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Abstract. With software gaining importance as the main contributor both to 
functionality and differentiation in the automotive market place and its rele-
vance to quality, safety and customer satisfaction, its place in the development 
process and the methods available to ensure short development cycles and a 
simultaneously high level of quality are coming under strain.  Both model-
based and abstracted code – not specific to the final production target, are in use 
in the earlier phases but these often do not provide code which is testable in a 
meaningful way for the final product.  In this paper we will explore methodolo-
gies which allow target independent code to be produced and managed as a 
product within the development process – establishing clear linkage between 
development code and the final product and accountability and traceability 
throughout the process.  We will leverage the increasing implementation of Au-
tosar and proliferation of model based sw development techniques in the pro-
cess. 

1   Introduction 

The past ten years has seen an exponential growth in the amount of software going 
into vehicles both to perform and improve core functionality, such as fueling, com-
bustion control, valve actuation and breaking as well as to extend the capability of the 
vehicle with advanced driver assistance, connections to roadside, service bay and 
ubiquitous wireless infrastructure bringing the Internet in ever-closer connection with 
the Automotive control system.  At the same time  the era of “Mass Customisation” 
has bred a generation of consumers who increasingly look, not only to purchase the 
latest and best technologies but who also expect to be able to configure products in 
the way that suits them and their life-style.  This has driven an exponential growth in 
product variants and as a consequence software variants that require managing 
throughout the product life-cycle.    One would think that this would be sufficient to 
present challenges to an industry which has adopted electronic control as recently as 
the 1980’s but on top of these challenges customers expect ever higher levels of safe-
ty and concern for the environment.  This has also lead governments to increasingly 



legislate in the areas of safety, emissions and sustainability in developed markets 
adding to the cost-burden on Western OEMS to get their products into markets.  
Whilst there is no doubt that high and ultra-high end technology is coming to the 
market in the shape of Teslas, Bugattis, and other high-end products, there is also a 
diametrically opposed trend occurring in parallel for simplicity and functionality both 
with the requirement to address the needs of the first-time vehicle purchaser in India 
or China and with a new generation of consumers in the West where the vehicle no-
longer represents a status symbol but rather is regarded as a method for getting from 
A-B with as little fuss as possible, preferably with access to Facebook and Twitter. 
 
To address all of these demands simultaneously is the reason why the Automotive 
industry must embrace a paradigm shift in its thinking, costing and planning for prod-
uct development.   The differentiators in the market are increasingly software based as 
are the potential risks of damage to brand and future viability for firms if Software is 
not managed with the same regard for safety and quality as any other component in 
the vehicle.  In addition the OEM is increasingly playing the roll of systems integrator 
not only on the vehicle level but also at the level of individual ECU.  Integrating 
software developed, in house, by a tier 1 and by 3rd party specialized suppliers in one 
mechatronic system.  This fact also drives a demand for a consistency of architecture, 
interfaces and lifecycle management to ensure quality and traceability in the entire 
process 

2   From V-Cycle to Model Based to Agile. 

 
 

Fig. 1.  From the V-Cycle to “Agile” 

 



Considering both the driver for time to market and the requirement to manage, in-
tegrate and test software components to the required quality levels has necessitated 
both Tier 1s and OEMs to restructure their development processes in significant ways.  
From a high level requirement a feature or function within the system is typically 
modelled.  Since there is no universal modelling tool – this typically involves a range 
of modelling tools in complete system, ranging from specialized environments such 
as Ricardo WAVE or GT-Power from Gama Technologies, to Simulink to C-code.  
There then follows an iterative development process around the function where the 
model function is refined until such time as the functional developer is satisfied that 
the desired functionality is reliably performed.   At this stage it is not a given that the 
Functional model is perfect – rather that it appears perfect in the environment under 
which it is tested.   Therefore it is essential to manage within this phase; model vari-
ants, configurations, tool versions and data-sets so that the finalized functional model 
can be reproducibly brought back into a further iteration step if an issue is found dur-
ing the further development and validation stages. 
 
Here we are already at a level where most OEMs and Tier 1s widely collaborate in the 
software development process.  Namely sharing IP and functional specification on a 
model level.  A desired function is developed by an OEM.  It is tested in a Model-in- 
the-loop-environment with the associated plant, behavioural and environmental mod-
els.  The Functional Model is then provided to the Tier 1 for further integration testing 
and is either converted into a further, more suitable form for model-based code gener-
ation directly or hand-coded in C before integration within the software build process 
for a specific ECU and target processor. 
 
The challenges here for process integrity and traceability are significant. 
  
Firstly the range and variety of models, tools, versions, configurations and associated 
data-sets is both broad and numerous. 
 
Secondly the tested function model – which acts as a specification for the Tier 1 omits 
information and configuration steps with the rest of the software system and potential-
ly also the mechatronic system that may have an effect on the specified feature “in-
situ” within the overall system.  Of these, OS behavior, interaction with other SW 
components within the system, for example diagnostic modules, execution order and 
quantisation effects are frequently areas where discrepancies between the “perfect” 
behaviour in the function is followed by implementations of the series-intent code 
which end up behaving differently in the target. 
 
This fact has driven both the drive for common ECU SW architectures such as Genivi 
and more importantly for control systems, AUTOSAR and a range of tooling that 
enables pre-Autosar architecture to be tested in a common environment that can be 
shared between both OEM and Tier 1 that takes account as many of the areas for  
potential divergence in functional behavior between the target and the pure model-
level environment. 



3   The Virtual and Rapid Prototyping Environments 

 

 
Fig. 2.  A Virtual and Rapid Prototyping Environment  

The requirements that therefore arise out of 1) The desire to develop in an agile way 
to improve quality and time to market and 2) The requirement to share and validate 
implementations of the functional specification in a meaningful way, lead to the re-
quirement and productive use of Virtual and Rapid Prototyping environments at both 
Tier 1 & OEM.    For these a number of essential features apply. 

 
• Functional, behavioural, plant and environmental models need to be integrat-

ed in a common environment. 
 

• This environment needs to provide features which allow the testing of 
changes to configurations in the OS configuration and other sw modules 
within the system in a manner which is as close as possible to the behav-
ior which will be seen in the final target. 

 
• A seamless transition between the prototype code and a real control system is 

also highly desirable to enable a functional test within a Real-Time active 
control system and potentially a base target ECU where the ECU code it-
self is not complete or not yet modified for the intended use case.   In this 
case the environment should also support compiling to code for compu-
ting modules which process the function in parallel to the existing code 



running on the ECU by means of software hooks and bypasses which al-
low a first – low effort integration of the new sw function into the control 
systems without going through a complete ECU software build.   

 

Virtual Prototyping Rapid Prototyping 

Non real-time: Runs as fast as 
possible or with time scale. No 
connection to the real world. No I/O 
No communication buses 

Meets hard real-time conditions 

 

Stimuli or plant model required Interacts with the real world. 
Comprehensive support for 
peripherals, analog and digital I/O 
& communication buses 

Used for early validation and pre-
calibration on the Windows® PC on 
the developer’s desk 

Validation and calibration  
on the test bench or on the road 

Fig. 3  Virtual vs Rapid Prototyping  

 
 



4.  Typical Process Steps in SW Sharing Projects between a Tier 1 
and an OEM 

Fig. 4  Typical Process Steps in a Project employing software sharing between an 
OEM & Tier 1 

  
 

Step 1 in the process usually involves the Tier 1.  In most cases the Tier 1 will have 
existing tooling and methodologies for allowing their Platform software and Applica-
tion software to run on a PC.   In this particular case the Tier 1 uses the same OSEK 
OS or Autosar OS and RTE and compiles it for the PC target.  If the aim is to test 
primarily on a functional level then software modules or groups of software modules 
(Functional Components or “FC”s) are compiled as .dlls capable of being integrated 
within the virtual prototyping environment via an Autosar RTE or an “RTE like” run-
time environment that also supports legacy APIs and API calls. This is usually the 
role of the Tier 1 or the party which has the most responsibility in the project for  SW 
development and integration.  Again the ECU artifacts and the PC runnables need to 
be mapped and managed to ensure, traceability, repeatability and accountability. Fre-
quently software components need to be stubbed to provide and interface to models or 
other stimuli instead of an interface to genuine HW. 

 
Step 2. Is to prepare the plant.   This involves deciding and selecting the required 

models and stimuli required within the environment to be able to test the SuT with the 
required test coverage and depth.   The required data-sets, parameterization, models 
and other stimuli also need to be managed with the same regard as the software com-
ponents mentioned above.  This task is usually carried out by the party responsible for 



the validation environment, frequently a 3rd party with a close working relationship 
with both Tier 1 and OEM.  However both Tier 1 and OEM can frequently assume 
this role entirely or partly according to where the domain knowledge for the systems 
being modelled in the environment lie. 

 
Step 3. Is to integrate the environment.  This entails combining the simulation and 

the system under test within the test environment – mapping models and other stimuli 
to software component interfaces and integrating other tooling required for the test 
procedure – for example, calibration tooling, version and configuration management 
tooling, bus-analysis tooling and test automation tooling.  This usually lies within the 
competency of the party responsible for the environment, in most cases a 3rd party. 

 
Step 4 Is to define and provide the required test strategies and methodologies.  

These are usually provided by a 3rd party with input as required from both tier 1 and 
OEM 

 
Step 5.  The operational use of the SIL system is usually and OEM activity –

nevertheless as with other test activities it can frequently be completely outsourced to 
a 3rd Party with the OEM or Tier 1 customer providing simply a list of requirements 
to be tested and the Pass/fail criteria.  The system itself may also be employed at dif-
ferent departments within one OEM with various aims and work-splits.  For example 
for pre-calibration or use within the OEMs own functional development process 
where the SIL environment provides a high-fidelity replication of the system as it will 
operate in the final series target. 

 

5   Bringing Autosar and Agile Together 

So far we have only considered the possibilities widely in use today based on the 
predominant sw architectures in series production at OEMs.   Today and especially in 
the realms of Powertrain, ADAS, Chassis and Drivetrain are predominantly based on 
a software architecture proprietary to the Tier 1 or to the OEM.  Whilst many Tier 1s 
offer an “Autosar Sandbox” for their OEM customers  which allow easy integration 
with their legacy software – the vast majority of the code in these areas is legacy.   
However the move to Autosar is happening and happening rapidly even in these areas 
and at the very minimum a very good interface is required between the legacy archi-
tecture and Autosar in order to allow both migration of functions between architec-
tures and reliable operation in the series target where a mixed architecture is em-
ployed.  As far as the SIL environment is concerned this step towards Autosar offers a 
range of new possibilities that were only achievable before with a level of effort pro-
hibitory to implementation in the past. 

 
  



 

Fig. 5  Agile in Automotive is enabled by Autosar 

The first major benefit brought by the shift to Autosar is that most Automotive Silicon 
today is delivered with a HW abstraction layer that supports the Autosar standard (ie 
an Autosar MCAL).  As this has been so for a number of years a large amount of the 
code, Autosar or not, is already using a target independent API for communication 
with the microprocessor.  This has significantly reduced the amount of stubbing re-
quired to enable code to be portable to the PC and also increased the portability of 
projects between processor platforms. 

 
The RTE is non-target specific anyway, so any software in the system using the 

RTE for communication can be compiled 1 to 1 either for a real target or for the PC. 
Assuming there is a port of the OS for the PC available which allows for the same 
degree of configuration as on the target and an API or other communication mecha-
nism  by which other (non Autosar) Software components and elements within the 
environment (models, stimuli, test tools) then it is already significantly less, if not low 
effort to provide a build chain which is capable of taking the ECU artifacts intended 
for the series target and compiling these 1 to 1 for a PC based virtual validations plat-
form.  This, to the extent that it is not only possible off-the-shelf with full Autosar 
architectures but also extremely cost effective even with significant legacy content 
due to the fact that the system can be run and tested and developed against at very 
high fidelity, in Real Time or faster than real time.   This has the corollary that many 
of the test activties that previously required real ECU HW, real engines and real vehi-
cles to carry out can now be contemplated on the desktop.  Thus offering a truly huge 
potential to cut time, effort and corresponding costs from the entire development 
process.   



 

 
 

Fig. 6  The same SW can be compiled for any target at any stage of development 

 
Aside from the obvious benefits of being able to front-load the development 

process, a number of other advantages emerge, some esoteric and some banal but all 
bringing a degree of much needed rationalisation to the exponentially growing 
demands within the industry.  On the banal side – testing and development resources 
are spread throughout the world – fortunately or unfortunately there is no truly global 
market established so customs officials, especially in some of the lower-wage 
economies where development and testing is typically carried out,  still have an 
interest to arrest, inspect and delay development and prototype ECUs and 
components.   On average delivery time between a development centre is Germany 
and India ranges from 1-3 months.  On the more esoteric side, once the control system 
is available on the PC steps to integrate this with Android, Genivi or other OS in a 
multicore envirnoment to address connected vehicle development becomes much 
more simple. Most crucially writing, testing and proving that code is safe has become 
key, since the systems we drive our children around in are controlled by the software 
that we produce. 

 
If  we consider some of  the issues arising our of Philip Koopman  and Michael 

Barrs analysis of Toyota’s software presented in the case “Bookout & Schwarz v 
Toyota”, most of the issues raised concern fundamental flaws in design and 
architecture that can only be address at the deeply embedded level.  Therefore there is 
an increasing demand that the virtual validation methods we use are as close to reality 
as possible.  In todays model-based world, which is largely regarded as state of the art 



there is increasing testing on that level but without the ability to dive down into the 
behaviour at the lower levels and here there are plenty of banana-skins lurking. 

 

 
 

Fig. 7  APIs offering access to all levels of the sw architecture from external test 
tooling and simulation enviroments 

 

6   Conclusion 

The number, complexity and scope of embedded control systems in the vehicle is 
increasing exponentially.  These systems now perform the key functions of the vehi-
cle so software has to perform on all levels – primarily of course with regard to safety, 
but also with respect to fulfilling customer requirements with regard to features, dif-
ferentiation and reliability.  To put this in context a 737 Airliner contains 6,5 Million 
lines of code.   The latest S-class from Daimler contains over 20 million. In terms of 
driving or flying hours the average platform racks up 1000x more flying hours than 
the entire fleet of Boeing 737s has flown since 1968.  Whilst it must be conceded that 
not all of these systems are safety critical – the importance of introducing rapid itera-
tion cycles and traceability throughout the development process cannot be underesti-
mated.   This can only be achieved with a paradigm shift in the industry with regard to 
the way software is regarded, developed and managed – with the same importance or 
more than any other part of the vehicle.  If the automotive industry does not step up to 
the challenge then increasingly it is looking as if others will do so in its stead. 
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