

Addressing a Moving Target: Treatment of Foot and Ankle Disorders in Patients with Charcot-Marie-Tooth Disease

Kristan Pierz, MD and Sylvia Õunpuu, MSc Center for Motion Analysis Division of Orthopaedics Connecticut Children' s Medical Center Farmington, Connecticut, USA

Disclosure Information AACPDM 69th Annual Meeting | October 21-24, 2015

Speaker Names: Sylvia Õunpuu, MSc and Kristan Pierz, MD

Disclosure of Relevant Financial Relationships

We have no financial relationships to disclose.

Disclosure of Off-Label and/or investigative uses:

We will not discuss off label use and/or investigational use in this presentation

Purpose

• Describe three typical gait patterns observed in patients with CMT and provide evidence to support non-operative and operative treatment options

Overview

- Utility of Gait Analysis
 - Understanding pathomechanics
 - Treatment decision-making
- Ankle motion the basics
- CMT ankle
 - Gait characteristics (video, kinematics, kinetics)
 - Treatment options
- Discussion

Sources

- Literature
- Our experience of examining 68 patients with CMT with comprehensive motion analysis
- Õunpuu et al., Gait and Posture, 2013.

Background

- The optimal treatment of gait pathology requires a detailed understanding of the pathomechanics during gait
- Visual assessment is limited in providing a full understanding of movement pathology
 - It is just too complicated!

Gait Analysis Is...

- The <u>objective documentation</u> of gait function in terms of the following:
 - Joint angles (joint kinematics) in 3D
 - Joint moments and powers (joint kinetics) in 3D
 - Muscle activity
- Includes integration of the above data with the impairments such as:
 - Weakness
 - Limited range of motion
 - Bony deformity

Gait Analysis Is...con' t

- The development of a list of primary gait problems and their causes (that should be treated) and associated gait compensations (that should not be treated)
- The development of a list of proposed treatments including specific indications and the proposed outcomes

Gait Analysis Is...con' t

 Objective evaluation of treatment outcomes using the same treatment decisionmaking methods

The First Step

- Know what you are talking about.
- Understand the gait analysis data.

Angle Definition – Ankle Sagittal Plane

• The relative angle between perpendicular to the long axis of the shank and the plantar aspect of the foot

Please note: the ankle joint angle definition includes multiple joints (ankle and foot)

Pathological Ankle Motion

- Increased plantar flexion in swing and at initial contact
- Delayed and increased peak dorsiflexion in terminal stance

Charcot-Marie-Tooth (CMT)

(Hereditary Sensory and Motor Neuropathy)

- Most commonly inherited neurological disorder = de-myelination of large peripheral nerves
 Myelin & axonal subtypes
- · Characterized by:
 - distal muscle weakness and imbalance
 - foot and ankle deformities
 - · associated gait implications
 - · impairment progression at varying rates

Textbook Gait Description

- Foot drop (excessive equinus) in swing
- Steppage (hyperflexion of knee and hip in swing)
- Circumduction and pelvic hiking in swing

(Fenton, JOPA 1984) (Morrisy, Pediatric Orthopedics) (Vinci, Archives of Physical Medicine & Rehat

Textbook Clinical Description

- Forefoot equinus and adductus
- Hindfoot varus
- Pes cavus
- Toe deformities
 _ claw toes
 (Guyton; Foot and Ankle 2000)

• Clinical experience:

- Persons with CMT do not all have the same clinical presentation
- Therefore, there are a variety of gait patterns and deformity...

- Peak ankle dorsiflexion in terminal stance = clinically relevant gait impact
- Three groups were defined:
 - greater than typical
 - within typical range
 - less than typical

Ankle Sagittal Plane Kinematics

- less than typical (dash-dot)
 typical (large dash)
- greater than typical (solid)

• Cavus deformity = clinically relevant gait impact

- Kinematically appears as "ankle plantar flexion" (even if due to foot)
- Prevalence:
 - Increased cavus (82% of feet our experience)

Framework for Treatment Decision-making

- Prerequisites of Typical Gait
 - Stance phase stability
 - Swing phase clearance
 - Appropriate prepositioning at initial contact
 - Adequate step length
 - Energy conservation

Perry J, Gait Analysis, 1992

The Flail Foot

- Stance phase stability issues
- Swing phase clearance issues
- Inappropriate prepositioning at initial contact
- Reduced step lengths

The Flail Foot

- Clinical Examination Findings
 - Limited passive dorsiflexion range of motion
 - Knee flexed (1 ± 7 degrees)
 - Knee extended (8 ± 7 degrees)
 - Full plantar flexion and forefoot inversion/eversion
 - Strength: (median/maximum/minumum)
 - Plantar Flexors (2/5/2)
 - Dorsiflexors (4/5/0)
 - Forefoot Invertors (5/5/0)
 - Forefoot Evertors (4/5/2)

Connecticut

The Flail Foot

- Gait Characteristics
 - Increased and delayed peak dorsiflexion in terminal stance
 - Increased equinus in swing and at initial contact
 - Reduced peak plantar flexor moment and power generation in terminal stance

The Flail Foot

- Treatment Options
 - Brace
 - Surgery to maintain a "braceable position"

Flail Foot – TX

- Functional outcome of this ankle weakness includes instability in standing and during gait due to limited ability to bear weight over the forefoot
- · Reduced base of support
- Excessive equinus in swing and associated clearance difficulties lead to tripping and falling

Ankle-foot Orthoses (AFO's)

- limit excessive dorsiflexion and allow weight bearing on the distal portion of the foot
- will provide more stability for the patient in standing and during gait
- limit excessive equinus and associated clearance problems in swing

Barefoot vs. Hinged AFO

- Reduced excessive plantar flexion in swing
- No change in peak ankle dorsiflexion timing in terminal stance
- No improvement in peak ankle plantar flexor moment in terminal stance

Barefoot vs. Solid AFO

- Reduced excessive plantar flexion in swing
- Reduced excessive dorsiflexion in terminal stance
- Associated reduced excessive knee flexion in stance

Flail Foot TX: Surgery may be needed if foot "unbraceable"

Flail Foot TX: Surgery

- Posteromedial release
 - Achilles Z lengthen
 - Posterior capsulotomies
 - Abductor Hallucis
 - FHL/FDL
 - TN capsulotomy
 - Plantar fascia release
- Closing cuboid osteotomy
 - (cuneiform too osteopenic to open)

The Cavovarus Foot

 Stance phase stability issues

The Cavovarus Foot

- Clinical Examination Findings
 - Limited passive dorsiflexion range of motion
 - Knee flexed (2 ± 6 degrees)
 - Knee extended (9 \pm 7 degrees)
 - Full plantar flexion
 - Variable forefoot inversion/eversion
 - Strength: (median/maximum/minumum)
 - Plantar Flexors (4/5/2)
 - Dorsiflexors (5/5/4)
 - Forefoot Invertors (5/5/3)
 - Forefoot Evertors (5/5/3)

The Cavovarus Foot

- Gait Characteristics
 - Delayed peak dorsiflexion in terminal stance
 - Reduced peak plantar flexor moment and power in terminal stance

The Cavovarus Foot

- Treatment Options
- Consider presence of foot pain, shoe wear issues, stability in stance

Cavovarus Foot Treatment Considerations

- Cavus: Imbalance between peroneus longus (plantarflexes 1st ray) & anterior tibialis (dorsiflexes 1st ray)
- Varus: Imbalance between posterior tibialis (inverts hindfoot) & peroneus brevis (everts hindfoot)

Cavovarus Treatment: Non Op

- Plantar fascia stretch
- Strengthening exercises: dorsiflexors & evertors
- Bracing

Cavovarus Treatment: Surgical

- Soft tissue release if flexible
 Plantar fascia
- Osteotomy if fixed

- Tendon transfers to balance/delay recurrence
 - Peroneus longus to brevis
 - EHL to neck of 1st MT
 - (Anterior tibialis laterally)
- Arthrodesis if severe/recurred

Cavus Component - TX

- Treatment of the cavus deformity may be a consideration depending on atypical foot pressures and associated pain
- The implications of plantar fascia release on "available" plantar flexor length in combination with weakness need to be considered to prevent excessive peak dorsiflexion post treatment

Barefoot vs. Solid AFO

- Reduced excessive peak dorsiflexion in terminal stance
- Reduced plantar flexion range of motion
- Maintained peak plantar flexor moment in terminal stance
- Reduced peak power generation in terminal stance

Radiographic Findings

Toe Walker

- Stance phase stability issues
- Inappropriate prepositioning at initial contact
- Swing phase clearance issues

Toe Walker

- Clinical Examination Findings
 - Limited passive dorsiflexion range of motion
 - Knee flexed (-2 \pm 9 degrees)
 - Knee extended (-2 ± 13 degrees)
 - Full plantar flexion and forefoot inversion/eversion
 - Strength: (median/maximum/minumum)
 - plantar flexors (5/5/2)
 - Dorsiflexors (5/5/2)
 - Forefoot Invertors (5/5/3)
 - Forefoot Evertors (5/5/4)

Toe Walker

- Gait Characteristics
 - Increased equinus in stance and wing
 - Absence of dorsiflexior moment in loading
 - Reduced power generation in terminal stance

Toe Walker - TX

• implications of "toe walking" include instability in stance and standing due to the limited base of support under the foot

Toe Walker

- Treatment Options
 - Lengthening of plantar flexors or correction of cavus never both
 - Cavus correction is adequate
 - Leave alone increased body weight and weakness
- · Clinicians must consider implications of
 - reducing plantar flexor contracture by lengthening a weak muscle which is likely to weaken more over time
 - reducing cavus deformity with implications on "available" plantar flexor length

Surgical Question?

- What combination of options will be most appropriate to treat toe walking without creating excessive dorsiflexion?
 - Consider relationship between cavus and AVAILABLE plantar flexor length
 - Implications of plantar flexor weakness
 - Treatment effects go beyond target joint
- Can we predict treatment outcomes?

Evidence for Tx Recommendations

• Objective follow-up of surgical outcomes is needed to understand ultimately the indications and counter-indications for plantar flexor lengthenings

Gait Findings - Pre vs. Post

- Increased dorsiflexion in stance and swing
- Addition of dorsiflexor moment in loading response
- · Maintained power generation terminal stance

Treatment - Beware

- Lengthening the plantar fascia
 - results in "lengthening" of the plantar flexors
- Dorsiflexing closing wedge osteotomy (first ray)
 - results in "lengthening" of the plantar flexors
 - IF YOU DORSIFLEX THE FIRST RAY W/O PLANTAR FASCIA, THE PLANTARFLEXORS MAY ACTUALLY TIGHTEN UP

HOW DOES THIS ALL INTERACT?

Treatment Summary

- Current Options:
 - Therapies
 - Bracing
 - Surgical Intervention
- Determine prerequisites of typical gait that are compromised
- Describe clinical and radiographic findings and associated gait issues
- Define treatment hypothesis

Principles

- Provide support when strength/stability issues are present
- Correct anatomical deformity to improve biomechanical function
- Consider treatment when pre-requisites of gait are compromised
- Progressive pathology progression can be documented objectively using motion analysis techniques

