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ABSTRACT 
 
The interaction between a surface foundation and the supporting inelastic soil under the action of monotonic, cyclic, and seismic 
loading is studied numerically. The foundation supports an elastic tall system, the horizontal loading of which induces primarily an 
overturning moment and secondarily a shear force. Starting from linear elastic behavior, the footing eventually uplifts from the soil, 
provoking strong inelastic soil response culminating in development of a bearing–capacity failure mechanism and progressive 
settlement. The substantial lateral displacement of the pier mass induces an additional aggravating moment due to P–δ effect. The 
paper outlines the moment–rotation–settlement relations under monotonic loading at the mass center, under cyclic loading, and under 
seismic excitation at the base.  
 
THE PROBLEM AND THE KEY INVESTIGATED  
PARAMETERS
 
With the advent of performance–based design in structural 
earthquake engineering, the need has arisen for extending it to 
earthquake geotechnics. This calls for determining the 
complete inelastic response of the foundation-soil system (in 
the form of force–displacement or moment-rotation relation) 
to progressively increasing loads until collapse.  
 
To this end, the paper investigates the response of a 2m–wide 
foundation supporting a 5m–high mass (Fig. 1) which 
undergoes, first, monotonic and cyclic lateral displacements, 
and is then subjected to seismic base excitation.  Under 
progressively increasing loads the foundation uplifts from the 
ground (geometric nonlinearity) and failure mechanisms 
develop in the soil (material inelasticity). The interplay 
between these two mechanisms, affected by the unavoidable 
P–Δ effects, is governed primarily by the following factors: 
The vertical foundation load N in comparison with the 
ultimate vertical capacity Nu, expressed through the ratio χ = 
Ν/Νu ; 
• The distance, R, of the mass centre of gravity from the 

base edge (Fig.1) ; 
• The slenderness  ratio h/b ; 
• The intensity, frequency content and sequence of pulses 

of the seismic excitation ; 
• The vibrational characteristics (natural period) of the 

structure. 

 
Fig. 1.  Problem geometry 

 
 
METHOD OF ANALYSIS 
 
A series of two dimensional finite element analyses are 
performed using Abaqus for a single–degree–of–freedom 
oscillator on a foundation allowing uplift. The soil is saturated 
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Fig. 2.  Dependence of the moment capacity of the foundation on the static safety factor FSv (M – χ diagram). For the three cases 

(1,2,3), corresponding to values of χ 0.2, 0.5, 0.8, we display three snapshots of the deformed system along with the contours of plastic 
deformation. Specifically a1,a2,a3 present the initial (static) state; b1,b2,b3 present the states at the peak moment, Mult = 238, 354, 

232 kNm, respectively; c1, c2, c3 show the states of imminent collapse. Also shown are the M – θ pushover curves for the three χ 
values. 
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stiff clay responding in undrained fashion with Su = 150 kPa. 
The bedrock is placed at a depth of 5 m below the foundation 
level. The mass element, which allows the introduction of 
lumped mass at a point, is located 5 m above the foundation 
level and is connected to the footing with linear elastic beam 
elements. The modulus of elasticity of the beam is selected 
such as to achieve either a rigid structure, or a structure, with a 
given fixed-base natural period. The footing is also modeled 
with linear elastic beam elements of rectangular section, with 
modulus of elasticity large enough to achieve structural 
rigidity. 
 
The soil is modeled with continuum solid plane–strain            
4-noded bilinear elements. An advanced contact algorithm has 
been adopted to incorporate potential uplifting of the 
foundation. Gap elements allow for the nodes to be in contact 
(gap closed) or separated (gap open). To achieve a reasonable 
stable time increment without jeopardizing the accuracy of the 
analysis, we modified the default hard contact pressure-
overclosure relationship with a suitable exponential 
relationship. Finally, we used a significantly large coefficient 
of friction at the soil–footing interface to prevent sliding of the 
footing. 
 
The elastoplastic soil behavior is described with Von Mises 
yield surfaces having nonlinear kinematic hardening and 
associative  plastic flow rules. The model of Abaqus is 
calibrated using the methodology proposed by Gerolymos et 
al. (2005). It is worth noting that the soil plasticity begins 
at1/10 of its maximum yield stress, while P-Δ effects are 
computed during all steps of the analysis. 
 
RESULTS : STATIC PUSHOVER ANALYSIS 
 
For the static pushover analysis a horizontal displacement is 
applied on the mass center of the superstructure. The moment–
rotation diagrams for the various χ factors (χ = the inverse of 
the static vertical safety factor FSv) are portrayed in Fig. 2, 
along with the M–N interaction diagram (To be precise M – 
N/Nu.). As expected from the literature, the maximum value 
of moment capacity is reached for a static safety factor of 
about FSv ≈ 2 ( i.e., χ ≈ 0.5 ) [Αllotey & Naggar, 2003 ; 
Apostolou & Gazetas, 2005 ; Chatzigogos et al 2009, Gajan & 
Kutter, 2008]. The value of the critical rotation ,θc ,  is always 
lower than the one for a 1-dof rigid oscillator rocking on a 
rigid base :  

h
b

c arctan=θ  

 This is due to soil compliance : as the safety factor diminishes 
(χ increases) the critical rotation before failure becomes 
smaller and smaller.  
 
Examining the settlement–rotation curves (Fig.3), we may also 
observe that indeed the case of FSv = 2 ( χ = 0.5 ) is in the 
middle between two different modes of response. Structures 
with χ < 0.5 undergo predominantly uplifting, while with  χ > 
0.5 they suffer mostly plastic deformation.  

 

 
Fig. 3.  Settlement-rotation envelopes for the three cases 

 
 
RESULTS : CYCLIC PUSHOVER ANALYSIS 
 
Slow cyclic results are shown for systems with low,  high and 
medium factors of safety ( χ = 0.8, χ = 0.2, and 0.5) 
respectively). As it can be seen in the moment-rotation 
diagrams, the envelopes of the cyclic analyses for safety 
factors greater than 2 ( χ  < 0.5) are well enveloped by the 
monotonic pushover curves [Fig.4(a1)]. This can be explained 
by the fact that the plastic deformations, which take place 
under each corner of the foundation during the deformation 
controlled cyclic loading, are too small to affect to any 
appreciable degree the response of the system when the 
deformation alters direction (Fig.5). The key factor of this 
response is the low ground compliance due to the lightly 
loaded foundation. Effectively, the soil is nearly 
underformable at such small χ  values. 
 
However, the response of the heavily loaded structures            
( χ ≥ 0.5 ) is remarkably different. The M – θ loops are no 
longer enveloped by the monotonic pushover curves. It seems 
that the moment capacity of the system depends on the 
rotation of the previous step, and as the rotation increases and 
the safety factor diminishes the difference between the two 
curves ( cyclic and monotonic pushover) increases [Fig.3(b1)].  
This striking behavior can be attributed once again to soil 
compliance. As χ increases, the footing remains practically in 
full-contact state even for great rotation angles. The 
displacement loading at the mass center [Fig.6(a)] transmits a 
moment on the footing, let us say in clockwise direction, 
which mobilizes the bearing capacity type failure mechanisms. 
The mechanisms involve : 
(a) a shallow rotational failure under the pushed–in right 

edge of the footing; the sliding surface passing through 
the zone of excessive shearing deformation [dark line in 
Fig.6(b)] extends a small distance beyond the footing; 
and 

(b) a deeper rotational movement under the upward moving 
left side of the foundation, without a well–defined failure 
surface extending beyond the edge of the footing, and 
producing a significant bulge of the soil–footing 
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interface [Fig.6(b)]. 

 
Fig. 4.  Moment – Rotation relations : static (pushover), slow cyclic, and seismic (a) for χ = 0.2, (b) for χ = 0.8. 

 
Fig. 5.  Schematic snapshots of the displacement / rotation of the system and the corresponding bearing capacity failure mechanisms. 

Lightly loaded foundation (χ < 0.5). 
 

 
Fig. 6.  Schematic snapshots of the displacement / rotation of the system and the corresponding bearing capacity failure mechanisms. 



 

Paper No.               5 

Heavily loaded foundation (χ ≥ 0.5).
 
As a result, when the loading direction is reversed, the 
foundation has to surmount the “hill” created in the preceding 
cycle. Moreover, the imposed external moment is no longer 
compromised by the P–Δ effects, but rather increased by the 
moment of the weight of the structure, which is still acting in 
the clockwise direction [Fig.6(c)]. Two new failure 
mechanisms in the soil on the opposite side start developing 
[Fig.6(d)]. After exceeding the point of zero rotation, the 
weight starts also acting in the counter–clockwise direction, 
thus again aggravating the tendency for overturning [Fig.6(e)]. 
 
 
RESULTS : SEISMIC ANALYSIS 
 

The Takatori accelerogram (Kobe, 1995) was used as rock 
excitation. Since the fundamental (elastic) period of the soil 
stratum (Vs = 400 m/s) is only 0.05 sec no soil amplification 

takes place with this base motion (Tp = 1 ÷ 1.5 sec). 

 
 

Fig. 7.  Definition of displacement and rotation variables of 
the system. 

 
The results for the moment–rotation and relations settlement–
rotation are shown in Figures 3 [ (a2) and (b2)] and 8. The 
following observations are noteworthy : 
(a) The moment–rotation diagrams confirm the behavior 

already noted with cyclic loading. For  χ < 0.5, the M–θ 
relation is confined within the envelope of the static 
pushover analysis. On the other hand, for χ ≥ 0.5, the 
loops that are produced in the seismic analysis exceed 
substantially the static pushover curves. Only the first 
half cycle is indeed enveloped by the monotonic curve. 
Thereafter, as the soil exhibits large deformations due 
to its high compliance, the moment bearing capacity 
failure mechanisms become apparent. The development 
of these mechanisms affects the behavior of the system 
in the opposite direction when the acceleration changes 

sign. The system exhibits an a-symmetric behavior. If, 
for example, the first large deformation takes place to 
the right edge of the footing then the system displays 
“overstrength” when the acceleration changes to the 
left; yet it is more vulnerable to the next pulse that will 
push it again to the right. In conclusion for the majority 
of structures that have safety factors greater than 2 the 
monotonic pushover curves are representative of the 
moment capacity of the system even under dynamic 
loads. For the structures that have safety factors less 
than 2, the maximum moment cannot be determined a 
priori as it is a function of the preceding rotation and of 
the magnitude of the pulse. The cyclic pushover curves 
are representative of the behavior of the system only 
approximately. 

 
Fig. 8.  Settlement – rotation diagrams for : (a) χ = 0.2 (stable 

system), (b) χ = 0.8 (system overturns).  

 
(b) Regarding the rotation of the footing and consequently 

the horizontal displacement of the mass center, we 
generally conclude that the higher the safety factor the 
larger the rotation (Fig.8). However, it is important to 
note that the deformation of the lightly loaded systems 
is nearly elastic while the deformation of the heavily 
loaded systems is strongly inelastic. This leads to a 
progressive accumulation of plastic deformations of the 
heavily loaded systems, resulting to higher residual 
rotations. 

 
(c) As expected, the heavily loaded structures exhibit 
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larger settlement due to accumulation during shaking. 
 
(d) The parameter λ, defined the effective contact area 

ratio : 

B
βλ =  

which represents the part β of the oscillating footing B 
still in contact with the deformed soil, reaches its 
lowest value for the higher safety factor. Moreover, 
when the oscillation has ceased the part of the footing 
still in contact with the deformed soil is greater for the 
low safety factor! Additionally, for the same safety 
factor, as the intensity of motion increases the residual 
λ diminishes. It is noticeable that the system can avoid 
overturning, while reaching values of λ as low as 0.1 
due to the dynamic nature of the loading.  
 

 
 

Fig. 9.  Times histories of parameter λ for : (a) χ = 0.2 (stable 
system), (b) χ = 0.5 (stable system), (c) χ = 0.8 (system 

overturns). 
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