	Declaring a Parameterized Class
	Site Design and Composition With Parameterized Classes

	Further Reading
	Appendix: Smart Parameter Defaults

	Module Smoke Testing
	Testing in Brief
	Writing Tests
	Running Tests
	Reading Tests
	Exploring Further

	Scope and Puppet as of 2.7
	What’s Changing?
	Why?
	Making the Switch
	Qualify Your Variables!
	Declare Resource Defaults Per-File!
	Use Parameterized Classes!

	Appendix: How Scope Works in Puppet ≤ 2.7.x

	The Puppet File Server
	Serving Module Files
	Serving Files From Custom Mount Points
	File Server Configuration
	Security
	Priority
	Host Names
	IP Addresses
	Global allow

	Style Guide
	Style Guide Metadata
	Terminology
	Puppet Version
	Why a Style Guide?
	General Philosophies
	Module Metadata
	Style Versioning

	Spacing, Indentation, & Whitespace
	Comments
	Quoting
	Resources
	Resource Names
	Arrow Alignment
	Attribute Ordering
	Compression
	Symbolic Links
	File Modes
	Resource Defaults

	Conditionals
	Keep Resource Declarations Simple
	Defaults for Case Statements and Selectors

	Classes
	Separate Files
	Internal Organization of a Class
	Relationship Declarations
	Classes and Defined Resource Types Within Classes
	Class Inheritance
	Namespacing Variables
	Display Order of Class Parameters

	Tests
	Puppet Doc
	The extlookup() Function

	Best Practices
	Use Modules When Possible
	Keep Your Puppet Content In Version Control
	Naming Conventions
	Style
	Classes Vs Defined Types
	Work In Progress

	Using Puppet Templates
	Evaluating templates
	Using templates
	Combining templates
	Iteration
	Conditionals
	Templates and variables
	Undefined variables
	Out of scope variables
	Access to defined tags and classes
	Access to variables and Puppet functions with the scope object
	Syntax Checking

	Virtual Resources
	About Virtual Resources
	How This Is Useful
	How to Realize Resources
	Realizing Resources
	Virtual Define-Based Resources

	Exporting and Collecting Resources
	About Exported Resources
	Exported Resources with Nagios
	Exported Resources Override

	Environments
	Using Multiple Environments
	Goal of Environments
	Using Environments on the Puppet Master
	Setting The Client’s Environment
	Puppet Search Path

	Reporting
	Reports and Reporting
	Logs
	Metrics

	Setting Up Reporting
	Sending Reports
	Processing Reports
	USING BUILTIN REPORTS
	WRITING CUSTOM REPORTS
	USING EXTERNAL REPORT PROCESSORS

	Available reports

	Getting Started With Puppet CloudPack
	Overview
	Installing
	Prerequisites
	Software
	Services

	Configuration
	Fog
	EC2
	Provisioning
	puppet master
	Certificates and Keys
	Installer Configuration

	Usage
	puppet node create
	puppet node install
	puppet node classify
	puppet node init
	puppet node bootstrap
	puppet node terminate

	External Nodes
	What’s an External Node?
	How to use External Nodes
	Limitations of External Nodes
	Configuring puppetmasterd
	External node scripts for version 0.23 and later
	External node scripts for versions before 0.23

	Inventory Service
	Why
	What It Is
	Consumers of the Inventory Service

	Using the Inventory Service
	Setting Up the Inventory Service
	Configuring the Inventory Backend
	FOR PROTOTYPING: YAML
	FOR PRODUCTION: DATABASE
	FOR MULTIPLE PUPPET MASTERS: REST

	Configuring Access
	Configuring Certificates

	Testing the Inventory Service

	Plugins in Modules
	Details
	Module structure for 0.25.x and later
	Enabling Pluginsync
	Note on Usage for Server Custom Functions
	Legacy 0.24.x and Plugins in Modules
	Enabling pluginsync for 0.24.x versions

	Custom Facts
	Adding Custom Facts to Facter
	The Concept
	An Example
	Using other facts
	Testing
	Viewing Fact Values
	Legacy Fact Distribution

	Custom Functions
	Writing your own functions
	Gotchas
	Where to put your functions

	First Function — small steps
	Using Facts and Variables
	Example 1
	Example 2

	Calling Functions from Functions
	Example

	Handling Errors
	Troubleshooting Functions
	Referencing Custom Functions In Templates
	Notes on Backward Compatibility
	Accessing Files With Older Versions of Puppet
	ACCESSING FILES IN PUPPET 0.23.2 THROUGH 0.24.9
	ACCESSING FILES IN PUPPET 0.25.X

	Custom Types
	Organizational Principles
	Deploying Code
	Resource Types
	Properties
	CUSTOMIZING BEHAVIOUR
	HANDLING PROPERTY VALUES

	Parameters
	VALIDATION AND MUNGING

	Automatic Relationships

	Providers
	Provider Features

	Complete Resource Example
	Resource Creation
	See Also

	Provider Development
	About
	Declaration
	Suitability
	Default Providers
	Provider/Resource API
	Provider Methods
	Prefetching
	Resource Methods
	Flushing

	Using Puppet From Source
	Before you Begin
	Get the Source
	Tell Ruby How to Find Puppet and Facter

	Development Lifecycle
	REST API
	REST API Security
	Testing the REST API using curl
	The master and agent shared API
	Resources
	Certificate

	The master REST API
	Catalogs
	Certificate Revocation List
	Certificate Request
	Certificate Status
	Reports
	Resource Types
	File Bucket
	File Server
	Node
	Status
	Facts
	Facts Search
	STRING/GENERAL COMPARISON
	NUMERIC COMPARISON

	The agent REST API
	Facts
	Run

	Language Guide
	Ready To Dive In?
	Language Feature by Release
	Resources
	Metaparameters
	Resource Defaults
	Resource Collections
	CLASSES
	PARAMETERISED CLASSES
	RUN STAGES
	DEFINED RESOURCE TYPES
	CLASSES VS. DEFINED RESOURCE TYPES
	MODULES

	Chaining resources
	Nodes
	MATCHING NODES WITH REGULAR EXPRESSIONS
	NODE INHERITANCE
	DEFAULT NODES
	EXTERNAL NODES

	Additional Language Features
	Quoting
	Variable Interpolation With Quotes
	Capitalization
	Arrays
	Hashes
	Variables
	VARIABLE SCOPE
	QUALIFIED VARIABLES
	FACTS AS VARIABLES
	VARIABLE EXPRESSIONS
	APPENDING TO VARIABLES

	Conditionals
	SELECTORS
	CASE STATEMENT
	IF/ELSE STATEMENT

	Virtual Resources
	Exported Resources
	Reserved Words & Acceptable Characters
	Comments

	Expressions
	Operator precedence
	Expression examples
	COMPARISON EXPRESSIONS
	ARITHMETIC EXPRESSIONS
	BOOLEAN EXPRESSIONS
	REGULAR EXPRESSIONS
	“IN” EXPRESSIONS

	Backus Naur Form

	Functions
	Importing Manifests
	Handling Compilation Errors

	Puppet Application Manpages
	puppet agent Manual Page
	NAME
	SYNOPSIS
	USAGE
	DESCRIPTION
	USAGE NOTES
	OPTIONS
	EXAMPLE
	AUTHOR
	COPYRIGHT

	puppet apply Manual Page
	NAME
	SYNOPSIS
	USAGE
	DESCRIPTION
	OPTIONS
	EXAMPLE
	AUTHOR
	COPYRIGHT

	puppet cert Manual Page
	NAME
	SYNOPSIS
	USAGE
	DESCRIPTION
	ACTIONS
	OPTIONS
	EXAMPLE
	AUTHOR
	COPYRIGHT

	puppet describe Manual Page
	NAME
	SYNOPSIS
	USAGE
	OPTIONS
	EXAMPLE
	AUTHOR
	COPYRIGHT

	puppet device Manual Page
	NAME
	SYNOPSIS
	USAGE
	DESCRIPTION
	USAGE NOTES
	OPTIONS
	EXAMPLE
	AUTHOR
	COPYRIGHT

	puppet doc Manual Page
	NAME
	SYNOPSIS
	USAGE
	DESCRIPTION
	OPTIONS
	EXAMPLE
	AUTHOR
	COPYRIGHT

	puppet filebucket Manual Page
	NAME
	SYNOPSIS
	USAGE
	DESCRIPTION
	OPTIONS
	EXAMPLE
	AUTHOR
	COPYRIGHT

	puppet inspect Manual Page
	NAME
	SYNOPSIS
	USAGE
	DESCRIPTION
	OPTIONS
	AUTHOR
	COPYRIGHT

	puppet kick Manual Page
	NAME
	SYNOPSIS
	USAGE
	DESCRIPTION
	USAGE NOTES
	OPTIONS
	EXAMPLE
	AUTHOR
	COPYRIGHT

	puppet master Manual Page
	NAME
	SYNOPSIS
	USAGE
	DESCRIPTION
	OPTIONS
	EXAMPLE
	AUTHOR
	COPYRIGHT

	puppet queue Manual Page
	NAME
	SYNOPSIS
	USAGE
	DESCRIPTION
	OPTIONS
	EXAMPLE
	AUTHOR
	COPYRIGHT

	puppet resource Manual Page
	NAME
	SYNOPSIS
	USAGE
	DESCRIPTION
	OPTIONS
	EXAMPLE
	AUTHOR
	COPYRIGHT

	REST Access Control
	REST
	auth.conf
	File Format
	ACL format
	Path
	Environment
	Method
	Auth
	Allow
	Deny

	Matching ACLs to Requests
	Matching Paths
	Determining Whether a Request is Allowed

	Consequences of ACL Matching Behavior
	Default ACLs
	Danger Mode
	authconfig / namespaceauth.conf
	puppet agent and the REST API

	Type Reference
	Resource Types
	augeas
	FEATURES
	PARAMETERS

	computer
	PARAMETERS

	cron
	PARAMETERS

	exec
	PARAMETERS

	file
	PARAMETERS

	filebucket
	PARAMETERS

	group
	FEATURES
	PARAMETERS

	host
	PARAMETERS

	k5login
	PARAMETERS

	macauthorization
	PARAMETERS

	mailalias
	PARAMETERS

	maillist
	PARAMETERS

	mcx
	FEATURES
	PARAMETERS

	mount
	FEATURES
	PARAMETERS

	nagios_command
	PARAMETERS

	nagios_contact
	PARAMETERS

	nagios_contactgroup
	PARAMETERS

	nagios_host
	PARAMETERS

	nagios_hostdependency
	PARAMETERS

	nagios_hostescalation
	PARAMETERS

	nagios_hostextinfo
	PARAMETERS

	nagios_hostgroup
	PARAMETERS

	nagios_service
	PARAMETERS

	nagios_servicedependency
	PARAMETERS

	nagios_serviceescalation
	PARAMETERS

	nagios_serviceextinfo
	PARAMETERS

	nagios_servicegroup
	PARAMETERS

	nagios_timeperiod
	PARAMETERS

	notify
	PARAMETERS

	package
	FEATURES
	PARAMETERS

	resources
	PARAMETERS

	schedule
	PARAMETERS

	selboolean
	PARAMETERS

	selmodule
	PARAMETERS

	service
	FEATURES
	PARAMETERS

	ssh_authorized_key
	PARAMETERS

	sshkey
	PARAMETERS

	stage
	PARAMETERS

	tidy
	PARAMETERS

	user
	FEATURES
	PARAMETERS

	yumrepo
	PARAMETERS

	zfs
	PARAMETERS

	zone
	PARAMETERS

	zpool
	PARAMETERS

	Function Reference
	alert
	crit
	debug
	defined
	emerg
	err
	extlookup
	fail
	file
	fqdn_rand
	generate
	include
	info
	inline_template
	md5
	notice
	realize
	regsubst
	require
	search
	sha1
	shellquote
	split
	sprintf
	tag
	tagged
	template
	versioncmp
	warning

	Metaparameter Reference
	Metaparameters
	Available Metaparameters
	alias
	audit
	before
	check
	loglevel
	noop
	notify
	require
	schedule
	stage
	subscribe
	tag

	Configuration Reference
	Specifying Configuration Parameters
	On The Command-Line
	Configuration Files
	FILE FORMAT

	Signals
	Configuration Parameter Reference
	archive_file_server
	archive_files
	async_storeconfigs
	authconfig
	autoflush
	autosign
	bindaddress
	bucketdir
	ca
	ca_days
	ca_md
	ca_name
	ca_port
	ca_server
	ca_ttl
	cacert
	cacrl
	cadir
	cakey
	capass
	caprivatedir
	capub
	catalog_format
	catalog_terminus
	cert_inventory
	certdir
	certdnsnames
	certificate_revocation
	certname
	classfile
	client_datadir
	clientbucketdir
	clientyamldir
	code
	color
	confdir
	config
	config_version
	configprint
	configtimeout
	couchdb_url
	csrdir
	daemonize
	dbadapter
	dbconnections
	dblocation
	dbmigrate
	dbname
	dbpassword
	dbport
	dbserver
	dbsocket
	dbuser
	diff
	diff_args
	downcasefacts
	dynamicfacts
	environment
	evaltrace
	external_nodes
	factdest
	factpath
	facts_terminus
	factsignore
	factsource
	factsync
	fileserverconfig
	filetimeout
	freeze_main
	genconfig
	genmanifest
	graph
	graphdir
	group
	hostcert
	hostcrl
	hostcsr
	hostprivkey
	hostpubkey
	http_compression
	http_proxy_host
	http_proxy_port
	httplog
	ignorecache
	ignoreimport
	ignoreschedules
	inventory_port
	inventory_server
	inventory_terminus
	keylength
	ldapattrs
	ldapbase
	ldapclassattrs
	ldapnodes
	ldapparentattr
	ldappassword
	ldapport
	ldapserver
	ldapssl
	ldapstackedattrs
	ldapstring
	ldaptls
	ldapuser
	lexical
	libdir
	listen
	localcacert
	localconfig
	logdir
	manage_internal_file_permissions
	manifest
	manifestdir
	masterhttplog
	masterlog
	masterport
	maximum_uid
	mkusers
	modulepath
	name
	node_name
	node_terminus
	noop
	onetime
	parseonly
	passfile
	path
	pidfile
	plugindest
	pluginsignore
	pluginsource
	pluginsync
	postrun_command
	preferred_serialization_format
	prerun_command
	privatedir
	privatekeydir
	publickeydir
	puppetdlockfile
	puppetdlog
	puppetport
	queue_source
	queue_type
	rails_loglevel
	railslog
	report
	report_port
	report_server
	reportdir
	reportfrom
	reports
	reportserver
	reporturl
	req_bits
	requestdir
	rest_authconfig
	rrddir
	rrdinterval
	run_mode
	rundir
	runinterval
	sendmail
	serial
	server
	server_datadir
	servertype
	show_diff
	signeddir
	smtpserver
	splay
	splaylimit
	ssl_client_header
	ssl_client_verify_header
	ssldir
	statedir
	statefile
	storeconfigs
	strict_hostname_checking
	summarize
	syslogfacility
	tagmap
	tags
	templatedir
	thin_storeconfigs
	trace
	use_cached_catalog
	usecacheonfailure
	user
	vardir
	yamldir
	zlib

	Report Reference
	http
	log
	rrdgraph
	store
	tagmail

	Indirection Reference
	catalog
	active_record
	compiler
	queue
	rest
	yaml

	certificate
	ca
	file
	rest

	certificate_request
	ca
	file
	rest

	certificate_revocation_list
	ca
	file
	rest

	facts
	active_record
	couch
	facter
	inventory_active_record
	memory
	rest
	yaml

	file_bucket_file
	file
	rest

	file_content
	file
	file_server
	rest

	file_metadata
	file
	file_server
	rest

	key
	ca
	file

	node
	active_record
	exec
	ldap
	memory
	plain
	rest
	yaml

	report
	processor
	rest

	resource
	ral
	rest

	resource_type
	parser
	rest

	status
	local
	rest

	Network Reference
	CA
	FileBucket
	FileServer
	Master
	Report
	Runner
	Status

