

PV Inverter Accelerated Testing for High Humidity Environments

T Paul Parker and Sander Caldwell | February 25, 2015

PV Inverter Reliability Workshop

Introduction

- What standards are available for accelerated reliability testing of PV inverters?
- Are PV module humidity test standards applicable to inverters?
- Should we borrow from humidity test standards used in other industries?
- What failure mechanisms are we targeting?
- How do we model acceleration factors?
- How does the product react to the test environment?
- What next?

Industry standards for PV inverters

- IEC 62093 (draft)
 - -Damp Heat
 - Powered, monitored, light load to reduce internal heating
 - 85C / 85% RH, 1000 hours (42 days)
 - -Humidity Freeze
 - Powered, monitored, light load
 - 85C / 85% RH, 10 hours; followed by -40C, 2 hours
 - 20 cycles (10 days)

• ANSI TUV-R 71830 (DOE PREDICTS draft)

- -Microinverters / DC-DC converters
- Similar to IEC 62093 DH / HF stress levels, duration TBD

Other standards

- PV Module Standards
 - –Damp Heat (IEC 61215)
 - 85C / 85% RH, 1000 hours
 - -Humidity Freeze (UL 1703 / IEC 61215)
 - 85C/85%, 20 hrs ; -40C, 4 hrs; 10 cycles
- Telecom Power Supplies (IPC 9592)
 - -Temperature, Humidity and Bias (THB) *
 - 85C / 85% RH, 1000 hours
- * Similar to IEC 60068-2-67

Reference: UL 1703, Figure 36.1

Other IEC standards

- General Industry
 - -Damp Heat (IEC 60068-2-78)
 - 40C / 93%; 1 to 56 days
 - -Damp Heat, cyclic (IEC 60068-2-30)
 - Variant 1:
 - -40C / 93%; 12 hr to 25C/97% 12 hr (24 hour cycle);
 - -2 to 56 cycles (days)
 - Variant 2:

SUNPOWER[®]

- -55C/93%; 12 hr to 25C /97% 12 hr;
- -1 to 6 cycles (days)

Other IEC standards

- General Industry
 - -Damp Heat, cyclic (IEC 60068-2-38)
 - Sub-cycle 1:
 - $-\,65C\,/\,93\%$ to 25C / 93% 8 hour cycle
 - -2 cycles
 - -25C/93%-8 hours
 - Sub-cycle 2
 - -65C/93% to 25C/93% 8 hour cycle
 - -2 cycles
 - 25C / 93% to -10C / uncontrolled RH 8 hour cycle
 - Each sub-cycle repeated 5 times
 - Test duration 10 days

Moisture Assisted Failure Mechanisms

- Electrochemical Migration (ECM) Dendrite*
 - Metallic ions migrate from anode to cathode, forming treelike structure growing back toward anode
 - Dissolution of Sn, Cu, Ag in the presence of moisture / contaminates
 - Requires Power (Voltage), typically > 1V/mi
 - Typically occurs at PCB surface between 2 conductors joined by an electrolyte medium such as adsorbed moisture
 - Can be highly intermittent, difficult to diagnose, especially in potted assemblies
 - Dependent on available power, evidence can be destroyed
 - Mitigated by cleaning, conformal coating or potting
 - Challenge to model due to hard to predict variables:
 - Amount of moisture adhered to surface of PCB

SUNPOWER[®]

- Nature and chemical activity of contaminates, especially flux $$*{\rm Re\,ferences}\,\,1{\text -}3$$

Failure Mechanisms (cont.)

- ECM –Conductive Anodic Filament (CAF) *
 - PCB inner layer only
 - Requires path between points of different potential
 - Path typically provided by glass fiber to resin separation
 - Higher risk in Pb-Free assemblies
 - Similar to dendrite, Cu++ dissolution at anode, migrates along path toward cathode.
 - Can be highly intermittent, often leads to PCB thermal damage
 - Mitigated by proper selection of laminate material, conservative internal spacings
 - Challenge to model due to hard to predict variables:
 - Moisture content of PCB before and after reflow
 - Quality of laminate
 - Process variant: PCB hole drill quality, PCBA reflow profile
 * References 4-6

Failure Mechanisms (cont.)

- Film Capacitor corrosion *
 - Corrosion reaction attacking thin metal electrode
 - ZnAl electrodes react with oxygen and water to form non conducting area, reducing capacitance

 $2 \operatorname{Zn}^{\circ} + \operatorname{O}_2 + 2 \operatorname{H}_2 \operatorname{O} \rightleftharpoons 2 \operatorname{Zn}(\operatorname{OH})_2$

- Highly accelerated by temperature / RH / voltage
- Mitigated by with appropriate selection of capacitor case material / pottant
- Empirical models available from capacitor manufacturers

* References 7-8

Before

After

Modeling – AF: Accelerated Test vs Field Use Conditions

- Identify a region you for which you wish to predict AF
 - Miami Average use environment: 24C/73% RH (**Reference 9**)
- Identify accelerated test condition:
 - 85C / 85% RH
 - 65C / 85% RH
- Select model: ex: Peck Model (Reference 10)
 - $-A_{\rm T}({\rm E}_{\rm A}=0.7)=106$ $-A_{\rm H}=(85/24)^{2.66}=1.5$
 - $-A_{T}(E_{A}=0.9)=400$ $-AF=A_{TH}=158-600x$
- For 25 year life, 50% on time (109.5 khr)
 - Reg'd. test time for 85C/85% = 183 691 hours
 - Reg'd test time for 65C/85% = 1026 2647 hours

$A_T = Exp\left\{\frac{E_a}{K_{\rm B}}\left[\frac{1}{T_{Use}} - \frac{1}{T_{Stress}}\right]\right\}$
$A_H = \left(\frac{R_{Stress}}{R_{Use}}\right)^m$
$A_{TH} = A_T A_H$
$Ln(t_f) = C + \frac{E_a}{K_B T} - m Ln(R)$
Notation
$A_{\rm H}$ = Humidity acceleration Factor
A_{T} = Temperature acceleration factor
A_{TH} = Temperature-Humidity acceleration factor
$RH_{stress} = Relative humidity of test$
$RH_{use} = Nominal use relative humidity$
T_{stress} = Test temperature
$T_{use} = Nominal use temperature$
m = Humidity constant
$E_a = Activation energy$
t_{f} = Time to Fail
C = Constant

Peck Model

Design Response to T/RH Conditions

- Unsealed, unpotted assemblies track environment closely
 - For cyclic humidity testing, condensation during temperature ramp up
 - Potential for significant Insulation Resistance (IR) drop
- Sealed, unpotted assemblies vulnerable to "pumping" or "water diode" phenomena
- Potted and conformally coated assemblies may be at risk
 - poor adhesion
 - High moisture content
 - Fast vapor diffusion rate

SUNPOWER

Real Time Monitoring of Leakage Current / Insulation Resistance

Next Steps

 Survey PV inverter manufacturers for existing humidity test best practices

- Differentiate requirements of Test standard
 - Qualification Test Pass requirement, no failures allowed
 - Accelerated Life Test-Test to fail, model based on failure mechanism

- Support standards efforts
 - IEC 62093 needs to be resurrected
 - ANSI TUV-R 71830 (PREDICTS) See Jack Flicker

References

- ECM: Dendrites
 - (1) C. Hillman, "Contamination and Cleanliness Developing Practical Responses to a Challenging Problem", IMAPS – Nordic, June, 2010
 - (2) E Bumiller, et.al, "A Review of Models for Time-to-Failure due to Metallic Migration Mechanisms", DfR Solutions
 - (3) X. He, et.al, "Evaluation of Electrochemical Migration on Printed Circuit Boards with Lead-Free and Tin-Lead solder", Journal of Electronic Materials" June, 2011
- ECM: CAF
 - (4) L Zou, et.al," How to Avoid Conductive Anodic Filament (CAF), National Physical Lab, January, 2013.
 Technical Webinar, <u>www.npl.co.uk/ei</u>
 - (5) W.J Ready and L.J Turbini, "Conductive Anodic Filament Formation: A Materials Perspective", Proceedings of the 3rd Pacific Rim International Conference on Advanced Materials and Processes, 1998
 - (6) L. J Turbini, "Electrochemical Migration and Conductive Anodic Filament (CAF) Formation", Tutorial 2, SMTA, October, 2013

SUNPOWER

References

• Film Capacitor Corrosion

- (7) M. Michelazzi, et.al, "RFI X2 Capacitors for High Humidity Environments", 2014 CARTS International
- (8) HJC White Paper, "Accelerated Lifetime Test for Metallized Film Capacitors", <u>http://www.hjc.com.tw/cap/pv.pdf</u>
- Modeling
 - (9) NREL "Solar Radiation Data Manual for Flat-Plate and Concentrating Collectors" Data collected from 239 weather stations from 1961 to 1990. Miami, p 57.

				Avera	ige Clima	atic Con	ditions		_				
Element	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec	Year
Temperature (°C)	19.6	20.3	22.1	24.0	25.9	27.4	28,1	28.2	27.7	25.7	23.1	20.6	24.4
Daily Minimum Temp	15.1	15.8	17.9	19.9	22.3	23.9	24.6	24.8	24.4	22.3	19.3	16.4	20.6
Daily Maximum Temp	24.0	24.7	26.2	28.0	29.6	30.9	31.7	31.7	31.0	29.2	26.9	24.8	28.2
Record Minimum Temp	-1.1	0.0	0.0	7.8	11.7	15.6	20.6	20.0	20.0	10.6	3.9	-1.1	-1.1
Record Maximum Temp	31.1	31.7	33.3	35.6	35.0	36.7	36.7	36.7	36.1	35.0	31.7	30.6	36.7
HDD, Base 18.3°C	49	28	8	0	0	0	0	0	0	0	3	23	111
CDD, Base 18.3°C	87	83	123	170	236	273	303	307	282	229	147	93	2332
Relative Humidity (%)	73	71	69	67	72	76	75	76	78	75	74	72	73
Wind Speed (m/s)	4.3	4.7	4.9	4.8	4.4	3.8	3.7	3.7	3.8	4.4	4.5	4.3	4.2

– (10) D.S Peck, "Comprehensive Model for Humidity Testing Correlation, IRPS, 1986.

References

- Humidity Technical Discussion
 - (11) A.B. Kentved, "Humidity Testing of Electronics and Mechanics How to Select the Right Test Method", Delta Electronic White Paper, Delta SPM-176, 2008. <u>http://spm-erfa.dk/</u>

SUNPOWER[®]

Thank You

Let's change the way our world is powered.

© 2015 SunPower Corporation. All Rights Reserved. SUNPOWER and the SUNPOWER logo are trademarks or registered trademarks of SunPower Corporation in the U.S. and other countries as well.