
pycse - Python3 Computations in Science and Engineering

John Kitchin
jkitchin@andrew.cmu.edu

https://kitchingroup.cheme.cmu.edu
Twitter: @johnkitchin

https://github.com/jkitchin/pycse

September 22, 2021

Contents
1 Overview 7

2 Basic python usage 8
2.1 Basic math . 8
2.2 Advanced mathematical operators . 8

2.2.1 Exponential and logarithmic functions . 9
2.3 Creating your own functions . 9
2.4 Defining functions in python . 9
2.5 Advanced function creation . 11
2.6 Lambda Lambda Lambda . 14

2.6.1 Applications of lambda functions . 15
2.6.2 Summary . 16

2.7 Creating arrays in python . 16
2.8 Functions on arrays of values . 18
2.9 Some basic data structures in python . 20

2.9.1 the list . 20
2.9.2 tuples . 20
2.9.3 struct . 20
2.9.4 dictionaries . 21
2.9.5 Summary . 21

2.10 Indexing vectors and arrays in Python . 21
2.10.1 2d arrays . 22
2.10.2 Using indexing to assign values to rows and columns 22
2.10.3 3D arrays . 23
2.10.4 Summary . 23

1

2.11 Controlling the format of printed variables . 23
2.12 Advanced string formatting . 25

3 Math 26
3.1 Numeric derivatives by differences . 26
3.2 Vectorized numeric derivatives . 28
3.3 2-point vs. 4-point numerical derivatives . 29
3.4 Derivatives by polynomial fitting . 30
3.5 Derivatives by fitting a function and taking the analytical derivative 32
3.6 Derivatives by FFT . 34
3.7 A novel way to numerically estimate the derivative of a function - complex-step

derivative approximation . 35
3.8 Vectorized piecewise functions . 36
3.9 Smooth transitions between discontinuous functions 40

3.9.1 Summary . 44
3.10 Smooth transitions between two constants . 44
3.11 On the quad or trapz’d in ChemE heaven . 45

3.11.1 Numerical data integration . 46
3.11.2 Combining numerical data with quad . 47
3.11.3 Summary . 48

3.12 Polynomials in python . 48
3.12.1 Summary . 49

3.13 Wilkinson’s polynomial . 49
3.14 The trapezoidal method of integration . 52
3.15 Numerical Simpsons rule . 53
3.16 Integrating functions in python . 54

3.16.1 double integrals . 54
3.16.2 Summary . 55

3.17 Integrating equations in python . 55
3.18 Function integration by the Romberg method . 56
3.19 Symbolic math in python . 56

3.19.1 Solve the quadratic equation . 56
3.19.2 differentiation . 56
3.19.3 integration . 56
3.19.4 Analytically solve a simple ODE . 57

3.20 Is your ice cream float bigger than mine . 57

4 Linear algebra 58
4.1 Potential gotchas in linear algebra in numpy . 58
4.2 Solving linear equations . 60
4.3 Rules for transposition . 61

4.3.1 The transpose in Python . 61
4.3.2 Rule 1 . 61
4.3.3 Rule 2 . 61
4.3.4 Rule 3 . 62
4.3.5 Rule 4 . 62
4.3.6 Summary . 62

4.4 Sums products and linear algebra notation - avoiding loops where possible 62

2

4.4.1 Old-fashioned way with a loop . 62
4.4.2 The numpy approach . 63
4.4.3 Matrix algebra approach. 63
4.4.4 Another example . 63
4.4.5 Last example . 64
4.4.6 Summary . 64

4.5 Determining linear independence of a set of vectors 64
4.5.1 another example . 65
4.5.2 Near deficient rank . 66
4.5.3 Application to independent chemical reactions. 66

4.6 Reduced row echelon form . 67
4.7 Computing determinants from matrix decompositions 68
4.8 Calling lapack directly from scipy . 68

5 Nonlinear algebra 70
5.1 Know your tolerance . 70
5.2 Solving integral equations with fsolve . 71

5.2.1 Summary notes . 73
5.3 Method of continuity for nonlinear equation solving 73
5.4 Method of continuity for solving nonlinear equations - Part II 76
5.5 Counting roots . 78

5.5.1 Use roots for this polynomial . 78
5.5.2 method 1 . 79
5.5.3 Method 2 . 80

5.6 Finding the nth root of a periodic function . 80
5.7 Coupled nonlinear equations . 82

6 Statistics 83
6.1 Introduction to statistical data analysis . 83
6.2 Basic statistics . 84
6.3 Confidence interval on an average . 84
6.4 Are averages different . 85

6.4.1 The hypothesis . 85
6.4.2 Compute the t-score for our data . 86
6.4.3 Interpretation . 86

6.5 Model selection . 87
6.6 Numerical propagation of errors . 94

6.6.1 Addition and subtraction . 95
6.6.2 Multiplication . 95
6.6.3 Division . 95
6.6.4 exponents . 95
6.6.5 the chain rule in error propagation . 96
6.6.6 Summary . 96

6.7 Another approach to error propagation . 96
6.7.1 Summary . 99

6.8 Random thoughts . 99
6.8.1 Summary . 102

3

7 Data analysis 102
7.1 Fit a line to numerical data . 102
7.2 Linear least squares fitting with linear algebra . 103
7.3 Linear regression with confidence intervals (updated) 104
7.4 Linear regression with confidence intervals. 105
7.5 Nonlinear curve fitting . 106
7.6 Nonlinear curve fitting by direct least squares minimization 108
7.7 Parameter estimation by directly minimizing summed squared errors 108
7.8 Nonlinear curve fitting with parameter confidence intervals 112
7.9 Nonlinear curve fitting with confidence intervals . 114
7.10 Graphical methods to help get initial guesses for multivariate nonlinear regression . 115
7.11 Fitting a numerical ODE solution to data . 119
7.12 Reading in delimited text files . 120

8 Interpolation 121
8.1 Better interpolate than never . 121

8.1.1 Estimate the value of f at t=2. 121
8.1.2 improved interpolation? . 122
8.1.3 The inverse question . 123
8.1.4 A harder problem . 124
8.1.5 Discussion . 125

8.2 Interpolation of data . 126
8.3 Interpolation with splines . 127

9 Optimization 127
9.1 Constrained optimization . 127
9.2 Finding the maximum power of a photovoltaic device. 129
9.3 Using Lagrange multipliers in optimization . 131

9.3.1 Construct the Lagrange multiplier augmented function 132
9.3.2 Finding the partial derivatives . 133
9.3.3 Now we solve for the zeros in the partial derivatives 133
9.3.4 Summary . 133

9.4 Linear programming example with inequality constraints 133
9.5 Find the minimum distance from a point to a curve. 135

10 Differential equations 136
10.1 Ordinary differential equations . 137

10.1.1 Numerical solution to a simple ode . 137
10.1.2 Plotting ODE solutions in cylindrical coordinates 138
10.1.3 ODEs with discontinuous forcing functions 140
10.1.4 Simulating the events feature of Matlab’s ode solvers 141
10.1.5 Mimicking ode events in python . 143
10.1.6 Solving an ode for a specific solution value . 146
10.1.7 A simple first order ode evaluated at specific points 149
10.1.8 Stopping the integration of an ODE at some condition 149
10.1.9 Finding minima and maxima in ODE solutions with events 150
10.1.10Error tolerance in numerical solutions to ODEs 151
10.1.11Solving parameterized ODEs over and over conveniently 154

4

10.1.12Yet another way to parameterize an ODE . 155
10.1.13Another way to parameterize an ODE - nested function 157
10.1.14Solving a second order ode . 158
10.1.15Solving Bessel’s Equation numerically . 161
10.1.16Phase portraits of a system of ODEs . 162
10.1.17Linear algebra approaches to solving systems of constant coefficient ODEs . . 165

10.2 Delay Differential Equations . 167
10.3 Differential algebraic systems of equations . 167
10.4 Boundary value equations . 167

10.4.1 Plane Poiseuille flow - BVP solve by shooting method 167
10.4.2 Plane poiseuelle flow solved by finite difference 172
10.4.3 Boundary value problem in heat conduction 175
10.4.4 BVP in pycse . 177
10.4.5 A nonlinear BVP . 179
10.4.6 Another look at nonlinear BVPs . 182
10.4.7 Solving the Blasius equation . 184

10.5 Partial differential equations . 186
10.5.1 Modeling a transient plug flow reactor . 186
10.5.2 Transient heat conduction - partial differential equations 189
10.5.3 Transient diffusion - partial differential equations 192

11 Plotting 195
11.1 Plot customizations - Modifying line, text and figure properties 195

11.1.1 setting all the text properties in a figure. 198
11.2 Plotting two datasets with very different scales . 200

11.2.1 Make two plots! . 200
11.2.2 Scaling the results . 202
11.2.3 Double-y axis plot . 203
11.2.4 Subplots . 204

11.3 Customizing plots after the fact . 205
11.4 Fancy, built-in colors in Python . 209
11.5 Picasso’s short lived blue period with Python . 209
11.6 Interactive plotting . 211

11.6.1 Basic mouse clicks . 211
11.7 key events not working on Mac/org-mode . 214

11.7.1 Mouse movement . 215
11.7.2 key press events . 216
11.7.3 Picking lines . 216
11.7.4 Picking data points . 217

11.8 Peak annotation in matplotlib . 218

12 Programming 220
12.1 Some of this, sum of that . 220

12.1.1 Nested lists . 221
12.2 Sorting in python . 221
12.3 Unique entries in a vector . 222
12.4 Lather, rinse and repeat . 223

12.4.1 Conclusions . 224

5

12.5 Brief intro to regular expressions . 224
12.6 Working with lists . 225
12.7 Making word files in python . 226
12.8 Interacting with Excel in python . 227

12.8.1 Writing Excel workbooks . 228
12.8.2 Updating an existing Excel workbook . 228
12.8.3 Summary . 229

12.9 Using Excel in Python . 229
12.10Running Aspen via Python . 230
12.11Using an external solver with Aspen . 232
12.12Redirecting the print function . 233
12.13Getting a dictionary of counts . 235
12.14About your python . 236
12.15Automatic, temporary directory changing . 236

13 Miscellaneous 238
13.1 Mail merge with python . 238

14 Worked examples 239
14.1 Peak finding in Raman spectroscopy . 239

14.1.1 Summary notes . 243
14.2 Curve fitting to get overlapping peak areas . 243

14.2.1 Notable differences from Matlab . 248
14.3 Estimating the boiling point of water . 248

14.3.1 Summary . 250
14.4 Gibbs energy minimization and the NIST webbook 251

14.4.1 Compute mole fractions and partial pressures 252
14.4.2 Computing equilibrium constants . 252

14.5 Finding equilibrium composition by direct minimization of Gibbs free energy on mole
numbers . 253
14.5.1 The Gibbs energy of a mixture . 253
14.5.2 Linear equality constraints for atomic mass conservation 253
14.5.3 Equilibrium constant based on mole numbers 254
14.5.4 Summary . 255

14.6 The Gibbs free energy of a reacting mixture and the equilibrium composition 255
14.6.1 Summary . 259

14.7 Water gas shift equilibria via the NIST Webbook . 259
14.7.1 hydrogen . 259
14.7.2 H_{2}O . 260
14.7.3 CO . 260
14.7.4 CO_{2} . 260
14.7.5 Standard state heat of reaction . 261
14.7.6 Non-standard state ∆H and ∆G . 261
14.7.7 Plot how the ∆G varies with temperature . 261
14.7.8 Equilibrium constant calculation . 262
14.7.9 Equilibrium yield of WGS . 263
14.7.10Compute gas phase pressures of each species 264
14.7.11Compare the equilibrium constants . 264

6

14.7.12Summary . 264
14.8 Constrained minimization to find equilibrium compositions 264

14.8.1 summary . 267
14.9 Using constrained optimization to find the amount of each phase present 268
14.10Conservation of mass in chemical reactions . 270
14.11Numerically calculating an effectiveness factor for a porous catalyst bead 270
14.12Computing a pipe diameter . 273
14.13Reading parameter database text files in python . 274
14.14Calculating a bubble point pressure of a mixture . 277
14.15The equal area method for the van der Waals equation 278

14.15.1Compute areas . 281
14.16Time dependent concentration in a first order reversible reaction in a batch reactor . 283
14.17Finding equilibrium conversion . 284
14.18Integrating a batch reactor design equation . 285
14.19Uncertainty in an integral equation . 285
14.20Integrating the batch reactor mole balance . 286
14.21Plug flow reactor with a pressure drop . 287
14.22Solving CSTR design equations . 288
14.23Meet the steam tables . 289

14.23.1Starting point in the Rankine cycle in condenser. 289
14.23.2 Isentropic compression of liquid to point 2 . 289
14.23.3 Isobaric heating to T3 in boiler where we make steam 290
14.23.4 Isentropic expansion through turbine to point 4 290
14.23.5To get from point 4 to point 1 . 290
14.23.6Efficiency . 290
14.23.7Entropy-temperature chart . 290
14.23.8Summary . 292

14.24What region is a point in . 292

15 Units 298
15.1 Using units in python . 298

15.1.1 scimath . 299
15.2 Handling units with the quantities module . 300
15.3 Units in ODEs . 303
15.4 Handling units with dimensionless equations . 307

16 GNU Free Documentation License 309

17 Additional References 318

Index 319

1 Overview
This is a collection of examples of using python in the kinds of scientific and engineering computa-
tions I have used in classes and research. They are organized by topics.

I recommend the Continuum IO Anaconda python distribution (https://www.continuum.io).
This distribution is free for academic use, and cheap otherwise. It is pretty complete in terms of

7

https://www.continuum.io

mathematical, scientific and plotting modules. All of the examples in this book were created run
with the Anaconda python distribution.

2 Basic python usage

2.1 Basic math

Python is a basic calculator out of the box. Here we consider the most basic mathematical opera-
tions: addition, subtraction, multiplication, division and exponenetiation. we use the func:print to
get the output. For now we consider integers and float numbers. An integer is a plain number like
0, 10 or -2345. A float number has a decimal in it. The following are all floats: 1.0, -9., and 3.56.
Note the trailing zero is not required, although it is good style.

1 print(2 + 4)
2 print(8.1 - 5)

Multiplication is equally straightforward.

1 print(5 * 4)
2 print(3.1 * 2)

Division is almost as straightforward, but we have to remember that integer division is not the
same as float division. Let us consider float division first.

1 print(4.0 / 2.0)
2 print(1.0 / 3.1)

Now, consider the integer versions:

1 print(4 / 2)
2 print(1 / 3)

In Python3 division now is automatically float division. You can do integer division with the
// operator like this.

1 print(4 // 2)
2 print(1 // 3)

Exponentiation is also a basic math operation that python supports directly.

1 print(3.**2)
2 print(3**2)
3 print(2**0.5)

Other types of mathematical operations require us to import functionality from python libraries.
We consider those in the next section.

8

2.2 Advanced mathematical operators

The primary library we will consider is mod:numpy, which provides many mathematical functions,
statistics as well as support for linear algebra. For a complete listing of the functions available,
see http://docs.scipy.org/doc/numpy/reference/routines.math.html. We begin with the
simplest functions.

1 import numpy as np
2 print(np.sqrt(2))

2.2.1 Exponential and logarithmic functions

Here is the exponential function.

1 import numpy as np
2 print(np.exp(1))

There are two logarithmic functions commonly used, the natural log function func:numpy.log
and the base10 logarithm func:numpy.log10.

1 import numpy as np
2 print(np.log(10))
3 print(np.log10(10)) # base10

There are many other intrinsic functions available in mod:numpy which we will eventually cover.
First, we need to consider how to create our own functions.

2.3 Creating your own functions

We can combine operations to evaluate complex equations. Consider the value of the equation
x3 − log(x) for the value x = 4.1.

1 import numpy as np
2 x = 3
3 print(x**3 - np.log(x))

It would be tedious to type this out each time. Next, we learn how to express this equation as
a new function, which we can call with different values.

1 import numpy as np
2 def f(x):
3 return x**3 - np.log(x)
4
5 print(f(3))
6 print(f(5.1))

It may not seem like we did much there, but this is the foundation for solving equations in
the future. Before we get to solving equations, we have a few more details to consider. Next, we
consider evaluating functions on arrays of values.

9

http://docs.scipy.org/doc/numpy/reference/routines.math.html

2.4 Defining functions in python

Compare what’s here to the Matlab implementation.
We often need to make functions in our codes to do things.

1 def f(x):
2 "return the inverse square of x"
3 return 1.0 / x**2
4
5 print(f(3))
6 print(f([4,5]))

Note that functions are not automatically vectorized. That is why we see the error above.
There are a few ways to achieve that. One is to "cast" the input variables to objects that support
vectorized operations, such as numpy.array objects.

1 import numpy as np
2
3 def f(x):
4 "return the inverse square of x"
5 x = np.array(x)
6 return 1.0 / x**2
7
8 print(f(3))
9 print(f([4,5]))

It is possible to have more than one variable.

1 import numpy as np
2
3 def func(x, y):
4 "return product of x and y"
5 return x * y
6
7 print(func(2, 3))
8 print(func(np.array([2, 3]), np.array([3, 4])))

You can define "lambda" functions, which are also known as inline or anonymous functions. The
syntax is lambda var:f(var). I think these are hard to read and discourage their use. Here is a
typical usage where you have to define a simple function that is passed to another function, e.g.
scipy.integrate.quad to perform an integral.

1 from scipy.integrate import quad
2 print(quad(lambda x:x**3, 0 ,2))

It is possible to nest functions inside of functions like this.

1 def wrapper(x):
2 a = 4
3 def func(x, a):
4 return a * x
5
6 return func(x, a)
7
8 print(wrapper(4))

10

http://matlab.cheme.cmu.edu/2011/08/09/where-its-i-got-two-turntables-and-a-microphone/

An alternative approach is to "wrap" a function, say to fix a parameter. You might do this
so you can integrate the wrapped function, which depends on only a single variable, whereas the
original function depends on two variables.

1 def func(x, a):
2 return a * x
3
4 def wrapper(x):
5 a = 4
6 return func(x, a)
7
8 print(wrapper(4))

Last example, defining a function for an ode

1 from scipy.integrate import odeint
2 import numpy as np
3 import matplotlib.pyplot as plt
4
5 k = 2.2
6 def myode(y, t):
7 "ode defining exponential growth"
8 return k * y
9

10 y0 = 3
11 tspan = np.linspace(0,1)
12 y = odeint(myode, y0, tspan)
13
14 plt.plot(tspan, y)
15 plt.xlabel('Time')
16 plt.ylabel('y')
17 plt.savefig('images/funcs-ode.png')

11

2.5 Advanced function creation

Python has some nice features in creating functions. You can create default values for variables,
have optional variables and optional keyword variables. In this function f(a,b), a and b are called
positional arguments, and they are required, and must be provided in the same order as the function
defines.

If we provide a default value for an argument, then the argument is called a keyword argument,
and it becomes optional. You can combine positional arguments and keyword arguments, but
positional arguments must come first. Here is an example.

1 def func(a, n=2):
2 "compute the nth power of a"
3 return a**n
4
5 # three different ways to call the function
6 print(func(2))
7 print(func(2, 3))
8 print(func(2, n=4))

In the first call to the function, we only define the argument a, which is a mandatory, positional
argument. In the second call, we define a and n, in the order they are defined in the function.
Finally, in the third call, we define a as a positional argument, and n as a keyword argument.

If all of the arguments are optional, we can even call the function with no arguments. If you
give arguments as positional arguments, they are used in the order defined in the function. If you
use keyword arguments, the order is arbitrary.

12

1 def func(a=1, n=2):
2 "compute the nth power of a"
3 return a**n
4
5 # three different ways to call the function
6 print(func())
7 print(func(2, 4))
8 print(func(n=4, a=2))

It is occasionally useful to allow an arbitrary number of arguments in a function. Suppose we
want a function that can take an arbitrary number of positional arguments and return the sum of
all the arguments. We use the syntax *args to indicate arbitrary positional arguments. Inside the
function the variable args is a tuple containing all of the arguments passed to the function.

1 def func(*args):
2 sum = 0
3 for arg in args:
4 sum += arg
5 return sum
6
7 print(func(1, 2, 3, 4))

A more "functional programming" version of the last function is given here. This is an advanced
approach that is less readable to new users, but more compact and likely more efficient for large
numbers of arguments.

1 import functools, operator
2 def func(*args):
3 return functools.reduce(operator.add, args)
4 print(func(1, 2, 3, 4))

It is possible to have arbitrary keyword arguments. This is a common pattern when you call
another function within your function that takes keyword arguments. We use **kwargs to indicate
that arbitrary keyword arguments can be given to the function. Inside the function, kwargs is
variable containing a dictionary of the keywords and values passed in.

1 def func(**kwargs):
2 for kw in kwargs:
3 print('{0} = {1}'.format(kw, kwargs[kw]))
4
5 func(t1=6, color='blue')

A typical example might be:

1 import matplotlib.pyplot as plt
2
3 def myplot(x, y, fname=None, **kwargs):
4 "make plot of x,y. save to fname if not None. Provide kwargs to plot."
5 plt.plot(x, y, **kwargs)
6 plt.xlabel('X')
7 plt.ylabel('Y')
8 plt.title('My plot')
9 if fname:

10 plt.savefig(fname)
11 else:

13

12 plt.show()
13
14 x = [1, 3, 4, 5]
15 y = [3, 6, 9, 12]
16
17 myplot(x, y, 'images/myfig.png', color='orange', marker='s')
18
19 # you can use a dictionary as kwargs
20 d = {'color':'magenta',
21 'marker':'d'}
22
23 myplot(x, y, 'images/myfig2.png', **d)

14

In that example we wrap the matplotlib plotting commands in a function, which we can call
the way we want to, with arbitrary optional arguments. In this example, you cannot pass keyword
arguments that are illegal to the plot command or you will get an error.

It is possible to combine all the options at once. I admit it is hard to imagine where this would
be really useful, but it can be done!

1 import numpy as np
2
3 def func(a, b=2, *args, **kwargs):
4 "return a**b + sum(args) and print kwargs"
5 for kw in kwargs:
6 print('kw: {0} = {1}'.format(kw, kwargs[kw]))
7
8 return a**b + np.sum(args)
9

10 print(func(2, 3, 4, 5, mysillykw='hahah'))

2.6 Lambda Lambda Lambda

Is that some kind of fraternity? of anonymous functions? What is that!? There are many times
where you need a callable, small function in python, and it is inconvenient to have to use def to
create a named function. Lambda functions solve this problem. Let us look at some examples.
First, we create a lambda function, and assign it to a variable. Then we show that variable is a
function, and that we can call it with an argument.

1 f = lambda x: 2*x
2 print(f)
3 print(f(2))

15

We can have more than one argument:

1 f = lambda x,y: x + y
2 print(f)
3 print(f(2, 3))

And default arguments:

1 f = lambda x, y=3: x + y
2 print(f)
3 print(f(2))
4 print(f(4, 1))

It is also possible to have arbitrary numbers of positional arguments. Here is an example that
provides the sum of an arbitrary number of arguments.

1 import functools, operator
2 f = lambda *x: functools.reduce(operator.add, x)
3 print(f)
4
5 print(f(1))
6 print(f(1, 2))
7 print(f(1, 2, 3))

You can also make arbitrary keyword arguments. Here we make a function that simply returns
the kwargs as a dictionary. This feature may be helpful in passing kwargs to other functions.

1 f = lambda **kwargs: kwargs
2
3 print(f(a=1, b=3))

Of course, you can combine these options. Here is a function with all the options.

1 f = lambda a, b=4, *args, **kwargs: (a, b, args, kwargs)
2
3 print(f('required', 3, 'optional-positional', g=4))

One of the primary limitations of lambda functions is they are limited to single expressions.
They also do not have documentation strings, so it can be difficult to understand what they were
written for later.

2.6.1 Applications of lambda functions

Lambda functions are used in places where you need a function, but may not want to define one
using def. For example, say you want to solve the nonlinear equation

√
x = 2.5.

1 from scipy.optimize import fsolve
2 import numpy as np
3
4 sol, = fsolve(lambda x: 2.5 - np.sqrt(x), 8)
5 print(sol)

16

Another time to use lambda functions is if you want to set a particular value of a parameter in
a function. Say we have a function with an independent variable, x and a parameter a, i.e. f(x; a).
If we want to find a solution f(x; a) = 0 for some value of a, we can use a lambda function to make
a function of the single variable x. Here is a example.

1 from scipy.optimize import fsolve
2 import numpy as np
3
4 def func(x, a):
5 return a * np.sqrt(x) - 4.0
6
7 sol, = fsolve(lambda x: func(x, 3.2), 3)
8 print(sol)

Any function that takes a function as an argument can use lambda functions. Here we use a
lambda function that adds two numbers in the reduce function to sum a list of numbers.

1 import functools as ft
2 print(ft.reduce(lambda x, y: x + y, [0, 1, 2, 3, 4]))

We can evaluate the integral
∫ 2

0 x
2dx with a lambda function.

1 from scipy.integrate import quad
2
3 print(quad(lambda x: x**2, 0, 2))

2.6.2 Summary

Lambda functions can be helpful. They are never necessary. You can always define a function
using def, but for some small, single-use functions, a lambda function could make sense. Lambda
functions have some limitations, including that they are limited to a single expression, and they
lack documentation strings.

2.7 Creating arrays in python

Often, we will have a set of 1-D arrays, and we would like to construct a 2D array with those vectors
as either the rows or columns of the array. This may happen because we have data from different
sources we want to combine, or because we organize the code with variables that are easy to read,
and then want to combine the variables. Here are examples of doing that to get the vectors as the
columns.

1 import numpy as np
2
3 a = np.array([1, 2, 3])
4 b = np.array([4, 5, 6])
5
6 print(np.column_stack([a, b]))
7
8 # this means stack the arrays vertically, e.g. on top of each other
9 print(np.vstack([a, b]).T)

Or rows:

17

1 import numpy as np
2
3 a = np.array([1, 2, 3])
4 b = np.array([4, 5, 6])
5
6 print(np.row_stack([a, b]))
7
8 # this means stack the arrays vertically, e.g. on top of each other
9 print(np.vstack([a, b]))

The opposite operation is to extract the rows or columns of a 2D array into smaller arrays.
We might want to do that to extract a row or column from a calculation for further analysis, or
plotting for example. There are splitting functions in numpy. They are somewhat confusing, so we
examine some examples. The numpy.hsplit command splits an array "horizontally". The best way
to think about it is that the "splits" move horizontally across the array. In other words, you draw
a vertical split, move over horizontally, draw another vertical split, etc. . . You must specify the
number of splits that you want, and the array must be evenly divisible by the number of splits.

1 import numpy as np
2
3 A = np.array([[1, 2, 3, 5],
4 [4, 5, 6, 9]])
5
6 # split into two parts
7 p1, p2 = np.hsplit(A, 2)
8 print(p1)
9 print(p2)

10
11 #split into 4 parts
12 p1, p2, p3, p4 = np.hsplit(A, 4)
13 print(p1)
14 print(p2)
15 print(p3)
16 print(p4)

In the numpy.vsplit command the "splits" go "vertically" down the array. Note that the split
commands return 2D arrays.

1 import numpy as np
2
3 A = np.array([[1, 2, 3, 5],
4 [4, 5, 6, 9]])
5
6 # split into two parts
7 p1, p2 = np.vsplit(A, 2)
8 print(p1)
9 print(p2)

10 print(p2.shape)

An alternative approach is array unpacking. In this example, we unpack the array into two
variables. The array unpacks by row.

1 import numpy as np
2
3 A = np.array([[1, 2, 3, 5],
4 [4, 5, 6, 9]])
5

18

6 # split into two parts
7 p1, p2 = A
8 print(p1)
9 print(p2)

To get the columns, just transpose the array.

1 import numpy as np
2
3 A = np.array([[1, 2, 3, 5],
4 [4, 5, 6, 9]])
5
6 # split into two parts
7 p1, p2, p3, p4 = A.T
8 print(p1)
9 print(p2)

10 print(p3)
11 print(p4)
12 print(p4.shape)

Note that now, we have 1D arrays.
You can also access rows and columns by indexing. We index an array by [row, column]. To get

a row, we specify the row number, and all the columns in that row like this [row, :]. Similarly, to
get a column, we specify that we want all rows in that column like this: [:, column]. This approach
is useful when you only want a few columns or rows.

1 import numpy as np
2
3 A = np.array([[1, 2, 3, 5],
4 [4, 5, 6, 9]])
5
6 # get row 1
7 print(A[1])
8 print(A[1, :]) # row 1, all columns
9

10 print(A[:, 2]) # get third column
11 print(A[:, 2].shape)

Note that even when we specify a column, it is returned as a 1D array.

2.8 Functions on arrays of values

It is common to evaluate a function for a range of values. Let us consider the value of the function
f(x) = cos(x) over the range of 0 < x < π. We cannot consider every value in that range, but we
can consider say 10 points in the range. The func:numpy.linspace conveniently creates an array of
values.

1 import numpy as np
2 print(np.linspace(0, np.pi, 10))

The main point of using the mod:numpy functions is that they work element-wise on elements
of an array. In this example, we compute the cos(x) for each element of x.

1 import numpy as np
2 x = np.linspace(0, np.pi, 10)
3 print(np.cos(x))

19

You can already see from this output that there is a root to the equation cos(x) = 0, because
there is a change in sign in the output. This is not a very convenient way to view the results; a
graph would be better. We use mod:matplotlib to make figures. Here is an example.

1 import matplotlib.pyplot as plt
2 import numpy as np
3
4 x = np.linspace(0, np.pi, 10)
5 plt.plot(x, np.cos(x))
6 plt.xlabel('x')
7 plt.ylabel('cos(x)')
8 plt.savefig('images/plot-cos.png')

This figure illustrates graphically what the numbers above show. The function crosses zero
at approximately x = 1.5. To get a more precise value, we must actually solve the function
numerically. We use the function func:scipy.optimize.fsolve to do that. More precisely, we want to
solve the equation f(x) = cos(x) = 0. We create a function that defines that equation, and then
use func:scipy.optimize.fsolve to solve it.

1 from scipy.optimize import fsolve
2 import numpy as np
3
4 def f(x):
5 return np.cos(x)
6
7 sol, = fsolve(f, x0=1.5) # the comma after sol makes it return a float
8 print(sol)
9 print(np.pi / 2)

20

We know the solution is π/2.

2.9 Some basic data structures in python

Matlab post
We often have a need to organize data into structures when solving problems.

2.9.1 the list

A list in python is data separated by commas in square brackets. Here, we might store the following
data in a variable to describe the Antoine coefficients for benzene and the range they are relevant
for [Tmin Tmax]. Lists are flexible, you can put anything in them, including other lists. We access
the elements of the list by indexing:

1 c = ['benzene', 6.9056, 1211.0, 220.79, [-16, 104]]
2 print(c[0])
3 print(c[-1])
4
5 a,b = c[0:2]
6 print(a,b)
7
8 name, A, B, C, Trange = c
9 print(Trange)

Lists are "mutable", which means you can change their values.

1 a = [3, 4, 5, [7, 8], 'cat']
2 print(a[0], a[-1])
3 a[-1] = 'dog'
4 print(a)

2.9.2 tuples

Tuples are immutable; you cannot change their values. This is handy in cases where it is an error
to change the value. A tuple is like a list but it is enclosed in parentheses.

1 a = (3, 4, 5, [7, 8], 'cat')
2 print(a[0], a[-1])
3 a[-1] = 'dog' # this is an error

2.9.3 struct

Python does not exactly have the same thing as a struct in Matlab. You can achieve something
like it by defining an empty class and then defining attributes of the class. You can check if an
object has a particular attribute using hasattr.

1 class Antoine:
2 pass
3
4 a = Antoine()
5 a.name = 'benzene'
6 a.Trange = [-16, 104]
7
8 print(a.name)
9 print(hasattr(a, 'Trange'))

10 print(hasattr(a, 'A'))

21

http://matlab.cheme.cmu.edu/2011/09/26/some-basic-data-structures-in-matlab/

2.9.4 dictionaries

The analog of the containers.Map in Matlab is the dictionary in python. Dictionaries are enclosed
in curly brackets, and are composed of key:value pairs.

1 s = {'name':'benzene',
2 'A':6.9056,
3 'B':1211.0}
4
5 s['C'] = 220.79
6 s['Trange'] = [-16, 104]
7
8 print(s)
9 print(s['Trange'])

1 s = {'name':'benzene',
2 'A':6.9056,
3 'B':1211.0}
4
5 print('C' in s)
6 # default value for keys not in the dictionary
7 print(s.get('C', None))
8
9 print(s.keys())

10 print(s.values())

2.9.5 Summary

We have examined four data structures in python. Note that none of these types are arrays/vectors
with defined mathematical operations. For those, you need to consider numpy.array.

2.10 Indexing vectors and arrays in Python

Matlab post There are times where you have a lot of data in a vector or array and you want to
extract a portion of the data for some analysis. For example, maybe you want to plot column 1 vs
column 2, or you want the integral of data between x = 4 and x = 6, but your vector covers 0 < x
< 10. Indexing is the way to do these things.

A key point to remember is that in python array/vector indices start at 0. Unlike Matlab,
which uses parentheses to index a array, we use brackets in python.

1 import numpy as np
2
3 x = np.linspace(-np.pi, np.pi, 10)
4 print(x)
5
6 print(x[0]) # first element
7 print(x[2]) # third element
8 print(x[-1]) # last element
9 print(x[-2]) # second to last element

We can select a range of elements too. The syntax a:b extracts the aˆ{th} to (b-1)ˆ{th}
elements. The syntax a:b:n starts at a, skips nelements up to the index b.

1 print(x[1: 4]) # second to fourth element. Element 5 is not included
2 print(x[0: -1:2]) # every other element
3 print(x[:]) # print the whole vector
4 print(x[-1:0:-1]) # reverse the vector!

22

http://matlab.cheme.cmu.edu/2011/08/24/indexing-vectors-and-arrays-in-matlab/

Suppose we want the part of the vector where x > 2. We could do that by inspection, but there
is a better way. We can create a mask of boolean (0 or 1) values that specify whether x > 2 or not,
and then use the mask as an index.

1 print(x[x > 2])

You can use this to analyze subsections of data, for example to integrate the function y = sin(x)
where x > 2.

1 y = np.sin(x)
2
3 print(np.trapz(x[x > 2], y[x > 2]))

2.10.1 2d arrays

In 2d arrays, we use row, column notation. We use a : to indicate all rows or all columns.

1 a = np.array([[1, 2, 3],
2 [4, 5, 6],
3 [7, 8, 9]])
4
5 print(a[0, 0])
6 print(a[-1, -1])
7
8 print(a[0, :])# row one
9 print(a[:, 0])# column one

10 print(a[:])

2.10.2 Using indexing to assign values to rows and columns

1 b = np.zeros((3, 3))
2 print(b)
3
4 b[:, 0] = [1, 2, 3] # set column 0
5 b[2, 2] = 12 # set a single element
6 print(b)
7
8 b[2] = 6 # sets everything in row 2 to 6!
9 print(b)

Python does not have the linear assignment method like Matlab does. You can achieve some-
thing like that as follows. We flatten the array to 1D, do the linear assignment, and reshape the
result back to the 2D array.

1 c = b.flatten()
2 c[2] = 34
3 b[:] = c.reshape(b.shape)
4 print(b)

23

2.10.3 3D arrays

The 3d array is like book of 2D matrices. Each page has a 2D matrix on it. think about the
indexing like this: (row, column, page)

1 M = np.random.uniform(size=(3,3,3)) # a 3x3x3 array
2 print(M)

1 print(M[:, :, 0]) # 2d array on page 0
2 print(M[:, 0, 0]) # column 0 on page 0
3 print(M[1, :, 2]) # row 1 on page 2

2.10.4 Summary

The most common place to use indexing is probably when a function returns an array with the
independent variable in column 1 and solution in column 2, and you want to plot the solution.
Second is when you want to analyze one part of the solution. There are also applications in
numerical methods, for example in assigning values to the elements of a matrix or vector.

2.11 Controlling the format of printed variables

This was first worked out in this original Matlab post.
Often you will want to control the way a variable is printed. You may want to only show a

few decimal places, or print in scientific notation, or embed the result in a string. Here are some
examples of printing with no control over the format.

1 a = 2./3
2 print(a)
3 print(1/3)
4 print(1./3.)
5 print(10.1)
6 print("Avogadro's number is ", 6.022e23,'.')

There is no control over the number of decimals, or spaces around a printed number.
In python, we use the format function to control how variables are printed. With the format

function you use codes like {n:format specifier} to indicate that a formatted string should be used.
n is the nˆ{th} argument passed to format, and there are a variety of format specifiers. Here we
examine how to format float numbers. The specifier has the general form "w.df" where w is the
width of the field, and d is the number of decimals, and f indicates a float number. "1.3f" means to
print a float number with 3 decimal places. Here is an example.

1 print('The value of 1/3 to 3 decimal places is {0:1.3f}'.format(1./3.))

In that example, the 0 in {0:1.3f} refers to the first (and only) argument to the format function.
If there is more than one argument, we can refer to them like this:

1 print('Value 0 = {0:1.3f}, value 1 = {1:1.3f}, value 0 = {0:1.3f}'.format(1./3., 1./6.))

24

http://matlab.cheme.cmu.edu/2011/10/06/sprintfing-to-the-finish/

Note you can refer to the same argument more than once, and in arbitrary order within the
string.

Suppose you have a list of numbers you want to print out, like this:

1 for x in [1./3., 1./6., 1./9.]:
2 print('The answer is {0:1.2f}'.format(x))

The "g" format specifier is a general format that can be used to indicate a precision, or to
indicate significant digits. To print a number with a specific number of significant digits we do this:

1 print('{0:1.3g}'.format(1./3.))
2 print('{0:1.3g}'.format(4./3.))

We can also specify plus or minus signs. Compare the next two outputs.

1 for x in [-1., 1.]:
2 print('{0:1.2f}'.format(x))

You can see the decimals do not align. That is because there is a minus sign in front of one
number. We can specify to show the sign for positive and negative numbers, or to pad positive
numbers to leave space for positive numbers.

1 for x in [-1., 1.]:
2 print('{0:+1.2f}'.format(x)) # explicit sign
3
4 for x in [-1., 1.]:
5 print('{0: 1.2f}'.format(x)) # pad positive numbers

We use the "e" or "E" format modifier to specify scientific notation.

1 import numpy as np
2 eps = np.finfo(np.double).eps
3 print(eps)
4 print('{0}'.format(eps))
5 print('{0:1.2f}'.format(eps))
6 print('{0:1.2e}'.format(eps)) #exponential notation
7 print('{0:1.2E}'.format(eps)) #exponential notation with capital E

As a float with 2 decimal places, that very small number is practically equal to 0.
We can even format percentages. Note you do not need to put the % in your string.

1 print('the fraction {0} corresponds to {0:1.0%}'.format(0.78))

There are many other options for formatting strings. See http://docs.python.org/2/library/
string.html#formatstrings for a full specification of the options.

25

http://docs.python.org/2/library/string.html#formatstrings
http://docs.python.org/2/library/string.html#formatstrings

2.12 Advanced string formatting

There are several more advanced ways to include formatted values in a string. In the previous case
we examined replacing format specifiers by positional arguments in the format command. We can
instead use keyword arguments.

1 s = 'The {speed} {color} fox'.format(color='brown', speed='quick')
2 print(s)

If you have a lot of variables already defined in a script, it is convenient to use them in string
formatting with the locals command:

1 speed = 'slow'
2 color= 'blue'
3
4 print('The {speed} {color} fox'.format(**locals()))

If you want to access attributes on an object, you can specify them directly in the format
identifier.

1 class A:
2 def __init__(self, a, b, c):
3 self.a = a
4 self.b = b
5 self.c = c
6
7 mya = A(3,4,5)
8
9 print('a = {obj.a}, b = {obj.b}, c = {obj.c:1.2f}'.format(obj=mya))

You can access values of a dictionary:

1 d = {'a': 56, "test":'woohoo!'}
2
3 print("the value of a in the dictionary is {obj[a]}. It works {obj[test]}".format(obj=d))

And, you can access elements of a list. Note, however you cannot use -1 as an index in this
case.

1 L = [4, 5, 'cat']
2
3 print('element 0 = {obj[0]}, and the last element is {obj[2]}'.format(obj=L))

There are three different ways to "print" an object. If an object has a format function, that is
the default used in the format command. It may be helpful to use the str or repr of an object
instead. We get this with !s for str and !r for repr.

1 class A:
2 def __init__(self, a, b):
3 self.a = a; self.b = b
4
5 def __format__(self, format):
6 s = 'a={{0:{0}}} b={{1:{0}}}'.format(format)
7 return s.format(self.a, self.b)

26

8
9 def __str__(self):

10 return 'str: class A, a={0} b={1}'.format(self.a, self.b)
11
12 def __repr__(self):
13 return 'representing: class A, a={0}, b={1}'.format(self.a, self.b)
14
15 mya = A(3, 4)
16
17 print('{0}'.format(mya)) # uses __format__
18 print('{0!s}'.format(mya)) # uses __str__
19 print('{0!r}'.format(mya)) # uses __repr__

This covers the majority of string formatting requirements I have come across. If there are more
sophisticated needs, they can be met with various string templating python modules. the one I
have used most is Cheetah.

3 Math

3.1 Numeric derivatives by differences

numpy has a function called numpy.diff() that is similar to the one found in matlab. It calculates
the differences between the elements in your list, and returns a list that is one element shorter,
which makes it unsuitable for plotting the derivative of a function.

Loops in python are pretty slow (relatively speaking) but they are usually trivial to understand.
In this script we show some simple ways to construct derivative vectors using loops. It is implied
in these formulas that the data points are equally spaced. If they are not evenly spaced, you need
a different approach.

1 import numpy as np
2 from pylab import *
3 import time
4
5 '''
6 These are the brainless way to calculate numerical derivatives. They
7 work well for very smooth data. they are surprisingly fast even up to
8 10000 points in the vector.
9 '''

10
11 x = np.linspace(0.78,0.79,100)
12 y = np.sin(x)
13 dy_analytical = np.cos(x)
14 '''
15 lets use a forward difference method:
16 that works up until the last point, where there is not
17 a forward difference to use. there, we use a backward difference.
18 '''
19
20 tf1 = time.time()
21 dyf = [0.0]*len(x)
22 for i in range(len(y)-1):
23 dyf[i] = (y[i+1] - y[i])/(x[i+1]-x[i])
24 #set last element by backwards difference
25 dyf[-1] = (y[-1] - y[-2])/(x[-1] - x[-2])
26
27 print(' Forward difference took %f seconds' % (time.time() - tf1))
28
29 '''and now a backwards difference'''
30 tb1 = time.time()
31 dyb = [0.0]*len(x)

27

http://www.cheetahtemplate.org/

32 #set first element by forward difference
33 dyb[0] = (y[0] - y[1])/(x[0] - x[1])
34 for i in range(1,len(y)):
35 dyb[i] = (y[i] - y[i-1])/(x[i]-x[i-1])
36
37 print(' Backward difference took %f seconds' % (time.time() - tb1))
38
39 '''and now, a centered formula'''
40 tc1 = time.time()
41 dyc = [0.0]*len(x)
42 dyc[0] = (y[0] - y[1])/(x[0] - x[1])
43 for i in range(1,len(y)-1):
44 dyc[i] = (y[i+1] - y[i-1])/(x[i+1]-x[i-1])
45 dyc[-1] = (y[-1] - y[-2])/(x[-1] - x[-2])
46
47 print(' Centered difference took %f seconds' % (time.time() - tc1))
48
49 '''
50 the centered formula is the most accurate formula here
51 '''
52
53 plt.plot(x,dy_analytical,label='analytical derivative')
54 plt.plot(x,dyf,'--',label='forward')
55 plt.plot(x,dyb,'--',label='backward')
56 plt.plot(x,dyc,'--',label='centered')
57
58 plt.legend(loc='lower left')
59 plt.savefig('images/simple-diffs.png')

28

3.2 Vectorized numeric derivatives

Loops are usually not great for performance. Numpy offers some vectorized methods that allow
us to compute derivatives without loops, although this comes at the mental cost of harder to
understand syntax

1 import numpy as np
2 import matplotlib.pyplot as plt
3
4 x = np.linspace(0, 2 * np.pi, 100)
5 y = np.sin(x)
6 dy_analytical = np.cos(x)
7
8
9 # we need to specify the size of dy ahead because diff returns

10 #an array of n-1 elements
11 dy = np.zeros(y.shape, np.float) #we know it will be this size
12 dy[0:-1] = np.diff(y) / np.diff(x)
13 dy[-1] = (y[-1] - y[-2]) / (x[-1] - x[-2])
14
15
16 '''
17 calculate dy by center differencing using array slices
18 '''
19
20 dy2 = np.zeros(y.shape,np.float) #we know it will be this size
21 dy2[1:-1] = (y[2:] - y[0:-2]) / (x[2:] - x[0:-2])
22
23 # now the end points
24 dy2[0] = (y[1] - y[0]) / (x[1] - x[0])
25 dy2[-1] = (y[-1] - y[-2]) / (x[-1] - x[-2])
26
27 plt.plot(x,y)
28 plt.plot(x,dy_analytical,label='analytical derivative')
29 plt.plot(x,dy,label='forward diff')
30 plt.plot(x,dy2,'k--',lw=2,label='centered diff')
31 plt.legend(loc='lower left')
32 plt.savefig('images/vectorized-diffs.png')

29

3.3 2-point vs. 4-point numerical derivatives

If your data is very noisy, you will have a hard time getting good derivatives; derivatives tend
to magnify noise. In these cases, you have to employ smoothing techniques, either implicitly by
using a multipoint derivative formula, or explicitly by smoothing the data yourself, or taking the
derivative of a function that has been fit to the data in the neighborhood you are interested in.

Here is an example of a 4-point centered difference of some noisy data:

1 import numpy as np
2 import matplotlib.pyplot as plt
3
4 x = np.linspace(0, 2*np.pi, 100)
5 y = np.sin(x) + 0.1 * np.random.random(size=x.shape)
6 dy_analytical = np.cos(x)
7
8 #2-point formula
9 dyf = [0.0] * len(x)

10 for i in range(len(y)-1):
11 dyf[i] = (y[i+1] - y[i])/(x[i+1]-x[i])
12 #set last element by backwards difference
13 dyf[-1] = (y[-1] - y[-2])/(x[-1] - x[-2])
14
15 '''
16 calculate dy by 4-point center differencing using array slices
17
18 \frac{y[i-2] - 8y[i-1] + 8[i+1] - y[i+2]}{12h}
19
20 y[0] and y[1] must be defined by lower order methods
21 and y[-1] and y[-2] must be defined by lower order methods
22 '''

30

23
24 dy = np.zeros(y.shape, np.float) #we know it will be this size
25 h = x[1] - x[0] #this assumes the points are evenely spaced!
26 dy[2:-2] = (y[0:-4] - 8 * y[1:-3] + 8 * y[3:-1] - y[4:]) / (12.0 * h)
27
28 # simple differences at the end-points
29 dy[0] = (y[1] - y[0])/(x[1] - x[0])
30 dy[1] = (y[2] - y[1])/(x[2] - x[1])
31 dy[-2] = (y[-2] - y[-3]) / (x[-2] - x[-3])
32 dy[-1] = (y[-1] - y[-2]) / (x[-1] - x[-2])
33
34
35 plt.plot(x, y)
36 plt.plot(x, dy_analytical, label='analytical derivative')
37 plt.plot(x, dyf, 'r-', label='2pt-forward diff')
38 plt.plot(x, dy, 'k--', lw=2, label='4pt-centered diff')
39 plt.legend(loc='lower left')
40 plt.savefig('images/multipt-diff.png')

3.4 Derivatives by polynomial fitting

One way to reduce the noise inherent in derivatives of noisy data is to fit a smooth function through
the data, and analytically take the derivative of the curve. Polynomials are especially convenient
for this. The challenge is to figure out what an appropriate polynomial order is. This requires
judgment and experience.

1 import numpy as np
2 import matplotlib.pyplot as plt
3 from pycse import deriv

31

4
5 tspan = [0, 0.1, 0.2, 0.4, 0.8, 1]
6 Ca_data = [2.0081, 1.5512, 1.1903, 0.7160, 0.2562, 0.1495]
7
8 p = np.polyfit(tspan, Ca_data, 3)
9 plt.figure()

10 plt.plot(tspan, Ca_data)
11 plt.plot(tspan, np.polyval(p, tspan), 'g-')
12 plt.savefig('images/deriv-fit-1.png')
13
14 # compute derivatives
15 dp = np.polyder(p)
16
17 dCdt_fit = np.polyval(dp, tspan)
18
19 dCdt_numeric = deriv(tspan, Ca_data) # 2-point deriv
20
21 plt.figure()
22 plt.plot(tspan, dCdt_numeric, label='numeric derivative')
23 plt.plot(tspan, dCdt_fit, label='fitted derivative')
24
25 t = np.linspace(min(tspan), max(tspan))
26 plt.plot(t, np.polyval(dp, t), label='resampled derivative')
27 plt.legend(loc='best')
28 plt.savefig('images/deriv-fit-2.png')

You can see a third order polynomial is a reasonable fit here. There are only 6 data points
here, so any higher order risks overfitting. Here is the comparison of the numerical derivative and
the fitted derivative. We have "resampled" the fitted derivative to show the actual shape. Note the
derivative appears to go through a maximum near t = 0.9. In this case, that is probably unphysical
as the data is related to the consumption of species A in a reaction. The derivative should increase

32

monotonically to zero. The increase is an artefact of the fitting process. End points are especially
sensitive to this kind of error.

3.5 Derivatives by fitting a function and taking the analytical derivative

A variation of a polynomial fit is to fit a model with reasonable physics. Here we fit a nonlinear
function to the noisy data. The model is for the concentration vs. time in a batch reactor for a
first order irreversible reaction. Once we fit the data, we take the analytical derivative of the fitted
function.

1 import numpy as np
2 import matplotlib.pyplot as plt
3 from scipy.optimize import curve_fit
4 from pycse import deriv
5
6 tspan = np.array([0, 0.1, 0.2, 0.4, 0.8, 1])
7 Ca_data = np.array([2.0081, 1.5512, 1.1903, 0.7160, 0.2562, 0.1495])
8
9 def func(t, Ca0, k):

10 return Ca0 * np.exp(-k * t)
11
12
13 pars, pcov = curve_fit(func, tspan, Ca_data, p0=[2, 2.3])
14
15 plt.plot(tspan, Ca_data)
16 plt.plot(tspan, func(tspan, *pars), 'g-')
17 plt.savefig('images/deriv-funcfit-1.png')
18
19 # analytical derivative

33

20 k, Ca0 = pars
21 dCdt = -k * Ca0 * np.exp(-k * tspan)
22 t = np.linspace(0, 2)
23 dCdt_res = -k * Ca0 * np.exp(-k * t)
24
25 plt.figure()
26 plt.plot(tspan, deriv(tspan, Ca_data), label='numerical derivative')
27 plt.plot(tspan, dCdt, label='analytical derivative of fit')
28 plt.plot(t, dCdt_res, label='extrapolated')
29 plt.legend(loc='best')
30 plt.savefig('images/deriv-funcfit-2.png')

Visually this fit is about the same as a third order polynomial. Note the difference in the
derivative though. We can readily extrapolate this derivative and get reasonable predictions of the
derivative. That is true in this case because we fitted a physically relevant model for concentration
vs. time for an irreversible, first order reaction.

34

3.6 Derivatives by FFT

1 import numpy as np
2 import matplotlib.pyplot as plt
3
4 N = 101 #number of points
5 L = 2 * np.pi #interval of data
6
7 x = np.arange(0.0, L, L/float(N)) #this does not include the endpoint
8
9 #add some random noise

10 y = np.sin(x) + 0.05 * np.random.random(size=x.shape)
11 dy_analytical = np.cos(x)
12
13 '''
14 http://sci.tech-archive.net/Archive/sci.math/2008-05/msg00401.html
15
16 you can use fft to calculate derivatives!
17 '''
18
19 if N % 2 == 0:
20 k = np.asarray(list(range(0, N // 2)) + [0] + list(range(-N // 2 + 1, 0)), np.float64)
21 else:
22 k = np.asarray(list(range(0, (N - 1) // 2)) + [0] + list(range(-(N - 1) // 2, 0)), np.float64)
23
24 k *= 2 * np.pi / L
25
26 fd = np.real(np.fft.ifft(1.0j * k * np.fft.fft(y)))
27
28 plt.plot(x, y, label='function')
29 plt.plot(x,dy_analytical,label='analytical der')
30 plt.plot(x,fd,label='fft der')

35

31 plt.legend(loc='lower left')
32
33 plt.savefig('images/fft-der.png')
34 plt.show()

3.7 A novel way to numerically estimate the derivative of a function - complex-
step derivative approximation

Matlab post
Adapted from http://biomedicalcomputationreview.org/2/3/8.pdf and http://dl.acm.

org/citation.cfm?id=838250.838251
This posts introduces a novel way to numerically estimate the derivative of a function that does

not involve finite difference schemes. Finite difference schemes are approximations to derivatives
that become more and more accurate as the step size goes to zero, except that as the step size
approaches the limits of machine accuracy, new errors can appear in the approximated results.
In the references above, a new way to compute the derivative is presented that does not rely on
differences!

The new way is: f ′(x) = imag(f(x + i∆x)/∆x) where the function f is evaluated in imaginary
space with a small ∆x in the complex plane. The derivative is miraculously equal to the imaginary
part of the result in the limit of ∆x→ 0!

This example comes from the first link. The derivative must be evaluated using the chain rule.
We compare a forward difference, central difference and complex-step derivative approximations.

1 import numpy as np
2 import matplotlib.pyplot as plt

36

http://matlab.cheme.cmu.edu/2011/12/24/a-novel-way-to-numerically-estimate-the-derivative-of-a-function-complex-step-derivative-approximation/
http://biomedicalcomputationreview.org/2/3/8.pdf
http://dl.acm.org/citation.cfm?id=838250.838251
http://dl.acm.org/citation.cfm?id=838250.838251

3
4 def f(x): return np.sin(3*x)*np.log(x)
5
6 x = 0.7
7 h = 1e-7
8
9 # analytical derivative

10 dfdx_a = 3 * np.cos(3*x)*np.log(x) + np.sin(3*x) / x
11
12 # finite difference
13 dfdx_fd = (f(x + h) - f(x))/h
14
15 # central difference
16 dfdx_cd = (f(x+h)-f(x-h))/(2*h)
17
18 # complex method
19 dfdx_I = np.imag(f(x + np.complex(0, h))/h)
20
21 print(dfdx_a)
22 print(dfdx_fd)
23 print(dfdx_cd)
24 print(dfdx_I)

These are all the same to 4 decimal places. The simple finite difference is the least accurate,
and the central differences is practically the same as the complex number approach.

Let us use this method to verify the fundamental Theorem of Calculus, i.e. to evaluate the

derivative of an integral function. Let f(x) =
x2∫
1
tan(t3)dt, and we now want to compute df/dx. Of

course, this can be done analytically, but it is not trivial!

1 import numpy as np
2 from scipy.integrate import quad
3
4 def f_(z):
5 def integrand(t):
6 return np.tan(t**3)
7 return quad(integrand, 0, z**2)
8
9 f = np.vectorize(f_)

10
11 x = np.linspace(0, 1)
12
13 h = 1e-7
14
15 dfdx = np.imag(f(x + complex(0, h)))/h
16 dfdx_analytical = 2 * x * np.tan(x**6)
17
18 import matplotlib.pyplot as plt
19
20 plt.plot(x, dfdx, x, dfdx_analytical, 'r--')
21 plt.show()

Interesting this fails.

3.8 Vectorized piecewise functions

Matlab post Occasionally we need to define piecewise functions, e.g.

37

http://mathmistakes.info/facts/CalculusFacts/learn/doi/doif.html
http://matlab.cheme.cmu.edu/2011/11/05/vectorized-piecewise-functions/

f(x) = 0, x < 0 (1)
= x, 0 <= x < 1 (2)
= 2− x, 1 < x <= 2 (3)
= 0, x > 2 (4)

Today we examine a few ways to define a function like this. A simple way is to use conditional
statements.

1 def f1(x):
2 if x < 0:
3 return 0
4 elif (x >= 0) & (x < 1):
5 return x
6 elif (x >= 1) & (x < 2):
7 return 2.0 - x
8 else:
9 return 0

10
11 print(f1(-1))
12 #print(f1([0, 1, 2, 3])) # does not work!

This works, but the function is not vectorized, i.e. f([-1 0 2 3]) does not evaluate properly (it
should give a list or array). You can get vectorized behavior by using list comprehension, or by
writing your own loop. This does not fix all limitations, for example you cannot use the f1 function
in the quad function to integrate it.

1 import numpy as np
2 import matplotlib.pyplot as plt
3
4 x = np.linspace(-1, 3)
5 y = [f1(xx) for xx in x]
6
7 plt.plot(x, y)
8 plt.savefig('images/vector-piecewise.png')

38

Neither of those methods is convenient. It would be nicer if the function was vectorized, which
would allow the direct notation f1([0, 1, 2, 3, 4]). A simple way to achieve this is through the use
of logical arrays. We create logical arrays from comparison statements.

1 def f2(x):
2 'fully vectorized version'
3 x = np.asarray(x)
4 y = np.zeros(x.shape)
5 y += ((x >= 0) & (x < 1)) * x
6 y += ((x >= 1) & (x < 2)) * (2 - x)
7 return y
8
9 print(f2([-1, 0, 1, 2, 3, 4]))

10 x = np.linspace(-1,3);
11 plt.plot(x,f2(x))
12 plt.savefig('images/vector-piecewise-2.png')

39

A third approach is to use Heaviside functions. The Heaviside function is defined to be zero for
x less than some value, and 0.5 for x=0, and 1 for x >= 0. If you can live with y=0.5 for x=0, you
can define a vectorized function in terms of Heaviside functions like this.

1 def heaviside(x):
2 x = np.array(x)
3 if x.shape != ():
4 y = np.zeros(x.shape)
5 y[x > 0.0] = 1
6 y[x == 0.0] = 0.5
7 else: # special case for 0d array (a number)
8 if x > 0: y = 1
9 elif x == 0: y = 0.5

10 else: y = 0
11 return y
12
13 def f3(x):
14 x = np.array(x)
15 y1 = (heaviside(x) - heaviside(x - 1)) * x # first interval
16 y2 = (heaviside(x - 1) - heaviside(x - 2)) * (2 - x) # second interval
17 return y1 + y2
18
19 from scipy.integrate import quad
20 print(quad(f3, -1, 3))

1 plt.plot(x, f3(x))
2 plt.savefig('images/vector-piecewise-3.png')

40

There are many ways to define piecewise functions, and vectorization is not always necessary.
The advantages of vectorization are usually notational simplicity and speed; loops in python are
usually very slow compared to vectorized functions.

3.9 Smooth transitions between discontinuous functions

original post
In Post 1280 we used a correlation for the Fanning friction factor for turbulent flow in a pipe.

For laminar flow (Re < 3000), there is another correlation that is commonly used: fF = 16/Re.
Unfortunately, the correlations for laminar flow and turbulent flow have different values at the
transition that should occur at Re = 3000. This discontinuity can cause a lot of problems for
numerical solvers that rely on derivatives.

Today we examine a strategy for smoothly joining these two functions. First we define the two
functions.

1 import numpy as np
2 from scipy.optimize import fsolve
3 import matplotlib.pyplot as plt
4
5 def fF_laminar(Re):
6 return 16.0 / Re
7
8 def fF_turbulent_unvectorized(Re):
9 # Nikuradse correlation for turbulent flow

10 # 1/np.sqrt(f) = (4.0*np.log10(Re*np.sqrt(f))-0.4)
11 # we have to solve this equation to get f
12 def func(f):

41

http://matlab.cheme.cmu.edu/2011/10/30/smooth-transitions-between-discontinuous-functions/
http://matlab.cheme.cmu.edu/2011/10/27/compute-pipe-diameter/

13 return 1/np.sqrt(f) - (4.0*np.log10(Re*np.sqrt(f))-0.4)
14 fguess = 0.01
15 f, = fsolve(func, fguess)
16 return f
17
18 # this enables us to pass vectors to the function and get vectors as
19 # solutions
20 fF_turbulent = np.vectorize(fF_turbulent_unvectorized)

Now we plot the correlations.

1 Re1 = np.linspace(500, 3000)
2 f1 = fF_laminar(Re1)
3
4 Re2 = np.linspace(3000, 10000)
5 f2 = fF_turbulent(Re2)
6
7 plt.figure(1); plt.clf()
8 plt.plot(Re1, f1, label='laminar')
9 plt.plot(Re2, f2, label='turbulent')

10 plt.xlabel('Re')
11 plt.ylabel('f_F')
12 plt.legend()
13 plt.savefig('images/smooth-transitions-1.png')

You can see the discontinuity at Re = 3000. What we need is a method to join these two
functions smoothly. We can do that with a sigmoid function. Sigmoid functions

A sigmoid function smoothly varies from 0 to 1 according to the equation: σ(x) = 1
1+e−(x−x0)/α .

The transition is centered on x0, and α determines the width of the transition.

42

1 x = np.linspace(-4, 4);
2 y = 1.0 / (1 + np.exp(-x / 0.1))
3 plt.figure(2)
4 plt.clf()
5 plt.plot(x, y)
6 plt.xlabel('x'); plt.ylabel('y'); plt.title('$\sigma(x)$')
7 plt.savefig('images/smooth-transitions-sigma.png')

If we have two functions, f1(x) and f2(x) we want to smoothly join, we do it like this: f(x) =
(1 − σ(x))f1(x) + σ(x)f2(x). There is no formal justification for this form of joining, it is simply
a mathematical convenience to get a numerically smooth function. Other functions besides the
sigmoid function could also be used, as long as they smoothly transition from 0 to 1, or from 1 to
zero.

1 def fanning_friction_factor(Re):
2 '''combined, continuous correlation for the fanning friction factor.
3 the alpha parameter is chosen to provide the desired smoothness.
4 The transition region is about +- 4*alpha. The value 450 was
5 selected to reasonably match the shape of the correlation
6 function provided by Morrison (see last section of this file)'''
7 sigma = 1. / (1 + np.exp(-(Re - 3000.0) / 450.0));
8 f = (1-sigma) * fF_laminar(Re) + sigma * fF_turbulent(Re)
9 return f

10
11 Re = np.linspace(500, 10000);
12 f = fanning_friction_factor(Re);
13
14 # add data to figure 1
15 plt.figure(1)

43

16 plt.plot(Re,f, label='smooth transition')
17 plt.xlabel('Re')
18 plt.ylabel('f_F')
19 plt.legend()
20 plt.savefig('images/smooth-transitions-3.png')

You can see that away from the transition the combined function is practically equivalent to
the original two functions. That is because away from the transition the sigmoid function is 0 or
1. Near Re = 3000 is a smooth transition from one curve to the other curve.

Morrison derived a single function for the friction factor correlation over all Re: f = 0.0076(3170
Re)0.165

1+(3171
Re)7.0 +

16
Re . Here we show the comparison with the approach used above. The friction factor differs slightly
at high Re, because Morrison’s is based on the Prandlt correlation, while the work here is based
on the Nikuradse correlation. They are similar, but not the same.

1 # add this correlation to figure 1
2 h, = plt.plot(Re, 16.0/Re + (0.0076 * (3170 / Re)**0.165) / (1 + (3170.0 / Re)**7))
3
4 ax = plt.gca()
5 handles, labels = ax.get_legend_handles_labels()
6
7 handles.append(h)
8 labels.append('Morrison')
9 ax.legend(handles, labels)

10 plt.savefig('images/smooth-transitions-morrison.png')

44

http://www.chem.mtu.edu/~fmorriso/DataCorrelationForSmoothPipes2010.pdf

3.9.1 Summary

The approach demonstrated here allows one to smoothly join two discontinuous functions that
describe physics in different regimes, and that must transition over some range of data. It should be
emphasized that the method has no physical basis, it simply allows one to create a mathematically
smooth function, which could be necessary for some optimizers or solvers to work.

3.10 Smooth transitions between two constants

Suppose we have a parameter that has two different values depending on the value of a dimensionless
number. For example when the dimensionless number is much less than 1, x = 2/3, and when x
is much greater than 1, x = 1. We desire a smooth transition from 2/3 to 1 as a function of x to
avoid discontinuities in functions of x. We will adapt the smooth transitions between functions to
be a smooth transition between constants.

We define our function as x(D) = x0 + (x1 − x0) ∗ (1 − sigma(D,w). We control the rate of
the transition by the variable w

1 import numpy as np
2 import matplotlib.pyplot as plt
3
4 x0 = 2.0 / 3.0
5 x1 = 1.5
6
7 w = 0.05
8
9 D = np.linspace(0,2, 500)

45

10
11 sigmaD = 1.0 / (1.0 + np.exp(-(1 - D) / w))
12
13 x = x0 + (x1 - x0)*(1 - sigmaD)
14
15 plt.plot(D, x)
16 plt.xlabel('D'); plt.ylabel('x')
17 plt.savefig('images/smooth-transitions-constants.png')

This is a nice trick to get an analytical function with continuous derivatives for a transition
between two constants. You could have the transition occur at a value other than D = 1, as well
by changing the argument to the exponential function.

3.11 On the quad or trapz’d in ChemE heaven

Matlab post
What is the difference between quad and trapz? The short answer is that quad integrates

functions (via a function handle) using numerical quadrature, and trapz performs integration of
arrays of data using the trapezoid method.

Let us look at some examples. We consider the example of computing
∫ 2

0 x
3dx. the analytical

integral is 1/4x4, so we know the integral evaluates to 16/4 = 4. This will be our benchmark for
comparison to the numerical methods.

We use the scipy.integrate.quad command to evaluate this
∫ 2

0 x
3dx.

1 from scipy.integrate import quad
2

46

http://matlab.cheme.cmu.edu/2011/09/12/on-the-quad-or-trapzd-in-cheme-heaven/

3 ans, err = quad(lambda x: x**3, 0, 2)
4 print(ans)

you can also define a function for the integrand.

1 from scipy.integrate import quad
2
3 def integrand(x):
4 return x**3
5
6 ans, err = quad(integrand, 0, 2)
7 print(ans)

3.11.1 Numerical data integration

if we had numerical data like this, we use trapz to integrate it

1 import numpy as np
2
3 x = np.array([0, 0.5, 1, 1.5, 2])
4 y = x**3
5
6 i2 = np.trapz(y, x)
7
8 error = (i2 - 4) / 4
9

10 print(i2, error)

Note the integral of these vectors is greater than 4! You can see why here.

1 import numpy as np
2 import matplotlib.pyplot as plt
3 x = np.array([0, 0.5, 1, 1.5, 2])
4 y = x**3
5
6 x2 = np.linspace(0, 2)
7 y2 = x2**3
8
9 plt.plot(x, y, label='5 points')

10 plt.plot(x2, y2, label='50 points')
11 plt.legend()
12 plt.savefig('images/quad-1.png')

47

The trapezoid method is overestimating the area significantly. With more points, we get much
closer to the analytical value.

1 import numpy as np
2
3 x2 = np.linspace(0, 2, 100)
4 y2 = x2**3
5
6 print(np.trapz(y2, x2))

3.11.2 Combining numerical data with quad

You might want to combine numerical data with the quad function if you want to perform integrals
easily. Let us say you are given this data:

x = [0 0.5 1 1.5 2]; y = [0 0.1250 1.0000 3.3750 8.0000];
and you want to integrate this from x = 0.25 to 1.75. We do not have data in those regions, so

some interpolation is going to be needed. Here is one approach.

1 from scipy.interpolate import interp1d
2 from scipy.integrate import quad
3 import numpy as np
4
5 x = [0, 0.5, 1, 1.5, 2]
6 y = [0, 0.1250, 1.0000, 3.3750, 8.0000]
7
8 f = interp1d(x, y)
9

48

10 # numerical trapezoid method
11 xfine = np.linspace(0.25, 1.75)
12 yfine = f(xfine)
13 print(np.trapz(yfine, xfine))
14
15 # quadrature with interpolation
16 ans, err = quad(f, 0.25, 1.75)
17 print(ans)

These approaches are very similar, and both rely on linear interpolation. The second approach
is simpler, and uses fewer lines of code.

3.11.3 Summary

trapz and quad are functions for getting integrals. Both can be used with numerical data if inter-
polation is used. The syntax for the quad and trapz function is different in scipy than in Matlab.

Finally, see this post for an example of solving an integral equation using quad and fsolve.

3.12 Polynomials in python

Matlab post
Polynomials can be represented as a list of coefficients. For example, the polynomial 4∗x3 + 3∗

x2 − 2 ∗ x+ 10 = 0 can be represented as [4, 3, -2, 10]. Here are some ways to create a polynomial
object, and evaluate it.

1 import numpy as np
2
3 ppar = [4, 3, -2, 10]
4 p = np.poly1d(ppar)
5
6 print(p(3))
7 print(np.polyval(ppar, 3))
8
9 x = 3

10 print(4*x**3 + 3*x**2 -2*x + 10)

numpy makes it easy to get the derivative and integral of a polynomial.
Consider: y = 2x2 − 1. We know the derivative is 4x. Here we compute the derivative and

evaluate it at x=4.

1 import numpy as np
2
3 p = np.poly1d([2, 0, -1])
4 p2 = np.polyder(p)
5 print(p2)
6 print(p2(4))

The integral of the previous polynomial is 2
3x

3 − x+ c. We assume C = 0. Let us compute the
integral

∫ 4
2 2x2 − 1dx.

1 import numpy as np
2
3 p = np.poly1d([2, 0, -1])
4 p2 = np.polyint(p)
5 print(p2)
6 print(p2(4) - p2(2))

49

http://matlab.cheme.cmu.edu/2011/08/30/solving-integral-equations/
http://matlab.cheme.cmu.edu/2011/08/01/polynomials-in-matlab/

One reason to use polynomials is the ease of finding all of the roots using numpy.roots.

1 import numpy as np
2 print(np.roots([2, 0, -1])) # roots are +- sqrt(2)
3
4 # note that imaginary roots exist, e.g. x^2 + 1 = 0 has two roots, +-i
5 p = np.poly1d([1, 0, 1])
6 print(np.roots(p))

There are applications of polynomials in thermodynamics. The van der waal equation is a cubic
polynomial f(V) = V 3 − pnb+nRT

p V 2 + n2a
p V −

n3ab
p = 0, where a and b are constants, p is the

pressure, R is the gas constant, T is an absolute temperature and n is the number of moles. The
roots of this equation tell you the volume of the gas at those conditions.

1 import numpy as np
2 # numerical values of the constants
3 a = 3.49e4
4 b = 1.45
5 p = 679.7 # pressure in psi
6 T = 683 # T in Rankine
7 n = 1.136 # lb-moles
8 R = 10.73 # ft^3 * psi /R / lb-mol
9

10 ppar = [1.0, -(p*n*b+n*R*T)/p, n**2*a/p, -n**3*a*b/p];
11 print(np.roots(ppar))

Note that only one root is real (and even then, we have to interpret 0.j as not being imaginary.
Also, in a cubic polynomial, there can only be two imaginary roots). In this case that means there
is only one phase present.

3.12.1 Summary

Polynomials in numpy are even better than in Matlab, because you get a polynomial object that
acts just like a function. Otherwise, they are functionally equivalent.

3.13 Wilkinson’s polynomial

Wilkinson’s polynomial is defined as w(x) = ∏20
i=1(x− i) = (x− 1)(x− 2) . . . (x− 20).

This innocent looking function has 20 roots, which are 1,2,3,. . . ,19,20. Here is a plot of the
function.

1 import matplotlib.pyplot as plt
2 import numpy as np
3
4 @np.vectorize
5 def wilkinson(x):
6 p = np.prod(np.array([x - i for i in range(1, 21)]))
7 return p
8
9 x = np.linspace(0, 21, 1000)

10 plt.plot(x, wilkinson(x))
11 plt.ylim([-5e13, 5e13])
12 plt.savefig('./images/wilkinson-1.png')

50

http://en.wikipedia.org/wiki/Wilkinson%27s_polynomial

Let us consider the expanded version of the polynomial. We will use sympy to expand the
polynomial.

1 from sympy import Symbol, Poly
2 from sympy.polys.polytools import poly_from_expr
3
4 x = Symbol('x')
5 W = 1
6 for i in range(1, 21):
7 W = W * (x-i)
8
9 print(W.expand())

10
11 P,d = poly_from_expr(W.expand())
12 print(P)

The coefficients are orders of magnitude apart in size. This should make you nervous, because
the roots of this equation are between 1-20, but there are numbers here that are O(19). This is
likely to make any rounding errors in the number representations very significant, and may lead to
issues with accuracy of the solution. Let us explore that.

We will get the roots using numpy.roots.

1 import numpy as np
2 from sympy import Symbol
3 from sympy.polys.polytools import poly_from_expr
4
5 x = Symbol('x')
6 W = 1

51

7 for i in range(1, 21):
8 W = W * (x-i)
9

10 P,d = poly_from_expr(W.expand())
11 p = P.all_coeffs()
12 x = np.arange(1, 21)
13 print('\nThese are the known roots\n',x)
14
15 # evaluate the polynomial at the known roots
16 print('\nThe polynomial evaluates to {0} at the known roots'.format(np.polyval(p, x)))
17
18 # find the roots ourselves
19 roots = np.roots(p)
20 print('\nHere are the roots from numpy:\n', roots)
21
22 # evaluate solution at roots
23 print('\nHere is the polynomial evaluated at the calculated roots:\n', np.polyval(p, roots))

The roots are not exact. Even more to the point, the polynomial does not evaluate to zero at
the calculated roots! Something is clearly wrong here. The polynomial function is fine, and it does
evaluate to zero at the known roots which are integers. It is subtle, but up to that point, we are
using only integers, which can be represented exactly. The roots function is evidently using some
float math, and the floats are not the same as the integers.

If we simply change the roots to floats, and reevaluate our polynomial, we get dramatically
different results.

1 import numpy as np
2 from sympy import Symbol
3 from sympy.polys.polytools import poly_from_expr
4
5 x = Symbol('x')
6 W = 1
7 for i in range(1, 21):
8 W = W * (x - i)
9

10 P, d = poly_from_expr(W.expand())
11 p = P.all_coeffs()
12 x = np.arange(1, 21, dtype=np.float)
13 print('\nThese are the known roots\n',x)
14
15 # evaluate the polynomial at the known roots
16 print('\nThe polynomial evaluates to {0} at the known roots'.format(np.polyval(p, x)))

This also happens if we make the polynomial coefficients floats. That happens because in
Python whenever one element is a float the results of math operations with that element are floats.

1 import numpy as np
2 from sympy import Symbol
3 from sympy.polys.polytools import poly_from_expr
4
5 x = Symbol('x')
6 W = 1
7 for i in range(1, 21):
8 W = W * (x - i)
9

10 P,d = poly_from_expr(W.expand())
11 p = [float(x) for x in P.all_coeffs()]
12 x = np.arange(1, 21)
13 print('\nThese are the known roots\n',x)
14

52

15 # evaluate the polynomial at the known roots
16 print('\nThe polynomial evaluates to {0} at the known roots'.format(np.polyval(p, x)))

Let us try to understand what is happening here. It turns out that the integer and float
representations of the numbers are different! It is known that you cannot exactly represent numbers
as floats.

1 import numpy as np
2 from sympy import Symbol
3 from sympy.polys.polytools import poly_from_expr
4
5 x = Symbol('x')
6 W = 1
7 for i in range(1, 21):
8 W = W * (x - i)
9

10 P, d = poly_from_expr(W.expand())
11 p = P.all_coeffs()
12 print(p)
13 print('{0:<30s}{1:<30s}{2}'.format('Integer','Float','\delta'))
14 for pj in p:
15 print('{0:<30d}{1:<30f}{2:3e}'.format(int(pj), float(pj), int(pj) - float(pj)))

Now you can see the issue. Many of these numbers are identical in integer and float form,
but some of them are not. The integer cannot be exactly represented as a float, and there is a
difference in the representations. It is a small difference compared to the magnitude, but these
kinds of differences get raised to high powers, and become larger. You may wonder why I used
"0:<30s>" to print the integer? That is because pj in that loop is an object from sympy, which
prints as a string.

This is a famous, and well known problem that is especially bad for this case. This illustrates
that you cannot simply rely on what a computer tells you the answer is, without doing some critical
thinking about the problem and the solution. Especially in problems where there are coefficients
that vary by many orders of magnitude you should be cautious.

There are a few interesting webpages on this topic, which inspired me to work this out in
python. These webpages go into more detail on this problem, and provide additional insight into
the sensitivity of the solutions to the polynomial coefficients.

1. http://blogs.mathworks.com/cleve/2013/03/04/wilkinsons-polynomials/

2. http://www.numericalexpert.com/blog/wilkinson_polynomial/

3. http://en.wikipedia.org/wiki/Wilkinson%27s_polynomial

3.14 The trapezoidal method of integration

Matlab post See http://en.wikipedia.org/wiki/Trapezoidal_rule

∫ b

a
f(x)dx ≈ 1

2

N∑
k=1

(xk+1 − xk)(f(xk+1) + f(xk))

Let us compute the integral of sin(x) from x=0 to π. To approximate the integral, we need to
divide the interval from a to b into N intervals. The analytical answer is 2.0.

We will use this example to illustrate the difference in performance between loops and vectorized
operations in python.

53

http://blogs.mathworks.com/cleve/2013/03/04/wilkinsons-polynomials/
http://www.numericalexpert.com/blog/wilkinson_polynomial/
http://en.wikipedia.org/wiki/Wilkinson%27s_polynomial
http://matlab.cheme.cmu.edu/2011/10/14/the-trapezoidal-method-of-integration/
http://en.wikipedia.org/wiki/Trapezoidal_rule

1 import numpy as np
2 import time
3
4 a = 0.0; b = np.pi;
5 N = 1000; # this is the number of intervals
6
7 h = (b - a)/N; # this is the width of each interval
8 x = np.linspace(a, b, N)
9 y = np.sin(x); # the sin function is already vectorized

10
11 t0 = time.time()
12 f = 0.0
13 for k in range(len(x) - 1):
14 f += 0.5 * ((x[k+1] - x[k]) * (y[k+1] + y[k]))
15
16 tf = time.time() - t0
17 print('time elapsed = {0} sec'.format(tf))
18
19 print(f)

1 t0 = time.time()
2 Xk = x[1:-1] - x[0:-2] # vectorized version of (x[k+1] - x[k])
3 Yk = y[1:-1] + y[0:-2] # vectorized version of (y[k+1] + y[k])
4
5 f = 0.5 * np.sum(Xk * Yk) # vectorized version of the loop above
6 tf = time.time() - t0
7 print('time elapsed = {0} sec'.format(tf))
8
9 print(f)

In the last example, there may be loop buried in the sum command. Let us do one final method,
using linear algebra, in a single line. The key to understanding this is to recognize the sum is just
the result of a dot product of the x differences and y sums.

1 t0 = time.time()
2 f = 0.5 * np.dot(Xk, Yk)
3 tf = time.time() - t0
4 print('time elapsed = {0} sec'.format(tf))
5
6 print(f)

The loop method is straightforward to code, and looks alot like the formula that defines the
trapezoid method. the vectorized methods are not as easy to read, and take fewer lines of code to
write. However, the vectorized methods are much faster than the loop, so the loss of readability
could be worth it for very large problems.

The times here are considerably slower than in Matlab. I am not sure if that is a totally fair
comparison. Here I am running python through emacs, which may result in slower performance.
I also used a very crude way of timing the performance which lumps some system performance in
too.

3.15 Numerical Simpsons rule

A more accurate numerical integration than the trapezoid method is Simpson’s rule. The syntax
is similar to trapz, but the method is in scipy.integrate.

54

http://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.simps.html

1 import numpy as np
2 from scipy.integrate import simps, romb
3
4 a = 0.0; b = np.pi / 4.0;
5 N = 10 # this is the number of intervals
6
7 x = np.linspace(a, b, N)
8 y = np.cos(x)
9

10 t = np.trapz(y, x)
11 s = simps(y, x)
12 a = np.sin(b) - np.sin(a)
13
14 print('trapz = {0} ({1:%} error)'.format(t, (t - a)/a))
15 print('simps = {0} ({1:%} error)'.format(s, (s - a)/a))
16 print('analy = {0}'.format(a))

You can see the Simpson’s method is more accurate than the trapezoid method.

3.16 Integrating functions in python

Matlab post
Problem statement
find the integral of a function f(x) from a to b i.e.∫ b

a
f(x)dx

In python we use numerical quadrature to achieve this with the scipy.integrate.quad command.
as a specific example, lets integrate

y = x2

from x=0 to x=1. You should be able to work out that the answer is 1/3.

1 from scipy.integrate import quad
2
3 def integrand(x):
4 return x**2
5
6 ans, err = quad(integrand, 0, 1)
7 print(ans)

3.16.1 double integrals

we use the scipy.integrate.dblquad command
Integrate f(x, y) = ysin(x) + xcos(y) over
π <= x <= 2π
0 <= y <= π
i.e.∫ 2π
x=π

∫ π
y=0 ysin(x) + xcos(y)dydx

The syntax in dblquad is a bit more complicated than in Matlab. We have to provide callable
functions for the range of the y-variable. Here they are constants, so we create lambda functions
that return the constants. Also, note that the order of arguments in the integrand is different than
in Matlab.

55

http://matlab.cheme.cmu.edu/2011/08/01/integrating-functions-in-matlab/

1 from scipy.integrate import dblquad
2 import numpy as np
3
4 def integrand(y, x):
5 'y must be the first argument, and x the second.'
6 return y * np.sin(x) + x * np.cos(y)
7
8 ans, err = dblquad(integrand, np.pi, 2*np.pi,
9 lambda x: 0,

10 lambda x: np.pi)
11 print (ans)

we use the tplquad command to integrate f(x, y, z) = ysin(x) + zcos(x) over the region
0 <= x <= π
0 <= y <= 1
−1 <= z <= 1

1 from scipy.integrate import tplquad
2 import numpy as np
3
4 def integrand(z, y, x):
5 return y * np.sin(x) + z * np.cos(x)
6
7 ans, err = tplquad(integrand,
8 0, np.pi, # x limits
9 lambda x: 0,

10 lambda x: 1, # y limits
11 lambda x,y: -1,
12 lambda x,y: 1) # z limits
13
14 print (ans)

3.16.2 Summary

scipy.integrate offers the same basic functionality as Matlab does. The syntax differs significantly
for these simple examples, but the use of functions for the limits enables freedom to integrate over
non-constant limits.

3.17 Integrating equations in python

A common need in engineering calculations is to integrate an equation over some range to determine
the total change. For example, say we know the volumetric flow changes with time according to
dν/dt = αt, where α = 1 L/min and we want to know how much liquid flows into a tank over 10
minutes if the volumetric flowrate is ν0 = 5 L/min at t = 0. The answer to that question is the
value of this integral: V =

∫ 10
0 ν0 + αtdt.

1 import scipy
2 from scipy.integrate import quad
3
4 nu0 = 5 # L/min
5 alpha = 1.0 # L/min
6 def integrand(t):
7 return nu0 + alpha * t
8
9 t0 = 0.0

10 tfinal = 10.0
11 V, estimated_error = quad(integrand, t0, tfinal)
12 print('{0:1.2f} L flowed into the tank over 10 minutes'.format(V))

56

That is all there is too it!

3.18 Function integration by the Romberg method

An alternative to the scipy.integrate.quad function is the Romberg method. This method is not
likely to be more accurate than quad, and it does not give you an error estimate.

1 import numpy as np
2
3 from scipy.integrate import quad, romberg
4
5 a = 0.0
6 b = np.pi / 4.0
7
8 print(quad(np.sin, a, b))
9 print(romberg(np.sin, a, b))

3.19 Symbolic math in python

Matlab post Python has capability to do symbolic math through the sympy package.

3.19.1 Solve the quadratic equation

1 from sympy import solve, symbols, pprint
2
3 a, b, c, x = symbols('a,b,c,x')
4
5 f = a*x**2 + b*x + c
6
7 solution = solve(f, x)
8 print(solution)
9 pprint(solution)

The solution you should recognize in the form of b±
√
b2−4ac
2a although python does not print it

this nicely!

3.19.2 differentiation

you might find this helpful!

1 from sympy import diff
2
3 print(diff(f, x))
4 print(diff(f, x, 2))
5
6 print(diff(f, a))

3.19.3 integration

1 from sympy import integrate
2
3 print(integrate(f, x)) # indefinite integral
4 print(integrate(f, (x, 0, 1))) # definite integral from x=0..1

57

http://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.romberg.html
http://matlab.cheme.cmu.edu/2011/08/10/symbolic-math-in-matlab/

3.19.4 Analytically solve a simple ODE

1 from sympy import Function, Symbol, dsolve
2 f = Function('f')
3 x = Symbol('x')
4 fprime = f(x).diff(x) - f(x) # f' = f(x)
5
6 y = dsolve(fprime, f(x))
7
8 print(y)
9 print(y.subs(x,4))

10 print([y.subs(x, X) for X in [0, 0.5, 1]]) # multiple values

It is not clear you can solve the initial value problem to get C1.
The symbolic math in sympy is pretty good. It is not up to the capability of Maple or Math-

ematica, (but neither is Matlab) but it continues to be developed, and could be helpful in some
situations.

3.20 Is your ice cream float bigger than mine

Float numbers (i.e. the ones with decimals) cannot be perfectly represented in a computer. This
can lead to some artifacts when you have to compare float numbers that on paper should be the
same, but in silico are not. Let us look at some examples. In this example, we do some simple
math that should result in an answer of 1, and then see if the answer is "equal" to one.

1 print(3.0 * (1.0/3.0))
2 print(1.0 == 3.0 * (1.0/3.0))

Everything looks fine. Now, consider this example.

1 print(49.0 * (1.0/49.0))
2 print(1.0 == 49.0 * (1.0/49.0))

The first line shows the result is not 1.0, and the equality fails! You can see here why the
equality statement fails. We will print the two numbers to sixteen decimal places.

1 print('{0:1.16f}'.format(49.0 * (1.0 / 49.0)))
2 print('{0:1.16f}'.format(1.0))
3 print(1 - 49.0 * (1.0 / 49.0))

The two numbers actually are not equal to each other because of float math. They are very,
very close to each other, but not the same.

This leads to the idea of asking if two numbers are equal to each other within some tolerance.
The question of what tolerance to use requires thought. Should it be an absolute tolerance? a
relative tolerance? How large should the tolerance be? We will use the distance between 1 and
the nearest floating point number (this is eps in Matlab). numpy can tell us this number with the
np.spacing command.

Below, we implement a comparison function from doi:10.1107/S010876730302186X that allows
comparisons with tolerance.

58

http://dx.doi.org/10.1107/S010876730302186X

1 # Implemented from Acta Crystallographica A60, 1-6 (2003). doi:10.1107/S010876730302186X
2
3 import numpy as np
4 print(np.spacing(1))
5
6 def feq(x, y, epsilon):
7 'x == y'
8 return not((x < (y - epsilon)) or (y < (x - epsilon)))
9

10 print(feq(1.0, 49.0 * (1.0/49.0), np.spacing(1)))

For completeness, here are the other float comparison operators from that paper. We also show
a few examples.

1 import numpy as np
2
3 def flt(x, y, epsilon):
4 'x < y'
5 return x < (y - epsilon)
6
7 def fgt(x, y, epsilon):
8 'x > y'
9 return y < (x - epsilon)

10
11 def fle(x, y, epsilon):
12 'x <= y'
13 return not(y < (x - epsilon))
14
15 def fge(x, y, epsilon):
16 'x >= y'
17 return not(x < (y - epsilon))
18
19 print(fge(1.0, 49.0 * (1.0/49.0), np.spacing(1)))
20 print(fle(1.0, 49.0 * (1.0/49.0), np.spacing(1)))
21
22 print(fgt(1.0 + np.spacing(1), 49.0 * (1.0/49.0), np.spacing(1)))
23 print(flt(1.0 - 2 * np.spacing(1), 49.0 * (1.0/49.0), np.spacing(1)))

As you can see, float comparisons can be tricky. You have to give a lot of thought to how to
make the comparisons, and the functions shown above are not the only way to do it. You need to
build in testing to make sure your comparisons are doing what you want.

4 Linear algebra

4.1 Potential gotchas in linear algebra in numpy

Numpy has some gotcha features for linear algebra purists. The first is that a 1d array is neither
a row, nor a column vector. That is, a = aT if a is a 1d array. That means you can take the dot
product of a with itself, without transposing the second argument. This would not be allowed in
Matlab.

1 import numpy as np
2
3 a = np.array([0, 1, 2])
4 print(a.shape)
5 print(a)
6 print(a.T)
7

59

8
9 print(np.dot(a, a))

10 print(np.dot(a, a.T))

Compare the syntax to the new Python 3.5 syntax:

1 print(a @ a)

Compare the previous behavior with this 2d array. In this case, you cannot take the dot product
of b with itself, because the dimensions are incompatible. You must transpose the second argument
to make it dimensionally consistent. Also, the result of the dot product is not a simple scalar, but
a 1 × 1 array.

1 b = np.array([[0, 1, 2]])
2 print(b.shape)
3 print(b)
4 print(b.T)
5
6 print(np.dot(b, b)) # this is not ok, the dimensions are wrong.
7 print(np.dot(b, b.T))
8 print(np.dot(b, b.T).shape)

Try to figure this one out! x is a column vector, and y is a 1d vector. Just by adding them you
get a 2d array.

1 x = np.array([[2], [4], [6], [8]])
2 y = np.array([1, 1, 1, 1, 1, 2])
3 print(x + y)

Or this crazy alternative way to do the same thing.

1 x = np.array([2, 4, 6, 8])
2 y = np.array([1, 1, 1, 1, 1, 1, 2])
3
4 print(x[:, np.newaxis] + y)

In the next example, we have a 3 element vector and a 4 element vector. We convert b to a 2D
array with np.newaxis, and compute the outer product of the two arrays. The result is a 4 × 3
array.

1 a = np.array([1, 2, 3])
2 b = np.array([10, 20, 30, 40])
3
4 print(a * b[:, np.newaxis])

These concepts are known in numpy as array broadcasting. See http://www.scipy.org/
EricsBroadcastingDoc and http://docs.scipy.org/doc/numpy/user/basics.broadcasting.
html for more details.

These are points to keep in mind, as the operations do not strictly follow the conventions of
linear algebra, and may be confusing at times.

60

http://www.scipy.org/EricsBroadcastingDoc
http://www.scipy.org/EricsBroadcastingDoc
http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html
http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html

4.2 Solving linear equations

Given these equations, find [x1, x2, x3]

x1 − x2 + x3 = 0 (5)
10x2 + 25x3 = 90 (6)
20x1 + 10x2 = 80 (7)

reference: Kreysig, Advanced Engineering Mathematics, 9th ed. Sec. 7.3
When solving linear equations, we can represent them in matrix form. The we simply use

numpy.linalg.solve to get the solution.

1 import numpy as np
2 A = np.array([[1, -1, 1],
3 [0, 10, 25],
4 [20, 10, 0]])
5
6 b = np.array([0, 90, 80])
7
8 x = np.linalg.solve(A, b)
9 print(x)

10 print(np.dot(A,x))
11
12 # Let us confirm the solution.
13 # this shows one element is not equal because of float tolerance
14 print(np.dot(A,x) == b)
15
16 # here we use a tolerance comparison to show the differences is less
17 # than a defined tolerance.
18 TOLERANCE = 1e-12
19 print(np.abs((np.dot(A, x) - b)) <= TOLERANCE)

It can be useful to confirm there should be a solution, e.g. that the equations are all independent.
The matrix rank will tell us that. Note that numpy:rank does not give you the matrix rank, but
rather the number of dimensions of the array. We compute the rank by computing the number of
singular values of the matrix that are greater than zero, within a prescribed tolerance. We use the
numpy.linalg.svd function for that. In Matlab you would use the rref command to see if there
are any rows that are all zero, but this command does not exist in numpy. That command does
not have practical use in numerical linear algebra and has not been implemented.

1 import numpy as np
2 A = np.array([[1, -1, 1],
3 [0, 10, 25],
4 [20, 10, 0]])
5
6 b = np.array([0, 90, 80])
7
8 # determine number of independent rows in A we get the singular values
9 # and count the number greater than 0.

10 TOLERANCE = 1e-12
11 u, s, v = np.linalg.svd(A)
12 print('Singular values: {0}'.format(s))
13 print('# of independent rows: {0}'.format(np.sum(np.abs(s) > TOLERANCE)))
14
15 # to illustrate a case where there are only 2 independent rows
16 # consider this case where row3 = 2*row2.
17 A = np.array([[1, -1, 1],
18 [0, 10, 25],
19 [0, 20, 50]])

61

20
21 u, s, v = np.linalg.svd(A)
22
23 print('Singular values: {0}'.format(s))
24 print('# of independent rows: {0}'.format(np.sum(np.abs(s) > TOLERANCE)))

Matlab comparison

4.3 Rules for transposition

Matlab comparison
Here are the four rules for matrix multiplication and transposition

1. (AT)T = A

2. (A + B)T = AT + BT

3. (cA)T = cAT

4. (AB)T = BTAT

reference: Chapter 7.2 in Advanced Engineering Mathematics, 9th edition. by E. Kreyszig.

4.3.1 The transpose in Python

There are two ways to get the transpose of a matrix: with a notation, and with a function.

1 import numpy as np
2 A = np.array([[5, -8, 1],
3 [4, 0, 0]])
4
5 # function
6 print(np.transpose(A))
7
8 # notation
9 print(A.T)

4.3.2 Rule 1

1 import numpy as np
2
3 A = np.array([[5, -8, 1],
4 [4, 0, 0]])
5
6 print(np.all(A == (A.T).T))

4.3.3 Rule 2

1 import numpy as np
2 A = np.array([[5, -8, 1],
3 [4, 0, 0]])
4
5 B = np.array([[3, 4, 5], [1, 2,3]])
6
7 print(np.all(A.T + B.T == (A + B).T))

62

http://matlab.cheme.cmu.edu/2011/08/01/solving-linear-equations/
http://matlab.cheme.cmu.edu/2011/08/01/illustrating-matrix-transpose-rules-in-matrix-multiplication/

4.3.4 Rule 3

1 import numpy as np
2 A = np.array([[5, -8, 1],
3 [4, 0, 0]])
4
5 c = 2.1
6
7 print(np.all((c*A).T == c*A.T))

4.3.5 Rule 4

1 import numpy as np
2 A = np.array([[5, -8, 1],
3 [4, 0, 0]])
4
5 B = np.array([[0, 2],
6 [1, 2],
7 [6, 7]])
8
9 print(np.all(np.dot(A, B).T == np.dot(B.T, A.T)))

4.3.6 Summary

That wraps up showing numerically the transpose rules work for these examples.

4.4 Sums products and linear algebra notation - avoiding loops where possible

Matlab comparison
Today we examine some methods of linear algebra that allow us to avoid writing explicit loops

in Matlab for some kinds of mathematical operations.
Consider the operation on two vectors a and b.

y =
n∑
i=1

aibi

a = [1 2 3 4 5]
b = [3 6 8 9 10]

4.4.1 Old-fashioned way with a loop

We can compute this with a loop, where you initialize y, and then add the product of the ith
elements of a and b to y in each iteration of the loop. This is known to be slow for large vectors

1 a = [1, 2, 3, 4, 5]
2 b = [3, 6, 8, 9, 10]
3
4 sum = 0
5 for i in range(len(a)):
6 sum = sum + a[i] * b[i]
7 print(sum)

This is an old fashioned style of coding. A more modern, pythonic approach is:

63

http://matlab.cheme.cmu.edu/2012/01/03/sums-products-and-linear-algebra-notation-avoiding-loops-where-possible/

1 a = [1, 2, 3, 4, 5]
2 b = [3, 6, 8, 9, 10]
3
4 sum = 0
5 for x,y in zip(a,b):
6 sum += x * y
7 print(sum)

4.4.2 The numpy approach

The most compact method is to use the methods in numpy.

1 import numpy as np
2
3 a = np.array([1, 2, 3, 4, 5])
4 b = np.array([3, 6, 8, 9, 10])
5
6 print(np.sum(a * b))

4.4.3 Matrix algebra approach.

The operation defined above is actually a dot product. We an directly compute the dot product in
numpy. Note that with 1d arrays, python knows what to do and does not require any transpose
operations.

1 import numpy as np
2
3 a = np.array([1, 2, 3, 4, 5])
4 b = np.array([3, 6, 8, 9, 10])
5
6 print(np.dot(a, b))

4.4.4 Another example

Consider y =
n∑
i=1

wix
2
i . This operation is like a weighted sum of squares. The old-fashioned way to

do this is with a loop.

1 w = [0.1, 0.25, 0.12, 0.45, 0.98];
2 x = [9, 7, 11, 12, 8];
3 y = 0
4 for wi, xi in zip(w,x):
5 y += wi * xi**2
6 print(y)

Compare this to the more modern numpy approach.

1 import numpy as np
2 w = np.array([0.1, 0.25, 0.12, 0.45, 0.98])
3 x = np.array([9, 7, 11, 12, 8])
4 y = np.sum(w * x**2)
5 print(y)

We can also express this in matrix algebra form. The operation is equivalent to y = ~x ·Dw · ~xT
where Dw is a diagonal matrix with the weights on the diagonal.

64

1 import numpy as np
2 w = np.array([0.1, 0.25, 0.12, 0.45, 0.98])
3 x = np.array([9, 7, 11, 12, 8])
4 y = np.dot(x, np.dot(np.diag(w), x))
5 print(y)

This last form avoids explicit loops and sums, and relies on fast linear algebra routines.

4.4.5 Last example

Consider the sum of the product of three vectors. Let y =
n∑
i=1

wixiyi. This is like a weighted sum
of products.

1 import numpy as np
2
3 w = np.array([0.1, 0.25, 0.12, 0.45, 0.98])
4 x = np.array([9, 7, 11, 12, 8])
5 y = np.array([2, 5, 3, 8, 0])
6
7 print(np.sum(w * x * y))
8 print(np.dot(w, np.dot(np.diag(x), y)))

4.4.6 Summary

We showed examples of the following equalities between traditional sum notations and linear algebra

ab =
n∑

i=1
aibi

xDwxT =
n∑

i=1
wix2

i

xDwyT =
n∑

i=1
wixiyi

These relationships enable one to write the sums as a single line of python code, which utilizes
fast linear algebra subroutines, avoids the construction of slow loops, and reduces the opportunity
for errors in the code. Admittedly, it introduces the opportunity for new types of errors, like using
the wrong relationship, or linear algebra errors due to matrix size mismatches.

4.5 Determining linear independence of a set of vectors

Matlab post Occasionally we have a set of vectors and we need to determine whether the vectors
are linearly independent of each other. This may be necessary to determine if the vectors form
a basis, or to determine how many independent equations there are, or to determine how many
independent reactions there are.

Reference: Kreysig, Advanced Engineering Mathematics, sec. 7.4
Matlab provides a rank command which gives you the number of singular values greater than

some tolerance. The numpy.rank function, unfortunately, does not do that. It returns the number
of dimensions in the array. We will just compute the rank from singular value decomposition.

65

http://matlab.cheme.cmu.edu/2011/08/02/determining-linear-independence-of-a-set-of-vectors/

The default tolerance used in Matlab is max(size(A))*eps(norm(A)). Let us break that down.
eps(norm(A)) is the positive distance from abs(X) to the next larger in magnitude floating point
number of the same precision as X. Basically, the smallest significant number. We multiply that by
the size of A, and take the largest number. We have to use some judgment in what the tolerance
is, and what "zero" means.

1 import numpy as np
2 v1 = [6, 0, 3, 1, 4, 2];
3 v2 = [0, -1, 2, 7, 0, 5];
4 v3 = [12, 3, 0, -19, 8, -11];
5
6 A = np.row_stack([v1, v2, v3])
7
8 # matlab definition
9 eps = np.finfo(np.linalg.norm(A).dtype).eps

10 TOLERANCE = max(eps * np.array(A.shape))
11
12 U, s, V = np.linalg.svd(A)
13 print(s)
14 print(np.sum(s > TOLERANCE))
15
16 TOLERANCE = 1e-14
17 print(np.sum(s > TOLERANCE))

You can see if you choose too small a TOLERANCE, nothing looks like zero. the result with
TOLERANCE=1e-14 suggests the rows are not linearly independent. Let us show that one row
can be expressed as a linear combination of the other rows.

The number of rows is greater than the rank, so these vectors are not independent. Let’s
demonstrate that one vector can be defined as a linear combination of the other two vectors.
Mathematically we represent this as:

x1v1 + x2v2 = v3
or
[x1x2][v1; v2] = v3
This is not the usual linear algebra form of Ax = b. To get there, we transpose each side of the

equation to get:
[v1.T v2.T][x_1; x_2] = v3.T
which is the form Ax = b. We solve it in a least-squares sense.

1 A = np.column_stack([v1, v2])
2 x = np.linalg.lstsq(A, v3)
3 print(x[0])

This shows that v3 = 2*v1 - 3*v2

4.5.1 another example

1 #Problem set 7.4 #17
2 import numpy as np
3
4 v1 = [0.2, 1.2, 5.3, 2.8, 1.6]
5 v2 = [4.3, 3.4, 0.9, 2.0, -4.3]
6
7 A = np.row_stack([v1, v2])
8 U, s, V = np.linalg.svd(A)
9 print(s)

66

You can tell by inspection the rank is 2 because there are no near-zero singular values.

4.5.2 Near deficient rank

the rank command roughly works in the following way: the matrix is converted to a reduced row
echelon form, and then the number of rows that are not all equal to zero are counted. Matlab uses
a tolerance to determine what is equal to zero. If there is uncertainty in the numbers, you may have
to define what zero is, e.g. if the absolute value of a number is less than 1e-5, you may consider that
close enough to be zero. The default tolerance is usually very small, of order 1e-15. If we believe
that any number less than 1e-5 is practically equivalent to zero, we can use that information to
compute the rank like this.

1 import numpy as np
2
3 A = [[1, 2, 3],
4 [0, 2, 3],
5 [0, 0, 1e-6]]
6
7 U, s, V = np.linalg.svd(A)
8 print(s)
9 print(np.sum(np.abs(s) > 1e-15))

10 print(np.sum(np.abs(s) > 1e-5))

4.5.3 Application to independent chemical reactions.

reference: Exercise 2.4 in Chemical Reactor Analysis and Design Fundamentals by Rawlings and
Ekerdt.

The following reactions are proposed in the hydrogenation of bromine:
Let this be our species vector: v = [H2 H Br2 Br HBr].T
the reactions are then defined by M*v where M is a stoichometric matrix in which each row rep-

resents a reaction with negative stoichiometric coefficients for reactants, and positive stoichiometric
coefficients for products. A stoichiometric coefficient of 0 is used for species not participating in
the reaction.

1 import numpy as np
2
3 # [H2 H Br2 Br HBr]
4 M = [[-1, 0, -1, 0, 2], # H2 + Br2 == 2HBR
5 [0, 0, -1, 2, 0], # Br2 == 2Br
6 [-1, 1, 0, -1, 1], # Br + H2 == HBr + H
7 [0, -1, -1, 1, 1], # H + Br2 == HBr + Br
8 [1, -1, 0, 1, -1], # H + HBr == H2 + Br
9 [0, 0, 1, -2, 0]] # 2Br == Br2

10
11 U, s, V = np.linalg.svd(M)
12 print(s)
13 print(np.sum(np.abs(s) > 1e-15))
14
15 import sympy
16 M = sympy.Matrix(M)
17 reduced_form, inds = M.rref()
18
19 print(reduced_form)
20
21 labels = ['H2', 'H', 'Br2', 'Br', 'HBr']
22 for row in reduced_form.tolist():
23 s = '0 = '

67

24 for nu,species in zip(row,labels):
25 if nu != 0:
26
27 s += ' {0:+d}{1}'.format(int(nu), species)
28 if s != '0 = ':
29 print(s)

6 reactions are given, but the rank of the matrix is only 3. so there are only three independent
reactions. You can see that reaction 6 is just the opposite of reaction 2, so it is clearly not
independent. Also, reactions 3 and 5 are just the reverse of each other, so one of them can also be
eliminated. finally, reaction 4 is equal to reaction 1 minus reaction 3.

There are many possible independent reactions. In the code above, we use sympy to put the
matrix into reduced row echelon form, which enables us to identify three independent reactions,
and shows that three rows are all zero, i.e. they are not independent of the other three reactions.
The choice of independent reactions is not unique.

4.6 Reduced row echelon form

There is a nice discussion here on why there is not a rref command in numpy, primarily because
one rarely actually needs it in linear algebra. Still, it is so often taught, and it helps visually see
what the rank of a matrix is that I wanted to examine ways to get it.

1 import numpy as np
2 from sympy import Matrix
3
4 A = np.array([[3, 2, 1],
5 [2, 1, 1],
6 [6, 2, 4]])
7
8 rA, pivots = Matrix(A).rref()
9 print(rA)

This rref form is a bit different than you might get from doing it by hand. The rows are also
normalized.

Based on this, we conclude the A matrix has a rank of 2 since one row of the reduced form
contains all zeros. That means the determinant will be zero, and it should not be possible to
compute the inverse of the matrix, and there should be no solution to linear equations of Ax = b.
Let us check it out.

1 import numpy as np
2 from sympy import Matrix
3
4 A = np.array([[3, 2, 1],
5 [2, 1, 1],
6 [6, 2, 4]])
7
8 print(np.linalg.det(A))
9 print(np.linalg.inv(A))

10
11 b = np.array([3, 0, 6])
12
13 print(np.linalg.solve(A, b))

There are "solutions", but there are a couple of red flags that should catch your eye. First,
the determinant is within machine precision of zero. Second the elements of the inverse are all

68

http://numpy-discussion.10968.n7.nabble.com/Reduced-row-echelon-form-td16486.html

"large". Third, the solutions are all "large". All of these are indications of or artifacts of numerical
imprecision.

4.7 Computing determinants from matrix decompositions

There are a few properties of a matrix that can make it easy to compute determinants.

1. The determinant of a triangular matrix is the product of the elements on the diagonal.

2. The determinant of a permutation matrix is (-1)**n where n is the number of permutations.
Recall a permutation matrix is a matrix with a one in each row, and column, and zeros
everywhere else.

3. The determinant of a product of matrices is equal to the product of the determinant of the
matrices.

The LU decomposition computes three matrices such thatA = PLU . Thus, detA = detP detLdetU .
L and U are triangular, so we just need to compute the product of the diagonals. P is not tri-
angular, but if the elements of the diagonal are not 1, they will be zero, and then there has been
a swap. So we simply subtract the sum of the diagonal from the length of the diagonal and then
subtract 1 to get the number of swaps.

1 import numpy as np
2 from scipy.linalg import lu
3
4 A = np.array([[6, 2, 3],
5 [1, 1, 1],
6 [0, 4, 9]])
7
8 P, L, U = lu(A)
9

10 nswaps = len(np.diag(P)) - np.sum(np.diag(P)) - 1
11
12 detP = (-1)**nswaps
13 detL = np.prod(np.diag(L))
14 detU = np.prod(np.diag(U))
15
16 print(detP * detL * detU)
17
18 print(np.linalg.det(A))

According to the numpy documentation, a method similar to this is used to compute the
determinant.

4.8 Calling lapack directly from scipy

If the built in linear algebra functions in numpy and scipy do not meet your needs, it is often
possible to directly call lapack functions. Here we call a function to solve a set of complex linear
equations. The lapack function for this is ZGBSV. The description of this function (http://linux.
die.net/man/l/zgbsv) is:

ZGBSV computes the solution to a complex system of linear equations A * X = B, where
A is a band matrix of order N with KL subdiagonals and KU superdiagonals, and X and B are
N-by-NRHS matrices. The LU decomposition with partial pivoting and row interchanges is used
to factor A as A = L * U, where L is a product of permutation and unit lower triangular matrices

69

http://linux.die.net/man/l/zgbsv
http://linux.die.net/man/l/zgbsv

with KL subdiagonals, and U is upper triangular with KL+KU superdiagonals. The factored form
of A is then used to solve the system of equations A * X = B.

The python signature is (http://docs.scipy.org/doc/scipy/reference/generated/scipy.
linalg.lapack.zgbsv.html#scipy.linalg.lapack.zgbsv):

lub,piv,x,info = zgbsv(kl,ku,ab,b,[overwrite_ab,overwrite_b])
We will look at an example from http://www.nag.com/lapack-ex/node22.html.
We solve Ax = b with

A =


−1.65 + 2.26i −2.05− 0.85i 0.97− 2.84i 0

6.30i −1.48− 1.75i −3.99 + 4.01i 0.59− 0.48i
0 −0.77 + 2.83i −1.06 + 1.94i 3.33− 1.04i
0 0 4.48− 1.09i −0.46− 1.72i

 (8)

and

b =


−1.06 + 21.50i
−22.72− 53.90i
28.24− 38.60i
−34.56 + 16.73i

 . (9)

The A matrix has one lower diagonal (kl = 1) and two upper diagonals (ku = 2), four equations
(n = 4) and one right-hand side.

1 import scipy.linalg.lapack as la
2
3 # http://www.nag.com/lapack-ex/node22.html
4 import numpy as np
5 A = np.array([[-1.65 + 2.26j, -2.05 - 0.85j, 0.97 - 2.84j, 0.0],
6 [6.30j, -1.48 - 1.75j, -3.99 + 4.01j, 0.59 - 0.48j],
7 [0.0, -0.77 + 2.83j, -1.06 + 1.94j, 3.33 - 1.04j],
8 [0.0, 0.0, 4.48 - 1.09j, -0.46 - 1.72j]])
9

10 # construction of Ab is tricky. Fortran indexing starts at 1, not
11 # 0. This code is based on the definition of Ab at
12 # http://linux.die.net/man/l/zgbsv. First, we create the Fortran
13 # indices based on the loops, and then subtract one from them to index
14 # the numpy arrays.
15 Ab = np.zeros((5,4),dtype=np.complex)
16 n, kl, ku = 4, 1, 2
17
18 for j in range(1, n + 1):
19 for i in range(max(1, j - ku), min(n, j + kl) + 1):
20 Ab[kl + ku + 1 + i - j - 1, j - 1] = A[i-1, j-1]
21
22 b = np.array([[-1.06 + 21.50j],
23 [-22.72 - 53.90j],
24 [28.24 - 38.60j],
25 [-34.56 + 16.73j]])
26
27 lub, piv, x, info = la.flapack.zgbsv(kl, ku, Ab, b)
28
29 # compare to results at http://www.nag.com/lapack-ex/examples/results/zgbsv-ex.r
30 print('x = ',x)
31 print('info = ',info)
32
33 # check solution
34 print('solved: ',np.all(np.dot(A,x) - b < 1e-12))
35
36 # here is the easy way!!!
37 print('\n\nbuilt-in solver')
38 print(np.linalg.solve(A,b))

70

http://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.lapack.zgbsv.html#scipy.linalg.lapack.zgbsv
http://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.lapack.zgbsv.html#scipy.linalg.lapack.zgbsv
http://www.nag.com/lapack-ex/node22.html

Some points of discussion.

1. Kind of painful! but, nevertheless, possible. You have to do a lot more work figuring out the
dimensions of the problem, how to setup the problem, keeping track of indices, etc. . .

But, one day it might be helpful to know this can be done, e.g. to debug an installation, to
validate an approach against known results, etc. . .

5 Nonlinear algebra
Nonlinear algebra problems are typically solved using an iterative process that terminates when the
solution is found within a specified tolerance. This process is hidden from the user. The canonical
standard form to solve is f(X) = 0.

5.1 Know your tolerance

Matlab post
V = ν(CAo − CA)

kC2
A

with the information given below, solve for the exit concentration. This should be simple.

Cao = 2*u.mol/u.L;
V = 10*u.L;
nu = 0.5*u.L/u.s;
k = 0.23 * u.L/u.mol/u.s;

1 import numpy as np
2 from scipy.integrate import odeint
3 import matplotlib.pyplot as plt
4
5 # unit definitions
6 m = 1.0
7 L = m**3 / 1000.0
8 mol = 1.0
9 s = 1.0

10
11 # provide data
12 Cao = 2.0 * mol / L
13 V = 10.0 * L
14 nu = 0.5 * L / s
15 k = 0.23 * L / mol / s
16
17 def func(Ca):
18 return V - nu * (Cao - Ca)/(k * Ca**2)

Let us plot the function to estimate the solution.

1 c = np.linspace(0.001, 2) * mol / L
2
3 plt.clf()
4 plt.plot(c, func(c))
5 plt.xlabel('C (mol/m^3)')
6 plt.ylim([-0.1, 0.1])
7 plt.savefig('images/nonlin-tolerance.png')

71

http://matlab.cheme.cmu.edu/2011/09/02/know-your-tolerance/

Now let us solve the equation. It looks like an answer is near C=500.

1 from scipy.optimize import fsolve
2
3 cguess = 500
4 c, = fsolve(func, cguess)
5 print(c)
6 print(func(c))
7 print(func(c) / (mol / L))

Interesting. In Matlab, the default tolerance was not sufficient to get a good solution. Here it
is.

5.2 Solving integral equations with fsolve

Original post in Matlab
Occasionally we have integral equations we need to solve in engineering problems, for example,

the volume of plug flow reactor can be defined by this equation: V =
∫ Fa
Fa(V=0)

1
ra
dFa where ra is

the rate law. Suppose we know the reactor volume is 100 L, the inlet molar flow of A is 1 mol/L,
the volumetric flow is 10 L/min, and ra = −kCa, with k = 0.23 1/min. What is the exit molar
flow rate? We need to solve the following equation:

100 =
∫ Fa

Fa(V=0)

1
−kFa/ν

dFa

We start by creating a function handle that describes the integrand. We can use this function
in the quad command to evaluate the integral.

72

http://matlab.cheme.cmu.edu/2011/08/30/solving-integral-equations/

1 import numpy as np
2 from scipy.integrate import quad
3 from scipy.optimize import fsolve
4
5 k = 0.23
6 nu = 10.0
7 Fao = 1.0
8
9 def integrand(Fa):

10 return -1.0 / (k * Fa / nu)
11
12 def func(Fa):
13 integral,err = quad(integrand, Fao, Fa)
14 return 100.0 - integral
15
16 vfunc = np.vectorize(func)

We will need an initial guess, so we make a plot of our function to get an idea.

1 import matplotlib.pyplot as plt
2
3 f = np.linspace(0.01, 1)
4 plt.plot(f, vfunc(f))
5 plt.xlabel('Molar flow rate')
6 plt.savefig('images/integral-eqn-guess.png')

Now we can see a zero is near Fa = 0.1, so we proceed to solve the equation.

73

1 Fa_guess = 0.1
2 Fa_exit, = fsolve(vfunc, Fa_guess)
3 print('The exit concentration is {0:1.2f} mol/L'.format(Fa_exit / nu))

5.2.1 Summary notes

This example seemed a little easier in Matlab, where the quad function seemed to get automatically
vectorized. Here we had to do it by hand.

5.3 Method of continuity for nonlinear equation solving

Matlab post Adapted from Perry’s Chemical Engineers Handbook, 6th edition 2-63.
We seek the solution to the following nonlinear equations:
2 + x+ y − x2 + 8xy + y3 = 0
1 + 2x− 3y + x2 + xy − yex = 0
In principle this is easy, we simply need some initial guesses and a nonlinear solver. The challenge

here is what would you guess? There could be many solutions. The equations are implicit, so it is
not easy to graph them, but let us give it a shot, starting on the x range -5 to 5. The idea is set a
value for x, and then solve for y in each equation.

1 import numpy as np
2 from scipy.optimize import fsolve
3
4 import matplotlib.pyplot as plt
5
6 def f(x, y):
7 return 2 + x + y - x**2 + 8*x*y + y**3;
8
9 def g(x, y):

10 return 1 + 2*x - 3*y + x**2 + x*y - y*np.exp(x)
11
12 x = np.linspace(-5, 5, 500)
13
14 @np.vectorize
15 def fy(x):
16 x0 = 0.0
17 def tmp(y):
18 return f(x, y)
19 y1, = fsolve(tmp, x0)
20 return y1
21
22 @np.vectorize
23 def gy(x):
24 x0 = 0.0
25 def tmp(y):
26 return g(x, y)
27 y1, = fsolve(tmp, x0)
28 return y1
29
30
31 plt.plot(x, fy(x), x, gy(x))
32 plt.xlabel('x')
33 plt.ylabel('y')
34 plt.legend(['fy', 'gy'])
35 plt.savefig('images/continuation-1.png')

74

http://matlab.cheme.cmu.edu/2011/11/01/method-of-continuity-for-nonlinear-equation-solving/

You can see there is a solution near x = -1, y = 0, because both functions equal zero there. We
can even use that guess with fsolve. It is disappointly easy! But, keep in mind that in 3 or more
dimensions, you cannot perform this visualization, and another method could be required.

1 def func(X):
2 x,y = X
3 return [f(x, y), g(x, y)]
4
5 print(fsolve(func, [-2, -2]))

We explore a method that bypasses this problem today. The principle is to introduce a new
variable, λ, which will vary from 0 to 1. at λ = 0 we will have a simpler equation, preferably a
linear one, which can be easily solved, or which can be analytically solved. At λ = 1, we have
the original equations. Then, we create a system of differential equations that start at the easy
solution, and integrate from λ = 0 to λ = 1, to recover the final solution.

We rewrite the equations as:
f(x, y) = (2 + x+ y) + λ(−x2 + 8xy + y3) = 0
g(x, y) = (1 + 2x− 3y) + λ(x2 + xy − yex) = 0
Now, at λ = 0 we have the simple linear equations:
x+ y = −2
2x− 3y = −1
These equations are trivial to solve:

1 x0 = np.linalg.solve([[1., 1.], [2., -3.]],[-2, -1])
2 print(x0)

75

We form the system of ODEs by differentiating the new equations with respect to λ. Why do
we do that? The solution, (x,y) will be a function of λ. From calculus, you can show that:

∂f
∂x

∂x
∂λ + ∂f

∂y
∂y
∂λ = −∂f

∂λ
∂g
∂x

∂x
∂λ + ∂g

∂y
∂y
∂λ = − ∂g

∂λ

Now, solve this for ∂x
∂λ and ∂y

∂λ . You can use Cramer’s rule to solve for these to yield:

∂x

∂λ
= ∂f/∂y∂g/∂λ− ∂f/∂λ∂g/∂y

∂f/∂x∂g/∂y − ∂f/∂y∂g/∂x
(10)

(11)
∂y

∂λ
= ∂f/∂λ∂g/∂x− ∂f/∂x∂g/∂λ

∂f/∂x∂g/∂y − ∂f/∂y∂g/∂x
(12)

For this set of equations:

∂f/∂x = 1− 2λx+ 8λy (13)
(14)

∂f/∂y = 1 + 8λx+ 3λy2 (15)
(16)

∂g/∂x = 2 + 2λx+ λy − λyex (17)
(18)

∂g/∂y = −3 + λx− λex (19)

Now, we simply set up those two differential equations on ∂x
∂λ and ∂y

∂λ , with the initial conditions
at λ = 0 which is the solution of the simpler linear equations, and integrate to λ = 1, which is the
final solution of the original equations!

1 def ode(X, LAMBDA):
2 x,y = X
3 pfpx = 1.0 - 2.0 * LAMBDA * x + 8 * LAMBDA * y
4 pfpy = 1.0 + 8.0 * LAMBDA * x + 3.0 * LAMBDA * y**2
5 pfpLAMBDA = -x**2 + 8.0 * x * y + y**3;
6 pgpx = 2. + 2. * LAMBDA * x + LAMBDA * y - LAMBDA * y * np.exp(x)
7 pgpy = -3. + LAMBDA * x - LAMBDA * np.exp(x)
8 pgpLAMBDA = x**2 + x * y - y * np.exp(x);
9 dxdLAMBDA = (pfpy * pgpLAMBDA - pfpLAMBDA * pgpy) / (pfpx * pgpy - pfpy * pgpx)

10 dydLAMBDA = (pfpLAMBDA * pgpx - pfpx * pgpLAMBDA) / (pfpx * pgpy - pfpy * pgpx)
11 dXdLAMBDA = [dxdLAMBDA, dydLAMBDA]
12 return dXdLAMBDA
13
14
15 from scipy.integrate import odeint
16
17 lambda_span = np.linspace(0, 1, 100)
18
19 X = odeint(ode, x0, lambda_span)
20
21 xsol, ysol = X[-1]
22 print('The solution is at x={0:1.3f}, y={1:1.3f}'.format(xsol, ysol))
23 print(f(xsol, ysol), g(xsol, ysol))

You can see the solution is somewhat approximate; the true solution is x = -1, y = 0. The
approximation could be improved by lowering the tolerance on the ODE solver. The functions

76

evaluate to a small number, close to zero. You have to apply some judgment to determine if that
is sufficiently accurate. For instance if the units on that answer are kilometers, but you need an
answer accurate to a millimeter, this may not be accurate enough.

This is a fair amount of work to get a solution! The idea is to solve a simple problem, and then
gradually turn on the hard part by the lambda parameter. What happens if there are multiple
solutions? The answer you finally get will depend on your λ = 0 starting point, so it is possible to
miss solutions this way. For problems with lots of variables, this would be a good approach if you
can identify the easy problem.

5.4 Method of continuity for solving nonlinear equations - Part II

Matlab post Yesterday in Post 1324 we looked at a way to solve nonlinear equations that takes
away some of the burden of initial guess generation. The idea was to reformulate the equations
with a new variable λ, so that at λ = 0 we have a simpler problem we know how to solve, and at
λ = 1 we have the original set of equations. Then, we derive a set of ODEs on how the solution
changes with λ, and solve them.

Today we look at a simpler example and explain a little more about what is going on. Consider
the equation: f(x) = x2 − 5x + 6 = 0, which has two roots, x = 2 and x = 3. We will use the
method of continuity to solve this equation to illustrate a few ideas. First, we introduce a new
variable λ as: f(x;λ) = 0. For example, we could write f(x;λ) = λx2 − 5x + 6 = 0. Now, when
λ = 0, we hve the simpler equation −5x + 6 = 0, with the solution x = 6/5. The question now
is, how does x change as λ changes? We get that from the total derivative of how f(x, λ) changes
with λ. The total derivative is:

df

dλ
= ∂f

∂λ
+ ∂f

∂x

∂x

∂λ
= 0

We can calculate two of those quantities: ∂f
∂λ and ∂f

∂x analytically from our equation and solve
for ∂x

∂λ as

∂x

∂λ
= −∂f

∂λ
/
∂f

∂x

That defines an ordinary differential equation that we can solve by integrating from λ = 0 where
we know the solution to λ = 1 which is the solution to the real problem. For this problem: ∂f

∂λ = x2

and ∂f
∂x = −5 + 2λx.

1 import numpy as np
2 from scipy.integrate import odeint
3 import matplotlib.pyplot as plt
4
5 def dxdL(x, Lambda):
6 return -x**2 / (-5.0 + 2 * Lambda * x)
7
8 x0 = 6.0/5.0
9 Lspan = np.linspace(0, 1)

10 x = odeint(dxdL, x0, Lspan)
11
12 plt.plot(Lspan, x)
13 plt.xlabel('λ')
14 plt.ylabel('x')
15 plt.savefig('images/nonlin-contin-II-1.png')

77

http://matlab.cheme.cmu.edu/2011/11/02/method-of-continuity-for-solving-nonlinear-equations-part-ii-2/

We found one solution at x=2. What about the other solution? To get that we have to introduce
λ into the equations in another way. We could try: f(x;λ) = x2 + λ(−5x+ 6), but this leads to an
ODE that is singular at the initial starting point. Another approach is f(x;λ) = x2 + 6 + λ(−5x),
but now the solution at λ = 0 is imaginary, and we do not have a way to integrate that! What we
can do instead is add and subtract a number like this: f(x;λ) = x2 − 4 + λ(−5x+ 6 + 4). Now at
λ = 0, we have a simple equation with roots at ±2, and we already know that x = 2 is a solution.
So, we create our ODE on dx/dλ with initial condition x(0) = −2.

1 import numpy as np
2 from scipy.integrate import odeint
3 import matplotlib.pyplot as plt
4
5 def dxdL(x, Lambda):
6 return (5 * x - 10) / (2 * x - 5 * Lambda)
7
8 x0 = -2
9 Lspan = np.linspace(0, 1)

10 x = odeint(dxdL, x0, Lspan)
11
12 plt.plot(Lspan, x)
13 plt.xlabel('λ')
14 plt.ylabel('x')
15 plt.savefig('images/nonlin-contin-II-2.png')

78

Now we have the other solution. Note if you choose the other root, x = 2, you find that 2 is a
root, and learn nothing new. You could choose other values to add, e.g., if you chose to add and
subtract 16, then you would find that one starting point leads to one root, and the other starting
point leads to the other root. This method does not solve all problems associated with nonlinear
root solving, namely, how many roots are there, and which one is "best" or physically reasonable?
But it does give a way to solve an equation where you have no idea what an initial guess should
be. You can see, however, that just like you can get different answers from different initial guesses,
here you can get different answers by setting up the equations differently.

5.5 Counting roots

Matlab post The goal here is to determine how many roots there are in a nonlinear function we
are interested in solving. For this example, we use a cubic polynomial because we know there are
three roots.

f(x) = x3 + 6x2 − 4x− 24

5.5.1 Use roots for this polynomial

This ony works for a polynomial, it does not work for any other nonlinear function.

1 import numpy as np
2 print(np.roots([1, 6, -4, -24]))

79

http://matlab.cheme.cmu.edu/2011/09/10/counting-roots/

Let us plot the function to see where the roots are.

1 import numpy as np
2 import matplotlib.pyplot as plt
3
4 x = np.linspace(-8, 4)
5 y = x**3 + 6 * x**2 - 4*x - 24
6 plt.plot(x, y)
7 plt.savefig('images/count-roots-1.png')

Now we consider several approaches to counting the number of roots in this interval. Visually
it is pretty easy, you just look for where the function crosses zero. Computationally, it is tricker.

5.5.2 method 1

Count the number of times the sign changes in the interval. What we have to do is multiply
neighboring elements together, and look for negative values. That indicates a sign change. For
example the product of two positive or negative numbers is a positive number. You only get
a negative number from the product of a positive and negative number, which means the sign
changed.

1 import numpy as np
2 import matplotlib.pyplot as plt
3
4 x = np.linspace(-8, 4)
5 y = x**3 + 6 * x**2 - 4*x - 24
6
7 print(np.sum(y[0:-2] * y[1:-1] < 0))

80

This method gives us the number of roots, but not where the roots are.

5.5.3 Method 2

Using events in an ODE solver python can identify events in the solution to an ODE, for example,
when a function has a certain value, e.g. f(x) = 0. We can take advantage of this to find the roots
and number of roots in this case. We take the derivative of our function, and integrate it from an
initial starting point, and define an event function that counts zeros.

f ′(x) = 3x2 + 12x− 4

with f(-8) = -120

1 import numpy as np
2 from pycse import odelay
3
4 def fprime(f, x):
5 return 3.0 * x**2 + 12.0*x - 4.0
6
7 def event(f, x):
8 value = f # we want f = 0
9 isterminal = False

10 direction = 0
11 return value, isterminal, direction
12
13 xspan = np.linspace(-8, 4)
14 f0 = -120
15
16 X, F, TE, YE, IE = odelay(fprime, f0, xspan, events=[event])
17 for te, ye in zip(TE, YE):
18 print('root found at x = {0: 1.3f}, f={1: 1.3f}'.format(te, float(ye)))

5.6 Finding the nth root of a periodic function

There is a heat transfer problem where one needs to find the nˆth root of the following equation:
xJ1(x) − BiJ0(x) = 0 where J0 and J1 are the Bessel functions of zero and first order, and Bi is
the Biot number. We examine an approach to finding these roots.

First, we plot the function.

1 from scipy.special import jn, jn_zeros
2 import matplotlib.pyplot as plt
3 import numpy as np
4
5 Bi = 1
6
7 def f(x):
8 return x * jn(1, x) - Bi * jn(0, x)
9

10 X = np.linspace(0, 30, 200)
11 plt.plot(X, f(X))
12 plt.savefig('images/heat-transfer-roots-1.png')

81

You can see there are many roots to this equation, and we want to be sure we get the nˆ{th}
root. This function is pretty well behaved, so if you make a good guess about the solution you
will get an answer, but if you make a bad guess, you may get the wrong root. We examine next
a way to do it without guessing the solution. What we want is the solution to f(x) = 0, but
we want all the solutions in a given interval. We derive a new equation, f ′(x) = 0, with initial
condition f(0) = f0, and integrate the ODE with an event function that identifies all zeros of f
for us. The derivative of our function is df/dx = d/dx(xJ1(x)) − BiJ ′0(x). It is known (http:
//www.markrobrien.com/besselfunct.pdf) that d/dx(xJ1(x)) = xJ0(x), and J ′0(x) = −J1(x).
All we have to do now is set up the problem and run it.

1 from pycse import * # contains the ode integrator with events
2
3 from scipy.special import jn, jn_zeros
4 import matplotlib.pyplot as plt
5 import numpy as np
6
7 Bi = 1
8
9 def f(x):

10 "function we want roots for"
11 return x * jn(1, x) - Bi * jn(0, x)
12
13 def fprime(f, x):
14 "df/dx"
15 return x * jn(0, x) - Bi * (-jn(1, x))
16
17 def e1(f, x):
18 "event function to find zeros of f"
19 isterminal = False

82

http://www.markrobrien.com/besselfunct.pdf
http://www.markrobrien.com/besselfunct.pdf

20 value = f
21 direction = 0
22 return value, isterminal, direction
23
24 f0 = f(0)
25 xspan = np.linspace(0, 30, 200)
26
27 x, fsol, XE, FE, IE = odelay(fprime, f0, xspan, events=[e1])
28
29 plt.plot(x, fsol, '.-', label='Numerical solution')
30 plt.plot(xspan, f(xspan), '--', label='Analytical function')
31 plt.plot(XE, FE, 'ro', label='roots')
32 plt.legend(loc='best')
33 plt.savefig('images/heat-transfer-roots-2.png')
34
35 for i, root in enumerate(XE):
36 print('root {0} is at {1}'.format(i, root))

You can work this out once, and then you have all the roots in the interval and you can select
the one you want.

5.7 Coupled nonlinear equations

Suppose we seek the solution to this set of equations:

y = x2 (20)
y = 8− x2 (21)

83

To solve this we need to setup a function that is equal to zero at the solution. We have two
equations, so our function must return two values. There are two variables, so the argument to our
function will be an array of values.

1 from scipy.optimize import fsolve
2
3 def objective(X):
4 x, y = X # unpack the array in the argument
5 z1 = y - x**2 # first equation
6 z2 = y - 8 + x**2 # second equation
7 return [z1, z2] # list of zeros
8
9 x0, y0 = 1, 1 # initial guesses

10 guess = [x0, y0]
11 sol = fsolve(objective, guess)
12 print(sol)
13
14 # of course there may be more than one solution
15 x0, y0 = -1, -1 # initial guesses
16 guess = [x0, y0]
17 sol = fsolve(objective, guess)
18 print(sol)

6 Statistics

6.1 Introduction to statistical data analysis

Matlab post
Given several measurements of a single quantity, determine the average value of the measure-

ments, the standard deviation of the measurements and the 95% confidence interval for the average.

1 import numpy as np
2
3 y = [8.1, 8.0, 8.1]
4
5 ybar = np.mean(y)
6 s = np.std(y, ddof=1)
7
8 print(ybar, s)

Interesting, we have to specify the divisor in numpy.std by the ddof argument. The default for
this in Matlab is 1, the default for this function is 0.

Here is the principle of computing a confidence interval.

1. Compute the average

2. Compute the standard deviation of your data

3. Define the confidence interval, e.g. 95% = 0.95

4. Compute the student-t multiplier. This is a function of the confidence interval you specify,
and the number of data points you have minus 1. You subtract 1 because one degree of
freedom is lost from calculating the average.

The confidence interval is defined as ybar ± T_multiplier*std/sqrt(n).

84

http://matlab.cheme.cmu.edu/2011/08/27/introduction-to-statistical-data-analysis/

1 from scipy.stats.distributions import t
2 ci = 0.95
3 alpha = 1.0 - ci
4
5 n = len(y)
6 T_multiplier = t.ppf(1.0 - alpha / 2.0, n - 1)
7
8 ci95 = T_multiplier * s / np.sqrt(n)
9

10 print('T_multiplier = {0}'.format(T_multiplier))
11 print('ci95 = {0}'.format(ci95))
12 print('The true average is between {0} and {1} at a 95% confidence level'.format(ybar - ci95, ybar + ci95))

6.2 Basic statistics

Given several measurements of a single quantity, determine the average value of the measurements,
the standard deviation of the measurements and the 95% confidence interval for the average.

This is a recipe for computing the confidence interval. The strategy is:

1. compute the average

2. Compute the standard deviation of your data

3. Define the confidence interval, e.g. 95% = 0.95

4. compute the student-t multiplier. This is a function of the confidence

interval you specify, and the number of data points you have minus 1. You subtract 1 because one
degree of freedom is lost from calculating the average. The confidence interval is defined as ybar
+- T_multiplier*std/sqrt(n).

1 import numpy as np
2 from scipy.stats.distributions import t
3
4 y = [8.1, 8.0, 8.1]
5
6 ybar = np.mean(y)
7 s = np.std(y)
8
9 ci = 0.95

10 alpha = 1.0 - ci
11
12 n = len(y)
13 T_multiplier = t.ppf(1-alpha/2.0, n-1)
14
15 ci95 = T_multiplier * s / np.sqrt(n-1)
16
17 print([ybar - ci95, ybar + ci95])

We are 95% certain the next measurement will fall in the interval above.

6.3 Confidence interval on an average

mod:scipy has a statistical package available for getting statistical distributions. This is useful for
computing confidence intervals using the student-t tables. Here is an example of computing a 95%
confidence interval on an average.

85

1 import numpy as np
2 from scipy.stats.distributions import t
3
4 n = 10 # number of measurements
5 dof = n - 1 # degrees of freedom
6 avg_x = 16.1 # average measurement
7 std_x = 0.01 # standard deviation of measurements
8
9 # Find 95% prediction interval for next measurement

10
11 alpha = 1.0 - 0.95
12
13 pred_interval = t.ppf(1-alpha/2.0, dof) * std_x / np.sqrt(n)
14
15 s = ['We are 95% confident the next measurement',
16 ' will be between {0:1.3f} and {1:1.3f}']
17 print(''.join(s).format(avg_x - pred_interval, avg_x + pred_interval))

6.4 Are averages different

Matlab post
Adapted from http://stattrek.com/ap-statistics-4/unpaired-means.aspx
Class A had 30 students who received an average test score of 78, with standard deviation of 10.

Class B had 25 students an average test score of 85, with a standard deviation of 15. We want to
know if the difference in these averages is statistically relevant. Note that we only have estimates of
the true average and standard deviation for each class, and there is uncertainty in those estimates.
As a result, we are unsure if the averages are really different. It could have just been luck that a
few students in class B did better.

6.4.1 The hypothesis

the true averages are the same. We need to perform a two-sample t-test of the hypothesis that
µ1 − µ2 = 0 (this is often called the null hypothesis). we use a two-tailed test because we do not
care if the difference is positive or negative, either way means the averages are not the same.

1 import numpy as np
2
3 n1 = 30 # students in class A
4 x1 = 78.0 # average grade in class A
5 s1 = 10.0 # std dev of exam grade in class A
6
7 n2 = 25 # students in class B
8 x2 = 85.0 # average grade in class B
9 s2 = 15.0 # std dev of exam grade in class B

10
11 # the standard error of the difference between the two averages.
12 SE = np.sqrt(s1**2 / n1 + s2**2 / n2)
13
14 # compute DOF
15 DF = (n1 - 1) + (n2 - 1)

See the discussion at http://stattrek.com/Help/Glossary.aspx?Target=Two-sample%20t-test
for a more complex definition of degrees of freedom. Here we simply subtract one from each sample
size to account for the estimation of the average of each sample.

86

http://matlab.cheme.cmu.edu/2012/01/28/are-two-averages-different/
http://stattrek.com/ap-statistics-4/unpaired-means.aspx
http://stattrek.com/Help/Glossary.aspx?Target=Two-sample%20t-test

6.4.2 Compute the t-score for our data

The difference between two averages determined from small sample numbers follows the t-distribution.
the t-score is the difference between the difference of the means and the hypothesized difference
of the means, normalized by the standard error. we compute the absolute value of the t-score to
make sure it is positive for convenience later.

1 tscore = np.abs(((x1 - x2) - 0) / SE)
2 print(tscore)

6.4.3 Interpretation

A way to approach determining if the difference is significant or not is to ask, does our computed
average fall within a confidence range of the hypothesized value (zero)? If it does, then we can
attribute the difference to statistical variations at that confidence level. If it does not, we can say
that statistical variations do not account for the difference at that confidence level, and hence the
averages must be different.

Let us compute the t-value that corresponds to a 95% confidence level for a mean of zero with
the degrees of freedom computed earlier. This means that 95% of the t-scores we expect to get will
fall within ± t95.

1 from scipy.stats.distributions import t
2
3 ci = 0.95;
4 alpha = 1 - ci;
5 t95 = t.ppf(1.0 - alpha/2.0, DF)
6
7 print(t95)

since tscore < t95, we conclude that at the 95% confidence level we cannot say these averages
are statistically different because our computed t-score falls in the expected range of deviations.
Note that our t-score is very close to the 95% limit. Let us consider a smaller confidence interval.

1 ci = 0.94
2 alpha = 1 - ci;
3 t95 = t.ppf(1.0 - alpha/2.0, DF)
4
5 print(t95)

at the 94% confidence level, however, tscore > t94, which means we can say with 94% confidence
that the two averages are different; class B performed better than class A did. Alternatively, there
is only about a 6% chance we are wrong about that statement. another way to get there

An alternative way to get the confidence that the averages are different is to directly compute
it from the cumulative t-distribution function. We compute the difference between all the t-values
less than tscore and the t-values less than -tscore, which is the fraction of measurements that are
between them. You can see here that we are practically 95% sure that the averages are different.

1 f = t.cdf(tscore, DF) - t.cdf(-tscore, DF)
2 print(f)

87

6.5 Model selection

Matlab post
adapted from http://www.itl.nist.gov/div898/handbook/pmd/section4/pmd44.htm
In this example, we show some ways to choose which of several models fit data the best. We

have data for the total pressure and temperature of a fixed amount of a gas in a tank that was
measured over the course of several days. We want to select a model that relates the pressure to
the gas temperature.

The data is stored in a text file download PT.txt , with the following structure:

Run Ambient Fitted
Order Day Temperature Temperature Pressure Value Residual
1 1 23.820 54.749 225.066 222.920 2.146

...

We need to read the data in, and perform a regression analysis on P vs. T. In python we start
counting at 0, so we actually want columns 3 and 4.

1 import numpy as np
2 import matplotlib.pyplot as plt
3
4 data = np.loadtxt('data/PT.txt', skiprows=2)
5 T = data[:, 3]
6 P = data[:, 4]
7
8 plt.plot(T, P, 'k.')
9 plt.xlabel('Temperature')

10 plt.ylabel('Pressure')
11 plt.savefig('images/model-selection-1.png')

88

http://matlab.cheme.cmu.edu/2011/10/01/model-selection/
http://www.itl.nist.gov/div898/handbook/pmd/section4/pmd44.htm

It appears the data is roughly linear, and we know from the ideal gas law that PV = nRT, or P
= nR/V*T, which says P should be linearly correlated with V. Note that the temperature data is
in degC, not in K, so it is not expected that P=0 at T = 0. We will use linear algebra to compute
the line coefficients.

1 A = np.vstack([T**0, T]).T
2 b = P
3
4 x, res, rank, s = np.linalg.lstsq(A, b)
5 intercept, slope = x
6 print('b, m =', intercept, slope)
7
8 n = len(b)
9 k = len(x)

10
11 sigma2 = np.sum((b - np.dot(A,x))**2) / (n - k)
12
13 C = sigma2 * np.linalg.inv(np.dot(A.T, A))
14 se = np.sqrt(np.diag(C))
15
16 from scipy.stats.distributions import t
17 alpha = 0.05
18
19 sT = t.ppf(1-alpha/2., n - k) # student T multiplier
20 CI = sT * se
21
22 print('CI = ',CI)
23 for beta, ci in zip(x, CI):
24 print('[{0} {1}]'.format(beta - ci, beta + ci))

89

The confidence interval on the intercept is large, but it does not contain zero at the 95%
confidence level.

The Rˆ2 value accounts roughly for the fraction of variation in the data that can be described
by the model. Hence, a value close to one means nearly all the variations are described by the
model, except for random variations.

1 ybar = np.mean(P)
2 SStot = np.sum((P - ybar)**2)
3 SSerr = np.sum((P - np.dot(A, x))**2)
4 R2 = 1 - SSerr/SStot
5 print(R2)

1 plt.figure(); plt.clf()
2 plt.plot(T, P, 'k.', T, np.dot(A, x), 'b-')
3 plt.xlabel('Temperature')
4 plt.ylabel('Pressure')
5 plt.title('R^2 = {0:1.3f}'.format(R2))
6 plt.savefig('images/model-selection-2.png')

The fit looks good, and Rˆ2 is near one, but is it a good model? There are a few ways to examine
this. We want to make sure that there are no systematic trends in the errors between the fit and
the data, and we want to make sure there are not hidden correlations with other variables. The
residuals are the error between the fit and the data. The residuals should not show any patterns
when plotted against any variables, and they do not in this case.

90

1 residuals = P - np.dot(A, x)
2
3 plt.figure()
4
5 f, (ax1, ax2, ax3) = plt.subplots(3)
6
7 ax1.plot(T,residuals,'ko')
8 ax1.set_xlabel('Temperature')
9

10
11 run_order = data[:, 0]
12 ax2.plot(run_order, residuals,'ko ')
13 ax2.set_xlabel('run order')
14
15 ambientT = data[:, 2]
16 ax3.plot(ambientT, residuals,'ko')
17 ax3.set_xlabel('ambient temperature')
18
19 plt.tight_layout() # make sure plots do not overlap
20 plt.savefig('images/model-selection-3.png')

There may be some correlations in the residuals with the run order. That could indicate an
experimental source of error.

We assume all the errors are uncorrelated with each other. We can use a lag plot to assess this,
where we plot residual[i] vs residual[i-1], i.e. we look for correlations between adjacent residuals.
This plot should look random, with no correlations if the model is good.

1 plt.figure(); plt.clf()
2 plt.plot(residuals[1:-1], residuals[0:-2],'ko')

91

3 plt.xlabel('residual[i]')
4 plt.ylabel('residual[i-1]')
5 plt.savefig('images/model-selection-correlated-residuals.png')

It is hard to argue there is any correlation here.
Lets consider a quadratic model instead.

1 A = np.vstack([T**0, T, T**2]).T
2 b = P;
3
4 x, res, rank, s = np.linalg.lstsq(A, b)
5 print(x)
6
7 n = len(b)
8 k = len(x)
9

10 sigma2 = np.sum((b - np.dot(A,x))**2) / (n - k)
11
12 C = sigma2 * np.linalg.inv(np.dot(A.T, A))
13 se = np.sqrt(np.diag(C))
14
15 from scipy.stats.distributions import t
16 alpha = 0.05
17
18 sT = t.ppf(1-alpha/2., n - k) # student T multiplier
19 CI = sT * se
20
21 print('CI = ',CI)
22 for beta, ci in zip(x, CI):
23 print('[{0} {1}]'.format(beta - ci, beta + ci))
24

92

25
26 ybar = np.mean(P)
27 SStot = np.sum((P - ybar)**2)
28 SSerr = np.sum((P - np.dot(A,x))**2)
29 R2 = 1 - SSerr/SStot
30 print('R^2 = {0}'.format(R2))

You can see that the confidence interval on the constant and Tˆ2 term includes zero. That is a
good indication this additional parameter is not significant. You can see also that the Rˆ2 value is
not better than the one from a linear fit, so adding a parameter does not increase the goodness of
fit. This is an example of overfitting the data. Since the constant in this model is apparently not
significant, let us consider the simplest model with a fixed intercept of zero.

Let us consider a model with intercept = 0, P = alpha*T.

1 A = np.vstack([T]).T
2 b = P;
3
4 x, res, rank, s = np.linalg.lstsq(A, b)
5
6 n = len(b)
7 k = len(x)
8
9 sigma2 = np.sum((b - np.dot(A,x))**2) / (n - k)

10
11 C = sigma2 * np.linalg.inv(np.dot(A.T, A))
12 se = np.sqrt(np.diag(C))
13
14 from scipy.stats.distributions import t
15 alpha = 0.05
16
17 sT = t.ppf(1-alpha/2.0, n - k) # student T multiplier
18 CI = sT * se
19
20 for beta, ci in zip(x, CI):
21 print('[{0} {1}]'.format(beta - ci, beta + ci))
22
23 plt.figure()
24 plt.plot(T, P, 'k. ', T, np.dot(A, x))
25 plt.xlabel('Temperature')
26 plt.ylabel('Pressure')
27 plt.legend(['data', 'fit'])
28
29 ybar = np.mean(P)
30 SStot = np.sum((P - ybar)**2)
31 SSerr = np.sum((P - np.dot(A,x))**2)
32 R2 = 1 - SSerr/SStot
33 plt.title('R^2 = {0:1.3f}'.format(R2))
34 plt.savefig('images/model-selection-no-intercept.png')

93

The fit is visually still pretty good, and the Rˆ2 value is only slightly worse. Let us examine the
residuals again.

1 residuals = P - np.dot(A,x)
2
3 plt.figure()
4 plt.plot(T,residuals,'ko')
5 plt.xlabel('Temperature')
6 plt.ylabel('residuals')
7 plt.savefig('images/model-selection-no-incpt-resid.png')

94

You can see a slight trend of decreasing value of the residuals as the Temperature increases.
This may indicate a deficiency in the model with no intercept. For the ideal gas law in degC:
PV = nR(T + 273) or P = nR/V ∗ T + 273 ∗ nR/V , so the intercept is expected to be non-zero in
this case. Specifically, we expect the intercept to be 273*R*n/V. Since the molar density of a gas
is pretty small, the intercept may be close to, but not equal to zero. That is why the fit still looks
ok, but is not as good as letting the intercept be a fitting parameter. That is an example of the
deficiency in our model.

In the end, it is hard to justify a model more complex than a line in this case.

6.6 Numerical propagation of errors

Matlab post
Propagation of errors is essential to understanding how the uncertainty in a parameter affects

computations that use that parameter. The uncertainty propagates by a set of rules into your
solution. These rules are not easy to remember, or apply to complicated situations, and are only
approximate for equations that are nonlinear in the parameters.

We will use a Monte Carlo simulation to illustrate error propagation. The idea is to generate a
distribution of possible parameter values, and to evaluate your equation for each parameter value.
Then, we perform statistical analysis on the results to determine the standard error of the results.

We will assume all parameters are defined by a normal distribution with known mean and
standard deviation.

95

http://matlab.cheme.cmu.edu/2011/09/05/numerical-propogation-of-errors/

6.6.1 Addition and subtraction

1 import numpy as np
2 import matplotlib.pyplot as plt
3
4 N = 1e4 # number of samples of parameters
5
6 A_mu = 2.5; A_sigma = 0.4
7 B_mu = 4.1; B_sigma = 0.3
8
9 A = np.random.normal(A_mu, A_sigma, size=N)

10 B = np.random.normal(B_mu, B_sigma, size=N)
11
12 p = A + B
13 m = A - B
14
15 plt.hist(p)
16 plt.show()
17
18 print(np.std(p))
19 print(np.std(m))
20
21 print(np.sqrt(A_sigma**2 + B_sigma**2)) # the analytical std dev

6.6.2 Multiplication

1 F_mu = 25.0; F_sigma = 1;
2 x_mu = 6.4; x_sigma = 0.4;
3
4 F = np.random.normal(F_mu, F_sigma, size=N)
5 x = np.random.normal(x_mu, x_sigma, size=N)
6
7 t = F * x
8 print(np.std(t))
9 print(np.sqrt((F_sigma / F_mu)**2 + (x_sigma / x_mu)**2) * F_mu * x_mu)

6.6.3 Division

This is really like multiplication: F / x = F * (1 / x).

1 d = F / x
2 print(np.std(d))
3 print(np.sqrt((F_sigma / F_mu)**2 + (x_sigma / x_mu)**2) * F_mu / x_mu)

6.6.4 exponents

This rule is different than multiplication (Aˆ2 = A*A) because in the previous examples we assumed
the errors in A and B for A*B were uncorrelated. in A*A, the errors are not uncorrelated, so there
is a different rule for error propagation.

1 t_mu = 2.03; t_sigma = 0.01*t_mu; # 1% error
2 A_mu = 16.07; A_sigma = 0.06;
3
4 t = np.random.normal(t_mu, t_sigma, size=(1, N))
5 A = np.random.normal(A_mu, A_sigma, size=(1, N))
6
7 # Compute t^5 and sqrt(A) with error propagation
8 print(np.std(t**5))
9 print((5 * t_sigma / t_mu) * t_mu**5)

96

1 print(np.std(np.sqrt(A)))
2 print(1.0 / 2.0 * A_sigma / A_mu * np.sqrt(A_mu))

6.6.5 the chain rule in error propagation

let v = v0 + a*t, with uncertainties in vo,a and t

1 vo_mu = 1.2; vo_sigma = 0.02;
2 a_mu = 3.0; a_sigma = 0.3;
3 t_mu = 12.0; t_sigma = 0.12;
4
5 vo = np.random.normal(vo_mu, vo_sigma, (1, N))
6 a = np.random.normal(a_mu, a_sigma, (1, N))
7 t = np.random.normal(t_mu, t_sigma, (1, N))
8
9 v = vo + a*t

10
11 print(np.std(v))
12 print(np.sqrt(vo_sigma**2 + t_mu**2 * a_sigma**2 + a_mu**2 * t_sigma**2))

6.6.6 Summary

You can numerically perform error propagation analysis if you know the underlying distribution
of errors on the parameters in your equations. One benefit of the numerical propagation is you
do not have to remember the error propagation rules, and you directly look at the distribution in
nonlinear cases. Some limitations of this approach include

1. You have to know the distribution of the errors in the parameters

2. You have to assume the errors in parameters are uncorrelated.

6.7 Another approach to error propagation

In the previous section we examined an analytical approach to error propagation, and a simulation
based approach. There is another approach to error propagation, using the uncertainties module
(https://pypi.python.org/pypi/uncertainties/). You have to install this package, e.g. pip
install uncertainties. After that, the module provides new classes of numbers and functions
that incorporate uncertainty and propagate the uncertainty through the functions. In the examples
that follow, we repeat the calculations from the previous section using the uncertainties module.

Addition and subtraction

1 import uncertainties as u
2
3 A = u.ufloat((2.5, 0.4))
4 B = u.ufloat((4.1, 0.3))
5 print(A + B)
6 print(A - B)

Multiplication and division

1 F = u.ufloat((25, 1))
2 x = u.ufloat((6.4, 0.4))
3
4 t = F * x

97

https://pypi.python.org/pypi/uncertainties/

5 print(t)
6
7 d = F / x
8 print(d)

Exponentiation

1 t = u.ufloat((2.03, 0.0203))
2 print(t**5)
3
4 from uncertainties.umath import sqrt
5 A = u.ufloat((16.07, 0.06))
6 print(sqrt(A))
7 # print np.sqrt(A) # this does not work
8
9 from uncertainties import unumpy as unp

10 print(unp.sqrt(A))

Note in the last example, we had to either import a function from uncertainties.umath or import
a special version of numpy that handles uncertainty. This may be a limitation of the uncertainties
package as not all functions in arbitrary modules can be covered. Note, however, that you can
wrap a function to make it handle uncertainty like this.

1 import numpy as np
2
3 wrapped_sqrt = u.wrap(np.sqrt)
4 print(wrapped_sqrt(A))

Propagation of errors in an integral

1 import numpy as np
2 import uncertainties as u
3
4 x = np.array([u.ufloat((1, 0.01)),
5 u.ufloat((2, 0.1)),
6 u.ufloat((3, 0.1))])
7
8 y = 2 * x
9

10 print(np.trapz(x, y))

Chain rule in error propagation

1 v0 = u.ufloat((1.2, 0.02))
2 a = u.ufloat((3.0, 0.3))
3 t = u.ufloat((12.0, 0.12))
4
5 v = v0 + a * t
6 print(v)

A real example? This is what I would setup for a real working example. We try to compute
the exit concentration from a CSTR. The idea is to wrap the "external" fsolve function using the
uncertainties.wrap function, which handles the units. Unfortunately, it does not work, and it is
not clear why. But see the following discussion for a fix.

98

1 from scipy.optimize import fsolve
2
3 Fa0 = u.ufloat((5.0, 0.05))
4 v0 = u.ufloat((10., 0.1))
5
6 V = u.ufloat((66000.0, 100)) # reactor volume L^3
7 k = u.ufloat((3.0, 0.2)) # rate constant L/mol/h
8
9 def func(Ca):

10 "Mole balance for a CSTR. Solve this equation for func(Ca)=0"
11 Fa = v0 * Ca # exit molar flow of A
12 ra = -k * Ca**2 # rate of reaction of A L/mol/h
13 return Fa0 - Fa + V * ra
14
15 # CA guess that that 90 % is reacted away
16 CA_guess = 0.1 * Fa0 / v0
17
18 wrapped_fsolve = u.wrap(fsolve)
19 CA_sol = wrapped_fsolve(func, CA_guess)
20
21 print('The exit concentration is {0} mol/L'.format(CA_sol))

I got a note from the author of the uncertainties package explaining the cryptic error above,
and a solution for it. The error arises because fsolve does not know how to deal with uncertainties.
The idea is to create a function that returns a float, when everything is given as a float. Then, we
wrap the fsolve call, and finally wrap the wrapped fsolve call!

• Step 1. Write the function to solve with arguments for all unitted quantities. This function
may be called with uncertainties, or with floats.

• Step 2. Wrap the call to fsolve in a function that takes all the parameters as arguments, and
that returns the solution.

• Step 3. Use uncertainties.wrap to wrap the function in Step 2 to get the answer with uncer-
tainties.

Here is the code that does work:

1 import uncertainties as u
2 from scipy.optimize import fsolve
3
4 Fa0 = u.ufloat((5.0, 0.05))
5 v0 = u.ufloat((10., 0.1))
6
7 V = u.ufloat((66000.0, 100.0)) # reactor volume L^3
8 k = u.ufloat((3.0, 0.2)) # rate constant L/mol/h
9

10 # Step 1
11 def func(Ca, v0, k, Fa0, V):
12 "Mole balance for a CSTR. Solve this equation for func(Ca)=0"
13 Fa = v0 * Ca # exit molar flow of A
14 ra = -k * Ca**2 # rate of reaction of A L/mol/h
15 return Fa0 - Fa + V * ra
16
17 # Step 2
18 def Ca_solve(v0, k, Fa0, V):
19 'wrap fsolve to pass parameters as float or units'
20 # this line is a little fragile. You must put [0] at the end or
21 # you get the NotImplemented result
22 guess = 0.1 * Fa0 / v0
23 sol = fsolve(func, guess, args=(v0, k, Fa0, V))[0]

99

24 return sol
25
26 # Step 3
27 print(u.wrap(Ca_solve)(v0, k, Fa0, V))

It would take some practice to get used to this, but the payoff is that you have an "automatic"
error propagation method.

Being ever the skeptic, let us compare the result above to the Monte Carlo approach to error
estimation below.

1 import numpy as np
2 from scipy.optimize import fsolve
3
4 N = 10000
5 Fa0 = np.random.normal(5, 0.05, (1, N))
6 v0 = np.random.normal(10.0, 0.1, (1, N))
7 V = np.random.normal(66000, 100, (1,N))
8 k = np.random.normal(3.0, 0.2, (1, N))
9

10 SOL = np.zeros((1, N))
11
12 for i in range(N):
13 def func(Ca):
14 return Fa0[0,i] - v0[0,i] * Ca + V[0,i] * (-k[0,i] * Ca**2)
15 SOL[0,i] = fsolve(func, 0.1 * Fa0[0,i] / v0[0,i])[0]
16
17 print('Ca(exit) = {0}+/-{1}'.format(np.mean(SOL), np.std(SOL)))

I am pretty content those are the same!

6.7.1 Summary

The uncertainties module is pretty amazing. It automatically propagates errors through a pretty
broad range of computations. It is a little tricky for third-party packages, but it seems doable.

Read more about the package at http://pythonhosted.org/uncertainties/index.html.

6.8 Random thoughts

Matlab post
Random numbers are used in a variety of simulation methods, most notably Monte Carlo

simulations. In another later example, we will see how we can use random numbers for error
propagation analysis. First, we discuss two types of pseudorandom numbers we can use in python:
uniformly distributed and normally distributed numbers.

Say you are the gambling type, and bet your friend $5 the next random number will be greater
than 0.49. Let us ask Python to roll the random number generator for us.

1 import numpy as np
2
3 n = np.random.uniform()
4 print('n = {0}'.format(n))
5
6 if n > 0.49:
7 print('You win!')
8 else:
9 print('you lose.')

100

http://pythonhosted.org/uncertainties/index.html
http://matlab.cheme.cmu.edu/2011/09/04/random-thoughts/

The odds of you winning the last bet are slightly stacked in your favor. There is only a 49%
chance your friend wins, but a 51% chance that you win. Lets play the game a lot of times times
and see how many times you win, and your friend wins. First, lets generate a bunch of numbers
and look at the distribution with a histogram.

1 import numpy as np
2
3 N = 10000
4 games = np.random.uniform(size=N)
5
6 wins = np.sum(games > 0.49)
7 losses = N - wins
8
9 print('You won {0} times ({1:%})'.format(wins, float(wins) / N))

10
11 import matplotlib.pyplot as plt
12 count, bins, ignored = plt.hist(games)
13 plt.savefig('images/random-thoughts-1.png')

As you can see you win slightly more than you lost.
It is possible to get random integers. Here are a few examples of getting a random integer

between 1 and 100. You might do this to get random indices of a list, for example.

1 import numpy as np
2
3 print(np.random.random_integers(1, 100))
4 print(np.random.random_integers(1, 100, 3))
5 print(np.random.random_integers(1, 100, (2, 2)))

101

The normal distribution is defined by f(x) = 1√
2πσ2 exp(− (x−µ)2

2σ2) where µ is the mean value,
and σ is the standard deviation. In the standard distribution, µ = 0 and σ = 1.

1 import numpy as np
2
3 mu = 1
4 sigma = 0.5
5 print(np.random.normal(mu, sigma))
6 print(np.random.normal(mu, sigma, 2))

Let us compare the sampled distribution to the analytical distribution. We generate a large
set of samples, and calculate the probability of getting each value using the matplotlib.pyplot.hist
command.

1 import numpy as np
2 import matplotlib.pyplot as plt
3
4 mu = 0; sigma = 1
5
6 N = 5000
7 samples = np.random.normal(mu, sigma, N)
8
9 counts, bins, ignored = plt.hist(samples, 50, normed=True)

10
11 plt.plot(bins, 1.0/np.sqrt(2 * np.pi * sigma**2)*np.exp(-((bins - mu)**2)/(2*sigma**2)))
12 plt.savefig('images/random-thoughts-2.png')

What fraction of points lie between plus and minus one standard deviation of the mean?

102

samples >= mu-sigma will return a vector of ones where the inequality is true, and zeros where
it is not. (samples >= mu-sigma) & (samples <= mu+sigma) will return a vector of ones where
there is a one in both vectors, and a zero where there is not. In other words, a vector where both
inequalities are true. Finally, we can sum the vector to get the number of elements where the two
inequalities are true, and finally normalize by the total number of samples to get the fraction of
samples that are greater than -sigma and less than sigma.

1 import numpy as np
2 import matplotlib.pyplot as plt
3
4 mu = 0; sigma = 1
5
6 N = 5000
7 samples = np.random.normal(mu, sigma, N)
8
9 a = np.sum((samples >= (mu - sigma)) & (samples <= (mu + sigma))) / float(N)

10 b = np.sum((samples >= (mu - 2*sigma)) & (samples <= (mu + 2*sigma))) / float(N)
11 print('{0:%} of samples are within +- standard deviations of the mean'.format(a))
12 print('{0:%} of samples are within +- 2standard deviations of the mean'.format(b))

6.8.1 Summary

We only considered the numpy.random functions here, and not all of them. There are many
distributions of random numbers to choose from. There are also random numbers in the python
random module. Remember these are only pseudorandom numbers, but they are still useful for
many applications.

7 Data analysis

7.1 Fit a line to numerical data

Matlab post
We want to fit a line to this data:

1 x = [0, 0.5, 1, 1.5, 2.0, 3.0, 4.0, 6.0, 10]
2 y = [0, -0.157, -0.315, -0.472, -0.629, -0.942, -1.255, -1.884, -3.147]

We use the polyfit(x, y, n) command where n is the polynomial order, n=1 for a line.

1 import numpy as np
2
3 p = np.polyfit(x, y, 1)
4 print(p)
5 slope, intercept = p
6 print(slope, intercept)

To show the fit, we can use numpy.polyval to evaluate the fit at many points.

1 import matplotlib.pyplot as plt
2
3 xfit = np.linspace(0, 10)
4 yfit = np.polyval(p, xfit)
5

103

http://en.wikipedia.org/wiki/Pseudorandom_number_generator
http://matlab.cheme.cmu.edu/2011/08/04/fit-a-line-to-numerical-data/

6 plt.plot(x, y, 'bo', label='raw data')
7 plt.plot(xfit, yfit, 'r-', label='fit')
8 plt.xlabel('x')
9 plt.ylabel('y')

10 plt.legend()
11 plt.savefig('images/linefit-1.png')

7.2 Linear least squares fitting with linear algebra

Matlab post
The idea here is to formulate a set of linear equations that is easy to solve. We can express the

equations in terms of our unknown fitting parameters pi as:

x1^0*p0 + x1*p1 = y1
x2^0*p0 + x2*p1 = y2
x3^0*p0 + x3*p1 = y3
etc...

Which we write in matrix form as Ap = y where A is a matrix of column vectors, e.g. [1, x_i].
A is not a square matrix, so we cannot solve it as written. Instead, we form ATAp = AT y and
solve that set of equations.

1 import numpy as np
2 x = np.array([0, 0.5, 1, 1.5, 2.0, 3.0, 4.0, 6.0, 10])
3 y = np.array([0, -0.157, -0.315, -0.472, -0.629, -0.942, -1.255, -1.884, -3.147])
4

104

http://matlab.cheme.cmu.edu/2011/09/24/linear-least-squares-fitting-with-linear-algebra/

5 A = np.column_stack([x**0, x])
6
7 M = np.dot(A.T, A)
8 b = np.dot(A.T, y)
9

10 i1, slope1 = np.dot(np.linalg.inv(M), b)
11 i2, slope2 = np.linalg.solve(M, b) # an alternative approach.
12
13 print(i1, slope1)
14 print(i2, slope2)
15
16 # plot data and fit
17 import matplotlib.pyplot as plt
18
19 plt.plot(x, y, 'bo')
20 plt.plot(x, np.dot(A, [i1, slope1]), 'r--')
21 plt.xlabel('x')
22 plt.ylabel('y')
23 plt.savefig('images/la-line-fit.png')

This method can be readily extended to fitting any polynomial model, or other linear model
that is fit in a least squares sense. This method does not provide confidence intervals.

7.3 Linear regression with confidence intervals (updated)

Matlab post Fit a fourth order polynomial to this data and determine the confidence interval for
each parameter. Data from example 5-1 in Fogler, Elements of Chemical Reaction Engineering.

We want the equation Ca(t) = b0 + b1 ∗ t+ b2 ∗ t2 + b3 ∗ t3 + b4 ∗ t4 fit to the data in the least
squares sense. We can write this in a linear algebra form as: T*p = Ca where T is a matrix of

105

http://matlab.cheme.cmu.edu/2011/08/28/linear-regression-with-confidence-intervals/

columns [1 t tˆ2 tˆ3 tˆ4], and p is a column vector of the fitting parameters. We want to solve for
the p vector and estimate the confidence intervals.

pycse now has a regress function similar to Matlab. That function just uses the code in the
next example (also seen here).

1 from pycse import regress
2 import numpy as np
3 time = np.array([0.0, 50.0, 100.0, 150.0, 200.0, 250.0, 300.0])
4 Ca = np.array([50.0, 38.0, 30.6, 25.6, 22.2, 19.5, 17.4])*1e-3
5
6 T = np.column_stack([time**0, time, time**2, time**3, time**4])
7
8 alpha = 0.05
9 p, pint, se = regress(T, Ca, alpha)

10 print(pint)

7.4 Linear regression with confidence intervals.

Matlab post Fit a fourth order polynomial to this data and determine the confidence interval for
each parameter. Data from example 5-1 in Fogler, Elements of Chemical Reaction Engineering.

We want the equation Ca(t) = b0 + b1 ∗ t+ b2 ∗ t2 + b3 ∗ t3 + b4 ∗ t4 fit to the data in the least
squares sense. We can write this in a linear algebra form as: T*p = Ca where T is a matrix of
columns [1 t tˆ2 tˆ3 tˆ4], and p is a column vector of the fitting parameters. We want to solve for
the p vector and estimate the confidence intervals.

1 import numpy as np
2 from scipy.stats.distributions import t
3
4 time = np.array([0.0, 50.0, 100.0, 150.0, 200.0, 250.0, 300.0])
5 Ca = np.array([50.0, 38.0, 30.6, 25.6, 22.2, 19.5, 17.4])*1e-3
6
7 T = np.column_stack([time**0, time, time**2, time**3, time**4])
8
9 p, res, rank, s = np.linalg.lstsq(T, Ca)

10 # the parameters are now in p
11
12 # compute the confidence intervals
13 n = len(Ca)
14 k = len(p)
15
16 sigma2 = np.sum((Ca - np.dot(T, p))**2) / (n - k) # RMSE
17
18 C = sigma2 * np.linalg.inv(np.dot(T.T, T)) # covariance matrix
19 se = np.sqrt(np.diag(C)) # standard error
20
21 alpha = 0.05 # 100*(1 - alpha) confidence level
22
23 sT = t.ppf(1.0 - alpha/2.0, n - k) # student T multiplier
24 CI = sT * se
25
26 for beta, ci in zip(p, CI):
27 print('{2: 1.2e} [{0: 1.4e} {1: 1.4e}]'.format(beta - ci, beta + ci, beta))
28
29 SS_tot = np.sum((Ca - np.mean(Ca))**2)
30 SS_err = np.sum((np.dot(T, p) - Ca)**2)
31
32 # http://en.wikipedia.org/wiki/Coefficient_of_determination
33 Rsq = 1 - SS_err/SS_tot
34 print('R^2 = {0}'.format(Rsq))
35
36 # plot fit

106

http://jkitchin.github.io/blog/2013/02/18/Linear-regression-with-confidence-intervals/
http://matlab.cheme.cmu.edu/2011/08/28/linear-regression-with-confidence-intervals/

37 import matplotlib.pyplot as plt
38 plt.plot(time, Ca, 'bo', label='raw data')
39 plt.plot(time, np.dot(T, p), 'r-', label='fit')
40 plt.xlabel('Time')
41 plt.ylabel('Ca (mol/L)')
42 plt.legend(loc='best')
43 plt.savefig('images/linregress-conf.png')

A fourth order polynomial fits the data well, with a good Rˆ2 value. All of the parameters
appear to be significant, i.e. zero is not included in any of the parameter confidence intervals. This
does not mean this is the best model for the data, just that the model fits well.

7.5 Nonlinear curve fitting

Here is a typical nonlinear function fit to data. you need to provide an initial guess. In this example
we fit the Birch-Murnaghan equation of state to energy vs. volume data from density functional
theory calculations.

1 from scipy.optimize import leastsq
2 import numpy as np
3
4 vols = np.array([13.71, 14.82, 16.0, 17.23, 18.52])
5
6 energies = np.array([-56.29, -56.41, -56.46, -56.463, -56.41])
7
8 def Murnaghan(parameters, vol):
9 'From Phys. Rev. B 28, 5480 (1983)'

10 E0, B0, BP, V0 = parameters

107

11
12 E = E0 + B0 * vol / BP * (((V0 / vol)**BP) / (BP - 1) + 1) - V0 * B0 / (BP - 1.0)
13
14 return E
15
16 def objective(pars, y, x):
17 #we will minimize this function
18 err = y - Murnaghan(pars, x)
19 return err
20
21 x0 = [-56.0, 0.54, 2.0, 16.5] #initial guess of parameters
22
23 plsq = leastsq(objective, x0, args=(energies, vols))
24
25 print('Fitted parameters = {0}'.format(plsq[0]))
26
27 import matplotlib.pyplot as plt
28 plt.plot(vols,energies, 'ro')
29
30 #plot the fitted curve on top
31 x = np.linspace(min(vols), max(vols), 50)
32 y = Murnaghan(plsq[0], x)
33 plt.plot(x, y, 'k-')
34 plt.xlabel('Volume')
35 plt.ylabel('Energy')
36 plt.savefig('images/nonlinear-curve-fitting.png')

Figure 1: Example of least-squares non-linear curve fitting.

See additional examples at http://docs.scipy.org/doc/scipy/reference/tutorial/optimize.

108

http://docs.scipy.org/doc/scipy/reference/tutorial/optimize.html
http://docs.scipy.org/doc/scipy/reference/tutorial/optimize.html

html.

7.6 Nonlinear curve fitting by direct least squares minimization

Here is an example of fitting a nonlinear function to data by direct minimization of the summed
squared error.

1 from scipy.optimize import fmin
2 import numpy as np
3
4 volumes = np.array([13.71, 14.82, 16.0, 17.23, 18.52])
5
6 energies = np.array([-56.29, -56.41, -56.46, -56.463,-56.41])
7
8 def Murnaghan(parameters,vol):
9 'From PRB 28,5480 (1983'

10 E0 = parameters[0]
11 B0 = parameters[1]
12 BP = parameters[2]
13 V0 = parameters[3]
14
15 E = E0 + B0*vol/BP*(((V0/vol)**BP)/(BP-1)+1) - V0*B0/(BP-1.)
16
17 return E
18
19 def objective(pars,vol):
20 #we will minimize this function
21 err = energies - Murnaghan(pars,vol)
22 return np.sum(err**2) #we return the summed squared error directly
23
24 x0 = [-56., 0.54, 2., 16.5] #initial guess of parameters
25
26 plsq = fmin(objective,x0,args=(volumes,)) #note args is a tuple
27
28 print('parameters = {0}'.format(plsq))
29
30 import matplotlib.pyplot as plt
31 plt.plot(volumes,energies,'ro')
32
33 #plot the fitted curve on top
34 x = np.linspace(min(volumes),max(volumes),50)
35 y = Murnaghan(plsq,x)
36 plt.plot(x,y,'k-')
37 plt.xlabel('Volume (\AA^3)')
38 plt.ylabel('Total energy (eV)')
39 plt.savefig('images/nonlinear-fitting-lsq.png')

7.7 Parameter estimation by directly minimizing summed squared errors

Matlab post

1 import numpy as np
2 import matplotlib.pyplot as plt
3
4 x = np.array([0.0, 1.1, 2.3, 3.1, 4.05, 6.0])
5 y = np.array([0.0039, 1.2270, 5.7035, 10.6472, 18.6032, 42.3024])
6
7 plt.plot(x, y)
8 plt.xlabel('x')
9 plt.ylabel('y')

10 plt.savefig('images/nonlin-minsse-1.png')

109

http://docs.scipy.org/doc/scipy/reference/tutorial/optimize.html
http://docs.scipy.org/doc/scipy/reference/tutorial/optimize.html
http://matlab.cheme.cmu.edu/2011/10/10/nonlinearfit_minsse-m/

Figure 2: Fitting a nonlinear function.

110

We are going to fit the function y = xa to the data. The best a will minimize the summed
squared error between the model and the fit.

1 def errfunc_(a):
2 return np.sum((y - x**a)**2)
3
4 errfunc = np.vectorize(errfunc_)
5
6 arange = np.linspace(1, 3)
7 sse = errfunc(arange)
8
9 plt.figure()

10 plt.plot(arange, sse)
11 plt.xlabel('a')
12 plt.ylabel('$\Sigma (y - y_{pred})^2$')
13 plt.savefig('images/nonlin-minsse-2.png')

111

Based on the graph above, you can see a minimum in the summed squared error near a = 2.1. We
use that as our initial guess. Since we know the answer is bounded, we use scipy.optimize.fminbound

1 from scipy.optimize import fminbound
2
3 amin = fminbound(errfunc, 1.0, 3.0)
4
5 print(amin)
6
7 plt.figure()
8 plt.plot(x, y, 'bo', label='data')
9 plt.plot(x, x**amin, 'r-', label='fit')

10 plt.xlabel('x')
11 plt.ylabel('y')
12 plt.legend(loc='best')
13 plt.savefig('images/nonlin-minsse-3.png')

112

We can do nonlinear fitting by directly minimizing the summed squared error between a model
and data. This method lacks some of the features of other methods, notably the simple ability to
get the confidence interval. However, this method is flexible and may offer more insight into how
the solution depends on the parameters.

7.8 Nonlinear curve fitting with parameter confidence intervals

Matlab post
We often need to estimate parameters from nonlinear regression of data. We should also consider

how good the parameters are, and one way to do that is to consider the confidence interval. A
confidence interval tells us a range that we are confident the true parameter lies in.

In this example we use a nonlinear curve-fitting function: scipy.optimize.curve_fit to give us
the parameters in a function that we define which best fit the data. The scipy.optimize.curve_fit
function also gives us the covariance matrix which we can use to estimate the standard error of
each parameter. Finally, we modify the standard error by a student-t value which accounts for the
additional uncertainty in our estimates due to the small number of data points we are fitting to.

We will fit the function y = ax/(b+x) to some data, and compute the 95% confidence intervals
on the parameters.

1 # Nonlinear curve fit with confidence interval
2 import numpy as np
3 from scipy.optimize import curve_fit
4 from scipy.stats.distributions import t
5
6 x = np.array([0.5, 0.387, 0.24, 0.136, 0.04, 0.011])

113

http://matlab.cheme.cmu.edu/2011/08/29/nonlinear-curve-fitting-with-parameter-confidence-intervals/
http://en.wikipedia.org/wiki/Covariance_matrix

7 y = np.array([1.255, 1.25, 1.189, 1.124, 0.783, 0.402])
8
9 # this is the function we want to fit to our data

10 def func(x, a, b):
11 'nonlinear function in a and b to fit to data'
12 return a * x / (b + x)
13
14 initial_guess = [1.2, 0.03]
15 pars, pcov = curve_fit(func, x, y, p0=initial_guess)
16
17 alpha = 0.05 # 95% confidence interval = 100*(1-alpha)
18
19 n = len(y) # number of data points
20 p = len(pars) # number of parameters
21
22 dof = max(0, n - p) # number of degrees of freedom
23
24 # student-t value for the dof and confidence level
25 tval = t.ppf(1.0-alpha/2., dof)
26
27 for i, p,var in zip(range(n), pars, np.diag(pcov)):
28 sigma = var**0.5
29 print('p{0}: {1} [{2} {3}]'.format(i, p,
30 p - sigma*tval,
31 p + sigma*tval))
32
33 import matplotlib.pyplot as plt
34 plt.plot(x,y,'bo ')
35 xfit = np.linspace(0,1)
36 yfit = func(xfit, pars[0], pars[1])
37 plt.plot(xfit,yfit,'b-')
38
39 plt.legend(['data','fit'],loc='best')
40 plt.savefig('images/nonlin-curve-fit-ci.png')

114

You can see by inspection that the fit looks pretty reasonable. The parameter confidence
intervals are not too big, so we can be pretty confident of their values.

7.9 Nonlinear curve fitting with confidence intervals

Our goal is to fit this equation to data y = c1exp(−x)+ c2∗x and compute the confidence intervals
on the parameters.

This is actually could be a linear regression problem, but it is convenient to illustrate the use the
nonlinear fitting routine because it makes it easy to get confidence intervals for comparison. The
basic idea is to use the covariance matrix returned from the nonlinear fitting routine to estimate
the student-t corrected confidence interval.

1 # Nonlinear curve fit with confidence interval
2 import numpy as np
3 from scipy.optimize import curve_fit
4 from scipy.stats.distributions import t
5
6 x = np.array([0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.])
7 y = np.array([4.70192769, 4.46826356, 4.57021389, 4.29240134, 3.88155125,
8 3.78382253, 3.65454727, 3.86379487, 4.16428541, 4.06079909])
9

10 # this is the function we want to fit to our data
11 def func(x,c0, c1):
12 return c0 * np.exp(-x) + c1*x
13
14 pars, pcov = curve_fit(func, x, y, p0=[4.96, 2.11])
15
16 alpha = 0.05 # 95% confidence interval

115

17
18 n = len(y) # number of data points
19 p = len(pars) # number of parameters
20
21 dof = max(0, n-p) # number of degrees of freedom
22
23 tval = t.ppf(1.0 - alpha / 2.0, dof) # student-t value for the dof and confidence level
24
25 for i, p,var in zip(range(n), pars, np.diag(pcov)):
26 sigma = var**0.5
27 print('c{0}: {1} [{2} {3}]'.format(i, p,
28 p - sigma*tval,
29 p + sigma*tval))
30
31 import matplotlib.pyplot as plt
32 plt.plot(x,y,'bo ')
33 xfit = np.linspace(0,1)
34 yfit = func(xfit, pars[0], pars[1])
35 plt.plot(xfit,yfit,'b-')
36 plt.legend(['data','fit'],loc='best')
37 plt.savefig('images/nonlin-fit-ci.png')

Figure 3: Nonlinear fit to data.

7.10 Graphical methods to help get initial guesses for multivariate nonlinear
regression

Matlab post

116

http://matlab.cheme.cmu.edu/2011/10/09/graphical-methods-to-help-get-initial-guesses-for-multivariate-nonlinear-regression/

Fit the model f(x1,x2; a,b) = a*x1 + x2ˆb to the data given below. This model has two
independent variables, and two parameters.

We want to do a nonlinear fit to find a and b that minimize the summed squared errors between
the model predictions and the data. With only two variables, we can graph how the summed
squared error varies with the parameters, which may help us get initial guesses. Let us assume
the parameters lie in a range, here we choose 0 to 5. In other problems you would adjust this as
needed.

1 import numpy as np
2 from mpl_toolkits.mplot3d import Axes3D
3 import matplotlib.pyplot as plt
4
5 x1 = [1.0, 2.0, 3.0, 4.0, 5.0, 6.0]
6 x2 = [0.2, 0.4, 0.8, 0.9, 1.1, 2.1]
7 X = np.column_stack([x1, x2]) # independent variables
8
9 f = [3.3079, 6.6358, 10.3143, 13.6492, 17.2755, 23.6271]

10
11 fig = plt.figure()
12 ax = fig.gca(projection = '3d')
13
14 ax.plot(x1, x2, f)
15 ax.set_xlabel('x1')
16 ax.set_ylabel('x2')
17 ax.set_zlabel('f(x1,x2)')
18
19 plt.savefig('images/graphical-mulvar-1.png')
20
21 arange = np.linspace(0,5);
22 brange = np.linspace(0,5);
23
24 A,B = np.meshgrid(arange, brange)
25
26 def model(X, a, b):
27 'Nested function for the model'
28 x1 = X[:, 0]
29 x2 = X[:, 1]
30
31 f = a * x1 + x2**b
32 return f
33
34 @np.vectorize
35 def errfunc(a, b):
36 # function for the summed squared error
37 fit = model(X, a, b)
38 sse = np.sum((fit - f)**2)
39 return sse
40
41 SSE = errfunc(A, B)
42
43 plt.clf()
44 plt.contourf(A, B, SSE, 50)
45 plt.plot([3.2], [2.1], 'ro')
46 plt.figtext(3.4, 2.2, 'Minimum near here', color='r')
47
48 plt.savefig('images/graphical-mulvar-2.png')
49
50 guesses = [3.18, 2.02]
51
52 from scipy.optimize import curve_fit
53
54 popt, pcov = curve_fit(model, X, f, guesses)
55 print(popt)
56
57 plt.plot([popt[0]], [popt[1]], 'r*')

117

58 plt.savefig('images/graphical-mulvar-3.png')
59
60 print(model(X, *popt))
61
62 fig = plt.figure()
63 ax = fig.gca(projection = '3d')
64
65 ax.plot(x1, x2, f, 'ko', label='data')
66 ax.plot(x1, x2, model(X, *popt), 'r-', label='fit')
67 ax.set_xlabel('x1')
68 ax.set_ylabel('x2')
69 ax.set_zlabel('f(x1,x2)')
70
71 plt.savefig('images/graphical-mulvar-4.png')

118

119

It can be difficult to figure out initial guesses for nonlinear fitting problems. For one and two
dimensional systems, graphical techniques may be useful to visualize how the summed squared
error between the model and data depends on the parameters.

7.11 Fitting a numerical ODE solution to data

Matlab post
Suppose we know the concentration of A follows this differential equation: dCA

dt = −kCA, and
we have data we want to fit to it. Here is an example of doing that.

1 import numpy as np
2 from scipy.optimize import curve_fit
3 from scipy.integrate import odeint
4
5 # given data we want to fit
6 tspan = [0, 0.1, 0.2, 0.4, 0.8, 1]
7 Ca_data = [2.0081, 1.5512, 1.1903, 0.7160, 0.2562, 0.1495]
8
9 def fitfunc(t, k):

10 'Function that returns Ca computed from an ODE for a k'
11 def myode(Ca, t):
12 return -k * Ca
13
14 Ca0 = Ca_data[0]
15 Casol = odeint(myode, Ca0, t)
16 return Casol[:,0]
17
18 k_fit, kcov = curve_fit(fitfunc, tspan, Ca_data, p0=1.3)
19 print(k_fit)

120

http://matlab.cheme.cmu.edu/2011/09/29/fitting-a-numerical-ode-solution-to-data/

20
21 tfit = np.linspace(0,1);
22 fit = fitfunc(tfit, k_fit)
23
24 import matplotlib.pyplot as plt
25 plt.plot(tspan, Ca_data, 'ro', label='data')
26 plt.plot(tfit, fit, 'b-', label='fit')
27 plt.legend(loc='best')
28 plt.savefig('images/ode-fit.png')

7.12 Reading in delimited text files

Matlab post
sometimes you will get data in a delimited text file format, .e.g. separated by commas or tabs.

Matlab can read these in easily. Suppose we have a file containing this data:

1 3
3 4
5 6
4 8

It is easy to read this directly into variables like this:

1 import numpy as np
2
3 x,y = np.loadtxt('data/testdata.txt', unpack=True)
4
5 print(x, y)

121

http://matlab.cheme.cmu.edu/2011/08/07/reading-in-delimited-text-files/

8 Interpolation

8.1 Better interpolate than never

Matlab post
We often have some data that we have obtained in the lab, and we want to solve some problem

using the data. For example, suppose we have this data that describes the value of f at time t.

1 import matplotlib.pyplot as plt
2
3 t = [0.5, 1, 3, 6]
4 f = [0.6065, 0.3679, 0.0498, 0.0025]
5 plt.plot(t, f)
6 plt.xlabel('t')
7 plt.ylabel('f(t)');

8.1.1 Estimate the value of f at t=2.

This is a simple interpolation problem.

1 from scipy.interpolate import interp1d
2
3 g = interp1d(t, f) # default is linear interpolation
4
5 print(g(2))
6 print(g([2, 3, 4]))

0.20885
[0.20885 0.0498 0.03403333]

122

http://matlab.cheme.cmu.edu/2012/02/02/better-interpolate-than-never/

The function we sample above is actually f(t) = exp(-t). The linearly interpolated example is
not too accurate.

1 import numpy as np
2 print(np.exp(-2))

0.1353352832366127

8.1.2 improved interpolation?

We can tell interp1d to use a different interpolation scheme such as cubic polynomial splines like
this. For nonlinear functions, this may improve the accuracy of the interpolation, as it implicitly
includes information about the curvature by fitting a cubic polynomial over neighboring points.

1 g2 = interp1d(t, f, 'cubic')
2 print(g2(2))
3 print(g2([2, 3, 4]))

0.1084818181818181
[0.10848182 0.0498 0.08428727]

Interestingly, this is a different value than Matlab’s cubic interpolation. Let us show the cubic
spline fit.

1 plt.figure()
2 plt.plot(t, f)
3 plt.xlabel('t')
4 plt.ylabel('f(t)')
5
6 x = np.linspace(0.5, 6)
7 fit = g2(x)
8 plt.plot(x, fit, label='fit');

123

Wow. That is a weird looking fit. Very different from what Matlab produces. This is a good
teaching moment not to rely blindly on interpolation! We will rely on the linear interpolation from
here out which behaves predictably.

8.1.3 The inverse question

It is easy to interpolate a new value of f given a value of t. What if we want to know the time that
f=0.2? We can approach this a few ways.

method 1 We setup a function that we can use fsolve on. The function will be equal to zero
at the time. The second function will look like 0 = 0.2 - f(t). The answer for 0.2=exp(-t) is t =
1.6094. Since we use interpolation here, we will get an approximate answer.

1 from scipy.optimize import fsolve
2
3 def func(t):
4 return 0.2 - g(t)
5
6 initial_guess = 2
7 ans, = fsolve(func, initial_guess)
8 print(ans)

2.055642879597611

method 2: switch the interpolation order We can switch the order of the interpolation to
solve this problem. An issue we have to address in this method is that the "x" values must be
monotonically increasing. It is somewhat subtle to reverse a list in python. I will use the cryptic

124

http://matlab.cheme.cmu.edu/wp-content/uploads/2012/02/interp_methods_02.png

syntax of [::-1] instead of the list.reverse() function or reversed() function. list.reverse() actually
reverses the list "in place", which changes the contents of the variable. That is not what I want.
reversed() returns an iterator which is also not what I want. [::-1] is a fancy indexing trick that
returns a reversed list.

1 g3 = interp1d(f[::-1], t[::-1])
2
3 print(g3(0.2))

2.055642879597611

8.1.4 A harder problem

Suppose we want to know at what time is 1/f = 100? Now we have to decide what do we interpolate:
f(t) or 1/f(t). Let us look at both ways and decide what is best. The answer to 1/exp(−t) = 100
is 4.6052

interpolate on f(t) then invert the interpolated number

1 def func(t):
2 'objective function. we do some error bounds because we cannot interpolate out of the range.'
3 if t < 0.5: t=0.5
4 if t > 6: t = 6
5 return 100 - 1.0 / g(t)
6
7 initial_guess = 4.5
8 a1, = fsolve(func, initial_guess)
9 print(a1)

10 print('The %error is {0:%}'.format((a1 - 4.6052)/4.6052))

5.524312896405919
The %error is 19.958154%

invert f(t) then interpolate on 1/f

1 ig = interp1d(t, 1.0 / np.array(f))
2
3 def ifunc(t):
4 if t < 0.5:
5 t=0.5
6 elif t > 6:
7 t = 6
8 return 100 - ig(t)
9

10 initial_guess = 4.5
11 a2, = fsolve(ifunc, initial_guess)
12 print(a2)
13 print('The %error is {0:%}'.format((a2 - 4.6052)/4.6052))

3.63107822410148
The %error is -21.152649%

125

8.1.5 Discussion

In this case you get different errors, one overestimates and one underestimates the answer, and by
a lot: ± 20%. Let us look at what is happening.

1 import matplotlib.pyplot as plt
2 import numpy as np
3 from scipy.interpolate import interp1d
4
5 t = [0.5, 1, 3, 6]
6 f = [0.6065, 0.3679, 0.0498, 0.0025]
7
8 x = np.linspace(0.5, 6)
9

10
11 g = interp1d(t, f) # default is linear interpolation
12 ig = interp1d(t, 1.0 / np.array(f))
13
14 plt.figure()
15 plt.plot(t, 1 / np.array(f), 'ko ', label='data')
16 plt.plot(x, 1 / g(x), label='1/interpolated f(x)')
17 plt.plot(x, ig(x), label='interpolate on 1/f(x)')
18 plt.plot(x, 1 / np.exp(-x), 'k--', label='1/exp(-x)')
19 plt.xlabel('t')
20 plt.ylabel('1/f(t)')
21 plt.legend(loc='best');

You can see that the 1/interpolated f(x) underestimates the value, while interpolated (1/f(x))
overestimates the value. This is an example of where you clearly need more data in that range to
make good estimates. Neither interpolation method is doing a great job. The trouble in reality
is that you often do not know the real function to do this analysis. Here you can say the time is
probably between 3.6 and 5.5 where 1/f(t) = 100, but you can not read much more than that into

126

it. If you need a more precise answer, you need better data, or you need to use an approach other
than interpolation. For example, you could fit an exponential function to the data and use that to
estimate values at other times.

So which is the best to interpolate? I think you should interpolate the quantity that is linear in
the problem you want to solve, so in this case I think interpolating 1/f(x) is better. When you use
an interpolated function in a nonlinear function, strange, unintuitive things can happen. That is
why the blue curve looks odd. Between data points are linear segments in the original interpolation,
but when you invert them, you cause the curvature to form.

8.2 Interpolation of data

Matlab post
When we have data at two points but we need data in between them we use interpolation.

Suppose we have the points (4,3) and (6,2) and we want to know the value of y at x=4.65, assuming
y varies linearly between these points. we use the interp1d command to achieve this. The syntax
in python is slightly different than in matlab.

1 from scipy.interpolate import interp1d
2
3 x = [4, 6]
4 y = [3, 2]
5
6 ifunc = interp1d(x, y)
7
8 print(ifunc(4.65))
9

10
11 ifunc = interp1d(x, y, bounds_error=False) # do not raise error on out of bounds
12 print(ifunc([4.65, 5.01, 4.2, 9]))

The default interpolation method is simple linear interpolation between points. Other methods
exist too, such as fitting a cubic spline to the data and using the spline representation to interpolate
from.

1 from scipy.interpolate import interp1d
2
3 x = [1, 2, 3, 4];
4 y = [1, 4, 9, 16]; # y = x^2
5
6 xi = [1.5, 2.5, 3.5]; # we want to interpolate on these values
7 y1 = interp1d(x,y)
8
9 print(y1(xi))

10
11 y2 = interp1d(x,y,'cubic')
12 print(y2(xi))
13
14 import numpy as np
15 print(np.array(xi)**2)

In this case the cubic spline interpolation is more accurate than the linear interpolation. That
is because the underlying data was polynomial in nature, and a spline is like a polynomial. That
may not always be the case, and you need some engineering judgement to know which method is
best.

127

http://matlab.cheme.cmu.edu/2011/08/01/interpolation-of-data/

8.3 Interpolation with splines

When you do not know the functional form of data to fit an equation, you can still fit/interpolate
with splines.

1 # use splines to fit and interpolate data
2 from scipy.interpolate import interp1d
3 from scipy.optimize import fmin
4 import numpy as np
5 import matplotlib.pyplot as plt
6
7 x = np.array([0, 1, 2, 3, 4])
8 y = np.array([0., 0.308, 0.55, 0.546, 0.44])
9

10 # create the interpolating function
11 f = interp1d(x, y, kind='cubic', bounds_error=False)
12
13 # to find the maximum, we minimize the negative of the function. We
14 # cannot just multiply f by -1, so we create a new function here.
15 f2 = interp1d(x, -y, kind='cubic')
16 xmax = fmin(f2, 2.5)
17
18 xfit = np.linspace(0,4)
19
20 plt.plot(x,y,'bo')
21 plt.plot(xfit, f(xfit),'r-')
22 plt.plot(xmax, f(xmax),'g*')
23 plt.legend(['data','fit','max'], loc='best', numpoints=1)
24 plt.xlabel('x data')
25 plt.ylabel('y data')
26 plt.title('Max point = ({0:1.2f}, {1:1.2f})'.format(float(xmax),
27 float(f(xmax))))
28 plt.savefig('images/splinefit.png')

There are other good examples at http://docs.scipy.org/doc/scipy/reference/tutorial/
interpolate.html

9 Optimization

9.1 Constrained optimization

Matlab post
adapted from http://en.wikipedia.org/wiki/Lagrange_multipliers.
Suppose we seek to minimize the function f(x, y) = x+y subject to the constraint that x2+y2 =

1. The function we seek to maximize is an unbounded plane, while the constraint is a unit circle. We
could setup a Lagrange multiplier approach to solving this problem, but we will use a constrained
optimization approach instead.

1 from scipy.optimize import fmin_slsqp
2
3 def objective(X):
4 x, y = X
5 return x + y
6
7 def eqc(X):
8 'equality constraint'
9 x, y = X

10 return x**2 + y**2 - 1.0
11

128

http://docs.scipy.org/doc/scipy/reference/tutorial/interpolate.html
http://docs.scipy.org/doc/scipy/reference/tutorial/interpolate.html
http://matlab.cheme.cmu.edu/2011/12/24/constrained-optimization/
http://en.wikipedia.org/wiki/Lagrange_multipliers

Figure 4: Illustration of a spline fit to data and finding the maximum point.

129

12 X0 = [-1, -1]
13 X = fmin_slsqp(objective, X0, eqcons=[eqc])
14 print(X)

9.2 Finding the maximum power of a photovoltaic device.

A photovoltaic device is characterized by a current-voltage relationship. Let us say, for argument’s
sake, that the relationship is known and defined by

i = 0.5− 0.5 ∗ V 2

The voltage is highest when the current is equal to zero, but of course then you get no power.
The current is highest when the voltage is zero, i.e. short-circuited, but there is again no power.
We seek the highest power condition, which is to find the maximum of iV . This is a constrained
optimization. We solve it by creating an objective function that returns the negative of (ıV\), and
then find the minimum.

First, let us examine the i-V relationship.

1 import matplotlib.pyplot as plt
2 import numpy as np
3
4 V = np.linspace(0, 1)
5
6 def i(V):
7 return 0.5 - 0.5 * V**2
8
9 plt.figure()

10 plt.plot(V, i(V))
11 plt.savefig('images/iV.png')

130

Now, let us be sure there is a maximum in power.

1 import matplotlib.pyplot as plt
2 import numpy as np
3
4 V = np.linspace(0, 1)
5
6 def i(V):
7 return 0.5 - 0.5 * V**2
8
9 plt.plot(V, i(V) * V)

10 plt.savefig('images/P1.png')

You can see in fact there is a maximum, near V=0.6. We could solve this problem analytically
by taking the appropriate derivative and solving it for zero. That still might require solving a
nonlinear problem though. We will directly setup and solve the constrained optimization.

1 from scipy.optimize import fmin_slsqp
2 import numpy as np
3 import matplotlib.pyplot as plt
4
5 def objective(X):
6 i, V = X
7 return - i * V
8
9 def eqc(X):

10 'equality constraint'
11 i, V = X
12 return (0.5 - 0.5 * V**2) - i
13

131

14 X0 = [0.2, 0.6]
15 X = fmin_slsqp(objective, X0, eqcons=[eqc])
16
17 imax, Vmax = X
18
19
20 V = np.linspace(0, 1)
21
22 def i(V):
23 return 0.5 - 0.5 * V**2
24
25 plt.plot(V, i(V), Vmax, imax, 'ro')
26 plt.savefig('images/P2.png')

You can see the maximum power is approximately 0.2 (unspecified units), at the conditions
indicated by the red dot in the figure above.

9.3 Using Lagrange multipliers in optimization

Matlab post (adapted from http://en.wikipedia.org/wiki/Lagrange_multipliers.)
Suppose we seek to maximize the function f(x, y) = x + y subject to the constraint that

x2 + y2 = 1. The function we seek to maximize is an unbounded plane, while the constraint is a
unit circle. We want the maximum value of the circle, on the plane. We plot these two functions
here.

1 import numpy as np
2
3 x = np.linspace(-1.5, 1.5)

132

http://matlab.cheme.cmu.edu/2011/12/24/using-lagrange-multipliers-in-optimization/
http://en.wikipedia.org/wiki/Lagrange_multipliers

4
5 [X, Y] = np.meshgrid(x, x)
6
7 import matplotlib as mpl
8 from mpl_toolkits.mplot3d import Axes3D
9 import matplotlib.pyplot as plt

10
11 fig = plt.figure()
12 ax = fig.gca(projection='3d')
13
14 ax.plot_surface(X, Y, X + Y)
15
16 theta = np.linspace(0,2*np.pi);
17 R = 1.0
18 x1 = R * np.cos(theta)
19 y1 = R * np.sin(theta)
20
21 ax.plot(x1, y1, x1 + y1, 'r-')
22 plt.savefig('images/lagrange-1.png')

9.3.1 Construct the Lagrange multiplier augmented function

To find the maximum, we construct the following function: Λ(x, y;λ) = f(x, y) + λg(x, y) where
g(x, y) = x2 + y2 − 1 = 0, which is the constraint function. Since g(x, y) = 0, we are not really
changing the original function, provided that the constraint is met!

1 import numpy as np
2
3 def func(X):
4 x = X[0]

133

5 y = X[1]
6 L = X[2] # this is the multiplier. lambda is a reserved keyword in python
7 return x + y + L * (x**2 + y**2 - 1)

9.3.2 Finding the partial derivatives

The minima/maxima of the augmented function are located where all of the partial derivatives
of the augmented function are equal to zero, i.e. ∂Λ/∂x = 0, ∂Λ/∂y = 0, and ∂Λ/∂λ = 0. the
process for solving this is usually to analytically evaluate the partial derivatives, and then solve the
unconstrained resulting equations, which may be nonlinear.

Rather than perform the analytical differentiation, here we develop a way to numerically ap-
proximate the partial derivatives.

1 def dfunc(X):
2 dLambda = np.zeros(len(X))
3 h = 1e-3 # this is the step size used in the finite difference.
4 for i in range(len(X)):
5 dX = np.zeros(len(X))
6 dX[i] = h
7 dLambda[i] = (func(X+dX)-func(X-dX))/(2*h);
8 return dLambda

9.3.3 Now we solve for the zeros in the partial derivatives

The function we defined above (dfunc) will equal zero at a maximum or minimum. It turns out
there are two solutions to this problem, but only one of them is the maximum value. Which solution
you get depends on the initial guess provided to the solver. Here we have to use some judgement
to identify the maximum.

1 from scipy.optimize import fsolve
2
3 # this is the max
4 X1 = fsolve(dfunc, [1, 1, 0])
5 print(X1, func(X1))
6
7 # this is the min
8 X2 = fsolve(dfunc, [-1, -1, 0])
9 print(X2, func(X2))

9.3.4 Summary

Three dimensional plots in matplotlib are a little more difficult than in Matlab (where the code is
almost the same as 2D plots, just different commands, e.g. plot vs plot3). In Matplotlib you have
to import additional modules in the right order, and use the object oriented approach to plotting
as shown here.

9.4 Linear programming example with inequality constraints

Matlab post
adapted from http://www.matrixlab-examples.com/linear-programming.html which solves

this problem with fminsearch.
Let us suppose that a merry farmer has 75 roods (4 roods = 1 acre) on which to plant two

crops: wheat and corn. To produce these crops, it costs the farmer (for seed, water, fertilizer, etc.

134

http://matlab.cheme.cmu.edu/2011/10/21/linear-programming-example-with-inequality-constraints/
http://www.matrixlab-examples.com/linear-programming.html

) $120 per rood for the wheat, and $210 per rood for the corn. The farmer has $15,000 available
for expenses, but after the harvest the farmer must store the crops while awaiting favorable or
good market conditions. The farmer has storage space for 4,000 bushels. Each rood yields an
average of 110 bushels of wheat or 30 bushels of corn. If the net profit per bushel of wheat (after
all the expenses) is $1.30 and for corn is $2.00, how should the merry farmer plant the 75 roods to
maximize profit?

Let x be the number of roods of wheat planted, and y be the number of roods of corn planted.
The profit function is: P = (110)(1.3)x + (30)(2)y = 143x+ 60y

There are some constraint inequalities, specified by the limits on expenses, storage and roodage.
They are:

$120x+ $210y <= $15000 (The total amount spent cannot exceed the amount the farm has)
110x+ 30y <= 4000 (The amount generated should not exceed storage space.)
x+ y <= 75 (We cannot plant more space than we have.)
0 <= xand0 <= y (all amounts of planted land must be positive.)
To solve this problem, we cast it as a linear programming problem, which minimizes a function

f(X) subject to some constraints. We create a proxy function for the negative of profit, which we
seek to minimize.

f = -(143*x + 60*y)

1 from scipy.optimize import fmin_cobyla
2
3 def objective(X):
4 '''objective function to minimize. It is the negative of profit,
5 which we seek to maximize.'''
6 x, y = X
7 return -(143*x + 60*y)
8
9 def c1(X):

10 'Ensure 120x + 210y <= 15000'
11 x,y = X
12 return 15000 - 120 * x - 210*y
13
14 def c2(X):
15 'ensure 110x + 30y <= 4000'
16 x,y = X
17 return 4000 - 110*x - 30 * y
18
19 def c3(X):
20 'Ensure x + y is less than or equal to 75'
21 x,y = X
22 return 75 - x - y
23
24 def c4(X):
25 'Ensure x >= 0'
26 return X[0]
27
28 def c5(X):
29 'Ensure y >= 0'
30 return X[1]
31
32 X = fmin_cobyla(objective, x0=[20, 30], cons=[c1, c2, c3, c4, c5])
33
34 print('We should plant {0:1.2f} roods of wheat.'.format(X[0]))
35 print('We should plant {0:1.2f} roods of corn'.format(X[1]))
36 print('The maximum profit we can earn is ${0:1.2f}.'.format(-objective(X)))

This code is not exactly the same as the original post, but we get to the same answer. The
linear programming capability in scipy is currently somewhat limited in 0.10. It is a little better

135

http://matlab.cheme.cmu.edu/2011/10/21/linear-programming-example-with-inequality-constraints/

in 0.11, but probably not as advanced as Matlab. There are some external libraries available:

1. http://abel.ee.ucla.edu/cvxopt/

2. http://openopt.org/LP

9.5 Find the minimum distance from a point to a curve.

A problem that can be cast as a constrained minimization problem is to find the minimum distance
from a point to a curve. Suppose we have f(x) = x2, and the point (0.5, 2). what is the minimum
distance from that point to f(x)?

1 import numpy as np
2 import matplotlib.pyplot as plt
3 from scipy.optimize import fmin_cobyla
4
5 P = (0.5, 2)
6
7 def f(x):
8 return x**2
9

10 def objective(X):
11 x,y = X
12 return np.sqrt((x - P[0])**2 + (y - P[1])**2)
13
14 def c1(X):
15 x,y = X
16 return f(x) - y
17
18 X = fmin_cobyla(objective, x0=[0.5,0.5], cons=[c1])
19
20 print('The minimum distance is {0:1.2f}'.format(objective(X)))
21
22 # Verify the vector to this point is normal to the tangent of the curve
23 # position vector from curve to point
24 v1 = np.array(P) - np.array(X)
25 # position vector
26 v2 = np.array([1, 2.0 * X[0]])
27 print('dot(v1, v2) = ',np.dot(v1, v2))
28
29 x = np.linspace(-2, 2, 100)
30
31 plt.plot(x, f(x), 'r-', label='f(x)')
32 plt.plot(P[0], P[1], 'bo', label='point')
33 plt.plot([P[0], X[0]], [P[1], X[1]], 'b-', label='shortest distance')
34 plt.plot([X[0], X[0] + 1], [X[1], X[1] + 2.0 * X[0]], 'g-', label='tangent')
35 plt.axis('equal')
36 plt.xlabel('x')
37 plt.ylabel('y')
38 plt.legend(loc='best')
39 plt.savefig('images/min-dist-p-func.png')

136

http://abel.ee.ucla.edu/cvxopt/
http://openopt.org/LP

In the code above, we demonstrate that the point we find on the curve that minimizes the
distance satisfies the property that a vector from that point to our other point is normal to the
tangent of the curve at that point. This is shown by the fact that the dot product of the two
vectors is very close to zero. It is not zero because of the accuracy criteria that is used to stop the
minimization is not high enough.

10 Differential equations
The key to successfully solving many differential equations is correctly classifying the equations,
putting them into a standard form and then picking the appropriate solver. You must be able to
determine if an equation is:

• An ordinary differential equation Y ′ = f(x, Y) with

– initial values (good support in python/numpy/scipy)
– boundary values (not difficult to write code for simple cases)

• Delay differential equation

• Differential algebraic equations

• A partial differential equation

The following sections will illustrate the methods for solving these kinds of equations.

137

10.1 Ordinary differential equations

10.1.1 Numerical solution to a simple ode

Matlab post
Integrate this ordinary differential equation (ode):

dy

dt
= y(t)

over the time span of 0 to 2. The initial condition is y(0) = 1.
to solve this equation, you need to create a function of the form: dydt = f(y, t) and then use

one of the odesolvers, e.g. odeint.

1 import numpy as np
2 from scipy.integrate import odeint
3 import matplotlib.pyplot as plt
4
5 def fprime(y,t):
6 return y
7
8 tspan = np.linspace(0, 25)
9 y0 = 1

10 ysol = odeint(fprime, y0, tspan)
11 plt.figure(figsize=(4,3))
12 plt.plot(tspan, ysol, label='numerical solution')
13 plt.plot(tspan, np.exp(tspan), 'r--', label='analytical solution')
14 plt.xlabel('time')
15 plt.ylabel('y(t)')
16 plt.legend(loc='best')
17 plt.savefig('images/simple-ode.png')
18 plt.show()

138

http://matlab.cheme.cmu.edu/2011/08/03/numerical-solution-to-a-simple-ode/

.-p The numerical and analytical solutions agree.
Now, suppose you want to know at what time is the solution equal to 3? There are several

approaches to this, including setting up a solver, or using an event like approach to stop integration
at y=3. A simple approach is to use reverse interpolation. We simply reverse the x and y vectors
so that y is the independent variable, and we interpolate the corresponding x-value.

1 import numpy as np
2 from scipy.integrate import odeint
3 import matplotlib.pyplot as plt
4
5 def fprime(y,t):
6 return y
7
8 tspan = np.linspace(0, 2)
9 y0 = 1

10 ysol = odeint(fprime, y0, tspan)
11
12 from scipy.interpolate import interp1d
13
14 ip = interp1d(ysol[:,0], tspan) # reverse interpolation
15 print('y = 3 at x = {0}'.format(ip(3)))

10.1.2 Plotting ODE solutions in cylindrical coordinates

Matlab post
It is straightforward to plot functions in Cartesian coordinates. It is less convenient to plot

them in cylindrical coordinates. Here we solve an ODE in cylindrical coordinates, and then convert
the solution to Cartesian coordinates for simple plotting.

139

http://matlab.cheme.cmu.edu/2011/11/08/plot-the-solution-to-an-ode-in-cylindrical-coordinates-2/

1 import numpy as np
2 from scipy.integrate import odeint
3
4 def dfdt(F, t):
5 rho, theta, z = F
6 drhodt = 0 # constant radius
7 dthetadt = 1 # constant angular velocity
8 dzdt = -1 # constant dropping velocity
9 return [drhodt, dthetadt, dzdt]

10
11 # initial conditions
12 rho0 = 1
13 theta0 = 0
14 z0 = 100
15
16 tspan = np.linspace(0, 50, 500)
17 sol = odeint(dfdt, [rho0, theta0, z0], tspan)
18
19 rho = sol[:,0]
20 theta = sol[:,1]
21 z = sol[:,2]
22
23 # convert cylindrical coords to cartesian for plotting.
24 X = rho * np.cos(theta)
25 Y = rho * np.sin(theta)
26
27 from mpl_toolkits.mplot3d import Axes3D
28 import matplotlib.pyplot as plt
29 fig = plt.figure()
30 ax = fig.gca(projection='3d')
31 ax.plot(X, Y, z)
32 plt.savefig('images/ode-cylindrical.png')

140

10.1.3 ODEs with discontinuous forcing functions

Matlab post
Adapted from http://archives.math.utk.edu/ICTCM/VOL18/S046/paper.pdf
A mixing tank initially contains 300 g of salt mixed into 1000 L of water. At t=0 min, a solution

of 4 g/L salt enters the tank at 6 L/min. At t=10 min, the solution is changed to 2 g/L salt, still
entering at 6 L/min. The tank is well stirred, and the tank solution leaves at a rate of 6 L/min.
Plot the concentration of salt (g/L) in the tank as a function of time.

A mass balance on the salt in the tank leads to this differential equation: dMS
dt = νCS,in(t) −

νMS/V with the initial condition that MS(t = 0) = 300. The wrinkle is that the inlet conditions
are not constant.

CS,in(t) =
0 t ≤ 0,
4 0 < t ≤ 10,
2 t > 10.

1 import numpy as np
2 from scipy.integrate import odeint
3 import matplotlib.pyplot as plt
4
5 V = 1000.0 # L
6 nu = 6.0 # L/min
7
8 def Cs_in(t):
9 'inlet concentration'

10 if t < 0:
11 Cs = 0.0 # g/L
12 elif (t > 0) and (t <= 10):
13 Cs = 4.0
14 else:
15 Cs = 2.0
16 return Cs
17
18 def mass_balance(Ms, t):
19 '$\frac{dM_S}{dt} = \nu C_{S,in}(t) - \nu M_S/V$'
20 dMsdt = nu * Cs_in(t) - nu * Ms / V
21 return dMsdt
22
23 tspan = np.linspace(0.0, 15.0, 50)
24
25 M0 = 300.0 # gm salt
26 Ms = odeint(mass_balance, M0, tspan)
27
28 plt.plot(tspan, Ms/V, 'b.-')
29 plt.xlabel('Time (min)')
30 plt.ylabel('Salt concentration (g/L)')
31 plt.savefig('images/ode-discont.png')

141

http://matlab.cheme.cmu.edu/2011/09/01/odes-with-discontinuous-forcing-functions/
http://archives.math.utk.edu/ICTCM/VOL18/S046/paper.pdf

You can see the discontinuity in the salt concentration at 10 minutes due to the discontinous
change in the entering salt concentration.

10.1.4 Simulating the events feature of Matlab’s ode solvers

The ode solvers in Matlab allow you create functions that define events that can stop the integration,
detect roots, etc. . . We will explore how to get a similar effect in python. Here is an example that
somewhat does this, but it is only an approximation. We will manually integrate the ODE, adjusting
the time step in each iteration to zero in on the solution. When the desired accuracy is reached,
we stop the integration.

It does not appear that events are supported in scipy. A solution is at http://mail.scipy.
org/pipermail/scipy-dev/2005-July/003078.html, but it does not appear integrated into scipy
yet (8 years later ;).

1 import numpy as np
2 from scipy.integrate import odeint
3
4 def dCadt(Ca, t):
5 "the ode function"
6 k = 0.23
7 return -k * Ca**2
8
9 Ca0 = 2.3

10
11 # create lists to store time span and solution
12 tspan = [0,]
13 sol = [Ca0,]
14 i = 0

142

http://mail.scipy.org/pipermail/scipy-dev/2005-July/003078.html
http://mail.scipy.org/pipermail/scipy-dev/2005-July/003078.html

15
16 while i < 100: # take max of 100 steps
17 t1 = tspan[i]
18 Ca = sol[i]
19
20 # pick the next time using a Newton-Raphson method
21 # we want f(t, Ca) = (Ca(t) - 1)**2 = 0
22 # df/dt = df/dCa dCa/dt
23 # = 2*(Ca - 1) * dCadt
24 t2 = t1 - (Ca - 1.0)**2 / (2 * (Ca - 1) *dCadt(Ca, t1))
25
26 f = odeint(dCadt, Ca, [t1, t2])
27
28 if np.abs(Ca - 1.0) <= 1e-4:
29 print('Solution reached at i = {0}'.format(i))
30 break
31
32 tspan += [t2]
33 sol.append(f[-1][0])
34 i += 1
35
36 print('At t={0:1.2f} Ca = {1:1.3f}'.format(tspan[-1], sol[-1]))
37
38 import matplotlib.pyplot as plt
39 plt.plot(tspan, sol, 'bo')
40 plt.savefig('images/event-i.png')

This particular solution works for this example, probably because it is well behaved. It is
"downhill" to the desired solution. It is not obvious this would work for every example, and it
is certainly possible the algorithm could go "backward" in time. A better approach might be to
integrate forward until you detect a sign change in your event function, and then refine it in a

143

separate loop.
I like the events integration in Matlab better, but this is actually pretty functional. It should not

be too hard to use this for root counting, e.g. by counting sign changes. It would be considerably
harder to get the actual roots. It might also be hard to get the positions of events that include the
sign or value of the derivatives at the event points.

ODE solving in Matlab is considerably more advanced in functionality than in scipy. There do
seem to be some extra packages, e.g. pydstools, scikits.odes that add extra ode functionality.

10.1.5 Mimicking ode events in python

The ODE functions in scipy.integrate do not directly support events like the functions in Matlab
do. We can achieve something like it though, by digging into the guts of the solver, and writing
a little code. In previous example I used an event to count the number of roots in a function by
integrating the derivative of the function.

1 import numpy as np
2 from scipy.integrate import odeint
3
4 def myode(f, x):
5 return 3*x**2 + 12*x -4
6
7 def event(f, x):
8 'an event is when f = 0'
9 return f

10
11 # initial conditions
12 x0 = -8
13 f0 = -120
14
15 # final x-range and step to integrate over.
16 xf = 4 #final x value
17 deltax = 0.45 #xstep
18
19 # lists to store the results in
20 X = [x0]
21 sol = [f0]
22 e = [event(f0, x0)]
23 events = []
24 x2 = x0
25 # manually integrate at each time step, and check for event sign changes at each step
26 while x2 <= xf: #stop integrating when we get to xf
27 x1 = X[-1]
28 x2 = x1 + deltax
29 f1 = sol[-1]
30
31 f2 = odeint(myode, f1, [x1, x2]) # integrate from x1,f1 to x2,f2
32 X += [x2]
33 sol += [f2[-1][0]]
34
35 # now evaluate the event at the last position
36 e += [event(sol[-1], X[-1])]
37
38 if e[-1] * e[-2] < 0:
39 # Event detected where the sign of the event has changed. The
40 # event is between xPt = X[-2] and xLt = X[-1]. run a modified bisect
41 # function to narrow down to find where event = 0
42 xLt = X[-1]
43 fLt = sol[-1]
44 eLt = e[-1]
45
46 xPt = X[-2]
47 fPt = sol[-2]

144

http://matlab.cheme.cmu.edu/2011/09/10/counting-roots/

48 ePt = e[-2]
49
50 j = 0
51 while j < 100:
52 if np.abs(xLt - xPt) < 1e-6:
53 # we know the interval to a prescribed precision now.
54 print('x = {0}, event = {1}, f = {2}'.format(xLt, eLt, fLt))
55 events += [(xLt, fLt)]
56 break # and return to integrating
57
58 m = (ePt - eLt)/(xPt - xLt) #slope of line connecting points
59 #bracketing zero
60
61 #estimated x where the zero is
62 new_x = -ePt / m + xPt
63
64 # now get the new value of the integrated solution at that new x
65 f = odeint(myode, fPt, [xPt, new_x])
66 new_f = f[-1][-1]
67 new_e = event(new_f, new_x)
68
69 # now check event sign change
70 if eLt * new_e > 0:
71 xPt = new_x
72 fPt = new_f
73 ePt = new_e
74 else:
75 xLt = new_x
76 fLt = new_f
77 eLt = new_e
78
79 j += 1
80
81
82 import matplotlib.pyplot as plt
83 plt.plot(X, sol)
84
85 # add event points to the graph
86 for x,e in events:
87 plt.plot(x,e,'bo ')
88 plt.savefig('images/event-ode-1.png')

145

That was a lot of programming to do something like find the roots of the function! Below
is an example of using a function coded into pycse to solve the same problem. It is a bit more
sophisticated because you can define whether an event is terminal, and the direction of the approach
to zero for each event.

1 from pycse import *
2 import numpy as np
3
4 def myode(f, x):
5 return 3*x**2 + 12*x -4
6
7 def event1(f, x):
8 'an event is when f = 0 and event is decreasing'
9 isterminal = True

10 direction = -1
11 return f, isterminal, direction
12
13 def event2(f, x):
14 'an event is when f = 0 and increasing'
15 isterminal = False
16 direction = 1
17 return f, isterminal, direction
18
19 f0 = -120
20
21 xspan = np.linspace(-8, 4)
22 X, F, TE, YE, IE = odelay(myode, f0, xspan, events=[event1, event2])
23
24 import matplotlib.pyplot as plt
25 plt.plot(X, F, '.-')
26

146

27 # plot the event locations.use a different color for each event
28 colors = 'rg'
29
30 for x,y,i in zip(TE, YE, IE):
31 plt.plot([x], [y], 'o', color=colors[i])
32
33 plt.savefig('images/event-ode-2.png')
34 print(TE, YE, IE)

10.1.6 Solving an ode for a specific solution value

Matlab post The analytical solution to an ODE is a function, which can be solved to get a particular
value, e.g. if the solution to an ODE is y(x) = exp(x), you can solve the solution to find the value of
x that makes y(x) = 2. In a numerical solution to an ODE we get a vector of independent variable
values, and the corresponding function values at those values. To solve for a particular function
value we need a different approach. This post will show one way to do that in python.

Given that the concentration of a species A in a constant volume, batch reactor obeys this
differential equation dCA

dt = −kC2
A with the initial condition CA(t = 0) = 2.3 mol/L and k = 0.23

L/mol/s, compute the time it takes for CA to be reduced to 1 mol/L.
We will get a solution, then create an interpolating function and use fsolve to get the answer.

1 from scipy.integrate import odeint
2 from scipy.interpolate import interp1d
3 from scipy.optimize import fsolve
4 import numpy as np
5 import matplotlib.pyplot as plt
6

147

http://matlab.cheme.cmu.edu/2011/08/31/solving-an-ode-for-a-specific-solution-value/

7 k = 0.23
8 Ca0 = 2.3
9

10 def dCadt(Ca, t):
11 return -k * Ca**2
12
13 tspan = np.linspace(0, 10)
14
15 sol = odeint(dCadt, Ca0, tspan)
16 Ca = sol[:,0]
17
18 plt.plot(tspan, Ca)
19 plt.xlabel('Time (s)')
20 plt.ylabel('C_A (mol/L)')
21 plt.savefig('images/ode-specific-1.png')

You can see the solution is near two seconds. Now we create an interpolating function to
evaluate the solution. We will plot the interpolating function on a finer grid to make sure it seems
reasonable.

1 ca_func = interp1d(tspan, Ca, 'cubic')
2
3 itime = np.linspace(0, 10, 200)
4
5 plt.figure()
6 plt.plot(tspan, Ca, '.')
7 plt.plot(itime, ca_func(itime), 'b-')
8
9 plt.xlabel('Time (s)')

10 plt.ylabel('C_A (mol/L)')

148

11 plt.legend(['solution','interpolated'])
12 plt.savefig('images/ode-specific-2.png')

that loos pretty reasonable. Now we solve the problem.

1 tguess = 2.0
2 tsol, = fsolve(lambda t: 1.0 - ca_func(t), tguess)
3 print(tsol)
4
5 # you might prefer an explicit function
6 def func(t):
7 return 1.0 - ca_func(t)
8
9 tsol2, = fsolve(func, tguess)

10 print(tsol2)

That is it. Interpolation can provide a simple way to evaluate the numerical solution of an ODE
at other values.

For completeness we examine a final way to construct the function. We can actually integrate the
ODE in the function to evaluate the solution at the point of interest. If it is not computationally
expensive to evaluate the ODE solution this works fine. Note, however, that the ODE will get
integrated from 0 to the value t for each iteration of fsolve.

1 def func(t):
2 tspan = [0, t]
3 sol = odeint(dCadt, Ca0, tspan)
4 return 1.0 - sol[-1]

149

5
6 tsol3, = fsolve(func, tguess)
7 print(tsol3)

10.1.7 A simple first order ode evaluated at specific points

Matlab post
We have integrated an ODE over a specific time span. Sometimes it is desirable to get the

solution at specific points, e.g. at t = [0 0.2 0.4 0.8]; This could be desirable to compare with
experimental measurements at those time points. This example demonstrates how to do that.

dy

dt
= y(t)

The initial condition is y(0) = 1.

1 from scipy.integrate import odeint
2
3 y0 = 1
4 tspan = [0, 0.2, 0.4, 0.8]
5
6 def dydt(y, t):
7 return y
8
9 Y = odeint(dydt, y0, tspan)

10 print(Y[:,0])

10.1.8 Stopping the integration of an ODE at some condition

Matlab post In Post 968 we learned how to get the numerical solution to an ODE, and then to use
the deval function to solve the solution for a particular value. The deval function uses interpolation
to evaluate the solution at other valuse. An alternative approach would be to stop the ODE
integration when the solution has the value you want. That can be done in Matlab by using an
"event" function. You setup an event function and tell the ode solver to use it by setting an option.

Given that the concentration of a species A in a constant volume, batch reactor obeys this
differential equation dCA

dt = −kC2
A with the initial condition CA(t = 0) = 2.3 mol/L and k = 0.23

L/mol/s, compute the time it takes for CA to be reduced to 1 mol/L.

1 from pycse import *
2 import numpy as np
3
4 k = 0.23
5 Ca0 = 2.3
6
7 def dCadt(Ca, t):
8 return -k * Ca**2
9

10 def stop(Ca, t):
11 isterminal = True
12 direction = 0
13 value = 1.0 - Ca
14 return value, isterminal, direction
15
16 tspan = np.linspace(0.0, 10.0)
17
18 t, CA, TE, YE, IE = odelay(dCadt, Ca0, tspan, events=[stop])
19
20 print('At t = {0:1.2f} seconds the concentration of A is {1:1.2f} mol/L.'.format(t[-1], float(CA[-1])))

150

http://matlab.cheme.cmu.edu/2011/08/05/a-simple-first-order-ode-evaluated-at-specific-points/
http://matlab.cheme.cmu.edu/2011/09/02/stopping-the-integration-of-an-ode-at-some-condition/

10.1.9 Finding minima and maxima in ODE solutions with events

Matlab post Today we look at another way to use events in an ode solver. We use an events function
to find minima and maxima, by evaluating the ODE in the event function to find conditions where
the first derivative is zero, and approached from the right direction. A maximum is when the fisrt
derivative is zero and increasing, and a minimum is when the first derivative is zero and decreasing.

We use a simple ODE, y′ = sin(x) ∗ e−0.05x, which has minima and maxima.

1 from pycse import *
2 import numpy as np
3
4 def ode(y, x):
5 return np.sin(x) * np.exp(-0.05 * x)
6
7 def minima(y, x):
8 '''Approaching a minimum, dydx is negatime and going to zero. our event function is increasing'''
9 value = ode(y, x)

10 direction = 1
11 isterminal = False
12 return value, isterminal, direction
13
14 def maxima(y, x):
15 '''Approaching a maximum, dydx is positive and going to zero. our event function is decreasing'''
16 value = ode(y, x)
17 direction = -1
18 isterminal = False
19 return value, isterminal, direction
20
21 xspan = np.linspace(0, 20, 100)
22
23 y0 = 0
24
25 X, Y, XE, YE, IE = odelay(ode, y0, xspan, events=[minima, maxima])
26 print(IE)
27 import matplotlib.pyplot as plt
28 plt.plot(X, Y)
29
30 # blue is maximum, red is minimum
31 colors = 'rb'
32 for xe, ye, ie in zip(XE, YE, IE):
33 plt.plot([xe], [ye], 'o', color=colors[ie])
34
35 plt.savefig('./images/ode-events-min-max.png')

151

http://matlab.cheme.cmu.edu/2011/09/17/finding-minima-and-maxima-in-ode-solutions-with-events

10.1.10 Error tolerance in numerical solutions to ODEs

Matlab post Usually, the numerical ODE solvers in python work well with the standard settings.
Sometimes they do not, and it is not always obvious they have not worked! Part of using a tool
like python is checking how well your solution really worked. We use an example of integrating an
ODE that defines the van der Waal equation of an ideal gas here.

we plot the analytical solution to the van der waal equation in reduced form here.

1 import numpy as np
2 import matplotlib.pyplot as plt
3
4 Tr = 0.9
5 Vr = np.linspace(0.34,4,1000)
6
7 #analytical equation for Pr
8 Prfh = lambda Vr: 8.0 / 3.0 * Tr / (Vr - 1.0 / 3.0) - 3.0 / (Vr**2)
9 Pr = Prfh(Vr) # evaluated on our reduced volume vector.

10
11 # Plot the EOS
12 plt.clf()
13 plt.plot(Vr,Pr)
14 plt.ylim([0, 2])
15 plt.xlabel('V_R')
16 plt.ylabel('P_R')
17 plt.savefig('images/ode-vw-1.png')

152

http://matlab.cheme.cmu.edu/2011/09/18/error-tolerance-in-numerical-solutions-to-odes/

we want an equation for dPdV, which we will integrate we use symbolic math to do the derivative
for us.

1 from sympy import diff, Symbol
2 Vrs = Symbol('Vrs')
3
4 Prs = 8.0 / 3.0 * Tr / (Vrs - 1.0/3.0) - 3.0/(Vrs**2)
5 print(diff(Prs,Vrs))

Now, we solve the ODE. We will specify a large relative tolerance criteria (Note the default is
much smaller than what we show here).

1 from scipy.integrate import odeint
2
3 def myode(Pr, Vr):
4 dPrdVr = -2.4/(Vr - 0.333333333333333)**2 + 6.0/Vr**3
5 return dPrdVr
6
7 Vspan = np.linspace(0.334, 4)
8 Po = Prfh(Vspan[0])
9 P = odeint(myode, Po, Vspan, rtol=1e-4)

10
11 # Plot the EOS
12 plt.plot(Vr,Pr) # analytical solution
13 plt.plot(Vspan, P[:,0], 'r.')
14 plt.ylim([0, 2])
15 plt.xlabel('V_R')
16 plt.ylabel('P_R')
17 plt.savefig('images/ode-vw-2.png')

153

You can see there is disagreement between the analytical solution and numerical solution. The
origin of this problem is accuracy at the initial condition, where the derivative is extremely large.

1 print(myode(Po, 0.34))

We can increase the tolerance criteria to get a better answer. The defaults in odeint are actually
set to 1.49012e-8.

1 Vspan = np.linspace(0.334, 4)
2 Po = Prfh(Vspan[0])
3 P = odeint(myode, Po, Vspan)
4
5 # Plot the EOS
6 plt.clf()
7 plt.plot(Vr,Pr) # analytical solution
8 plt.plot(Vspan, P[:,0], 'r.')
9 plt.ylim([0, 2])

10 plt.xlabel('V_R')
11 plt.ylabel('P_R')
12 plt.savefig('images/ode-vw-3.png')

154

The problem here was the derivative value varied by four orders of magnitude over the in-
tegration range, so the default tolerances were insufficient to accurately estimate the numerical
derivatives over that range. Tightening the tolerances helped resolve that problem. Another ap-
proach might be to split the integration up into different regions. For instance, if instead of starting
at Vr = 0.34, which is very close to a sigularity in the van der waal equation at Vr = 1/3, if you
start at Vr = 0.5, the solution integrates just fine with the standard tolerances.

10.1.11 Solving parameterized ODEs over and over conveniently

Matlab post Sometimes we have an ODE that depends on a parameter, and we want to solve the
ODE for several parameter values. It is inconvenient to write an ode function for each parameter
case. Here we examine a convenient way to solve this problem; we pass the parameter to the ODE
at runtime. We consider the following ODE:

dCa

dt
= −kCa(t)

where k is a parameter, and we want to solve the equation for a couple of values of k to test
the sensitivity of the solution on the parameter. Our question is, given Ca(t = 0) = 2, how long
does it take to get Ca = 1, and how sensitive is the answer to small variations in k?

1 import numpy as np
2 from scipy.integrate import odeint
3 import matplotlib.pyplot as plt
4
5 def myode(Ca, t, k):

155

http://matlab.cheme.cmu.edu/2011/09/16/parameterized-odes/

6 'ODE definition'
7 dCadt = -k * Ca
8 return dCadt
9

10 tspan = np.linspace(0, 0.5)
11 k0 = 2
12 Ca0 = 2
13
14 plt.figure(); plt.clf()
15
16 for k in [0.95 * k0, k0, 1.05 * k0]:
17 sol = odeint(myode, Ca0, tspan, args=(k,))
18 plt.plot(tspan, sol, label='k={0:1.2f}'.format(k))
19 print('At t=0.5 Ca = {0:1.2f} mol/L'.format(sol[-1][0]))
20
21 plt.legend(loc='best')
22 plt.xlabel('Time')
23 plt.ylabel('C_A (mol/L)')
24 plt.savefig('images/parameterized-ode1.png')

You can see there are some variations in the concentration at t = 0.5. You could over or
underestimate the concentration if you have the wrong estimate of k! You have to use some
judgement here to decide how long to run the reaction to ensure a target goal is met.

10.1.12 Yet another way to parameterize an ODE

Matlab post We previously examined a way to parameterize an ODE. In those methods, we either
used an anonymous function to parameterize an ode function, or we used a nested function that
used variables from the shared workspace.

156

http://matlab.cheme.cmu.edu/2011/11/06/yet-another-way-to-parameterize-an-ode/

We want a convenient way to solve dCa/dt = −kCa for multiple values of k. Here we use a
trick to pass a parameter to an ODE through the initial conditions. We expand the ode function
definition to include this parameter, and set its derivative to zero, effectively making it a constant.

1 import numpy as np
2 from scipy.integrate import odeint
3 import matplotlib.pyplot as plt
4
5 def ode(F, t):
6 Ca, k = F
7 dCadt = -k * Ca
8 dkdt = 0.0
9 return [dCadt, dkdt]

10
11 tspan = np.linspace(0, 4)
12
13 Ca0 = 1;
14 K = [2.0, 3.0]
15 for k in K:
16 F = odeint(ode, [Ca0, k], tspan)
17 Ca = F[:,0]
18 plt.plot(tspan, Ca, label='k={0}'.format(k))
19 plt.xlabel('time')
20 plt.ylabel('C_A')
21 plt.legend(loc='best')
22 plt.savefig('images/ode-parameterized-1.png')

I do not think this is a very elegant way to pass parameters around compared to the previous
methods, but it nicely illustrates that there is more than one way to do it. And who knows, maybe
it will be useful in some other context one day!

157

10.1.13 Another way to parameterize an ODE - nested function

Matlab post We saw one method to parameterize an ODE, by creating an ode function that takes
an extra parameter argument, and then making a function handle that has the syntax required for
the solver, and passes the parameter the ode function.

Here we define the ODE function in a loop. Since the nested function is in the namespace of
the main function, it can "see" the values of the variables in the main function. We will use this
method to look at the solution to the van der Pol equation for several different values of mu.

1 import numpy as np
2 from scipy.integrate import odeint
3 import matplotlib.pyplot as plt
4
5 MU = [0.1, 1, 2, 5]
6 tspan = np.linspace(0, 100, 5000)
7 Y0 = [0, 3]
8
9 for mu in MU:

10 # define the ODE
11 def vdpol(Y, t):
12 x,y = Y
13 dxdt = y
14 dydt = -x + mu * (1 - x**2) * y
15 return [dxdt, dydt]
16
17 Y = odeint(vdpol, Y0, tspan)
18
19 x = Y[:,0]; y = Y[:,1]
20 plt.plot(x, y, label='mu={0:1.2f}'.format(mu))
21
22 plt.axis('equal')
23 plt.legend(loc='best')
24 plt.savefig('images/ode-nested-parameterization.png')
25 plt.savefig('images/ode-nested-parameterization.svg')

158

http://matlab.cheme.cmu.edu/2011/09/18/another-way-to-parameterize-an-ode-nested-function/

You can see the solution changes dramatically for different values of mu. The point here is not
to understand why, but to show an easy way to study a parameterize ode with a nested function.
Nested functions can be a great way to "share" variables between functions especially for ODE
solving, and nonlinear algebra solving, or any other application where you need a lot of parameters
defined in one function in another function.

10.1.14 Solving a second order ode

Matlab post
The odesolvers in scipy can only solve first order ODEs, or systems of first order ODES. To

solve a second order ODE, we must convert it by changes of variables to a system of first order
ODES. We consider the Van der Pol oscillator here:

d2x

dt2
− µ(1− x2)dx

dt
+ x = 0

µ is a constant. If we let y = x − x3/3 http://en.wikipedia.org/wiki/Van_der_Pol_
oscillator, then we arrive at this set of equations:

dx

dt
= µ(x− 1/3x3 − y)

dy

dt
= µ/x

here is how we solve this set of equations. Let µ = 1.

159

http://matlab.cheme.cmu.edu/2011/09/26/solving-a-second-order-ode/
http://en.wikipedia.org/wiki/Van_der_Pol_oscillator
http://en.wikipedia.org/wiki/Van_der_Pol_oscillator

1 from scipy.integrate import odeint
2 import numpy as np
3
4 mu = 1.0
5
6 def vanderpol(X, t):
7 x = X[0]
8 y = X[1]
9 dxdt = mu * (x - 1./3.*x**3 - y)

10 dydt = x / mu
11 return [dxdt, dydt]
12
13 X0 = [1, 2]
14 t = np.linspace(0, 40, 250)
15
16 sol = odeint(vanderpol, X0, t)
17
18 import matplotlib.pyplot as plt
19 x = sol[:, 0]
20 y = sol[:, 1]
21
22 plt.plot(t,x, t, y)
23 plt.xlabel('t')
24 plt.legend(('x', 'y'))
25 plt.savefig('images/vanderpol-1.png')
26
27 # phase portrait
28 plt.figure()
29 plt.plot(x,y)
30 plt.plot(x[0], y[0], 'ro')
31 plt.xlabel('x')
32 plt.ylabel('y')
33 plt.savefig('images/vanderpol-2.png')

160

Here is the phase portrait. You can see that a limit cycle is approached, indicating periodicity
in the solution.

161

10.1.15 Solving Bessel’s Equation numerically

Matlab post
Reference Ch 5.5 Kreysig, Advanced Engineering Mathematics, 9th ed.
Bessel’s equation x2y′′ + xy′ + (x2 − ν2)y = 0 comes up often in engineering problems such

as heat transfer. The solutions to this equation are the Bessel functions. To solve this equation
numerically, we must convert it to a system of first order ODEs. This can be done by letting z = y′

and z′ = y′′ and performing the change of variables:

y′ = z

z′ = 1
x2 (−xz − (x2 − ν2)y

if we take the case where ν = 0, the solution is known to be the Bessel function J0(x), which
is represented in Matlab as besselj(0,x). The initial conditions for this problem are: y(0) = 1 and
y′(0) = 0.

There is a problem with our system of ODEs at x=0. Because of the 1/x2 term, the ODEs are
not defined at x=0. If we start very close to zero instead, we avoid the problem.

1 import numpy as np
2 from scipy.integrate import odeint
3 from scipy.special import jn # bessel function
4 import matplotlib.pyplot as plt
5
6 def fbessel(Y, x):

162

http://matlab.cheme.cmu.edu/2011/08/08/solving-bessels-equation-numerically/

7 nu = 0.0
8 y = Y[0]
9 z = Y[1]

10
11 dydx = z
12 dzdx = 1.0 / x**2 * (-x * z - (x**2 - nu**2) * y)
13 return [dydx, dzdx]
14
15 x0 = 1e-15
16 y0 = 1
17 z0 = 0
18 Y0 = [y0, z0]
19
20 xspan = np.linspace(1e-15, 10)
21 sol = odeint(fbessel, Y0, xspan)
22
23 plt.plot(xspan, sol[:,0], label='numerical soln')
24 plt.plot(xspan, jn(0, xspan), 'r--', label='Bessel')
25 plt.legend()
26 plt.savefig('images/bessel.png')

You can see the numerical and analytical solutions overlap, indicating they are at least visually
the same.

10.1.16 Phase portraits of a system of ODEs

Matlab post An undamped pendulum with no driving force is described by

y′′ + sin(y) = 0

163

http://matlab.cheme.cmu.edu/2011/08/09/phase-portraits-of-a-system-of-odes/

We reduce this to standard matlab form of a system of first order ODEs by letting y1 = y and
y2 = y′1. This leads to:

y′1 = y2
y′2 = −sin(y1)
The phase portrait is a plot of a vector field which qualitatively shows how the solutions to these

equations will go from a given starting point. here is our definition of the differential equations:
To generate the phase portrait, we need to compute the derivatives y′1 and y′2 at t = 0 on a

grid over the range of values for y1 and y2 we are interested in. We will plot the derivatives as a
vector at each (y1, y2) which will show us the initial direction from each point. We will examine
the solutions over the range -2 < y1 < 8, and -2 < y2 < 2 for y2, and create a grid of 20 x 20
points.

1 import numpy as np
2 import matplotlib.pyplot as plt
3
4 def f(Y, t):
5 y1, y2 = Y
6 return [y2, -np.sin(y1)]
7
8 y1 = np.linspace(-2.0, 8.0, 20)
9 y2 = np.linspace(-2.0, 2.0, 20)

10
11 Y1, Y2 = np.meshgrid(y1, y2)
12
13 t = 0
14
15 u, v = np.zeros(Y1.shape), np.zeros(Y2.shape)
16
17 NI, NJ = Y1.shape
18
19 for i in range(NI):
20 for j in range(NJ):
21 x = Y1[i, j]
22 y = Y2[i, j]
23 yprime = f([x, y], t)
24 u[i,j] = yprime[0]
25 v[i,j] = yprime[1]
26
27
28 Q = plt.quiver(Y1, Y2, u, v, color='r')
29
30 plt.xlabel('y_1')
31 plt.ylabel('y_2')
32 plt.xlim([-2, 8])
33 plt.ylim([-4, 4])
34 plt.savefig('images/phase-portrait.png')

164

Let us plot a few solutions on the vector field. We will consider the solutions where y1(0)=0,
and values of y2(0) = [0 0.5 1 1.5 2 2.5], in otherwords we start the pendulum at an angle of zero,
with some angular velocity.

1 from scipy.integrate import odeint
2
3 plt.clf()
4 for y20 in [0, 0.5, 1, 1.5, 2, 2.5]:
5 tspan = np.linspace(0, 50, 200)
6 y0 = [0.0, y20]
7 ys = odeint(f, y0, tspan)
8 plt.plot(ys[:,0], ys[:,1], 'b-') # path
9 plt.plot([ys[0,0]], [ys[0,1]], 'o') # start

10 plt.plot([ys[-1,0]], [ys[-1,1]], 's') # end
11
12
13 plt.xlim([-2, 8])
14 plt.savefig('images/phase-portrait-2.png')
15 plt.savefig('images/phase-portrait-2.svg')

165

What do these figures mean? For starting points near the origin, and small velocities, the
pendulum goes into a stable limit cycle. For others, the trajectory appears to fly off into y1 space.
Recall that y1 is an angle that has values from −π to π. The y1 data in this case is not wrapped
around to be in this range.

10.1.17 Linear algebra approaches to solving systems of constant coefficient ODEs

Matlab post Today we consider how to solve a system of first order, constant coefficient ordinary
differential equations using linear algebra. These equations could be solved numerically, but in this
case there are analytical solutions that can be derived. The equations we will solve are:

y′1 = −0.02y1 + 0.02y2
y′2 = 0.02y1 − 0.02y2

We can express this set of equations in matrix form as:
[
y′1
y′2

]
=
[
−0.02 0.02
0.02 −0.02

] [
y1
y2

]
The general solution to this set of equations is[
y1
y2

]
=
[
v1 v2

] [c1 0
0 c2

]
exp

([
λ1 0
0 λ2

] [
t
t

])

where
[
λ1 0
0 λ2

]
is a diagonal matrix of the eigenvalues of the constant coefficient matrix,[

v1 v2
]
is a matrix of eigenvectors where the ith column corresponds to the eigenvector of the

ith eigenvalue, and
[
c1 0
0 c2

]
is a matrix determined by the initial conditions.

166

http://matlab.cheme.cmu.edu/2011/10/20/linear-algebra-approaches-to-solving-systems-of-constant-coefficient-odes

In this example, we evaluate the solution using linear algebra. The initial conditions we will
consider are y1(0) = 0 and y2(0) = 150.

1 import numpy as np
2
3 A = np.array([[-0.02, 0.02],
4 [0.02, -0.02]])
5
6 # Return the eigenvalues and eigenvectors of a Hermitian or symmetric matrix.
7 evals, evecs = np.linalg.eigh(A)
8 print(evals)
9 print(evecs)

The eigenvectors are the columns of evecs.
Compute the c matrix
V*c = Y0

1 Y0 = [0, 150]
2
3 c = np.diag(np.linalg.solve(evecs, Y0))
4 print(c)

Constructing the solution
We will create a vector of time values, and stack them for each solution, y1(t) and Y2(t).

1 import matplotlib.pyplot as plt
2
3 t = np.linspace(0, 100)
4 T = np.row_stack([t, t])
5
6 D = np.diag(evals)
7
8 # y = V*c*exp(D*T);
9 y = np.dot(np.dot(evecs, c), np.exp(np.dot(D, T)))

10
11 # y has a shape of (2, 50) so we have to transpose it
12 plt.plot(t, y.T)
13 plt.xlabel('t')
14 plt.ylabel('y')
15 plt.legend(['y_1', 'y_2'])
16 plt.savefig('images/ode-la.png')

167

10.2 Delay Differential Equations

In Matlab you can solve Delay Differential equations (DDE) (Matlab post). I do not know of a
solver in scipy at this time that can do this.

10.3 Differential algebraic systems of equations

There is not a builtin solver for DAE systems in scipy. It looks like pysundials may do it, but it
must be compiled and installed.

10.4 Boundary value equations

I am unaware of dedicated BVP solvers in scipy. In the following examples we implement some
approaches to solving certain types of linear BVPs.

10.4.1 Plane Poiseuille flow - BVP solve by shooting method

Matlab post
One approach to solving BVPs is to use the shooting method. The reason we cannot use an

initial value solver for a BVP is that there is not enough information at the initial value to start. In
the shooting method, we take the function value at the initial point, and guess what the function
derivatives are so that we can do an integration. If our guess was good, then the solution will go
through the known second boundary point. If not, we guess again, until we get the answer we need.
In this example we repeat the pressure driven flow example, but illustrate the shooting method.

168

http://matlab.cheme.cmu.edu/2011/09/28/delay-differential-equations/
http://pysundials.sourceforge.net/
http://matlab.cheme.cmu.edu/2011/09/08/plane-poiseuille-flow-bvp-solve-by-shooting-method/

In the pressure driven flow of a fluid with viscosity µ between two stationary plates separated
by distance d and driven by a pressure drop ∆P/∆x, the governing equations on the velocity u of
the fluid are (assuming flow in the x-direction with the velocity varying only in the y-direction):

∆P
∆x = µ

d2u

dy2

with boundary conditions u(y = 0) = 0 and u(y = d) = 0, i.e. the no-slip condition at the edges
of the plate.

we convert this second order BVP to a system of ODEs by letting u1 = u, u2 = u′1 and then
u′2 = u′′1. This leads to:

du1
dy = u2
du2
dy = 1

µ
∆P
∆x

with boundary conditions u1(y = 0) = 0 and u1(y = d) = 0.
for this problem we let the plate separation be d=0.1, the viscosity µ = 1, and ∆P

∆x = −100.

First guess We need u_1(0) and u_2(0), but we only have u_1(0). We need to guess a value
for u_2(0) and see if the solution goes through the u_2(d)=0 boundary value.

1 import numpy as np
2 from scipy.integrate import odeint
3 import matplotlib.pyplot as plt
4
5 d = 0.1 # plate thickness
6
7 def odefun(U, y):
8 u1, u2 = U
9 mu = 1

10 Pdrop = -100
11 du1dy = u2
12 du2dy = 1.0 / mu * Pdrop
13 return [du1dy, du2dy]
14
15 u1_0 = 0 # known
16 u2_0 = 1 # guessed
17
18 dspan = np.linspace(0, d)
19
20 U = odeint(odefun, [u1_0, u2_0], dspan)
21
22 plt.plot(dspan, U[:,0])
23 plt.plot([d],[0], 'ro')
24 plt.xlabel('d')
25 plt.ylabel('u_1')
26 plt.savefig('images/bvp-shooting-1.png')

169

Here we have undershot the boundary condition. Let us try a larger guess.

Second guess

1 import numpy as np
2 from scipy.integrate import odeint
3 import matplotlib.pyplot as plt
4
5 d = 0.1 # plate thickness
6
7 def odefun(U, y):
8 u1, u2 = U
9 mu = 1

10 Pdrop = -100
11 du1dy = u2
12 du2dy = 1.0 / mu * Pdrop
13 return [du1dy, du2dy]
14
15 u1_0 = 0 # known
16 u2_0 = 10 # guessed
17
18 dspan = np.linspace(0, d)
19
20 U = odeint(odefun, [u1_0, u2_0], dspan)
21
22 plt.plot(dspan, U[:,0])
23 plt.plot([d],[0], 'ro')
24 plt.xlabel('d')
25 plt.ylabel('u_1')
26 plt.savefig('images/bvp-shooting-2.png')

170

Now we have clearly overshot. Let us now make a function that will iterate for us to find the
right value.

Let fsolve do the work

1 import numpy as np
2 from scipy.integrate import odeint
3 from scipy.optimize import fsolve
4 import matplotlib.pyplot as plt
5
6 d = 0.1 # plate thickness
7 Pdrop = -100
8 mu = 1
9

10 def odefun(U, y):
11 u1, u2 = U
12 du1dy = u2
13 du2dy = 1.0 / mu * Pdrop
14 return [du1dy, du2dy]
15
16 u1_0 = 0 # known
17 dspan = np.linspace(0, d)
18
19 def objective(u2_0):
20 dspan = np.linspace(0, d)
21 U = odeint(odefun, [u1_0, u2_0], dspan)
22 u1 = U[:,0]
23 return u1[-1]
24
25 u2_0, = fsolve(objective, 1.0)
26

171

27 # now solve with optimal u2_0
28 U = odeint(odefun, [u1_0, u2_0], dspan)
29
30 plt.plot(dspan, U[:,0], label='Numerical solution')
31 plt.plot([d],[0], 'ro')
32
33 # plot an analytical solution
34 u = -(Pdrop) * d**2 / 2 / mu * (dspan / d - (dspan / d)**2)
35 plt.plot(dspan, u, 'r--', label='Analytical solution')
36
37
38 plt.xlabel('d')
39 plt.ylabel('u_1')
40 plt.legend(loc='best')
41 plt.savefig('images/bvp-shooting-3.png')

You can see the agreement is excellent!
This also seems like a useful bit of code to not have to reinvent regularly, so it has been added

to pycse as BVP_sh. Here is an example usage.

1 from pycse import BVP_sh
2 import matplotlib.pyplot as plt
3
4 d = 0.1 # plate thickness
5 Pdrop = -100
6 mu = 1
7
8 def odefun(U, y):
9 u1, u2 = U

10 du1dy = u2

172

11 du2dy = 1.0 / mu * Pdrop
12 return [du1dy, du2dy]
13
14 x1 = 0.0; alpha = 0.0
15 x2 = 0.1; beta = 0.0
16 init = 2.0 # initial guess of slope at x=0
17
18 X,Y = BVP_sh(odefun, x1, x2, alpha, beta, init)
19 plt.plot(X, Y[:,0])
20 plt.ylim([0, 0.14])
21
22 # plot an analytical solution
23 u = -(Pdrop) * d**2 / 2 / mu * (X / d - (X / d)**2)
24 plt.plot(X, u, 'r--', label='Analytical solution')
25 plt.savefig('images/bvp-shooting-4.png')

10.4.2 Plane poiseuelle flow solved by finite difference

Matlab post
Adapted from http://www.physics.arizona.edu/~restrepo/475B/Notes/sourcehtml/node24.

html
We want to solve a linear boundary value problem of the form: y” = p(x)y’ + q(x)y + r(x)

with boundary conditions y(x1) = alpha and y(x2) = beta.
For this example, we solve the plane poiseuille flow problem using a finite difference approach.

An advantage of the approach we use here is we do not have to rewrite the second order ODE
as a set of coupled first order ODEs, nor do we have to provide guesses for the solution. We do,
however, have to discretize the derivatives and formulate a linear algebra problem.

173

http://matlab.cheme.cmu.edu/2011/09/30/plane-poiseuelle-flow-solved-by-finite-difference/
http://www.physics.arizona.edu/~restrepo/475B/Notes/sourcehtml/node24.html
http://www.physics.arizona.edu/~restrepo/475B/Notes/sourcehtml/node24.html

we want to solve u” = 1/mu*DPDX with u(0)=0 and u(0.1)=0. for this problem we let the
plate separation be d=0.1, the viscosity µ = 1, and ∆P

∆x = −100.
The idea behind the finite difference method is to approximate the derivatives by finite differ-

ences on a grid. See here for details. By discretizing the ODE, we arrive at a set of linear algebra
equations of the form Ay = b, where A and b are defined as follows.

A =


2 + h2q1 −1 + h

2p1 0 0 0
−1− h

2p2 2 + h2q2 −1 + h
2p2 0 0

0 0
0 0 −1− h

2pN−1 2 + h2qN−1 −1 + h
2pN−1

0 0 0 −1− h
2pN 2 + h2qN



y =

 yi
...
yN



b =


−h2r1 + (1 + h

2p1)α
−h2r2

...
−h2rN−1

−h2rN + (1− h
2pN)β


1 import numpy as np
2
3 # we use the notation for y'' = p(x)y' + q(x)y + r(x)
4 def p(x):
5 return 0
6
7 def q(x):
8 return 0
9

10 def r(x):
11 return -100
12
13 #we use the notation y(x1) = alpha and y(x2) = beta
14
15 x1 = 0; alpha = 0.0
16 x2 = 0.1; beta = 0.0
17
18 npoints = 100
19
20 # compute interval width
21 h = (x2-x1)/npoints;
22
23 # preallocate and shape the b vector and A-matrix
24 b = np.zeros((npoints - 1, 1));
25 A = np.zeros((npoints - 1, npoints - 1));
26 X = np.zeros((npoints - 1, 1));
27
28 #now we populate the A-matrix and b vector elements
29 for i in range(npoints - 1):
30 X[i,0] = x1 + (i + 1) * h
31
32 # get the value of the BVP Odes at this x
33 pi = p(X[i])
34 qi = q(X[i])
35 ri = r(X[i])
36

174

37 if i == 0:
38 # first boundary condition
39 b[i] = -h**2 * ri + (1 + h / 2 * pi)*alpha;
40 elif i == npoints - 1:
41 # second boundary condition
42 b[i] = -h**2 * ri + (1 - h / 2 * pi)*beta;
43 else:
44 b[i] = -h**2 * ri # intermediate points
45
46 for j in range(npoints - 1):
47 if j == i: # the diagonal
48 A[i,j] = 2 + h**2 * qi
49 elif j == i - 1: # left of the diagonal
50 A[i,j] = -1 - h / 2 * pi
51 elif j == i + 1: # right of the diagonal
52 A[i,j] = -1 + h / 2 * pi
53 else:
54 A[i,j] = 0 # off the tri-diagonal
55
56 # solve the equations A*y = b for Y
57 Y = np.linalg.solve(A,b)
58
59 x = np.hstack([x1, X[:,0], x2])
60 y = np.hstack([alpha, Y[:,0], beta])
61
62 import matplotlib.pyplot as plt
63
64 plt.plot(x, y)
65
66 mu = 1
67 d = 0.1
68 x = np.linspace(0,0.1);
69 Pdrop = -100 # this is DeltaP/Deltax
70 u = -(Pdrop) * d**2 / 2.0 / mu * (x / d - (x / d)**2)
71 plt.plot(x,u,'r--')
72
73 plt.xlabel('distance between plates')
74 plt.ylabel('fluid velocity')
75 plt.legend(('finite difference', 'analytical soln'))
76 plt.savefig('images/pp-bvp-fd.png')

175

You can see excellent agreement here between the numerical and analytical solution.

10.4.3 Boundary value problem in heat conduction

Matlab post
For steady state heat conduction the temperature distribution in one-dimension is governed by

the Laplace equation:

∇2T = 0
with boundary conditions that at T (x = a) = TA and T (x = L) = TB.
The analytical solution is not difficult here: T = TA − TA−TB

L x, but we will solve this by finite
differences.

For this problem, lets consider a slab that is defined by x=0 to x=L, with T (x = 0) = 100, and
T (x = L) = 200. We want to find the function T(x) inside the slab.

We approximate the second derivative by finite differences as
f ′′(x) ≈ f(x−h)−2f(x)+f(x+h)

h2

Since the second derivative in this case is equal to zero, we have at each discretized node
0 = Ti−1 − 2Ti + Ti+1. We know the values of Tx=0 = α and Tx=L = β.

A =


−2 1 0 0 0
1 −2 1 0 0
0 0
0 0 1 −2 1
0 0 0 1 −2


176

http://matlab.cheme.cmu.edu/2011/08/11/boundary-value-problem-in-heat-conduction/

x =

 T1
...
TN



b =


−T (x = 0)

0
...
0

−T (x = L)


These are linear equations in the unknowns x that we can easily solve. Here, we evaluate the

solution.

1 import numpy as np
2
3 #we use the notation T(x1) = alpha and T(x2) = beta
4 x1 = 0; alpha = 100
5 x2 = 5; beta = 200
6
7 npoints = 100
8
9 # preallocate and shape the b vector and A-matrix

10 b = np.zeros((npoints, 1));
11 b[0] = -alpha
12 b[-1] = -beta
13
14 A = np.zeros((npoints, npoints));
15
16 #now we populate the A-matrix and b vector elements
17 for i in range(npoints):
18 for j in range(npoints):
19 if j == i: # the diagonal
20 A[i,j] = -2
21 elif j == i - 1: # left of the diagonal
22 A[i,j] = 1
23 elif j == i + 1: # right of the diagonal
24 A[i,j] = 1
25
26 # solve the equations A*y = b for Y
27 Y = np.linalg.solve(A,b)
28
29 x = np.linspace(x1, x2, npoints + 2)
30 y = np.hstack([alpha, Y[:,0], beta])
31
32 import matplotlib.pyplot as plt
33
34 plt.plot(x, y)
35
36 plt.plot(x, alpha + (beta - alpha)/(x2 - x1) * x, 'r--')
37
38 plt.xlabel('X')
39 plt.ylabel('T(X)')
40 plt.legend(('finite difference', 'analytical soln'), loc='best')
41 plt.savefig('images/bvp-heat-conduction-1d.png')

177

10.4.4 BVP in pycse

I thought it was worthwhile coding a BVP solver into pycse. This function (bvp_L0) solves y′′(x)+
p(x)y′(x) + q(x)y(x) = r(x) with constant value boundary conditions y(x0) = α and y(xL) = β.

Fluids example for Plane poiseuelle flow (y′′(x) = constant, y(0) = 0 and y(L) = 0:

1 from pycse import bvp_L0
2
3 # we use the notation for y'' = p(x)y' + q(x)y + r(x)
4 def p(x): return 0
5 def q(x): return 0
6 def r(x): return -100
7
8 #we use the notation y(x1) = alpha and y(x2) = beta
9

10 x1 = 0; alpha = 0.0
11 x2 = 0.1; beta = 0.0
12
13 npoints = 100
14
15 x, y = bvp_L0(p, q, r, x1, x2, alpha, beta, npoints=100)
16 print(len(x))
17
18 import matplotlib.pyplot as plt
19 plt.plot(x, y)
20 plt.savefig('images/bvp-pycse.png')

178

Heat transfer example y′′(x) = 0, y(0) = 100 and y(L) = 200.

1 from pycse import bvp_L0
2
3 # we use the notation for y'' = p(x)y' + q(x)y + r(x)
4 def p(x): return 0
5 def q(x): return 0
6 def r(x): return 0
7
8 #we use the notation y(x1) = alpha and y(x2) = beta
9

10 x1 = 0; alpha = 100
11 x2 = 1; beta = 200
12
13 npoints = 100
14
15 x, y = bvp_L0(p, q, r, x1, x2, alpha, beta, npoints=100)
16 print(len(x))
17
18 import matplotlib.pyplot as plt
19 plt.plot(x, y)
20 plt.xlabel('X')
21 plt.ylabel('T')
22 plt.savefig('images/ht-example.png')

179

10.4.5 A nonlinear BVP

Adapted from Example 8.7 in Numerical Methods in Engineering with Python by Jaan Kiusalaas.
We want to solve y′′(x) = −3y(x)y′(x) with $y(0) = 0 and y(2) = 1 using a finite difference

method. We discretize the region and approximate the derivatives as:
y′′(x) ≈ yi−1−2yi+yi+1

h2

y′(x) ≈ yi+1−yi−1
2h

We define a function y′′(x) = F (x, y, y′). At each node in our discretized region, we will have
an equation that looks like y′′(x)−F (x, y, y′) = 0, which will be nonlinear in the unknown solution
y. The set of equations to solve is:

y0 − α = 0 (22)
yi−1 − 2yi + yi+1

h2 + (3yi)(
yi+1 − yi−1

2h) = 0 (23)

yL − β = 0 (24)

Since we use a nonlinear solver, we will have to provide an initial guess to the solution. We will
in this case assume a line. In other cases, a bad initial guess may lead to no solution.

1 import numpy as np
2 from scipy.optimize import fsolve
3 import matplotlib.pyplot as plt
4
5 x1 = 0.0

180

6 x2 = 2.0
7
8 alpha = 0.0
9 beta = 1.0

10
11 N = 11
12 X = np.linspace(x1, x2, N)
13 h = (x2 - x1) / (N - 1)
14
15 def Ypp(x, y, yprime):
16 '''define y'' = 3*y*y' '''
17 return -3.0 * y * yprime
18
19 def residuals(y):
20 '''When we have the right values of y, this function will be zero.'''
21
22 res = np.zeros(y.shape)
23
24 res[0] = y[0] - alpha
25
26 for i in range(1, N - 1):
27 x = X[i]
28 YPP = (y[i - 1] - 2 * y[i] + y[i + 1]) / h**2
29 YP = (y[i + 1] - y[i - 1]) / (2 * h)
30 res[i] = YPP - Ypp(x, y[i], YP)
31
32 res[-1] = y[-1] - beta
33 return res
34
35 # we need an initial guess
36 init = alpha + (beta - alpha) / (x2 - x1) * X
37
38 Y = fsolve(residuals, init)
39
40 plt.plot(X, Y)
41 plt.savefig('images/bvp-nonlinear-1.png')

181

That code looks useful, so I put it in the pycse module in the function BVP_nl. Here is an
example usage. We have to create two functions, one for the differential equation, and one for the
initial guess.

1 import numpy as np
2 from pycse import BVP_nl
3 import matplotlib.pyplot as plt
4
5 x1 = 0.0
6 x2 = 2.0
7
8 alpha = 0.0
9 beta = 1.0

10
11 def Ypp(x, y, yprime):
12 '''define y'' = 3*y*y' '''
13 return -3.0 * y * yprime
14
15 def BC(X, Y):
16 return [alpha - Y[0], beta - Y[-1]]
17
18 X = np.linspace(x1, x2)
19 init = alpha + (beta - alpha) / (x2 - x1) * X
20
21 y = BVP_nl(Ypp, X, BC, init)
22
23 plt.plot(X, y)
24 plt.savefig('images/bvp-nonlinear-2.png')

182

The results are the same.

10.4.6 Another look at nonlinear BVPs

Adapted from http://www.mathworks.com/help/matlab/ref/bvp4c.html
Boundary value problems may have more than one solution. Let us consider the BVP:

y′′ + |y| = 0 (25)
y(0) = 0 (26)
y(4) = −2 (27)

We will see this equation has two answers, depending on your initial guess. We convert this to
the following set of coupled equations:

y′1 = y2 (28)
y′2 = −|y1| (29)

y1(0) = 0 (30)
y1(4) = −2 (31)

This BVP is nonlinear because of the absolute value. We will have to guess solutions to get
started. We will guess two different solutions, both of which will be constant values. We will use
pycse.bvp to solve the equation.

183

http://www.mathworks.com/help/matlab/ref/bvp4c.html

1 import numpy as np
2 from pycse import bvp
3 import matplotlib.pyplot as plt
4
5 def odefun(Y, x):
6 y1, y2 = Y
7 dy1dx = y2
8 dy2dx = -np.abs(y1)
9 return [dy1dx, dy2dx]

10
11 def bcfun(Y):
12 y1a, y2a = Y[0][0], Y[1][0]
13 y1b, y2b = Y[0][-1], Y[1][-1]
14
15 return [y1a, -2 - y1b]
16
17 x = np.linspace(0, 4, 100)
18
19 y1 = 1.0 * np.ones(x.shape)
20 y2 = 0.0 * np.ones(x.shape)
21
22 Yinit = np.vstack([y1, y2])
23
24 sol = bvp(odefun, bcfun, x, Yinit)
25
26 plt.plot(x, sol[0])
27
28 # another initial guess
29 y1 = -1.0 * np.ones(x.shape)
30 y2 = 0.0 * np.ones(x.shape)
31
32 Yinit = np.vstack([y1, y2])
33
34 sol = bvp(odefun, bcfun, x, Yinit)
35
36 plt.plot(x, sol[0])
37 plt.legend(['guess 1', 'guess 2'])
38 plt.savefig('images/bvp-another-nonlin-1.png')

184

This example shows that a nonlinear BVP may have different solutions, and which one you get
depends on the guess you make for the solution. This is analogous to solving nonlinear algebraic
equations (which is what is done in solving this problem!).

10.4.7 Solving the Blasius equation

In fluid mechanics the Blasius equation comes up (http://en.wikipedia.org/wiki/Blasius_
boundary_layer) to describe the boundary layer that forms near a flat plate with fluid moving by
it. The nonlinear differential equation is:

f ′′′ + 1
2ff

′′ = 0 (32)

f(0) = 0 (33)
f ′(0) = 0 (34)
f ′(∞) = 1 (35)

This is a nonlinear, boundary value problem. The point of solving this equation is to get the
value of f ′′(0) to evaluate the shear stress at the plate.

We have to convert this to a system of first-order differential equations. Let f1 = f , f2 = f ′1
and f3 = f ′2. This leads to:

185

http://en.wikipedia.org/wiki/Blasius_boundary_layer
http://en.wikipedia.org/wiki/Blasius_boundary_layer

f ′1 = f2 (36)
f ′2 = f3 (37)

f ′3 = −1
2f1f3 (38)

f1(0) = 0 (39)
f2(0) = 0 (40)
f2(∞) = 1 (41)

It is not possible to specify a boundary condition at ∞ numerically, so we will have to use a
large number, and verify it is "large enough". From the solution, we evaluate the derivatives at
η = 0, and we have f ′′(0) = f3(0).

We have to provide initial guesses for f_1, f_2 and f_3. This is the hardest part about this
problem. We know that f_1 starts at zero, and is flat there (f’(0)=0), but at large eta, it has a
constant slope of one. We will guess a simple line of slope = 1 for f_1. That is correct at large
eta, and is zero at η=0. If the slope of the function is constant at large η, then the values of higher
derivatives must tend to zero. We choose an exponential decay as a guess.

Finally, we let a solver iteratively find a solution for us, and find the answer we want. The
solver is in the pycse module.

1 import numpy as np
2 from pycse import bvp
3
4 def odefun(F, x):
5 f1, f2, f3 = F.T
6 return np.column_stack([f2,
7 f3,
8 -0.5 * f1 * f3])
9

10 def bcfun(Y):
11 fa, fb = Y[0, :], Y[-1, :]
12 return [fa[0], # f1(0) = 0
13 fa[1], # f2(0) = 0
14 1.0 - fb[1]] # f2(inf) = 1
15
16 eta = np.linspace(0, 6, 100)
17 f1init = eta
18 f2init = np.exp(-eta)
19 f3init = np.exp(-eta)
20
21 Finit = np.column_stack([f1init, f2init, f3init])
22
23 sol = bvp(odefun, bcfun, eta, Finit)
24 f1, f2, f3 = sol.T
25
26 print("f''(0) = f_3(0) = {0}".format(f3[0]))
27
28 %matplotlib inline
29 import matplotlib.pyplot as plt
30 plt.plot(eta, f1)
31 plt.xlabel('η')
32 plt.ylabel('$f(\eta)$')

<2017-05-17 Wed> You need pycse 1.6.4 for this example.

186

10.5 Partial differential equations

10.5.1 Modeling a transient plug flow reactor

Matlab post
The PDE that describes the transient behavior of a plug flow reactor with constant volumetric

flow rate is:
∂CA
∂dt = −ν0

∂CA
∂dV + rA.

To solve this numerically in python, we will utilize the method of lines. The idea is to discretize
the reactor in volume, and approximate the spatial derivatives by finite differences. Then we will
have a set of coupled ordinary differential equations that can be solved in the usual way. Let us
simplify the notation with C = CA, and let rA = −kC2. Graphically this looks like this:

This leads to the following set of equations:

dC0
dt

= 0 (entrance concentration never changes) (42)
dC1
dt

= −ν0
C1 − C0
V1 − V0

− kC2
1 (43)

dC2
dt

= −ν0
C2 − C1
V2 − V1

− kC2
2 (44)

... (45)
dC4
dt

= −ν0
C4 − C3
V4 − V3

− kC2
4 (46)

Last, we need initial conditions for all the nodes in the discretization. Let us assume the reactor
was full of empty solvent, so that Ci = 0 at t = 0. In the next block of code, we get the transient
solutions, and the steady state solution.

1 import numpy as np
2 from scipy.integrate import odeint
3
4 Ca0 = 2 # Entering concentration
5 vo = 2 # volumetric flow rate
6 volume = 20 # total volume of reactor, spacetime = 10
7 k = 1 # reaction rate constant
8
9 N = 100 # number of points to discretize the reactor volume on

10
11 init = np.zeros(N) # Concentration in reactor at t = 0
12 init[0] = Ca0 # concentration at entrance
13
14 V = np.linspace(0, volume, N) # discretized volume elements

187

http://matlab.cheme.cmu.edu/2011/11/17/modeling-a-transient-plug-flow-reactor

15 tspan = np.linspace(0, 25) # time span to integrate over
16
17 def method_of_lines(C, t):
18 'coupled ODES at each node point'
19 D = -vo * np.diff(C) / np.diff(V) - k * C[1:]**2
20 return np.concatenate([[0], #C0 is constant at entrance
21 D])
22
23 sol = odeint(method_of_lines, init, tspan)
24
25 # steady state solution
26 def pfr(C, V):
27 return 1.0 / vo * (-k * C**2)
28
29 ssol = odeint(pfr, Ca0, V)

The transient solution contains the time dependent behavior of each node in the discretized
reactor. Each row contains the concentration as a function of volume at a specific time point. For
example, we can plot the concentration of A at the exit vs. time (that is, the last entry of each
row) as:

1 import matplotlib.pyplot as plt
2 plt.plot(tspan, sol[:, -1])
3 plt.xlabel('time')
4 plt.ylabel('C_A at exit')
5 plt.savefig('images/transient-pfr-1.png')

After approximately one space time, the steady state solution is reached at the exit. For
completeness, we also examine the steady state solution.

188

1 plt.figure()
2 plt.plot(V, ssol, label='Steady state')
3 plt.plot(V, sol[-1], label='t = {}'.format(tspan[-1]))
4 plt.xlabel('Volume')
5 plt.ylabel('C_A')
6 plt.legend(loc='best')
7 plt.savefig('images/transient-pfr-2.png')

There is some minor disagreement between the final transient solution and the steady state
solution. That is due to the approximation in discretizing the reactor volume. In this example we
used 100 nodes. You get better agreement with a larger number of nodes, say 200 or more. Of
course, it takes slightly longer to compute then, since the number of coupled odes is equal to the
number of nodes.

We can also create an animated gif to show how the concentration of A throughout the reactor
varies with time. Note, I had to install ffmpeg (http://ffmpeg.org/) to save the animation.

1 from matplotlib import animation
2
3 # make empty figure
4 fig = plt.figure()
5 ax = plt.axes(xlim=(0, 20), ylim=(0, 2))
6 line, = ax.plot(V, init, lw=2)
7
8 def animate(i):
9 line.set_xdata(V)

10 line.set_ydata(sol[i])
11 ax.set_title('t = {0}'.format(tspan[i]))
12 ax.figure.canvas.draw()

189

http://ffmpeg.org/

13 return line,
14
15
16 anim = animation.FuncAnimation(fig, animate, frames=50, blit=True)
17
18 anim.save('images/transient_pfr.mp4', fps=10)

http://kitchingroup.cheme.cmu.edu/media/transient_pfr.mp4
You can see from the animation that after about 10 time units, the solution is not changing

further, suggesting steady state has been reached.

10.5.2 Transient heat conduction - partial differential equations

Matlab post adapated from http://msemac.redwoods.edu/~darnold/math55/DEproj/sp02/AbeRichards/
slideshowdefinal.pdf

We solved a steady state BVP modeling heat conduction. Today we examine the transient
behavior of a rod at constant T put between two heat reservoirs at different temperatures, again
T1 = 100, and T2 = 200. The rod will start at 150. Over time, we should expect a solution that
approaches the steady state solution: a linear temperature profile from one side of the rod to the
other.

∂u
∂t = k ∂

2u
∂x2

at t = 0, in this example we have u0(x) = 150 as an initial condition. with boundary conditions
u(0, t) = 100 and u(L, t) = 200.

In Matlab there is the pdepe command. There is not yet a PDE solver in scipy. Instead,
we will utilze the method of lines to solve this problem. We discretize the rod into segments, and
approximate the second derivative in the spatial dimension as ∂2u

∂x2 = (u(x+h)−2u(x)+u(x−h))/h2

at each node. This leads to a set of coupled ordinary differential equations that is easy to solve.
Let us say the rod has a length of 1, k = 0.02, and solve for the time-dependent temperature

profiles.

1 import numpy as np
2 from scipy.integrate import odeint
3 import matplotlib.pyplot as plt
4
5 N = 100 # number of points to discretize
6 L = 1.0
7 X = np.linspace(0, L, N) # position along the rod
8 h = L / (N - 1)
9

10 k = 0.02
11
12 def odefunc(u, t):
13 dudt = np.zeros(X.shape)
14
15 dudt[0] = 0 # constant at boundary condition
16 dudt[-1] = 0
17
18 # now for the internal nodes
19 for i in range(1, N-1):
20 dudt[i] = k * (u[i + 1] - 2*u[i] + u[i - 1]) / h**2
21
22 return dudt
23
24 init = 150.0 * np.ones(X.shape) # initial temperature
25 init[0] = 100.0 # one boundary condition
26 init[-1] = 200.0 # the other boundary condition
27

190

http://kitchingroup.cheme.cmu.edu/media/transient_pfr.mp4
http://matlab.cheme.cmu.edu/2011/08/21/transient-heat-conduction-partial-differential-equations/
http://msemac.redwoods.edu/~darnold/math55/DEproj/sp02/AbeRichards/slideshowdefinal.pdf
http://msemac.redwoods.edu/~darnold/math55/DEproj/sp02/AbeRichards/slideshowdefinal.pdf

28 tspan = np.linspace(0.0, 5.0, 100)
29 sol = odeint(odefunc, init, tspan)
30
31
32 for i in range(0, len(tspan), 5):
33 plt.plot(X, sol[i], label='t={0:1.2f}'.format(tspan[i]))
34
35 # put legend outside the figure
36 plt.legend(loc='center left', bbox_to_anchor=(1, 0.5))
37 plt.xlabel('X position')
38 plt.ylabel('Temperature')
39
40 # adjust figure edges so the legend is in the figure
41 plt.subplots_adjust(top=0.89, right=0.77)
42 plt.savefig('images/pde-transient-heat-1.png')
43
44
45 # Make a 3d figure
46 from mpl_toolkits.mplot3d import Axes3D
47 fig = plt.figure()
48 ax = fig.add_subplot(111, projection='3d')
49
50 SX, ST = np.meshgrid(X, tspan)
51 ax.plot_surface(SX, ST, sol, cmap='jet')
52 ax.set_xlabel('X')
53 ax.set_ylabel('time')
54 ax.set_zlabel('T')
55 ax.view_init(elev=15, azim=-124) # adjust view so it is easy to see
56 plt.savefig('images/pde-transient-heat-3d.png')
57
58 # animated solution. We will use imagemagick for this
59
60 # we save each frame as an image, and use the imagemagick convert command to
61 # make an animated gif
62 for i in range(len(tspan)):
63 plt.clf()
64 plt.plot(X, sol[i])
65 plt.xlabel('X')
66 plt.ylabel('T(X)')
67 plt.title('t = {0}'.format(tspan[i]))
68 plt.savefig('___t{0:03d}.png'.format(i))
69
70 import subprocess
71 print(subprocess.call(['convert', '-quality', '100', '___t*.png' 'images/transient_heat.gif']))
72 print(subprocess.call(['rm', '___t*.png'])) #remove temp files

This version of the graphical solution is not that easy to read, although with some study you
can see the solution evolves from the initial condition which is flat, to the steady state solution
which is a linear temperature ramp.

191

The 3d version may be easier to interpret. The temperature profile starts out flat, and gradually
changes to the linear ramp.

192

Finally, the animated solution.
pycse-chapters/images/transient_heat.gif

10.5.3 Transient diffusion - partial differential equations

We want to solve for the concentration profile of component that diffuses into a 1D rod, with an
impermeable barrier at the end. The PDE governing this situation is:

∂C
∂t = D ∂2C

∂x2

at t = 0, in this example we have C0(x) = 0 as an initial condition, with boundary conditions
C(0, t) = 0.1 and ∂C/∂x(L, t) = 0.

We are going to discretize this equation in both time and space to arrive at the solution. We will
let i be the index for the spatial discretization, and j be the index for the temporal discretization.
The discretization looks like this.

193

pycse-chapters/images/transient_heat.gif

Note that we cannot use the method of lines as we did before because we have the derivative-
based boundary condition at one of the boundaries.

We approximate the time derivative as:
∂C
∂t

∣∣∣∣
i,j

≈ Ci,j+1−Ci,j
∆t

∂2C
∂x2

∣∣∣∣
i,j

≈ Ci+1,j−2Ci,j+Ci−1,j
h2

We define α = D∆t
h2 , and from these two approximations and the PDE, we solve for the unknown

solution at a later time step as:
Ci,j+1 = αCi+1,j + (1− 2α)Ci,j + αCi−1,j
We know Ci,j=0 from the initial conditions, so we simply need to iterate to evaluate Ci,j , which

is the solution at each time step.
See also: http://www3.nd.edu/~jjwteach/441/PdfNotes/lecture16.pdf

1 import numpy as np
2 import matplotlib.pyplot as plt
3
4 N = 20 # number of points to discretize
5 L = 1.0
6 X = np.linspace(0, L, N) # position along the rod
7 h = L / (N - 1) # discretization spacing
8
9 C0t = 0.1 # concentration at x = 0

10 D = 0.02
11
12 tfinal = 50.0
13 Ntsteps = 1000
14 dt = tfinal / (Ntsteps - 1)
15 t = np.linspace(0, tfinal, Ntsteps)
16
17 alpha = D * dt / h**2
18 print(alpha)
19
20 C_xt = [] # container for all the time steps
21
22 # initial condition at t = 0
23 C = np.zeros(X.shape)
24 C[0] = C0t
25
26 C_xt += [C]

194

http://www3.nd.edu/~jjwteach/441/PdfNotes/lecture16.pdf

27
28 for j in range(1, Ntsteps):
29 N = np.zeros(C.shape)
30 N[0] = C0t
31 N[1:-1] = alpha*C[2:] + (1 - 2 * alpha) * C[1:-1] + alpha * C[0:-2]
32 N[-1] = N[-2] # derivative boundary condition flux = 0
33 C[:] = N
34 C_xt += [N]
35
36 # plot selective solutions
37 if j in [1,2,5,10,20,50,100,200,500]:
38 plt.plot(X, N, label='t={0:1.2f}'.format(t[j]))
39
40 plt.xlabel('Position in rod')
41 plt.ylabel('Concentration')
42 plt.title('Concentration at different times')
43 plt.legend(loc='best')
44 plt.savefig('images/transient-diffusion-temporal-dependence.png')
45
46 C_xt = np.array(C_xt)
47 plt.figure()
48 plt.plot(t, C_xt[:,5], label='x={0:1.2f}'.format(X[5]))
49 plt.plot(t, C_xt[:,10], label='x={0:1.2f}'.format(X[10]))
50 plt.plot(t, C_xt[:,15], label='x={0:1.2f}'.format(X[15]))
51 plt.plot(t, C_xt[:,19], label='x={0:1.2f}'.format(X[19]))
52 plt.legend(loc='best')
53 plt.xlabel('Time')
54 plt.ylabel('Concentration')
55 plt.savefig('images/transient-diffusion-position-dependence.png')

195

The solution is somewhat sensitive to the choices of time step and spatial discretization. If you
make the time step too big, the method is not stable, and large oscillations may occur.

11 Plotting

11.1 Plot customizations - Modifying line, text and figure properties

Matlab post
Here is a vanilla plot.

1 import numpy as np
2 import matplotlib.pyplot as plt
3
4 x = np.linspace(0, 2 * np.pi)
5 plt.plot(x, np.sin(x))
6 plt.savefig('images/plot-customization-1.png')

196

http://matlab.cheme.cmu.edu/2011/08/01/plot-customizations-modifying-line-text-and-figure-properties/

Lets increase the line thickness, change the line color to red, and make the markers red circles
with black outlines. I also like figures in presentations to be 6 inches high, and 4 inches wide.

1 import numpy as np
2 import matplotlib.pyplot as plt
3
4 x = np.linspace(0, 2 * np.pi)
5
6 plt.figure(figsize=(4, 6))
7 plt.plot(x, np.sin(x), lw=2, color='r', marker='o', mec='k', mfc='b')
8
9 plt.xlabel('x data', fontsize=12, fontweight='bold')

10 plt.ylabel('y data', fontsize=12, fontstyle='italic', color='b')
11 plt.tight_layout() # auto-adjust position of axes to fit figure.
12 plt.savefig('images/plot-customization-2.png')

197

198

11.1.1 setting all the text properties in a figure.

You may notice the axis tick labels are not consistent with the labels now. If you have many plots
it can be tedious to try setting each text property. Python to the rescue! With these commands
you can find all the text instances, and change them all at one time! Likewise, you can change all
the lines, and all the axes.

1 import numpy as np
2 import matplotlib.pyplot as plt
3
4 x = np.linspace(0, 2 * np.pi)
5
6 plt.figure(figsize=(4, 6))
7 plt.plot(x, np.sin(x), lw=2, color='r', marker='o', mec='k', mfc='b')
8
9 plt.xlabel('x data', fontsize=12, fontweight='bold')

10 plt.ylabel('y data', fontsize=12, fontstyle='italic', color='b')
11
12 # set all font properties
13 fig = plt.gcf()
14 for o in fig.findobj(lambda x:hasattr(x, 'set_fontname')
15 or hasattr(x, 'set_fontweight')
16 or hasattr(x, 'set_fontsize')):
17 o.set_fontname('Arial')
18 o.set_fontweight('bold')
19 o.set_fontsize(14)
20
21 # make anything you can set linewidth to be lw=2
22 def myfunc(x):
23 return hasattr(x, 'set_linewidth')
24
25 for o in fig.findobj(myfunc):
26 o.set_linewidth(2)
27
28 plt.tight_layout() # auto-adjust position of axes to fit figure.
29 plt.savefig('images/plot-customization-3.png')

199

200

There are many other things you can do!

11.2 Plotting two datasets with very different scales

Matlab plot
Sometimes you will have two datasets you want to plot together, but the scales will be so

different it is hard to seem them both in the same plot. Here we examine a few strategies to
plotting this kind of data.

1 import numpy as np
2 import matplotlib.pyplot as plt
3
4 x = np.linspace(0, 2*np.pi)
5 y1 = np.sin(x);
6 y2 = 0.01 * np.cos(x);
7
8 plt.plot(x, y1, x, y2)
9 plt.legend(['y1', 'y2'])

10 plt.savefig('images/two-scales-1.png')
11 # in this plot y2 looks almost flat!

11.2.1 Make two plots!

this certainly solves the problem, but you have two full size plots, which can take up a lot of space
in a presentation and report. Often your goal in plotting both data sets is to compare them, and it
is easiest to compare plots when they are perfectly lined up. Doing that manually can be tedious.

201

http://matlab.cheme.cmu.edu/2011/08/25/plotting-two-datasets-with-very-different-scales/

1 plt.figure()
2 plt.plot(x,y1)
3 plt.legend(['y1'])
4 plt.savefig('images/two-scales-2.png')
5
6 plt.figure()
7 plt.plot(x,y2)
8 plt.legend(['y2'])
9 plt.savefig('images/two-scales-3.png')

202

11.2.2 Scaling the results

Sometimes you can scale one dataset so it has a similar magnitude as the other data set. Here we
could multiply y2 by 100, and then it will be similar in size to y1. Of course, you need to indicate
that y2 has been scaled in the graph somehow. Here we use the legend.

1 plt.figure()
2 plt.plot(x, y1, x, 100 * y2)
3 plt.legend(['y1', '100*y2'])
4 plt.savefig('images/two-scales-4.png')

203

11.2.3 Double-y axis plot

Using two separate y-axes can solve your scaling problem. Note that each y-axis is color coded to
the data. It can be difficult to read these graphs when printed in black and white

1 fig = plt.figure()
2 ax1 = fig.add_subplot(111)
3 ax1.plot(x, y1)
4 ax1.set_ylabel('y1')
5
6 ax2 = ax1.twinx()
7 ax2.plot(x, y2, 'r-')
8 ax2.set_ylabel('y2', color='r')
9 for tl in ax2.get_yticklabels():

10 tl.set_color('r')
11
12 plt.savefig('images/two-scales-5.png')

204

11.2.4 Subplots

An alternative approach to double y axes is to use subplots.

1 plt.figure()
2 f, axes = plt.subplots(2, 1)
3 axes[0].plot(x, y1)
4 axes[0].set_ylabel('y1')
5
6 axes[1].plot(x, y2)
7 axes[1].set_ylabel('y2')
8 plt.savefig('images/two-scales-6.png')

205

11.3 Customizing plots after the fact

Matlab post Sometimes it is desirable to make a plot that shows the data you want to present, and
to customize the details, e.g. font size/type and line thicknesses afterwards. It can be tedious to
try to add the customization code to the existing code that makes the plot. Today, we look at a
way to do the customization after the plot is created.

1 import numpy as np
2 import matplotlib.pyplot as plt
3
4 x = np.linspace(0,2)
5 y1 = x
6 y2 = x**2
7 y3 = x**3
8
9 plt.plot(x, y1, x, y2, x, y3)

10 xL = plt.xlabel('x')
11 yL = plt.ylabel('f(x)')
12 plt.title('plots of y = x^n')
13 plt.legend(['x', 'x^2', 'x^3'], loc='best')
14 plt.savefig('images/after-customization-1.png')
15
16 fig = plt.gcf()
17
18 plt.setp(fig, 'size_inches', (4, 6))
19 plt.savefig('images/after-customization-2.png')
20
21
22 # set lines to dashed
23 from matplotlib.lines import Line2D

206

http://matlab.cheme.cmu.edu/2011/09/16/customizing-plots-after-the-fact/

24 for o in fig.findobj(Line2D):
25 o.set_linestyle('--')
26
27 #set(allaxes,'FontName','Arial','FontWeight','Bold','LineWidth',2,'FontSize',14);
28
29 import matplotlib.text as text
30 for o in fig.findobj(text.Text):
31 plt.setp(o, 'fontname','Arial', 'fontweight','bold', 'fontsize', 14)
32
33 plt.setp(xL, 'fontstyle', 'italic')
34 plt.setp(yL, 'fontstyle', 'italic')
35 plt.savefig('images/after-customization-3.png')

207

208

209

11.4 Fancy, built-in colors in Python

Matlab post
Matplotlib has a lot of built-in colors. Here is a list of them, and an example of using them.

1 import matplotlib.pyplot as plt
2 from matplotlib.colors import cnames
3 print(cnames.keys())
4
5 plt.plot([1, 2, 3, 4], lw=2, color='moccasin', marker='o', mfc='lightblue', mec='seagreen')
6 plt.savefig('images/fall-colors.png')

11.5 Picasso’s short lived blue period with Python

Matlab post
It is an unknown fact that Picasso had a brief blue plotting period with Matlab before moving

on to his more famous paintings. It started from irritation with the default colors available in
Matlab for plotting. After watching his friend van Gogh cut off his own ear out of frustration with
the ugly default colors, Picasso had to do something different.

1 import numpy as np
2 import matplotlib.pyplot as plt
3
4 #this plots horizontal lines for each y value of m.
5 for m in np.linspace(1, 50, 100):
6 plt.plot([0, 50], [m, m])
7
8 plt.savefig('images/blues-1.png')

210

http://matlab.cheme.cmu.edu/2011/09/13/check-out-the-new-fall-colors/
http://matlab.cheme.cmu.edu/2011/09/14/picassos-short-lived-blue-period-with-matlab/

Picasso copied the table available at http://en.wikipedia.org/wiki/List_of_colors and
parsed it into a dictionary of hex codes for new colors. That allowed him to specify a list of
beautiful blues for his graph. Picasso eventually gave up on python as an artform, and moved on
to painting.

1 import numpy as np
2 import matplotlib.pyplot as plt
3
4 c = {}
5 with open('color.table') as f:
6 for line in f:
7 fields = line.split('\t')
8 colorname = fields[0].lower()
9 hexcode = fields[1]

10 c[colorname] = hexcode
11
12 names = c.keys()
13 names = sorted(names)
14
15 print(names)
16
17 blues = [c['alice blue'],
18 c['light blue'],
19 c['baby blue'],
20 c['light sky blue'],
21 c['maya blue'],
22 c['cornflower blue'],
23 c['bleu de france'],
24 c['azure'],
25 c['blue sapphire'],
26 c['cobalt'],

211

http://en.wikipedia.org/wiki/List_of_colors

27 c['blue'],
28 c['egyptian blue'],
29 c['duke blue']]
30
31 ax = plt.gca()
32 ax.set_color_cycle(blues)
33
34 #this plots horizontal lines for each y value of m.
35 for i, m in enumerate(np.linspace(1, 50, 100)):
36 plt.plot([0, 50], [m, m])
37
38 plt.savefig('images/blues-2.png')

11.6 Interactive plotting

11.6.1 Basic mouse clicks

One basic event a figure can react to is a mouse click. Let us make a graph with a parabola in it,
and draw the shortest line from a point clicked on to the graph. Here is an example of doing that.

1 import matplotlib.pyplot as plt
2 import numpy as np
3 from scipy.optimize import fmin_cobyla
4
5 fig = plt.figure()
6
7 def f(x):
8 return x**2
9

10 x = np.linspace(-2, 2)

212

11 y = f(x)
12
13 ax = fig.add_subplot(111)
14 ax.plot(x, y)
15 ax.set_title('Click somewhere')
16
17 def onclick(event):
18 ax = plt.gca()
19
20 P = (event.xdata, event.ydata)
21
22 def objective(X):
23 x,y = X
24 return np.sqrt((x - P[0])**2 + (y - P[1])**2)
25
26 def c1(X):
27 x,y = X
28 return f(x) - y
29
30 X = fmin_cobyla(objective, x0=[P[0], f(P[0])], cons=[c1])
31
32 ax.set_title('x={0:1.2f} y={1:1.2f}'.format(event.xdata, event.ydata))
33 ax.plot([event.xdata, X[0]], [event.ydata, X[1]], 'ro-')
34 ax.figure.canvas.draw() # this line is critical to change the title
35 plt.savefig('images/interactive-basic-click.png')
36
37 cid = fig.canvas.mpl_connect('button_press_event', onclick)
38 plt.show()

Here is the result from two clicks. For some reason, this only works when you click inside the
parabola. It does not work outside the parabola.

213

We can even do different things with different mouse clicks. A left click corresponds to
event.button = 1, a middle click is event.button = 2, and a right click is event.button = 3. You
can detect if a double click occurs too. Here is an example of these different options.

1 import matplotlib.pyplot as plt
2 import numpy as np
3
4 fig = plt.figure()
5
6 ax = fig.add_subplot(111)
7 ax.plot(np.random.rand(10))
8 ax.set_title('Click somewhere')
9

10 def onclick(event):
11 ax.set_title('x={0:1.2f} y={1:1.2f} button={2}'.format(event.xdata, event.ydata, event.button))
12 colors = ' rbg'
13 print('button={0} (dblclick={2}). making a {1} dot'.format(event.button,
14 colors[event.button],
15 event.dblclick))
16
17 ms=5 # marker size
18 if event.dblclick: #make marker bigger
19 ms = 10
20
21 ax.plot([event.xdata], [event.ydata], 'o', color=colors[event.button], ms=ms)
22 ax.figure.canvas.draw() # this line is critical to change the title
23 plt.savefig('images/interactive-button-click.png')
24
25 cid = fig.canvas.mpl_connect('button_press_event', onclick)
26 plt.show()

214

Finally, you may want to have key modifiers for your clicks, e.g. Ctrl-click is different than a
click.

11.7 key events not working on Mac/org-mode

1 from __future__ import print_function
2 import sys
3 import numpy as np
4 import matplotlib.pyplot as plt
5
6
7 def press(event):
8 print('press', event.key)
9 sys.stdout.flush()

10 if event.key == 'x':
11 visible = xl.get_visible()
12 xl.set_visible(not visible)
13 fig.canvas.draw()
14
15 fig, ax = plt.subplots()
16
17 fig.canvas.mpl_connect('key_press_event', press)
18
19 ax.plot(np.random.rand(12), np.random.rand(12), 'go')
20 xl = ax.set_xlabel('easy come, easy go')
21
22 plt.show()

1 import matplotlib.pyplot as plt
2 import numpy as np
3
4 fig = plt.figure()
5
6 ax = fig.add_subplot(111)
7 ax.plot(np.random.rand(10))
8 ax.set_title('Click somewhere')
9

10 def onclick(event):
11 print(event)
12 ax = plt.gca()
13 ax.set_title('x={0:1.2f} y={1:1.2f}'.format(event.xdata, event.ydata))
14 if event.key == 'shift+control':
15 color = 'red'
16 elif event.key == 'shift':
17 color = 'yellow'
18 else:
19 color = 'blue'
20
21 ax.plot([event.xdata], [event.ydata], 'o', color=color)
22 ax.figure.canvas.draw() # this line is critical to change the title
23 plt.savefig('images/interactive-button-key-click.png')
24
25 cid = fig.canvas.mpl_connect('button_press_event', onclick)
26 plt.show()

215

You can have almost every key-click combination imaginable. This allows you to have many
different things that can happen when you click on a graph. With this method, you can get the
coordinates close to a data point, but you do not get the properties of the point. For that, we need
another mechanism.

11.7.1 Mouse movement

In this example, we will let the mouse motion move a point up and down a curve. This might
be helpful to explore a function graph, for example. We use interpolation to estimate the curve
between data points.

1 import matplotlib.pyplot as plt
2 import numpy as np
3 from scipy.interpolate import interp1d
4
5 # the "data"
6 x = np.linspace(0, np.pi)
7 y = np.sin(x)
8
9 # interpolating function between points

10 p = interp1d(x, y, 'cubic')
11
12 # make the figure
13 fig = plt.figure()
14
15 ax = fig.add_subplot(111)
16 line, = ax.plot(x, y, 'ro-')
17 marker, = ax.plot([0.5], [0.5],'go', ms=15)
18

216

19 ax.set_title('Move the mouse around')
20
21 def onmove(event):
22
23 xe = event.xdata
24 ye = event.ydata
25
26 ax.set_title('at x={0} y={1}'.format(xe, p(xe)))
27 marker.set_xdata(xe)
28 marker.set_ydata(p(xe))
29
30 ax.figure.canvas.draw() # this line is critical to change the title
31
32 cid = fig.canvas.mpl_connect('motion_notify_event', onmove)
33 plt.show()

11.7.2 key press events

Pressing a key is different than pressing a mouse button. We can do different things with different
key presses. You can access the coordinates of the mouse when you press a key.

1 import matplotlib.pyplot as plt
2 import numpy as np
3
4 fig = plt.figure()
5
6 ax = fig.add_subplot(111)
7 ax.plot(np.random.rand(10))
8 ax.set_title('Move the mouse somewhere and press a key')
9

10 def onpress(event):
11 print(event.key)
12 ax = plt.gca()
13 ax.set_title('key={2} at x={0:1.2f} y={1:1.2f}'.format(event.xdata, event.ydata, event.key))
14 if event.key == 'r':
15 color = 'red'
16 elif event.key == 'y':
17 color = 'yellow'
18 else:
19 color = 'blue'
20
21 ax.plot([event.xdata], [event.ydata], 'o', color=color)
22 ax.figure.canvas.draw() # this line is critical to change the title
23 plt.savefig('images/interactive-key-press.png')
24
25 cid = fig.canvas.mpl_connect('key_press_event', onpress)
26 plt.show()

11.7.3 Picking lines

Instead of just getting the points in a figure, let us interact with lines on the graph. We want to
make the line we click on thicker. We use a "pick_event" event and bind a function to that event
that does something.

1 import numpy as np
2 import matplotlib.pyplot as plt
3
4 fig = plt.figure()
5 ax = fig.add_subplot(111)
6 ax.set_title('click on a line')
7

217

8 x = np.linspace(0, 2*np.pi)
9

10 L1, = ax.plot(x, np.sin(x), picker=5)
11 L2, = ax.plot(x, np.cos(x), picker=5)
12
13 def onpick(event):
14 thisline = event.artist
15
16 # reset all lines to thin
17 for line in [L1, L2]:
18 line.set_lw(1)
19
20 thisline.set_lw(5) # make selected line thick
21 ax.figure.canvas.draw() # this line is critical to change the linewidth
22
23 fig.canvas.mpl_connect('pick_event', onpick)
24
25 plt.show()

11.7.4 Picking data points

In this example we show how to click on a data point, and show which point was selected with a
transparent marker, and show a label which refers to the point.

1 import numpy as np
2 import matplotlib.pyplot as plt
3
4 fig = plt.figure()
5 ax = fig.add_subplot(111)
6 ax.set_title('click on a point')
7
8 x = [0, 1, 2, 3, 4, 5]
9 labels = ['a', 'b', 'c', 'd', 'e', 'f']

10 ax.plot(x, 'bo', picker=5)
11
12 # this is the transparent marker for the selected data point
13 marker, = ax.plot([0], [0], 'yo', visible=False, alpha=0.8, ms=15)
14
15 def onpick(event):
16 ind = event.ind
17 ax.set_title('Data point {0} is labeled "{1}"'.format(ind, labels[ind]))
18 marker.set_visible(True)
19 marker.set_xdata(x[ind])
20 marker.set_ydata(x[ind])
21
22 ax.figure.canvas.draw() # this line is critical to change the linewidth
23 plt.savefig('images/interactive-labeled-points.png')
24
25 fig.canvas.mpl_connect('pick_event', onpick)
26
27 plt.show()

218

11.8 Peak annotation in matplotlib

This post is just some examples of annotating features in a plot in matplotlib. We illustrate finding
peak maxima in a range, shading a region, shading peaks, and labeling a region of peaks. I find it
difficult to remember the detailed syntax for these, so here are examples I could refer to later.

1 import numpy as np
2 import matplotlib.pyplot as plt
3
4 w, i = np.loadtxt('data/raman.txt', usecols=(0, 1), unpack=True)
5
6 plt.plot(w, i)
7 plt.xlabel('Raman shift (cm$^{-1}$)')
8 plt.ylabel('Intensity (counts)')
9

10 ax = plt.gca()
11
12 # put a shaded rectangle over a region
13 ax.annotate('Some typical region', xy=(550, 15500), xycoords='data')
14 ax.fill_between([700, 800], 0, [16000, 16000], facecolor='red', alpha=0.25)
15
16 # shade the region in the spectrum
17 ind = (w>1019) & (w<1054)
18 ax.fill_between(w[ind], 0, i[ind], facecolor='gray', alpha=0.5)
19 area = np.trapz(i[ind], w[ind])
20 x, y = w[ind][np.argmax(i[ind])], i[ind][np.argmax(i[ind])]
21 ax.annotate('Area = {0:1.2f}'.format(area), xy=(x, y),
22 xycoords='data',
23 xytext=(x + 50, y + 5000),
24 textcoords='data',
25 arrowprops=dict(arrowstyle="->",

219

26 connectionstyle="angle,angleA=0,angleB=90,rad=10"))
27
28
29 # find a max in this region, and annotate it
30 ind = (w>1250) & (w<1252)
31 x,y = w[ind][np.argmax(i[ind])], i[ind][np.argmax(i[ind])]
32 ax.annotate('A peak', xy=(x, y),
33 xycoords='data',
34 xytext=(x + 350, y + 2000),
35 textcoords='data',
36 arrowprops=dict(arrowstyle="->",
37 connectionstyle="angle,angleA=0,angleB=90,rad=10"))
38
39 # find max in this region, and annotate it
40 ind = (w>1380) & (w<1400)
41 x,y = w[ind][np.argmax(i[ind])], i[ind][np.argmax(i[ind])]
42 ax.annotate('Another peak', xy=(x, y),
43 xycoords='data',
44 xytext=(x + 50, y + 2000),
45 textcoords='data',
46 arrowprops=dict(arrowstyle="->",
47 connectionstyle="angle,angleA=0,angleB=90,rad=10"))
48
49 # indicate a region with connected arrows
50 ax.annotate('CH bonds', xy=(2780, 6000), xycoords='data')
51 ax.annotate('', xy=(2800., 5000.), xycoords='data',
52 xytext=(3050, 5000), textcoords='data',
53 # the arrows connect the xy to xytext coondinates
54 arrowprops=dict(arrowstyle="<->",
55 connectionstyle="bar",
56 ec="k", # edge color
57 shrinkA=0.1, shrinkB=0.1))
58
59 plt.savefig('images/plot-annotes.png')
60 plt.show()

220

12 Programming

12.1 Some of this, sum of that

Matlab plot
Python provides a sum function to compute the sum of a list. However, the sum function does

not work on every arrangement of numbers, and it certainly does not work on nested lists. We will
solve this problem with recursion.

Here is a simple example.

1 v = [1, 2, 3, 4, 5, 6, 7, 8, 9] # a list
2 print(sum(v))
3
4 v = (1, 2, 3, 4, 5, 6, 7, 8, 9) # a tuple
5 print(sum(v))

If you have data in a dictionary, sum works by default on the keys. You can give the sum
function the values like this.

1 v = {'a':1, 'b':3, 'c':4}
2 print(sum(v.values()))

221

http://matlab.cheme.cmu.edu/2012/05/29/some-of-this-sum-of-that/

12.1.1 Nested lists

Suppose now we have nested lists. This kind of structured data might come up if you had grouped
several things together. For example, suppose we have 5 departments, with 1, 5, 15, 7 and 17
people in them, and in each department they are divided into groups.

Department 1: 1 person Department 2: group of 2 and group of 3 Department 3: group of 4 and
11, with a subgroups of 5 and 6 making up the group of 11. Department 4: 7 people Department
5: one group of 8 and one group of 9.

We might represent the data like this nested list. Now, if we want to compute the total number
of people, we need to add up each group. We cannot simply sum the list, because some elements
are single numbers, and others are lists, or lists of lists. We need to recurse through each entry
until we get down to a number, which we can add to the running sum.

1 v = [1,
2 [2, 3],
3 [4, [5, 6]],
4 7,
5 [8,9]]
6
7 def recursive_sum(X):
8 'compute sum of arbitrarily nested lists'
9 s = 0 # initial value of the sum

10
11 for i in range(len(X)):
12 import types # we use this to test if we got a number
13 if isinstance(X[i], (int, float, complex)):
14 # this is the terminal step
15 s += X[i]
16 else:
17 # we did not get a number, so we recurse
18 s += recursive_sum(X[i])
19 return s
20
21 print(recursive_sum(v))
22 print(recursive_sum([1, 2, 3, 4, 5, 6, 7, 8, 9])) # test on non-nested list

In Post 1970 we examined recursive functions that could be replaced by loops. Here we examine
a function that can only work with recursion because the nature of the nested data structure is
arbitrary. There are arbitrary branches and depth in the data structure. Recursion is nice because
you do not have to define that structure in advance.

12.2 Sorting in python

Matlab post
Occasionally it is important to have sorted data. Python has a few sorting options.

1 a = [4, 5, 1, 6, 8, 3, 2]
2 print(a)
3 a.sort() # inplace sorting
4 print(a)
5
6 a.sort(reverse=True)
7 print(a)

If you do not want to modify your list, but rather get a copy of a sorted list, use the sorted
command.

222

http://matlab.cheme.cmu.edu/2012/05/28/lather-rinse-and-repeat/
http://matlab.cheme.cmu.edu/2011/11/12/sorting-in-matlab/

1 a = [4, 5, 1, 6, 8, 3, 2]
2 print('sorted a = ',sorted(a)) # no change to a
3 print('sorted a = ',sorted(a, reverse=True)) # no change to a
4 print('a = ',a)

This works for strings too:

1 a = ['b', 'a', 'c', 'tree']
2 print(sorted(a))

Here is a subtle point though. A capitalized letter comes before a lowercase letter. We can pass
a function to the sorted command that is called on each element prior to the sort. Here we make
each word lower case before sorting.

1 a = ['B', 'a', 'c', 'tree']
2 print(sorted(a))
3
4 # sort by lower case letter
5 print(sorted(a, key=str.lower))

Here is a more complex sorting problem. We have a list of tuples with group names and the
letter grade. We want to sort the list by the letter grades. We do this by creating a function that
maps the letter grades to the position of the letter grades in a sorted list. We use the list.index
function to find the index of the letter grade, and then sort on that.

1 groups = [('group1', 'B'),
2 ('group2', 'A+'),
3 ('group3', 'A')]
4
5 def grade_key(gtup):
6 '''gtup is a tuple of ('groupname', 'lettergrade')'''
7 lettergrade = gtup[1]
8
9 grades = ['A++', 'A+', 'A', 'A-', 'A/B'

10 'B+', 'B', 'B-', 'B/C',
11 'C+', 'C', 'C-', 'C/D',
12 'D+', 'D', 'D-', 'D/R',
13 'R+', 'R', 'R-', 'R--']
14
15 return grades.index(lettergrade)
16
17 print(sorted(groups, key=grade_key))

12.3 Unique entries in a vector

Matlab post
It is surprising how often you need to know only the unique entries in a vector of entries. In

python, we create a "set" from a list, which only contains unique entries. Then we convert the set
back to a list.

1 a = [1, 1, 2, 3, 4, 5, 3, 5]
2
3 b = list(set(a))
4 print(b)

223

http://matlab.cheme.cmu.edu/2011/11/12/unique-entries-in-a-vector/

1 a = ['a',
2 'b',
3 'abracadabra',
4 'b',
5 'c',
6 'd',
7 'b']
8
9 print(list(set(a)))

12.4 Lather, rinse and repeat

Matlab post
Recursive functions are functions that call themselves repeatedly until some exit condition is

met. Today we look at a classic example of recursive function for computing a factorial. The
factorial of a non-negative integer n is denoted n!, and is defined as the product of all positive
integers less than or equal to n.

The key ideas in defining a recursive function is that there needs to be some logic to identify
when to terminate the function. Then, you need logic that calls the function again, but with a
smaller part of the problem. Here we recursively call the function with n-1 until it gets called with
n=0. 0! is defined to be 1.

1 def recursive_factorial(n):
2 '''compute the factorial recursively. Note if you put a negative
3 number in, this function will never end. We also do not check if
4 n is an integer.'''
5 if n == 0:
6 return 1
7 else:
8 return n * recursive_factorial(n - 1)
9

10 print(recursive_factorial(5))

1 from scipy.misc import factorial
2 print(factorial(5))

Compare to a loop solution This example can also be solved by a loop. This loop is easier to
read and understand than the recursive function. Note the recursive nature of defining the variable
as itself times a number.

1 n = 5
2 factorial_loop = 1
3 for i in range(1, n + 1):
4 factorial_loop *= i
5
6 print(factorial_loop)

There are some significant differences in this example than in Matlab.

1. the syntax of the for loop is quite different with the use of the in operator.

2. python has the nice *= operator to replace a = a * i

3. We have to loop from 1 to n+1 because the last number in the range is not returned.

224

http://matlab.cheme.cmu.edu/2012/05/28/lather-rinse-and-repeat/

12.4.1 Conclusions

Recursive functions have a special niche in mathematical programming. There is often another way
to accomplish the same goal. That is not always true though, and in a future post we will examine
cases where recursion is the only way to solve a problem.

12.5 Brief intro to regular expressions

Matlab post
This example shows how to use a regular expression to find strings matching the pattern

:cmd:‘datastring‘. We want to find these strings, and then replace them with something that
depends on what cmd is, and what datastring is.

Let us define some commands that will take datasring as an argument, and return the modified
text. The idea is to find all the cmds, and then run them. We use python’s eval command to get
the function handle from a string, and the cmd functions all take a datastring argument (we define
them that way). We will create commands to replace :cmd:‘datastring‘ with html code for a light
gray background, and :red:‘some text‘ with html code making the text red.

1 text = r'''Here is some text. use the :cmd:`open` to get the text into
2 a variable. It might also be possible to get a multiline
3 :red:`line
4 2` directive.'''
5
6 print(text)
7 print('---------------------------------')

Now, we define our functions.

1 def cmd(datastring):
2 ' replace :cmd:`datastring` with html code with light gray background'
3 s = '%{0}';
4 html = s.format(datastring)
5 return html
6
7 def red(datastring):
8 'replace :red:`datastring` with html code to make datastring in red font'
9 html = '{0}'.format(datastring)

10 return html

Finally, we do the regular expression. Regular expressions are hard. There are whole books on
them. The point of this post is to alert you to the possibilities. I will break this regexp down as
follows. 1. we want everything between :*: as the directive. ([^:]*) matches everything not a
:. :([^:]*): matches the stuff between two :. 2. then we want everything between ‘*‘. ([^‘]*)
matches everything not a ‘. 3. The () makes a group that python stores so we can refer to them
later.

1 import re
2 regex = ':([^:]*):`([^`]*)`'
3 matches = re.findall(regex, text)
4 for directive, datastring in matches:
5 directive = eval(directive) # get the function
6 text = re.sub(regex, directive(datastring), text)
7
8 print('Modified text:')
9 print(text)

225

http://matlab.cheme.cmu.edu/2012/05/07/1701/

12.6 Working with lists

It is not too uncommon to have a list of data, and then to apply a function to every element, to
filter the list, or extract elements that meet some criteria. In this example, we take a string and
split it into words. Then, we will examine several ways to apply functions to the words, to filter
the list to get data that meets some criteria. Here is the string splitting.

1 text = '''
2 As we have seen, handling units with third party functions is fragile, and often requires additional code to wrap the function to handle the units. An alternative approach that avoids the wrapping is to rescale the equations so they are dimensionless. Then, we should be able to use all the standard external functions without modification. We obtain the final solutions by rescaling back to the answers we want.
3
4 Before doing the examples, let us consider how the quantities package handles dimensionless numbers.
5
6 import quantities as u
7
8 a = 5 * u.m
9 L = 10 * u.m # characteristic length

10
11 print a/L
12 print type(a/L)
13
14 '''
15
16 words = text.split()
17 print(words)

Let us get the length of each word.

1 print([len(word) for word in words])
2
3 # functional approach with a lambda function
4 print(list(map(lambda word: len(word), words)))
5
6 # functional approach with a builtin function
7 print(list(map(len, words)))
8
9 # functional approach with a user-defined function

10 def get_length(word):
11 return len(word)
12
13 print(list(map(get_length, words)))

Now let us get all the words that start with the letter "a". This is sometimes called filtering a
list. We use a string function startswith to check for upper and lower-case letters. We will use
list comprehension with a condition.

1 print([word for word in words if word.startswith('a') or word.startswith('A')])
2
3 # make word lowercase to simplify the conditional statement
4 print([word for word in words if word.lower().startswith('a')])

A slightly harder example is to find all the words that are actually numbers. We could use a
regular expression for that, but we will instead use a function we create. We use a function that
tries to cast a word as a float. If this fails, we know the word is not a float, so we return False.

1 def float_p(word):
2 try:
3 float(word)

226

4 return True
5 except ValueError:
6 return False
7
8 print([word for word in words if float_p(word)])
9

10 # here is a functional approach
11 print(list(filter(float_p, words)))

Finally, we consider filtering the list to find all words that contain certain symbols, say any
character in this string "./=*#". Any of those characters will do, so we search each word for one
of them, and return True if it contains it, and False if none are contained.

1 def punctuation_p(word):
2 S = './=*#'
3 for s in S:
4 if s in word:
5 return True
6 return False
7
8 print([word for word in words if punctuation_p(word)])
9 print(filter(punctuation_p, words))

In this section we examined a few ways to interact with lists using list comprehension and
functional programming. These approaches make it possible to work on arbitrary size lists, without
needing to know in advance how big the lists are. New lists are automatically generated as results,
without the need to preallocate lists, i.e. you do not need to know the size of the output. This can
be handy as it avoids needing to write loops in some cases and leads to more compact code.

12.7 Making word files in python

Matlab post
We can use COM automation in python to create Microsoft Word documents. This only works

on windows, and Word must be installed.

1 from win32com.client import constants, Dispatch
2 import os
3
4 word = Dispatch('Word.Application')
5 word.Visible = True
6
7 document = word.Documents.Add()
8 selection = word.Selection
9

10 selection.TypeText('Hello world. \n')
11 selection.TypeText('My name is Professor Kitchin\n')
12 selection.TypeParagraph
13 selection.TypeText('How are you today?\n')
14 selection.TypeParagraph
15 selection.Style='Normal'
16
17
18 selection.TypeText('Big Finale\n')
19 selection.Style='Heading 1'
20 selection.TypeParagraph
21
22 H1 = document.Styles.Item('Heading 1')
23 H1.Font.Name = 'Garamond'
24 H1.Font.Size = 20
25 H1.Font.Bold = 1

227

http://matlab.cheme.cmu.edu/2011/10/22/create-a-word-document-from-matlab/

26 H1.Font.TextColor.RGB=60000 # some ugly color green
27
28 selection.TypeParagraph
29 selection.TypeText('That is all for today!')
30
31
32 document.SaveAs2(os.getcwd() + '/test.docx')
33 word.Quit()

msx:./test.docx
That is it! I would not call this extra convenient, but if you have a need to automate the

production of Word documents from a program, this is an approach that you can use. You may
find http://msdn.microsoft.com/en-us/library/kw65a0we%28v=vs.80%29.aspx a helpful link
for documentation of what you can do.

I was going to do this by docx, which does not require windows, but it appears broken. It is
missing a template directory, and it does not match the github code. docx is not actively maintained
anymore either.

1 from docx import *
2
3 # Make a new document tree - this is the main part of a Word document
4 document = Docx()
5
6 document.append(paragraph('Hello world. '
7 'My name is Professor Kitchin'
8 'How are you today?'))
9

10 document.append(heading("Big Finale", 1))
11
12 document.append(paragraph('That is all for today.'))
13
14 document.save('test.doc')

12.8 Interacting with Excel in python

Matlab post
There will be times it is convenient to either read data from Excel, or write data to Excel.

This is possible in python (http://www.python-excel.org/). You may also look at (https:
//bitbucket.org/ericgazoni/openpyxl/wiki/Home).

1 import xlrd
2
3 wb = xlrd.open_workbook('data/example.xlsx')
4 sh1 = wb.sheet_by_name(u'Sheet1')
5
6 print(sh1.col_values(0)) # column 0
7 print(sh1.col_values(1)) # column 1
8
9 sh2 = wb.sheet_by_name(u'Sheet2')

10
11 x = sh2.col_values(0) # column 0
12 y = sh2.col_values(1) # column 1
13
14 import matplotlib.pyplot as plt
15 plt.plot(x, y)
16 plt.savefig('images/excel-1.png')

228

http://msdn.microsoft.com/en-us/library/kw65a0we%28v=vs.80%29.aspx
http://matlab.cheme.cmu.edu/2011/08/07/manipulating-excel-with-matlab/
http://www.python-excel.org/
https://bitbucket.org/ericgazoni/openpyxl/wiki/Home
https://bitbucket.org/ericgazoni/openpyxl/wiki/Home

12.8.1 Writing Excel workbooks

Writing data to Excel sheets is pretty easy. Note, however, that this overwrites the worksheet if it
already exists.

1 import xlwt
2 import numpy as np
3
4 x = np.linspace(0, 2)
5 y = np.sqrt(x)
6
7 # save the data
8 book = xlwt.Workbook()
9

10 sheet1 = book.add_sheet('Sheet 1')
11
12 for i in range(len(x)):
13 sheet1.write(i, 0, x[i])
14 sheet1.write(i, 1, y[i])
15
16 book.save('data/example2.xls') # maybe can only write .xls format

12.8.2 Updating an existing Excel workbook

It turns out you have to make a copy of an existing workbook, modify the copy and then write out
the results using the xlwt module.

1 from xlrd import open_workbook
2

229

3 from xlutils.copy import copy
4
5 rb = open_workbook('data/example2.xls',formatting_info=True)
6 rs = rb.sheet_by_index(0)
7
8 wb = copy(rb)
9

10 ws = wb.add_sheet('Sheet 2')
11 ws.write(0, 0, "Appended")
12
13 wb.save('data/example2.xls')

12.8.3 Summary

Matlab has better support for interacting with Excel than python does right now. You could get
better Excel interaction via COM, but that is Windows specific, and requires you to have Excel
installed on your computer. If you only need to read or write data, then xlrd/xlwt or the openpyxl
modules will server you well.

12.9 Using Excel in Python

, There may be a time where you have an Excel sheet that already has a model built into it, and
you normally change cells in the sheet, and it solves the model. It can be tedious to do that a
lot, and we can use python to do that. Python has a COM interface that can communicate with
Excel (and many other windows programs. see http://my.safaribooksonline.com/1565926218
for Python Programming on Win32). In this example, we will use a very simple Excel sheet that
calculates the volume of a CSTR that runs a zeroth order reaction (−rA = k) for a particular
conversion. You set the conversion in the cell B1, and the volume is automatically computed in
cell B6. We simply need to set the value of B1, and get the value of B6 for a range of different
conversion values. In this example, the volume is returned in Liters.

1 import win32com.client as win32
2 excel = win32.Dispatch('Excel.Application')
3
4 wb = excel.Workbooks.Open('c:/Users/jkitchin/Dropbox/pycse/data/cstr-zeroth-order.xlsx')
5 ws = wb.Worksheets('Sheet1')
6
7 X = [0.1, 0.5, 0.9]
8 for x in X:
9 ws.Range("B1").Value = x

10 V = ws.Range("B6").Value
11 print 'at X = {0} V = {1:1.2f} L'.format(x, V)
12
13 # we tell Excel the workbook is saved, even though it is not, so it
14 # will quit without asking us to save.
15 excel.ActiveWorkbook.Saved = True
16 excel.Application.Quit()

This was a simple example (one that did not actually need Excel at all) that illustrates the
feasibility of communicating with Excel via a COM interface.

Some links I have found that help figure out how to do this are:

• http://www.numbergrinder.com/2008/11/pulling-data-from-excel-using-python-com/

• http://www.numbergrinder.com/2008/11/closing-excel-using-python/

• http://www.dzone.com/snippets/script-excel-python

230

http://my.safaribooksonline.com/1565926218
http://www.numbergrinder.com/2008/11/pulling-data-from-excel-using-python-com/
http://www.numbergrinder.com/2008/11/closing-excel-using-python/
http://www.dzone.com/snippets/script-excel-python

12.10 Running Aspen via Python

Aspen is a process modeling tool that simulates industrial processes. It has a GUI for setting up
the flowsheet, defining all the stream inputs and outputs, and for running the simulation. For single
calculations it is pretty convenient. For many calculations, all the pointing and clicking to change
properties can be tedious, and difficult to reproduce. Here we show how to use Python to automate
Aspen using the COM interface.

We have an Aspen flowsheet setup for a flash operation. The feed consists of 91.095 mol% water
and 8.905 mol% ethanol at 100 degF and 50 psia. 48.7488 lbmol/hr of the mixture is fed to the
flash tank which is at 150 degF and 20 psia. We want to know the composition of the VAPOR and
LIQUID streams. The simulation has been run once.

This is an example that just illustrates it is possible to access data from a simulation that
has been run. You have to know quite a bit about the Aspen flowsheet before writing this code.
Particularly, you need to open the Variable Explorer to find the "path" to the variables that you
want, and to know what the units are of those variables are.

1 import os
2 import win32com.client as win32
3 aspen = win32.Dispatch('Apwn.Document')
4
5 aspen.InitFromArchive2(os.path.abspath('data\Flash_Example.bkp'))
6
7 ## Input variables
8 feed_temp = aspen.Tree.FindNode('\Data\Streams\FEED\Input\TEMP\MIXED').Value
9 print 'Feed temperature was {0} degF'.format(feed_temp)

10
11 ftemp = aspen.Tree.FindNode('\Data\Blocks\FLASH\Input\TEMP').Value
12 print 'Flash temperature = {0}'.format(ftemp)
13
14 ## Output variables
15 eL_out = aspen.Tree.FindNode("\Data\Streams\LIQUID\Output\MOLEFLOW\MIXED\ETHANOL").Value
16 wL_out = aspen.Tree.FindNode("\Data\Streams\LIQUID\Output\MOLEFLOW\MIXED\WATER").Value
17
18 eV_out = aspen.Tree.FindNode("\Data\Streams\VAPOR\Output\MOLEFLOW\MIXED\ETHANOL").Value
19 wV_out = aspen.Tree.FindNode("\Data\Streams\VAPOR\Output\MOLEFLOW\MIXED\WATER").Value
20

231

21 tot = aspen.Tree.FindNode("\Data\Streams\FEED\Input\TOTFLOW\MIXED").Value
22
23 print 'Ethanol vapor mol flow: {0} lbmol/hr'.format(eV_out)
24 print 'Ethanol liquid mol flow: {0} lbmol/hr'.format(eL_out)
25
26 print 'Water vapor mol flow: {0} lbmol/hr'.format(wV_out)
27 print 'Water liquid mol flow: {0} lbmol/hr'.format(wL_out)
28
29 print 'Total = {0}. Total in = {1}'.format(eV_out + eL_out + wV_out + wL_out,
30 tot)
31
32 aspen.Close()

It is nice that we can read data from a simulation, but it would be helpful if we could change
variable values and to rerun the simulations. That is possible. We simply set the value of the
variable, and tell Aspen to rerun. Here, we will change the temperature of the Flash tank and plot
the composition of the outlet streams as a function of that temperature.

1 import os
2 import numpy as np
3 import matplotlib.pyplot as plt
4 import win32com.client as win32
5
6 aspen = win32.Dispatch('Apwn.Document')
7 aspen.InitFromArchive2(os.path.abspath('data\Flash_Example.bkp'))
8
9 T = np.linspace(150, 200, 10)

10
11 x_ethanol, y_ethanol = [], []
12
13 for temperature in T:
14 aspen.Tree.FindNode('\Data\Blocks\FLASH\Input\TEMP').Value = temperature
15 aspen.Engine.Run2()
16
17 x_ethanol.append(aspen.Tree.FindNode('\Data\Streams\LIQUID\Output\MOLEFRAC\MIXED\ETHANOL').Value)
18 y_ethanol.append(aspen.Tree.FindNode('\Data\Streams\VAPOR\Output\MOLEFRAC\MIXED\ETHANOL').Value)
19
20 plt.plot(T, y_ethanol, T, x_ethanol)
21 plt.legend(['vapor', 'liquid'])
22 plt.xlabel('Flash Temperature (degF)')
23 plt.ylabel('Ethanol mole fraction')
24 plt.savefig('images/aspen-water-ethanol-flash.png')
25 aspen.Close()

232

It takes about 30 seconds to run the previous example. Unfortunately, the way it is written, if
you want to change anything, you have to run all of the calculations over again. How to avoid that
is moderately tricky, and will be the subject of another example.

In summary, it seems possible to do a lot with Aspen automation via python. This can also be
done with Matlab, Excel, and other programming languages where COM automation is possible.
The COM interface is not especially well documented, and you have to do a lot of digging to figure
out some things. It is not clear how committed Aspen is to maintaining or improving the COM in-
terface (http://www.chejunkie.com/aspen-plus/aspen-plus-activex-automation-server/).
Hopefully they can keep it alive for power users who do not want to program in Excel!

12.11 Using an external solver with Aspen

One reason to interact with Aspen via python is to use external solvers to drive the simulations.
Aspen has some built-in solvers, but it does not have everything. You may also want to integrate
additional calculations, e.g. capital costs, water usage, etc. . . and integrate those results into a
report.

Here is a simple example where we use fsolve to find the temperature of the flash tank that
will give a vapor phase mole fraction of ethanol of 0.8. It is a simple example, but it illustrates the
possibility.

1 import os
2 import win32com.client as win32
3 aspen = win32.Dispatch('Apwn.Document')
4
5 aspen.InitFromArchive2(os.path.abspath('data\Flash_Example.bkp'))

233

http://www.chejunkie.com/aspen-plus/aspen-plus-activex-automation-server/

6
7 from scipy.optimize import fsolve
8
9 def func(flashT):

10 flashT = float(flashT) # COM objects do not understand numpy types
11 aspen.Tree.FindNode('\Data\Blocks\FLASH\Input\TEMP').Value = flashT
12 aspen.Engine.Run2()
13 y = aspen.Tree.FindNode('\Data\Streams\VAPOR\Output\MOLEFRAC\MIXED\ETHANOL').Value
14 return y - 0.8
15
16 sol, = fsolve(func, 150.0)
17 print 'A flash temperature of {0:1.2f} degF will have y_ethanol = 0.8'.format(sol)

One unexpected detail was that the Aspen COM objects cannot be assigned numpy number
types, so it was necessary to recast the argument as a float. Otherwise, this worked about as
expected for an fsolve problem.

12.12 Redirecting the print function

Ordinarily a print statement prints to stdout, or your terminal/screen. You can redirect this so
that printing is done to a file, for example. This might be helpful if you use print statements for
debugging, and later want to save what is printed to a file. Here we make a simple function that
prints some things.

1 def debug():
2 print('step 1')
3 print(3 + 4)
4 print('finished')
5
6 debug()

Now, let us redirect the printed lines to a file. We create a file object, and set sys.stdout equal
to that file object.

1 import sys
2 print('__stdout__ before = {0}'.format(sys.__stdout__), file=sys.stdout)
3 print('stdout before = {0}'.format(sys.stdout), file=sys.stdout)
4
5 f = open('data/debug.txt', 'w')
6 sys.stdout = f
7
8 # note that sys.__stdout__ does not change, but stdout does.
9 print('__stdout__ after = {0}'.format(sys.__stdout__), file=sys.stdout)

10 print('stdout after = {0}'.format(sys.stdout), file=sys.stdout)
11
12 debug()
13
14 # reset stdout back to console
15 sys.stdout = sys.__stdout__
16
17 print(f)
18 f.close() # try to make it a habit to close files
19 print(f)

Note it can be important to close files. If you are looping through large numbers of files, you will
eventually run out of file handles, causing an error. We can use a context manager to automatically
close the file like this

234

1 import sys
2
3 # use the open context manager to automatically close the file
4 with open('data/debug.txt', 'w') as f:
5 sys.stdout = f
6 debug()
7 print(f, file=sys.__stdout__)
8
9 # reset stdout

10 sys.stdout = sys.__stdout__
11 print(f)

See, the file is closed for us! We can see the contents of our file like this.

1 cat data/debug.txt

The approaches above are not fault safe. Suppose our debug function raised an exception.
Then, it could be possible the line to reset the stdout would not be executed. We can solve this
with try/finally code.

1 import sys
2
3 print('before: ', sys.stdout)
4 try:
5 with open('data/debug-2.txt', 'w') as f:
6 sys.stdout = f
7 # print to the original stdout
8 print('during: ', sys.stdout, file=sys.__stdout__)
9 debug()

10 raise Exception('something bad happened')
11 finally:
12 # reset stdout
13 sys.stdout = sys.__stdout__
14
15 print('after: ', sys.stdout)
16 print(f) # verify it is closed
17 print(sys.stdout) # verify this is reset

1 cat data/debug-2.txt

This is the kind of situation where a context manager is handy. Context managers are typically
a class that executes some code when you "enter" the context, and then execute some code when
you "exit" the context. Here we want to change sys.stdout to a new value inside our context, and
change it back when we exit the context. We will store the value of sys.stdout going in, and restore
it on the way out.

1 import sys
2
3 class redirect:
4 def __init__(self, f=sys.stdout):
5 "redirect print statement to f. f must be a file-like object"
6 self.f = f
7 self.stdout = sys.stdout
8 print('init stdout: ', sys.stdout, file=sys.__stdout__)
9 def __enter__(self):

10 sys.stdout = self.f
11 print('stdout in context-manager: ',sys.stdout, f=sys.__stdout__)

235

12 def __exit__(self, *args):
13 sys.stdout = self.stdout
14 print('__stdout__ at exit = ',sys.__stdout__)
15
16 # regular printing
17 with redirect():
18 debug()
19
20 # write to a file
21 with open('data/debug-3.txt', 'w') as f:
22 with redirect(f):
23 debug()
24
25 # mixed regular and
26 with open('data/debug-4.txt', 'w') as f:
27 with redirect(f):
28 print('testing redirect')
29 with redirect():
30 print('temporary console printing')
31 debug()
32 print('Now outside the inner context. This should go to data/debug-4.txt')
33 debug()
34 raise Exception('something else bad happened')
35
36 print(sys.stdout)

Here are the contents of the debug file.

1 cat data/debug-3.txt

The contents of the other debug file have some additional lines, because we printed some things
while in the redirect context.

1 cat data/debug-4.txt

See http://www.python.org/dev/peps/pep-0343/ (number 5) for another example of redi-
recting using a function decorator. I think it is harder to understand, because it uses a generator.

There were a couple of points in this section:

1. You can control where things are printed in your programs by modifying the value of sys.stdout

2. You can use try/except/finally blocks to make sure code gets executed in the event an excep-
tion is raised

3. You can use context managers to make sure files get closed, and code gets executed if excep-
tions are raised.

12.13 Getting a dictionary of counts

I frequently want to take a list and get a dictionary of keys that have the count of each element in
the list. Here is how I have typically done this countless times in the past.

1 L = ['a', 'a', 'b','d', 'e', 'b', 'e', 'a']
2
3 d = {}
4 for el in L:
5 if el in d:

236

http://www.python.org/dev/peps/pep-0343/

6 d[el] += 1
7 else:
8 d[el] = 1
9

10 print(d)

That seems like too much code, and that there must be a list comprehension approach combined
with a dictionary constructor.

1 L = ['a', 'a', 'b','d', 'e', 'b', 'e', 'a']
2
3 print(dict((el,L.count(el)) for el in L))

Wow, that is a lot simpler! I suppose for large lists this might be slow, since count must look
through the list for each element, whereas the longer code looks at each element once, and does
one conditional analysis.

Here is another example of much shorter and cleaner code.

1 from collections import Counter
2 L = ['a', 'a', 'b','d', 'e', 'b', 'e', 'a']
3 print(Counter(L))
4 print(Counter(L)['a'])

12.14 About your python

1 import sys
2
3 print(sys.version)
4
5 print(sys.executable)
6
7 print(sys.platform)
8
9 # where the platform independent Python files are installed

10 print(sys.prefix)

The platform module provides similar, complementary information.

1 import platform
2
3 print(platform.uname())
4 print(platform.system())
5 print(platform.architecture())
6 print(platform.machine())
7 print(platform.node())
8 print(platform.platform())
9 print(platform.processor())

10 print(platform.python_build())
11 print(platform.python_version())

12.15 Automatic, temporary directory changing

If you are doing some analysis that requires you to change directories, e.g. to read a file, and then
change back to another directory to read another file, you have probably run into problems if there

237

is an error somewhere. You would like to make sure that the code changes back to the original
directory after each error. We will look at a few ways to accomplish that here.

The try/except/finally method is the traditional way to handle exceptions, and make sure that
some code "finally" runs. Let us look at two examples here. In the first example, we try to change
into a directory that does not exist.

1 import os, sys
2
3 CWD = os.getcwd() # store initial position
4 print('initially inside {0}'.format(os.getcwd()))
5 TEMPDIR = 'data/run1' # this does not exist
6
7 try:
8 os.chdir(TEMPDIR)
9 print('inside {0}'.format(os.getcwd()))

10 except:
11 print('Exception caught: ',sys.exc_info()[0])
12 finally:
13 print('Running final code')
14 os.chdir(CWD)
15 print('finally inside {0}'.format(os.getcwd()))

Now, let us look at an example where the directory does exist. We will change into the directory,
run some code, and then raise an Exception.

1 import os, sys
2
3 CWD = os.getcwd() # store initial position
4 print('initially inside {0}'.format(os.getcwd()))
5 TEMPDIR = 'data'
6
7 try:
8 os.chdir(TEMPDIR)
9 print('inside {0}'.format(os.getcwd()))

10 print(os.listdir('.'))
11 raise Exception('boom')
12 except:
13 print('Exception caught: ',sys.exc_info()[0])
14 finally:
15 print('Running final code')
16 os.chdir(CWD)
17 print('finally inside {0}'.format(os.getcwd()))

You can see that we changed into the directory, ran some code, and then caught an exception.
Afterwards, we changed back to our original directory. This code works fine, but it is somewhat
verbose, and tedious to write over and over. We can get a cleaner syntax with a context man-
ager. The context manager uses the with keyword in python. In a context manager some code
is executed on entering the "context", and code is run on exiting the context. We can use that to
automatically change directory, and when done, change back to the original directory. We use the
contextlib.contextmanager decorator on a function. With a function, the code up to a yield
statement is run on entering the context, and the code after the yield statement is run on exiting.
We wrap the yield statement in try/except/finally block to make sure our final code gets run.

1 import contextlib
2 import os, sys
3
4 @contextlib.contextmanager

238

5 def cd(path):
6 print('initially inside {0}'.format(os.getcwd()))
7 CWD = os.getcwd()
8
9 os.chdir(path)

10 print('inside {0}'.format(os.getcwd()))
11 try:
12 yield
13 except:
14 print('Exception caught: ',sys.exc_info()[0])
15 finally:
16 print('finally inside {0}'.format(os.getcwd()))
17 os.chdir(CWD)
18
19 # Now we use the context manager
20 with cd('data'):
21 print(os.listdir('.'))
22 raise Exception('boom')
23
24 print
25 with cd('data/run2'):
26 print(os.listdir('.'))

One case that is not handled well with this code is if the directory you want to change into does
not exist. In that case an exception is raised on entering the context when you try change into a
directory that does not exist. An alternative class based context manager can be found here.

13 Miscellaneous

13.1 Mail merge with python

Suppose you are organizing some event, and you have a mailing list of email addresses and people
you need to send a mail to telling them what room they will be in. You would like to send a
personalized email to each person, and you do not want to type each one by hand. Python can
automate this for you. All you need is the mailing list in some kind of structured format, and then
you can go through it line by line to create and send emails.

We will use an org-table to store the data in.

First name Last name email address Room number
Jane Doe jane-doe@gmail.com 1
John Doe john-doe@gmail.com 2
Jimmy John jimmy-john@gmail.com 3

We pass that table into an org-mode source block as a variable called data, which will be a list
of lists, one for each row of the table. You could alternatively read these from an excel spreadsheet,
a csv file, or some kind of python data structure.

We do not actually send the emails in this example. To do that you need to have access to a
mail server, which could be on your own machine, or it could be a relay server you have access to.

We create a string that is a template with some fields to be substituted, e.g. the firstname and
room number in this case. Then we loop through each row of the table, and format the template
with those values, and create an email message to the person. First we print each message to check
that they are correct.

1 import smtplib
2 from email.mime.multipart import MIMEMultipart

239

http://code.activestate.com/recipes/576620-changedirectory-context-manager/

3 from email.mime.text import MIMEText
4 from email.utils import formatdate
5
6 template = '''
7 Dear {firstname:s},
8
9 I am pleased to inform you that your talk will be in room {roomnumber:d}.

10
11 Sincerely,
12 John
13 '''
14
15 for firstname, lastname, emailaddress, roomnumber in data:
16 msg = MIMEMultipart()
17 msg['From'] = "youremail@gmail.com"
18 msg['To'] = emailaddress
19 msg['Date'] = formatdate(localtime=True)
20
21 msgtext = template.format(**locals())
22 print(msgtext)
23
24 msg.attach(MIMEText(msgtext))
25
26 ## Uncomment these lines and fix
27 #server = smtplib.SMTP('your.relay.server.edu')
28 #server.sendmail('your_email@gmail.com', # from
29 # emailaddress,
30 # msg.as_string())
31 #server.quit()
32
33 print(msg.as_string())
34 print('--')

14 Worked examples

14.1 Peak finding in Raman spectroscopy

Raman spectroscopy is a vibrational spectroscopy. The data typically comes as intensity vs.
wavenumber, and it is discrete. Sometimes it is necessary to identify the precise location of a
peak. In this post, we will use spline smoothing to construct an interpolating function of the data,
and then use fminbnd to identify peak positions.

This example was originally worked out in Matlab at http://matlab.cheme.cmu.edu/2012/
08/27/peak-finding-in-raman-spectroscopy/

numpy:loadtxt
Let us take a look at the raw data.

1 import numpy as np
2 import matplotlib.pyplot as plt
3
4 w, i = np.loadtxt('data/raman.txt', usecols=(0, 1), unpack=True)
5
6 plt.plot(w, i)
7 plt.xlabel('Raman shift (cm$^{-1}$)')
8 plt.ylabel('Intensity (counts)')
9 plt.savefig('images/raman-1.png')

240

http://matlab.cheme.cmu.edu/2012/08/27/peak-finding-in-raman-spectroscopy/
http://matlab.cheme.cmu.edu/2012/08/27/peak-finding-in-raman-spectroscopy/

The next thing to do is narrow our focus to the region we are interested in between 1340 cmˆ{-1}
and 1360 cmˆ{-1}.

1 ind = (w > 1340) & (w < 1360)
2 w1 = w[ind]
3 i1 = i[ind]
4
5 plt.figure()
6 plt.plot(w1, i1, 'b. ')
7 plt.xlabel('Raman shift (cm$^{-1}$)')
8 plt.ylabel('Intensity (counts)')
9 plt.savefig('images/raman-2.png')

241

Next we consider a scipy:UnivariateSpline. This function "smooths" the data.

1 from scipy.interpolate import UnivariateSpline
2
3 # s is a "smoothing" factor
4 sp = UnivariateSpline(w1, i1, k=4, s=2000)
5
6 plt.plot(w1, i1, 'b. ')
7 plt.plot(w1, sp(w1), 'r-')
8 plt.xlabel('Raman shift (cm$^{-1}$)')
9 plt.ylabel('Intensity (counts)')

10 plt.savefig('images/raman-3.png')

242

Note that the UnivariateSpline function returns a "callable" function! Our next goal is to find
the places where there are peaks. This is defined by the first derivative of the data being equal to
zero. It is easy to get the first derivative of a UnivariateSpline with a second argument as shown
below.

1 # get the first derivative evaluated at all the points
2 d1s = sp.derivative()
3
4 d1 = d1s(w1)
5
6 # we can get the roots directly here, which correspond to minima and
7 # maxima.
8 print('Roots = {}'.format(sp.derivative().roots()))
9 minmax = sp.derivative().roots()

10
11 plt.clf()
12 plt.plot(w1, d1, label='first derivative')
13 plt.xlabel('Raman shift (cm$^{-1}$)')
14 plt.ylabel('First derivative')
15 plt.grid()
16
17 plt.figure()
18 plt.plot(minmax, d1s(minmax), 'ro ', label='zeros')
19 plt.legend(loc='best')
20
21 plt.plot(w1, i1, 'b. ')
22 plt.plot(w1, sp(w1), 'r-')
23 plt.xlabel('Raman shift (cm$^{-1}$)')
24 plt.ylabel('Intensity (counts)')
25 plt.plot(minmax, sp(minmax), 'ro ')
26
27 plt.savefig('images/raman-4.png')

243

In the end, we have illustrated how to construct a spline smoothing interpolation function and
to find maxima in the function, including generating some initial guesses. There is more art to this
than you might like, since you have to judge how much smoothing is enough or too much. With
too much, you may smooth peaks out. With too little, noise may be mistaken for peaks.

14.1.1 Summary notes

Using org-mode with :session allows a large script to be broken up into mini sections. However, it
only seems to work with the default python mode in Emacs, and it does not work with emacs-for-
python or the latest python-mode. I also do not really like the output style, e.g. the output from
the plotting commands.

14.2 Curve fitting to get overlapping peak areas

Today we examine an approach to fitting curves to overlapping peaks to deconvolute them so
we can estimate the area under each curve. We have a text file that contains data from a gas
chromatograph with two peaks that overlap. We want the area under each peak to estimate the
gas composition. You will see how to read the text file in, parse it to get the data for plotting and
analysis, and then how to fit it.

A line like "# of Points 9969" tells us the number of points we have to read. The data starts
after a line containing "R.Time Intensity". Here we read the number of points, and then get the
data into arrays.

244

1 import numpy as np
2 import matplotlib.pyplot as plt
3
4 datafile = 'data/gc-data-21.txt'
5
6 i = 0
7 with open(datafile) as f:
8 lines = f.readlines()
9

10 for i,line in enumerate(lines):
11 if '# of Points' in line:
12 npoints = int(line.split()[-1])
13 elif 'R.Time\tIntensity' in line:
14 i += 1
15 break
16
17 # now get the data
18 t, intensity = [], []
19 for j in range(i, i + npoints):
20 fields = lines[j].split()
21 t += [float(fields[0])]
22 intensity += [int(fields[1])]
23
24 t = np.array(t)
25 intensity = np.array(intensity, np.float)
26
27 # now plot the data in the relevant time frame
28 plt.plot(t, intensity)
29 plt.xlim([4, 6])
30 plt.xlabel('Time (s)')
31 plt.ylabel('Intensity (arb. units)')
32 plt.savefig('images/deconvolute-1.png')

245

You can see there is a non-zero baseline. We will normalize that by the average between 4 and
4.4 seconds.

1 intensity -= np.mean(intensity[(t > 4.0) & (t < 4.4)])
2 plt.figure()
3 plt.plot(t, intensity)
4 plt.xlim([4, 6])
5 plt.xlabel('Time (s)')
6 plt.ylabel('Intensity (arb. units)')
7 plt.savefig('./images/deconvolute-2.png')

The peaks are asymmetric, decaying gaussian functions. We define a function for this

1 from scipy.special import erf
2
3 def asym_peak(t, pars):
4 'from Anal. Chem. 1994, 66, 1294-1301'
5 a0 = pars[0] # peak area
6 a1 = pars[1] # elution time
7 a2 = pars[2] # width of gaussian
8 a3 = pars[3] # exponential damping term
9 f = (a0/2/a3*np.exp(a2**2/2.0/a3**2 + (a1 - t)/a3)

10 *(erf((t-a1)/(np.sqrt(2.0)*a2) - a2/np.sqrt(2.0)/a3) + 1.0))
11 return f

To get two peaks, we simply add two peaks together.

1 def two_peaks(t, *pars):
2 'function of two overlapping peaks'

246

3 a10 = pars[0] # peak area
4 a11 = pars[1] # elution time
5 a12 = pars[2] # width of gaussian
6 a13 = pars[3] # exponential damping term
7 a20 = pars[4] # peak area
8 a21 = pars[5] # elution time
9 a22 = pars[6] # width of gaussian

10 a23 = pars[7] # exponential damping term
11 p1 = asym_peak(t, [a10, a11, a12, a13])
12 p2 = asym_peak(t, [a20, a21, a22, a23])
13 return p1 + p2

To show the function is close to reasonable, we plot the fitting function with an initial guess for
each parameter. The fit is not good, but we have only guessed the parameters for now.

1 parguess = (1500, 4.85, 0.05, 0.05, 5000, 5.1, 0.05, 0.1)
2 plt.figure()
3 plt.plot(t, intensity)
4 plt.plot(t,two_peaks(t, *parguess),'g-')
5 plt.xlim([4, 6])
6 plt.xlabel('Time (s)')
7 plt.ylabel('Intensity (arb. units)')
8 plt.savefig('images/deconvolution-3.png')

Next, we use nonlinear curve fitting from scipy.optimize.curve_fit

1 from scipy.optimize import curve_fit
2

247

3 popt, pcov = curve_fit(two_peaks, t, intensity, parguess)
4 print(popt)
5
6 plt.plot(t, two_peaks(t, *popt), 'r-')
7 plt.legend(['data', 'initial guess','final fit'])
8
9 plt.savefig('images/deconvolution-4.png')

The fits are not perfect. The small peak is pretty good, but there is an unphysical tail on the
larger peak, and a small mismatch at the peak. There is not much to do about that, it means the
model peak we are using is not a good model for the peak. We will still integrate the areas though.

1 pars1 = popt[0:4]
2 pars2 = popt[4:8]
3
4 peak1 = asym_peak(t, pars1)
5 peak2 = asym_peak(t, pars2)
6
7 area1 = np.trapz(peak1, t)
8 area2 = np.trapz(peak2, t)
9

10 print('Area 1 = {0:1.2f}'.format(area1))
11 print('Area 2 = {0:1.2f}'.format(area2))
12
13 print('Area 1 is {0:1.2%} of the whole area'.format(area1/(area1 + area2)))
14 print('Area 2 is {0:1.2%} of the whole area'.format(area2/(area1 + area2)))
15
16 plt.figure()
17 plt.plot(t, intensity)
18 plt.plot(t, peak1, 'r-')

248

19 plt.plot(t, peak2, 'g-')
20 plt.xlim([4, 6])
21 plt.xlabel('Time (s)')
22 plt.ylabel('Intensity (arb. units)')
23 plt.legend(['data', 'peak 1', 'peak 2'])
24 plt.savefig('images/deconvolution-5.png')

This sample was air, and the first peak is oxygen, and the second peak is nitrogen. we come
pretty close to the actual composition of air, although it is low on the oxygen content. To do better,
one would have to use a calibration curve.

In the end, the overlap of the peaks is pretty small, but it is still difficult to reliably and
reproducibly deconvolute them. By using an algorithm like we have demonstrated here, it is
possible at least to make the deconvolution reproducible.

14.2.1 Notable differences from Matlab

1. The order of arguments to np.trapz is reversed.

2. The order of arguments to the fitting function scipy.optimize.curve_fit is different than in
Matlab.

3. The scipy.optimize.curve_fit function expects a fitting function that has all parameters as
arguments, where Matlab expects a vector of parameters.

14.3 Estimating the boiling point of water

Matlab post

249

http://matlab.cheme.cmu.edu/2012/01/01/estimating-the-boiling-point-of-water/

I got distracted looking for Shomate parameters for ethane today, and came across this website
on predicting the boiling point of water using the Shomate equations. The basic idea is to find the
temperature where the Gibbs energy of water as a vapor is equal to the Gibbs energy of the liquid.

1 import matplotlib.pyplot as plt

Liquid water (http://webbook.nist.gov/cgi/cbook.cgi?ID=C7732185&Units=SI&Mask=2#
Thermo-Condensed)

1 # valid over 298-500
2
3 Hf_liq = -285.830 # kJ/mol
4 S_liq = 0.06995 # kJ/mol/K
5 shomateL = [-203.6060,
6 1523.290,
7 -3196.413,
8 2474.455,
9 3.855326,

10 -256.5478,
11 -488.7163,
12 -285.8304]

Gas phase water (http://webbook.nist.gov/cgi/cbook.cgi?ID=C7732185&Units=SI&Mask=
1&Type=JANAFG&Table=on#JANAFG)

Interestingly, these parameters are listed as valid only above 500K. That means we have to
extrapolate the values down to 298K. That is risky for polynomial models, as they can deviate
substantially outside the region they were fitted to.

1 Hf_gas = -241.826 # kJ/mol
2 S_gas = 0.188835 # kJ/mol/K
3
4 shomateG = [30.09200,
5 6.832514,
6 6.793435,
7 -2.534480,
8 0.082139,
9 -250.8810,

10 223.3967,
11 -241.8264]

Now, we wan to compute G for each phase as a function of T

1 import numpy as np
2
3 T = np.linspace(0, 200) + 273.15
4 t = T / 1000.0
5
6 sTT = np.vstack([np.log(t),
7 t,
8 (t**2) / 2.0,
9 (t**3) / 3.0,

10 -1.0 / (2*t**2),
11 0 * t,
12 t**0,
13 0 * t**0]).T / 1000.0
14
15 hTT = np.vstack([t,
16 (t**2)/2.0,

250

http://senese.wordpress.com/2010/01/26/notebook-3-2-predicting-boiling-points-from-liquidvapor-gibbs-free-energy-functions/
http://webbook.nist.gov/cgi/cbook.cgi?ID=C7732185&Units=SI&Mask=2#Thermo-Condensed
http://webbook.nist.gov/cgi/cbook.cgi?ID=C7732185&Units=SI&Mask=2#Thermo-Condensed
http://webbook.nist.gov/cgi/cbook.cgi?ID=C7732185&Units=SI&Mask=1&Type=JANAFG&Table=on#JANAFG
http://webbook.nist.gov/cgi/cbook.cgi?ID=C7732185&Units=SI&Mask=1&Type=JANAFG&Table=on#JANAFG

17 (t**3)/3.0,
18 (t**4)/4.0,
19 -1.0 / t,
20 1 * t**0,
21 0 * t**0,
22 -1 * t**0]).T
23
24 Gliq = Hf_liq + np.dot(hTT, shomateL) - T*(np.dot(sTT, shomateL))
25 Ggas = Hf_gas + np.dot(hTT, shomateG) - T*(np.dot(sTT, shomateG))
26
27 from scipy.interpolate import interp1d
28 from scipy.optimize import fsolve
29
30 f = interp1d(T, Gliq - Ggas)
31 bp, = fsolve(f, 373)
32 print('The boiling point is {0} K'.format(bp))

1 plt.figure(); plt.clf()
2 plt.plot(T-273.15, Gliq, T-273.15, Ggas)
3 plt.legend(['liquid water', 'steam'])
4
5 plt.xlabel('Temperature $^\circ$C')
6 plt.ylabel('ΔG (kJ/mol)')
7 plt.title('The boiling point is approximately {0:1.2f} $^\circ$C'.format(bp-273.15))
8 plt.savefig('images/boiling-water.png')

14.3.1 Summary

The answer we get us 0.05 K too high, which is not bad considering we estimated it using parameters
that were fitted to thermodynamic data and that had finite precision and extrapolated the steam

251

properties below the region the parameters were stated to be valid for.

14.4 Gibbs energy minimization and the NIST webbook

Matlab post In Post 1536 we used the NIST webbook to compute a temperature dependent Gibbs
energy of reaction, and then used a reaction extent variable to compute the equilibrium concentra-
tions of each species for the water gas shift reaction.

Today, we look at the direct minimization of the Gibbs free energy of the species, with no
assumptions about stoichiometry of reactions. We only apply the constraint of conservation of
atoms. We use the NIST Webbook to provide the data for the Gibbs energy of each species.

As a reminder we consider equilibrium between the species CO, H2O, CO2 and H2, at 1000K,
and 10 atm total pressure with an initial equimolar molar flow rate of CO and H2O.

1 import numpy as np
2
3 T = 1000 # K
4 R = 8.314e-3 # kJ/mol/K
5
6 P = 10.0 # atm, this is the total pressure in the reactor
7 Po = 1.0 # atm, this is the standard state pressure

We are going to store all the data and calculations in vectors, so we need to assign each position
in the vector to a species. Here are the definitions we use in this work.

1 CO
2 H2O
3 CO2
4 H2

1 species = ['CO', 'H2O', 'CO2', 'H2']
2
3 # Heats of formation at 298.15 K
4
5 Hf298 = [
6 -110.53, # CO
7 -241.826, # H2O
8 -393.51, # CO2
9 0.0] # H2

10
11 # Shomate parameters for each species
12 # A B C D E F G H
13 WB = [[25.56759, 6.096130, 4.054656, -2.671301, 0.131021, -118.0089, 227.3665, -110.5271], # CO
14 [30.09200, 6.832514, 6.793435, -2.534480, 0.082139, -250.8810, 223.3967, -241.8264], # H2O
15 [24.99735, 55.18696, -33.69137, 7.948387, -0.136638, -403.6075, 228.2431, -393.5224], # CO2
16 [33.066178, -11.363417, 11.432816, -2.772874, -0.158558, -9.980797, 172.707974, 0.0]] # H2
17
18 WB = np.array(WB)
19
20 # Shomate equations
21 t = T/1000
22 T_H = np.array([t, t**2 / 2.0, t**3 / 3.0, t**4 / 4.0, -1.0 / t, 1.0, 0.0, -1.0])
23 T_S = np.array([np.log(t), t, t**2 / 2.0, t**3 / 3.0, -1.0 / (2.0 * t**2), 0.0, 1.0, 0.0])
24
25 H = np.dot(WB, T_H) # (H - H_298.15) kJ/mol
26 S = np.dot(WB, T_S/1000.0) # absolute entropy kJ/mol/K
27
28 Gjo = Hf298 + H - T*S # Gibbs energy of each component at 1000 K

252

http://matlab.cheme.cmu.edu/2011/12/25/gibbs-energy-minimization-and-the-nist-webbook/

Now, construct the Gibbs free energy function, accounting for the change in activity due to
concentration changes (ideal mixing).

1 def func(nj):
2 nj = np.array(nj)
3 Enj = np.sum(nj);
4 Gj = Gjo / (R * T) + np.log(nj / Enj * P / Po)
5 return np.dot(nj, Gj)

We impose the constraint that all atoms are conserved from the initial conditions to the equi-
librium distribution of species. These constraints are in the form of Aeqn = beq, where n is the
vector of mole numbers for each species.

1 Aeq = np.array([[1, 0, 1, 0], # C balance
2 [1, 1, 2, 0], # O balance
3 [0, 2, 0, 2]]) # H balance
4
5 # equimolar feed of 1 mol H2O and 1 mol CO
6 beq = np.array([1, # mol C fed
7 2, # mol O fed
8 2]) # mol H fed
9

10 def ec1(nj):
11 'conservation of atoms constraint'
12 return np.dot(Aeq, nj) - beq

Now we are ready to solve the problem.

1 from scipy.optimize import fmin_slsqp
2
3 n0 = [0.5, 0.5, 0.5, 0.5] # initial guesses
4 N = fmin_slsqp(func, n0, f_eqcons=ec1)
5 print N

14.4.1 Compute mole fractions and partial pressures

The pressures here are in good agreement with the pressures found by other methods. The minor
disagreement (in the third or fourth decimal place) is likely due to convergence tolerances in the
different algorithms used.

1 yj = N / np.sum(N)
2 Pj = yj * P
3
4 for s, y, p in zip(species, yj, Pj):
5 print('{0:10s}: {1:1.2f} {2:1.2f}'.format(s, y, p))

14.4.2 Computing equilibrium constants

We can compute the equilibrium constant for the reaction CO+H2O
 CO2 +H2. Compared to
the value of K = 1.44 we found at the end of Post 1536 , the agreement is excellent. Note, that to
define an equilibrium constant it is necessary to specify a reaction, even though it is not necessary
to even consider a reaction to obtain the equilibrium distribution of species!

1 nuj = np.array([-1, -1, 1, 1]) # stoichiometric coefficients of the reaction
2 K = np.prod(yj**nuj)
3 print(K)

253

14.5 Finding equilibrium composition by direct minimization of Gibbs free en-
ergy on mole numbers

Matlab post Adapted from problem 4.5 in Cutlip and Shacham Ethane and steam are fed to a
steam cracker at a total pressure of 1 atm and at 1000K at a ratio of 4 mol H2O to 1 mol ethane.
Estimate the equilibrium distribution of products (CH4, C2H4, C2H2, CO2, CO, O2, H2, H2O,
and C2H6).

Solution method: We will construct a Gibbs energy function for the mixture, and obtain the
equilibrium composition by minimization of the function subject to elemental mass balance con-
straints.

1 import numpy as np
2
3 R = 0.00198588 # kcal/mol/K
4 T = 1000 # K
5
6 species = ['CH4', 'C2H4', 'C2H2', 'CO2', 'CO', 'O2', 'H2', 'H2O', 'C2H6']
7
8 # $G_^\circ for each species. These are the heats of formation for each
9 # species.

10 Gjo = np.array([4.61, 28.249, 40.604, -94.61, -47.942, 0, 0, -46.03, 26.13]) # kcal/mol

14.5.1 The Gibbs energy of a mixture

We start with G = ∑
j
njµj . Recalling that we define µj = G◦j +RT ln aj , and in the ideal gas limit,

aj = yjP/P
◦, and that yj = nj∑

nj
. Since in this problem, P = 1 atm, this leads to the function

G
RT =

n∑
j=1

nj

(
G◦
j

RT + ln nj∑
nj

)
.

1 import numpy as np
2
3 def func(nj):
4 nj = np.array(nj)
5 Enj = np.sum(nj);
6 G = np.sum(nj * (Gjo / R / T + np.log(nj / Enj)))
7 return G

14.5.2 Linear equality constraints for atomic mass conservation

The total number of each type of atom must be the same as what entered the reactor. These form
equality constraints on the equilibrium composition. We express these constraints as: Aeqn = b
where n is a vector of the moles of each species present in the mixture. CH4 C2H4 C2H2 CO2 CO
O2 H2 H2O C2H6

1 Aeq = np.array([[0, 0, 0, 2, 1, 2, 0, 1, 0], # oxygen balance
2 [4, 4, 2, 0, 0, 0, 2, 2, 6], # hydrogen balance
3 [1, 2, 2, 1, 1, 0, 0, 0, 2]]) # carbon balance
4
5 # the incoming feed was 4 mol H2O and 1 mol ethane
6 beq = np.array([4, # moles of oxygen atoms coming in
7 14, # moles of hydrogen atoms coming in
8 2]) # moles of carbon atoms coming in
9

10 def ec1(n):
11 'equality constraint'

254

http://matlab.cheme.cmu.edu/2011/12/25/finding-equilibrium-composition-by-direct-minimization-of-gibbs-free-energy-on-mole-numbers/

12 return np.dot(Aeq, n) - beq
13
14 def ic1(n):
15 '''inequality constraint
16 all n>=0
17 '''
18 return n

Now we solve the problem.

1 # initial guess suggested in the example
2 n0 = [1e-3, 1e-3, 1e-3, 0.993, 1.0, 1e-4, 5.992, 1.0, 1e-3]
3
4 #n0 = [0.066, 8.7e-08, 2.1e-14, 0.545, 1.39, 5.7e-14, 5.346, 1.521, 1.58e-7]
5
6 from scipy.optimize import fmin_slsqp
7 print(func(n0))
8
9 X = fmin_slsqp(func, n0, f_eqcons=ec1, f_ieqcons=ic1, iter=900, acc=1e-12)

10
11 for s,x in zip(species, X):
12 print('{0:10s} {1:1.4g}'.format(s, x))
13
14 # check that constraints were met
15 print(np.dot(Aeq, X) - beq)
16 print(np.all(np.abs(np.dot(Aeq, X) - beq) < 1e-12))

I found it necessary to tighten the accuracy parameter to get pretty good matches to the
solutions found in Matlab. It was also necessary to increase the number of iterations. Even still,
not all of the numbers match well, especially the very small numbers. You can, however, see that
the constraints were satisfied pretty well.

Interestingly there is a distribution of products! That is interesting because only steam and
ethane enter the reactor, but a small fraction of methane is formed! The main product is hydrogen.
The stoichiometry of steam reforming is ideally C2H6 +4H2O → 2CO2 +7H2. Even though nearly
all the ethane is consumed, we do not get the full yield of hydrogen. It appears that another
equilibrium, one between CO, CO2, H2O and H2, may be limiting that, since the rest of the
hydrogen is largely in the water. It is also of great importance that we have not said anything
about reactions, i.e. how these products were formed.

The water gas shift reaction is: CO+H2O
 CO2 +H2. We can compute the Gibbs free energy
of the reaction from the heats of formation of each species. Assuming these are the formation
energies at 1000K, this is the reaction free energy at 1000K.

1 G_wgs = Gjo[3] + Gjo[6] - Gjo[4] - Gjo[7]
2 print(G_wgs)
3
4 K = np.exp(-G_wgs / (R*T))
5 print(K)

14.5.3 Equilibrium constant based on mole numbers

One normally uses activities to define the equilibrium constant. Since there are the same number of
moles on each side of the reaction all factors that convert mole numbers to activity, concentration
or pressure cancel, so we simply consider the ratio of mole numbers here.

1 print (X[3] * X[6]) / (X[4] * X[7])

255

This is very close to the equilibrium constant computed above.
Clearly, there is an equilibrium between these species that prevents the complete reaction of

steam reforming.

14.5.4 Summary

This is an appealing way to minimize the Gibbs energy of a mixture. No assumptions about
reactions are necessary, and the constraints are easy to identify. The Gibbs energy function is
especially easy to code.

14.6 The Gibbs free energy of a reacting mixture and the equilibrium compo-
sition

Matlab post
In this post we derive the equations needed to find the equilibrium composition of a reacting

mixture. We use the method of direct minimization of the Gibbs free energy of the reacting mixture.
The Gibbs free energy of a mixture is defined as G = ∑

j
µjnj where µj is the chemical potential

of species j, and it is temperature and pressure dependent, and nj is the number of moles of species
j.

We define the chemical potential as µj = G◦j + RT ln aj , where G◦j is the Gibbs energy in a
standard state, and aj is the activity of species j if the pressure and temperature are not at standard
state conditions.

If a reaction is occurring, then the number of moles of each species are related to each other
through the reaction extent ε and stoichiometric coefficients: nj = nj0 +νjε. Note that the reaction
extent has units of moles.

Combining these three equations and expanding the terms leads to:

G =
∑
j

nj0G
◦
j +

∑
j

νjG
◦
jε+RT

∑
j

(nj0 + νjε) ln aj

The first term is simply the initial Gibbs free energy that is present before any reaction begins,
and it is a constant. It is difficult to evaluate, so we will move it to the left side of the equation in
the next step, because it does not matter what its value is since it is a constant. The second term
is related to the Gibbs free energy of reaction: ∆rG = ∑

j
νjG

◦
j . With these observations we rewrite

the equation as:

G−
∑
j

nj0G
◦
j = ∆rGε+RT

∑
j

(nj0 + νjε) ln aj

Now, we have an equation that allows us to compute the change in Gibbs free energy as a
function of the reaction extent, initial number of moles of each species, and the activities of each
species. This difference in Gibbs free energy has no natural scale, and depends on the size of the
system, i.e. on nj0. It is desirable to avoid this, so we now rescale the equation by the total initial
moles present, nT0 and define a new variable ε′ = ε/nT0, which is dimensionless. This leads to:

G−
∑
j
nj0G

◦
j

nT0
= ∆rGε

′ +RT
∑
j

(yj0 + νjε
′) ln aj

256

http://matlab.cheme.cmu.edu/2011/12/20/the-gibbs-free-energy-of-a-reacting-mixture-and-the-equilibrium-composition/

where yj0 is the initial mole fraction of species j present. The mole fractions are intensive
properties that do not depend on the system size. Finally, we need to address aj . For an ideal gas,
we know that Aj = yjP

P ◦ , where the numerator is the partial pressure of species j computed from
the mole fraction of species j times the total pressure. To get the mole fraction we note:

yj = nj
nT

= nj0 + νjε

nT0 + ε
∑
j
νj

= yj0 + νjε
′

1 + ε′
∑
j
νj

This finally leads us to an equation that we can evaluate as a function of reaction extent:

G−
∑
j
nj0G

◦
j

nT0
= ˜̃
G = ∆rGε

′ +RT
∑
j

(yj0 + νjε
′) ln

 yj0 + νjε
′

1 + ε′
∑
j
νj

P

P ◦


we use a double tilde notation to distinguish this quantity from the quantity derived by Rawlings

and Ekerdt which is further normalized by a factor of RT . This additional scaling makes the
quantities dimensionless, and makes the quantity have a magnitude of order unity, but otherwise
has no effect on the shape of the graph.

Finally, if we know the initial mole fractions, the initial total pressure, the Gibbs energy of
reaction, and the stoichiometric coefficients, we can plot the scaled reacting mixture energy as a
function of reaction extent. At equilibrium, this energy will be a minimum. We consider the example
in Rawlings and Ekerdt where isobutane (I) reacts with 1-butene (B) to form 2,2,3-trimethylpentane
(P). The reaction occurs at a total pressure of 2.5 atm at 400K, with equal molar amounts of I and
B. The standard Gibbs free energy of reaction at 400K is -3.72 kcal/mol. Compute the equilibrium
composition.

1 import numpy as np
2
3 R = 8.314
4 P = 250000 # Pa
5 P0 = 100000 # Pa, approximately 1 atm
6 T = 400 # K
7
8 Grxn = -15564.0 #J/mol
9 yi0 = 0.5; yb0 = 0.5; yp0 = 0.0; # initial mole fractions

10
11 yj0 = np.array([yi0, yb0, yp0])
12 nu_j = np.array([-1.0, -1.0, 1.0]) # stoichiometric coefficients
13
14 def Gwigglewiggle(extentp):
15 diffg = Grxn * extentp
16 sum_nu_j = np.sum(nu_j)
17 for i,y in enumerate(yj0):
18 x1 = yj0[i] + nu_j[i] * extentp
19 x2 = x1 / (1.0 + extentp*sum_nu_j)
20 diffg += R * T * x1 * np.log(x2 * P / P0)
21 return diffg

There are bounds on how large ε′ can be. Recall that nj = nj0 + νjε, and that nj ≥ 0. Thus,
εmax = −nj0/νj , and the maximum value that ε′ can have is therefore −yj0/νj where yj0 > 0.
When there are multiple species, you need the smallest epsilon′max to avoid getting negative mole
numbers.

1 epsilonp_max = min(-yj0[yj0 > 0] / nu_j[yj0 > 0])
2 epsilonp = np.linspace(1e-6, epsilonp_max, 1000);

257

3
4 import matplotlib.pyplot as plt
5
6 plt.plot(epsilonp,Gwigglewiggle(epsilonp))
7 plt.xlabel('ϵ')
8 plt.ylabel('Gwigglewiggle')
9 plt.savefig('images/gibbs-minim-1.png')

Now we simply minimize our Gwigglewiggle function. Based on the figure above, the miminum
is near 0.45.

1 from scipy.optimize import fminbound
2
3 epsilonp_eq = fminbound(Gwigglewiggle, 0.4, 0.5)
4 print(epsilonp_eq)
5
6 plt.plot([epsilonp_eq], [Gwigglewiggle(epsilonp_eq)], 'ro')
7 plt.savefig('images/gibbs-minim-2.png')

258

To compute equilibrium mole fractions we do this:

1 yi = (yi0 + nu_j[0]*epsilonp_eq) / (1.0 + epsilonp_eq*np.sum(nu_j))
2 yb = (yb0 + nu_j[1]*epsilonp_eq) / (1.0 + epsilonp_eq*np.sum(nu_j))
3 yp = (yp0 + nu_j[2]*epsilonp_eq) / (1.0 + epsilonp_eq*np.sum(nu_j))
4
5 print(yi, yb, yp)
6
7 # or this
8 y_j = (yj0 + np.dot(nu_j, epsilonp_eq)) / (1.0 + epsilonp_eq*np.sum(nu_j))
9 print(y_j)

K = aP
aIaB

= ypP/P ◦

yiP/P ◦ybP/P ◦ = yP
yiyb

P ◦

P .
We can express the equilibrium constant like this :K = ∏

j
a
νj
j , and compute it with a single line

of code.

1 K = np.exp(-Grxn/R/T)
2 print('K from delta G ',K)
3 print('K as ratio of mole fractions ',yp / (yi * yb) * P0 / P)
4 print('compact notation: ',np.prod((y_j * P / P0)**nu_j))

These results are very close, and only disagree because of the default tolerance used in identifying
the minimum of our function. You could tighten the tolerances by setting options to the fminbnd
function.

259

14.6.1 Summary

In this post we derived an equation for the Gibbs free energy of a reacting mixture and used it
to find the equilibrium composition. In future posts we will examine some alternate forms of the
equations that may be more useful in some circumstances.

14.7 Water gas shift equilibria via the NIST Webbook

Matlab post
The NIST webbook provides parameterized models of the enthalpy, entropy and heat capacity

of many molecules. In this example, we will examine how to use these to compute the equilibrium
constant for the water gas shift reaction CO+H2O
 CO2 +H2 in the temperature range of 500K
to 1000K.

Parameters are provided for:
Cp = heat capacity (J/mol*K) H = standard enthalpy (kJ/mol) S = standard entropy (J/mol*K)
with models in the form: Cp◦ = A+B ∗ t+ C ∗ t2 +D ∗ t3 + E/t2

H◦ −H◦298.15 = A ∗ t+B ∗ t2/2 + C ∗ t3/3 +D ∗ t4/4− E/t+ F −H
S◦ = A ∗ ln(t) +B ∗ t+ C ∗ t2/2 +D ∗ t3/3− E/(2 ∗ t2) +G
where t = T/1000, and T is the temperature in Kelvin. We can use this data to calculate

equilibrium constants in the following manner. First, we have heats of formation at standard
state for each compound; for elements, these are zero by definition, and for non-elements, they
have values available from the NIST webbook. There are also values for the absolute entropy at
standard state. Then, we have an expression for the change in enthalpy from standard state as
defined above, as well as the absolute entropy. From these we can derive the reaction enthalpy, free
energy and entropy at standard state, as well as at other temperatures.

We will examine the water gas shift enthalpy, free energy and equilibrium constant from 500K
to 1000K, and finally compute the equilibrium composition of a gas feed containing 5 atm of CO
and H_2 at 1000K.

1 import numpy as np
2
3 T = np.linspace(500,1000) # degrees K
4 t = T/1000;

14.7.1 hydrogen

http://webbook.nist.gov/cgi/cbook.cgi?ID=C1333740&Units=SI&Mask=1#Thermo-Gas

1 # T = 298-1000K valid temperature range
2 A = 33.066178
3 B = -11.363417
4 C = 11.432816
5 D = -2.772874
6 E = -0.158558
7 F = -9.980797
8 G = 172.707974
9 H = 0.0

10
11 Hf_29815_H2 = 0.0 # kJ/mol
12 S_29815_H2 = 130.68 # J/mol/K
13
14 dH_H2 = A*t + B*t**2/2 + C*t**3/3 + D*t**4/4 - E/t + F - H;
15 S_H2 = (A*np.log(t) + B*t + C*t**2/2 + D*t**3/3 - E/(2*t**2) + G);

260

http://matlab.cheme.cmu.edu/2011/12/12/water-gas-shift-equilibria-via-the-nist-webbook/
http://webbook.nist.gov/chemistry/
http://webbook.nist.gov/cgi/cbook.cgi?ID=C1333740&Units=SI&Mask=1#Thermo-Gas

14.7.2 H_{2}O

http://webbook.nist.gov/cgi/cbook.cgi?ID=C7732185&Units=SI&Mask=1#Thermo-Gas
Note these parameters limit the temperature range we can examine, as these parameters are

not valid below 500K. There is another set of parameters for lower temperatures, but we do not
consider them here.

1 # 500-1700 K valid temperature range
2 A = 30.09200
3 B = 6.832514
4 C = 6.793435
5 D = -2.534480
6 E = 0.082139
7 F = -250.8810
8 G = 223.3967
9 H = -241.8264

10
11 Hf_29815_H2O = -241.83 #this is Hf.
12 S_29815_H2O = 188.84
13
14 dH_H2O = A*t + B*t**2/2 + C*t**3/3 + D*t**4/4 - E/t + F - H;
15 S_H2O = (A*np.log(t) + B*t + C*t**2/2 + D*t**3/3 - E/(2*t**2) + G);

14.7.3 CO

http://webbook.nist.gov/cgi/cbook.cgi?ID=C630080&Units=SI&Mask=1#Thermo-Gas

1 # 298. - 1300K valid temperature range
2 A = 25.56759
3 B = 6.096130
4 C = 4.054656
5 D = -2.671301
6 E = 0.131021
7 F = -118.0089
8 G = 227.3665
9 H = -110.5271

10
11 Hf_29815_CO = -110.53 #this is Hf kJ/mol.
12 S_29815_CO = 197.66
13
14 dH_CO = A*t + B*t**2/2 + C*t**3/3 + D*t**4/4 - E/t + F - H;
15 S_CO = (A*np.log(t) + B*t + C*t**2/2 + D*t**3/3 - E/(2*t**2) + G);

14.7.4 CO_{2}

http://webbook.nist.gov/cgi/cbook.cgi?ID=C124389&Units=SI&Mask=1#Thermo-Gas

1 # 298. - 1200.K valid temperature range
2 A = 24.99735
3 B = 55.18696
4 C = -33.69137
5 D = 7.948387
6 E = -0.136638
7 F = -403.6075
8 G = 228.2431
9 H = -393.5224

10
11 Hf_29815_CO2 = -393.51 # this is Hf.
12 S_29815_CO2 = 213.79
13

261

http://webbook.nist.gov/cgi/cbook.cgi?ID=C7732185&Units=SI&Mask=1#Thermo-Gas
http://webbook.nist.gov/cgi/cbook.cgi?ID=C630080&Units=SI&Mask=1#Thermo-Gas
http://webbook.nist.gov/cgi/cbook.cgi?ID=C124389&Units=SI&Mask=1#Thermo-Gas

14 dH_CO2 = A*t + B*t**2/2 + C*t**3/3 + D*t**4/4 - E/t + F - H;
15 S_CO2 = (A*np.log(t) + B*t + C*t**2/2 + D*t**3/3 - E/(2*t**2) + G);

14.7.5 Standard state heat of reaction

We compute the enthalpy and free energy of reaction at 298.15 K for the following reaction CO +
H2O
 H2 + CO2.

1 Hrxn_29815 = Hf_29815_CO2 + Hf_29815_H2 - Hf_29815_CO - Hf_29815_H2O;
2 Srxn_29815 = S_29815_CO2 + S_29815_H2 - S_29815_CO - S_29815_H2O;
3 Grxn_29815 = Hrxn_29815 - 298.15*(Srxn_29815)/1000;
4
5 print('deltaH = {0:1.2f}'.format(Hrxn_29815))
6 print('deltaG = {0:1.2f}'.format(Grxn_29815))

14.7.6 Non-standard state ∆H and ∆G

We have to correct for temperature change away from standard state. We only correct the enthalpy
for this temperature change. The correction looks like this:

∆Hrxn(T) = ∆Hrxn(Tref) +
∑
i

νi(Hi(T)−Hi(Tref))

Where νi are the stoichiometric coefficients of each species, with appropriate sign for reactants
and products, and (Hi(T) − Hi(Tref) is precisely what is calculated for each species with the
equations

The entropy is on an absolute scale, so we directly calculate entropy at each temperature. Recall
that H is in kJ/mol and S is in J/mol/K, so we divide S by 1000 to make the units match.

1 Hrxn = Hrxn_29815 + dH_CO2 + dH_H2 - dH_CO - dH_H2O
2 Grxn = Hrxn - T*(S_CO2 + S_H2 - S_CO - S_H2O)/1000

14.7.7 Plot how the ∆G varies with temperature

1 import matplotlib.pyplot as plt
2 plt.figure(); plt.clf()
3 plt.plot(T,Grxn, label='ΔG_{rxn}')
4 plt.plot(T,Hrxn, label='ΔH_{rxn}')
5 plt.xlabel('Temperature (K)')
6 plt.ylabel('(kJ/mol)')
7 plt.legend(loc='best')
8 plt.savefig('images/wgs-nist-1.png')

262

Over this temperature range the reaction is exothermic, although near 1000K it is just barely
exothermic. At higher temperatures we expect the reaction to become endothermic.

14.7.8 Equilibrium constant calculation

Note the equilibrium constant starts out high, i.e. strongly favoring the formation of products, but
drops very quicky with increasing temperature.

1 R = 8.314e-3 # kJ/mol/K
2 K = np.exp(-Grxn/R/T);
3
4 plt.figure()
5 plt.plot(T,K)
6 plt.xlim([500, 1000])
7 plt.xlabel('Temperature (K)')
8 plt.ylabel('Equilibrium constant')
9 plt.savefig('images/wgs-nist-2.png')

263

14.7.9 Equilibrium yield of WGS

Now let us suppose we have a reactor with a feed of H_2O and CO at 10atm at 1000K. What is
the equilibrium yield of H_2? Let ε be the extent of reaction, so that Fi = Fi,0 +νiε. For reactants,
νi is negative, and for products, νi is positive. We have to solve for the extent of reaction that
satisfies the equilibrium condition.

1 from scipy.interpolate import interp1d
2 from scipy.optimize import fsolve
3
4 #
5 # A = CO
6 # B = H2O
7 # C = H2
8 # D = CO2
9

10 Pa0 = 5; Pb0 = 5; Pc0 = 0; Pd0 = 0; # pressure in atm
11 R = 0.082;
12 Temperature = 1000;
13
14 # we can estimate the equilibrium like this. We could also calculate it
15 # using the equations above, but we would have to evaluate each term. Above
16 # we simply computed a vector of enthalpies, entropies, etc... Here we interpolate
17 K_func = interp1d(T,K);
18 K_Temperature = K_func(1000)
19
20
21 # If we let X be fractional conversion then we have $C_A = C_{A0}(1-X)$,
22 # $C_B = C_{B0}-C_{A0}X$, $C_C = C_{C0}+C_{A0}X$, and $C_D =
23 # C_{D0}+C_{A0}X$. We also have $K(T) = (C_C C_D)/(C_A C_B)$, which finally

264

24 # reduces to $0 = K(T) - Xeq^2/(1-Xeq)^2$ under these conditions.
25
26 def f(X):
27 return K_Temperature - X**2/(1-X)**2;
28
29 x0 = 0.5
30 Xeq, = fsolve(f, x0)
31
32 print('The equilibrium conversion for these feed conditions is: {0:1.2f}'.format(Xeq))

14.7.10 Compute gas phase pressures of each species

Since there is no change in moles for this reaction, we can directly calculation the pressures from
the equilibrium conversion and the initial pressure of gases. you can see there is a slightly higher
pressure of H_2 and CO_2 than the reactants, consistent with the equilibrium constant of about
1.44 at 1000K. At a lower temperature there would be a much higher yield of the products. For
example, at 550K the equilibrium constant is about 58, and the pressure of H_2 is 4.4 atm due to
a much higher equilibrium conversion of 0.88.

1 P_CO = Pa0*(1-Xeq)
2 P_H2O = Pa0*(1-Xeq)
3 P_H2 = Pa0*Xeq
4 P_CO2 = Pa0*Xeq
5
6 print(P_CO,P_H2O, P_H2, P_CO2)

14.7.11 Compare the equilibrium constants

We can compare the equilibrium constant from the Gibbs free energy and the one from the ratio
of pressures. They should be the same!

1 print(K_Temperature)
2 print((P_CO2*P_H2)/(P_CO*P_H2O))

They are the same.

14.7.12 Summary

The NIST Webbook provides a plethora of data for computing thermodynamic properties. It is a
little tedious to enter it all into Matlab, and a little tricky to use the data to estimate temperature
dependent reaction energies. A limitation of the Webbook is that it does not tell you have the
thermodynamic properties change with pressure. Luckily, those changes tend to be small.

I noticed a different behavior in interpolation between scipy.interpolate.interp1d and Matlab’s
interp1. The scipy function returns an interpolating function, whereas the Matlab function directly
interpolates new values, and returns the actual interpolated data.

14.8 Constrained minimization to find equilibrium compositions

adapated from Chemical Reactor analysis and design fundamentals, Rawlings and Ekerdt, appendix
A.2.3.

Matlab post

265

http://matlab.cheme.cmu.edu/2011/08/12/constrained-minimization-to-find-equilibrium-compositions/

The equilibrium composition of a reaction is the one that minimizes the total Gibbs free energy.
The Gibbs free energy of a reacting ideal gas mixture depends on the mole fractions of each
species, which are determined by the initial mole fractions of each species, the extent of reactions
that convert each species, and the equilibrium constants.

Reaction 1: I +B
 P1
Reaction 2: I +B
 P2
Here we define the Gibbs free energy of the mixture as a function of the reaction extents.

1 import numpy as np
2
3 def gibbs(E):
4 'function defining Gibbs free energy as a function of reaction extents'
5 e1 = E[0]
6 e2 = E[1]
7 # known equilibrium constants and initial amounts
8 K1 = 108; K2 = 284; P = 2.5
9 yI0 = 0.5; yB0 = 0.5; yP10 = 0.0; yP20 = 0.0

10 # compute mole fractions
11 d = 1 - e1 - e2
12 yI = (yI0 - e1 - e2) / d
13 yB = (yB0 - e1 - e2) / d
14 yP1 = (yP10 + e1) / d
15 yP2 = (yP20 + e2) / d
16 G = (-(e1 * np.log(K1) + e2 * np.log(K2)) +
17 d * np.log(P) + yI * d * np.log(yI) +
18 yB * d * np.log(yB) + yP1 * d * np.log(yP1) + yP2 * d * np.log(yP2))
19 return G

The equilibrium constants for these reactions are known, and we seek to find the equilibrium
reaction extents so we can determine equilibrium compositions. The equilibrium reaction extents
are those that minimize the Gibbs free energy. We have the following constraints, written in
standard less than or equal to form:
−ε1 ≤ 0
−ε2 ≤ 0
ε1 + ε2 ≤ 0.5
In Matlab we express this in matrix form as Ax=b where

A =

 −1 0
0 −1
1 1

 (47)

and

b =

 0
0

0.5

 (48)

Unlike in Matlab, in python we construct the inequality constraints as functions that are greater
than or equal to zero when the constraint is met.

1 def constraint1(E):
2 e1 = E[0]
3 return e1
4
5
6 def constraint2(E):

266

7 e2 = E[1]
8 return e2
9

10
11 def constraint3(E):
12 e1 = E[0]
13 e2 = E[1]
14 return 0.5 - (e1 + e2)

Now, we minimize.

1 from scipy.optimize import fmin_slsqp
2
3 X0 = [0.2, 0.2]
4 X = fmin_slsqp(gibbs, X0, ieqcons=[constraint1, constraint2, constraint3],
5 bounds=((0.001, 0.499),
6 (0.001, 0.499)))
7 print(X)
8
9 print(gibbs(X))

One way we can verify our solution is to plot the gibbs function and see where the minimum
is, and whether there is more than one minimum. We start by making grids over the range of 0 to
0.5. Note we actually start slightly above zero because at zero there are some numerical imaginary
elements of the gibbs function or it is numerically not defined since there are logs of zero there. We
also set all elements where the sum of the two extents is greater than 0.5 to near zero, since those
regions violate the constraints.

1 import numpy as np
2 import matplotlib.pyplot as plt
3
4 def gibbs(E):
5 'function defining Gibbs free energy as a function of reaction extents'
6 e1 = E[0]
7 e2 = E[1]
8 # known equilibrium constants and initial amounts
9 K1 = 108; K2 = 284; P = 2.5;

10 yI0 = 0.5; yB0 = 0.5; yP10 = 0.0; yP20 = 0.0;
11 # compute mole fractions
12 d = 1 - e1 - e2;
13 yI = (yI0 - e1 - e2)/d;
14 yB = (yB0 - e1 - e2)/d;
15 yP1 = (yP10 + e1)/d;
16 yP2 = (yP20 + e2)/d;
17 G = (-(e1 * np.log(K1) + e2 * np.log(K2)) +
18 d * np.log(P) + yI * d * np.log(yI) +
19 yB * d * np.log(yB) + yP1 * d * np.log(yP1) + yP2 * d * np.log(yP2))
20 return G
21
22
23 a = np.linspace(0.001, 0.5, 100)
24 E1, E2 = np.meshgrid(a,a)
25
26 sumE = E1 + E2
27 E1[sumE >= 0.5] = 0.00001
28 E2[sumE >= 0.5] = 0.00001
29
30 # now evaluate gibbs
31 G = np.zeros(E1.shape)
32 m,n = E1.shape
33
34 G = gibbs([E1, E2])

267

35
36 CS = plt.contour(E1, E2, G, levels=np.linspace(G.min(),G.max(),100))
37 plt.xlabel('ϵ_1')
38 plt.ylabel('ϵ_2')
39 plt.colorbar()
40
41 plt.plot([0.13336503], [0.35066486], 'ro')
42
43 plt.savefig('images/gibbs-minimization-1.png')
44 plt.savefig('images/gibbs-minimization-1.svg')
45 plt.show()

You can see we found the minimum. We can compute the mole fractions pretty easily.

1 e1 = X[0];
2 e2 = X[1];
3
4 yI0 = 0.5; yB0 = 0.5; yP10 = 0; yP20 = 0; #initial mole fractions
5
6 d = 1 - e1 - e2;
7 yI = (yI0 - e1 - e2) / d
8 yB = (yB0 - e1 - e2) / d
9 yP1 = (yP10 + e1) / d

10 yP2 = (yP20 + e2) / d
11
12 print('y_I = {0:1.3f} y_B = {1:1.3f} y_P1 = {2:1.3f} y_P2 = {3:1.3f}'.format(yI,yB,yP1,yP2))

14.8.1 summary

I found setting up the constraints in this example to be more confusing than the Matlab syntax.

268

14.9 Using constrained optimization to find the amount of each phase present

The problem we solve here is that we have several compounds containing Ni and Al, and a bulk
mixture of a particular composition of Ni and Al. We want to know which mixture of phases will
minimize the total energy. The tricky part is that the optimization is constrained because the
mixture of phases must have the overall stoichiometry we want. We formulate the problem like
this.

Basically, we want to minimize the function E = ∑
wiEi, where wi is the mass of phase i,

and Ei is the energy per unit mass of phase i. There are some constraints to ensure conservation
of mass. Let us consider the following compounds: Al, NiAl, Ni3Al, and Ni, and consider a case
where the bulk composition of our alloy is 93.8% Ni and balance Al. We want to know which
phases are present, and in what proportions. There are some subtleties in considering the formula
and molecular weight of an alloy. We consider the formula with each species amount normalized so
the fractions all add up to one. For example, Ni_3Al is represented as Ni_{0.75}Al_{0.25}, and
the molecular weight is computed as 0.75*MW_{Ni} + 0.25*MW_{Al}.

We use scipy.optimize.fmin_slsqp to solve this problem, and define two equality constraint
functions, and the bounds on each weight fraction.

Note: the energies in this example were computed by density functional theory at 0K.

1 import numpy as np
2 from scipy.optimize import fmin_slsqp
3
4 # these are atomic masses of each species
5 Ni = 58.693
6 Al = 26.982
7
8 COMPOSITIONS = ['Al', 'NiAl', 'Ni3Al', 'Ni']
9 MW = np.array([Al, (Ni + Al)/2.0, (3 * Ni + Al)/4.0, Ni])

10
11 xNi = np.array([0.0, 0.5, 0.75, 1.0]) # mole fraction of nickel in each compd
12 WNi = xNi * Ni / MW # weight fraction of Ni in each cmpd
13
14 ENERGIES = np.array([0.0, -0.7, -0.5, 0.0])
15
16 BNi = 0.938
17
18 def G(w):
19 'function to minimize. w is a vector of weight fractions, ENERGIES is defined above.'
20 return np.dot(w, ENERGIES)
21
22 def ec1(w):
23 'conservation of Ni constraint'
24 return BNi - np.dot(w, WNi)
25
26 def ec2(w):
27 'weight fractions sum to one constraint'
28 return 1 - np.sum(w)
29
30 w0 = np.array([0.0, 0.0, 0.5, 0.5]) # guess weight fractions
31
32 y = fmin_slsqp(G,
33 w0,
34 eqcons=[ec1, ec2],
35 bounds=[(0,1)]*len(w0))
36
37 for ci, wi in zip(COMPOSITIONS, y):
38 print('{0:8s} {1:+8.2%}'.format(ci, wi))

So, the sample will be about 47% by weight of Ni3Al, and 53% by weight of pure Ni.

269

It may be convenient to formulate this in terms of moles.

1 import numpy as np
2 from scipy.optimize import fmin_slsqp
3
4 COMPOSITIONS = ['Al', 'NiAl', 'Ni3Al', 'Ni']
5 xNi = np.array([0.0, 0.5, 0.75, 1.0]) # define this in mole fractions
6
7 ENERGIES = np.array([0.0, -0.7, -0.5, 0.0])
8
9 xNiB = 0.875 # bulk Ni composition

10
11 def G(n):
12 'function to minimize'
13 return np.dot(n, ENERGIES)
14
15 def ec1(n):
16 'conservation of Ni'
17 Ntot = np.sum(n)
18 return (Ntot * xNiB) - np.dot(n, xNi)
19
20 def ec2(n):
21 'mole fractions sum to one'
22 return 1 - np.sum(n)
23
24 n0 = np.array([0.0, 0.0, 0.45, 0.55]) # initial guess of mole fractions
25
26 y = fmin_slsqp(G,
27 n0,
28 eqcons=[ec1, ec2],
29 bounds=[(0, 1)]*(len(n0)))
30
31 for ci, xi in zip(COMPOSITIONS, y):
32 print('{0:8s} {1:+8.2%}'.format(ci, xi))

This means we have a 1:1 molar ratio of Ni and Ni_{0.75}Al_{0.25}. That works out to the
overall bulk composition in this particular problem.

Let us verify that these two approaches really lead to the same conclusions. On a weight basis
we estimate 53.3%wt Ni and 46.7%wt Ni3Al, whereas we predict an equimolar mixture of the two
phases. Below we compute the mole fraction of Ni in each case.

1 # these are atomic masses of each species
2 Ni = 58.693
3 Al = 26.982
4
5 # Molar case
6 # 1 mol Ni + 1 mol Ni_{0.75}Al_{0.25}
7 N1 = 1.0; N2 = 1.0
8 mol_Ni = 1.0 * N1 + 0.75 * N2
9 xNi = mol_Ni / (N1 + N2)

10 print(xNi)
11
12 # Mass case
13 M1 = 0.533; M2 = 0.467
14 MW1 = Ni; MW2 = 0.75*Ni + 0.25*Al
15
16 xNi2 = (1.0 * M1/MW1 + 0.75 * M2 / MW2) / (M1/MW1 + M2/MW2)
17 print(xNi2)

You can see the overall mole fraction of Ni is practically the same in each case.

270

14.10 Conservation of mass in chemical reactions

Matlab post
Atoms cannot be destroyed in non-nuclear chemical reactions, hence it follows that the same

number of atoms entering a reactor must also leave the reactor. The atoms may leave the reactor
in a different molecular configuration due to the reaction, but the total mass leaving the reactor
must be the same. Here we look at a few ways to show this.

We consider the water gas shift reaction : CO + H2O
 H2 + CO2. We can illustrate the
conservation of mass with the following equation: νM = 0. Where ν is the stoichiometric coefficient
vector and M is a column vector of molecular weights. For simplicity, we use pure isotope molecular
weights, and not the isotope-weighted molecular weights. This equation simply examines the mass
on the right side of the equation and the mass on left side of the equation.

1 import numpy as np
2 nu = [-1, -1, 1, 1];
3 M = [28, 18, 2, 44];
4 print(np.dot(nu, M))

You can see that sum of the stoichiometric coefficients times molecular weights is zero. In other
words a CO and H_2O have the same mass as H_2 and CO_2.

For any balanced chemical equation, there are the same number of each kind of atom on each
side of the equation. Since the mass of each atom is unchanged with reaction, that means the mass
of all the species that are reactants must equal the mass of all the species that are products! Here
we look at the number of C, O, and H on each side of the reaction. Now if we add the mass of
atoms in the reactants and products, it should sum to zero (since we used the negative sign for
stoichiometric coefficients of reactants).

1 import numpy as np
2 # C O H
3 reactants = [-1, -2, -2]
4 products = [1, 2, 2]
5
6 atomic_masses = [12.011, 15.999, 1.0079] # atomic masses
7
8 print(np.dot(reactants, atomic_masses) + np.dot(products, atomic_masses))

That is all there is to mass conservation with reactions. Nothing changes if there are lots of
reactions, as long as each reaction is properly balanced, and none of them are nuclear reactions!

14.11 Numerically calculating an effectiveness factor for a porous catalyst bead

Matlab post
If reaction rates are fast compared to diffusion in a porous catalyst pellet, then the observed

kinetics will appear to be slower than they really are because not all of the catalyst surface area
will be effectively used. For example, the reactants may all be consumed in the near surface area
of a catalyst bead, and the inside of the bead will be unutilized because no reactants can get in
due to the high reaction rates.

References: Ch 12. Elements of Chemical Reaction Engineering, Fogler, 4th edition.
A mole balance on the particle volume in spherical coordinates with a first order reaction leads

to: d2Ca
dr2 + 2

r
dCa
dr −

k
De
CA = 0 with boundary conditions CA(R) = CAs and dCa

dr = 0 at r = 0.

271

http://matlab.cheme.cmu.edu/2011/12/18/conservation-of-mass-in-chemical-reactions/
http://matlab.cheme.cmu.edu/2011/11/18/numerically-calculating-an-effectiveness-factor-for-a-porous-catalyst-bead/

We convert this equation to a system of first order ODEs by letting WA = dCa
dr . Then, our two

equations become:
dCa
dr = WA

and
dWA
dr = −2

rWA + k
DE

CA
We have a condition of no flux (WA = 0) at r=0 and Ca(R) = CAs, which makes this a boundary

value problem. We use the shooting method here, and guess what Ca(0) is and iterate the guess
to get Ca(R) = CAs.

The value of the second differential equation at r=0 is tricky because at this place we have a 0/0
term. We use L’Hopital’s rule to evaluate it. The derivative of the top is dWA

dr and the derivative
of the bottom is 1. So, we have dWA

dr = −2dWA
dr + k

DE
CA

Which leads to:
3dWA

dr = k
DE

CA

or dWA
dr = 3k

DE
CA at r = 0.

Finally, we implement the equations in Python and solve.

1 import numpy as np
2 from scipy.integrate import odeint
3 import matplotlib.pyplot as plt
4
5 De = 0.1 # diffusivity cm^2/s
6 R = 0.5 # particle radius, cm
7 k = 6.4 # rate constant (1/s)
8 CAs = 0.2 # concentration of A at outer radius of particle (mol/L)
9

10
11 def ode(Y, r):
12 Wa = Y[0] # molar rate of delivery of A to surface of particle
13 Ca = Y[1] # concentration of A in the particle at r
14 # this solves the singularity at r = 0
15 if r == 0:
16 dWadr = k / 3.0 * De * Ca
17 else:
18 dWadr = -2 * Wa / r + k / De * Ca
19 dCadr = Wa
20 return [dWadr, dCadr]
21
22 # Initial conditions
23 Ca0 = 0.029315 # Ca(0) (mol/L) guessed to satisfy Ca(R) = CAs
24 Wa0 = 0 # no flux at r=0 (mol/m^2/s)
25
26 rspan = np.linspace(0, R, 500)
27
28 Y = odeint(ode, [Wa0, Ca0], rspan)
29
30 Ca = Y[:, 1]
31
32 # here we check that Ca(R) = Cas
33 print('At r={0} Ca={1}'.format(rspan[-1], Ca[-1]))
34
35 plt.plot(rspan, Ca)
36 plt.xlabel('Particle radius')
37 plt.ylabel('C_A')
38 plt.savefig('images/effectiveness-factor.png')
39
40 r = rspan
41 eta_numerical = (np.trapz(k * Ca * 4 * np.pi * (r**2), r)
42 / np.trapz(k * CAs * 4 * np.pi * (r**2), r))
43
44 print(eta_numerical)
45

272

46 phi = R * np.sqrt(k / De)
47 eta_analytical = (3 / phi**2) * (phi * (1.0 / np.tanh(phi)) - 1)
48 print(eta_analytical)

You can see the concentration of A inside the particle is significantly lower than outside the
particle. That is because it is reacting away faster than it can diffuse into the particle. Hence, the
overall reaction rate in the particle is lower than it would be without the diffusion limit.

The effectiveness factor is the ratio of the actual reaction rate in the particle with diffusion
limitation to the ideal rate in the particle if there was no concentration gradient:

η =
∫ R

0 k′′aCA(r)4πr2dr∫ R
0 k′′aCAs4πr2dr

We will evaluate this numerically from our solution and compare it to the analytical solution.
The results are in good agreement, and you can make the numerical estimate better by increasing
the number of points in the solution so that the numerical integration is more accurate.

Why go through the numerical solution when an analytical solution exists? The analytical
solution here is only good for 1st order kinetics in a sphere. What would you do for a complicated
rate law? You might be able to find some limiting conditions where the analytical equation above
is relevant, and if you are lucky, they are appropriate for your problem. If not, it is a good thing
you can figure this out numerically!

Thanks to Radovan Omorjan for helping me figure out the ODE at r=0!

273

14.12 Computing a pipe diameter

Matlab post A heat exchanger must handle 2.5 L/s of water through a smooth pipe with length of
100 m. The pressure drop cannot exceed 103 kPa at 25 degC. Compute the minimum pipe diameter
required for this application.

Adapted from problem 8.8 in Problem solving in chemical and Biochemical Engineering with
Polymath, Excel, and Matlab. page 303.

We need to estimate the Fanning friction factor for these conditions so we can estimate the
frictional losses that result in a pressure drop for a uniform, circular pipe. The frictional forces
are given by Ff = 2fF ∆Lv2

D , and the corresponding pressure drop is given by ∆P = ρFf . In these
equations, ρ is the fluid density, v is the fluid velocity, D is the pipe diameter, and fF is the Fanning
friction factor. The average fluid velocity is given by v = q

πD2/4 .
For laminar flow, we estimate fF = 16/Re, which is a linear equation, and for turbulent flow

(Re > 2100) we have the implicit equation 1√
fF

= 4.0 log(Re
√
fF) − 0.4. Of course, we define

Re = Dvρ
µ where µ is the viscosity of the fluid.

It is known that ρ(T) = 46.048 + 9.418T − 0.0329T 2 + 4.882 × 10−5 − 2.895 × 10−8T 4 and
µ = exp

(
−10.547 + 541.69

T−144.53

)
where ρ is in kg/mˆ3 and µ is in kg/(m*s).

The aim is to find D that solves: ∆p = ρ2fF ∆Lv2

D . This is a nonlinear equation in D, since D
affects the fluid velocity, the Re, and the Fanning friction factor. Here is the solution

1 import numpy as np
2 from scipy.optimize import fsolve
3 import matplotlib.pyplot as plt
4
5 T = 25 + 273.15
6 Q = 2.5e-3 # m^3/s
7 deltaP = 103000 # Pa
8 deltaL = 100 # m
9

10 #Note these correlations expect dimensionless T, where the magnitude
11 # of T is in K
12
13 def rho(T):
14 return 46.048 + 9.418 * T -0.0329 * T**2 +4.882e-5 * T**3 - 2.895e-8 * T**4
15
16 def mu(T):
17 return np.exp(-10.547 + 541.69 / (T - 144.53))
18
19 def fanning_friction_factor_(Re):
20 if Re < 2100:
21 raise Exception('Flow is probably not turbulent, so this correlation is not appropriate.')
22 # solve the Nikuradse correlation to get the friction factor
23 def fz(f): return 1.0/np.sqrt(f) - (4.0*np.log10(Re*np.sqrt(f))-0.4)
24 sol, = fsolve(fz, 0.01)
25 return sol
26
27 fanning_friction_factor = np.vectorize(fanning_friction_factor_)
28
29 Re = np.linspace(2200, 9000)
30 f = fanning_friction_factor(Re)
31
32 plt.plot(Re, f)
33 plt.xlabel('Re')
34 plt.ylabel('fanning friction factor')
35 # You can see why we use 0.01 as an initial guess for solving for the
36 # Fanning friction factor; it falls in the middle of ranges possible
37 # for these Re numbers.
38 plt.savefig('images/pipe-diameter-1.png')

274

http://matlab.cheme.cmu.edu/2011/10/27/compute-pipe-diameter/

39
40 def objective(D):
41 v = Q / (np.pi * D**2 / 4)
42 Re = D * v * rho(T) / mu(T)
43
44 fF = fanning_friction_factor(Re)
45
46 return deltaP - 2 * fF * rho(T) * deltaL * v**2 / D
47
48 D, = fsolve(objective, 0.04)
49
50 print('The minimum pipe diameter is {0} m\n'.format(D))

Any pipe diameter smaller than that value will result in a larger pressure drop at the same
volumetric flow rate, or a smaller volumetric flowrate at the same pressure drop. Either way, it will
not meet the design specification.

14.13 Reading parameter database text files in python

Matlab post
The datafile at http://terpconnect.umd.edu/~nsw/ench250/antoine.dat (dead link) con-

tains data that can be used to estimate the vapor pressure of about 700 pure compounds using the
Antoine equation

The data file has the following contents:

Antoine Coefficients
log(P) = A-B/(T+C) where P is in mmHg and T is in Celsius

Source of data: Yaws and Yang (Yaws, C. L. and Yang, H. C.,
"To estimate vapor pressure easily. antoine coefficients relate vapor pressure to temperature for almost 700 major organic compounds", Hydrocarbon Processing, 68(10), p65-68, 1989.

ID formula compound name A B C Tmin Tmax ?? ?

1 CCL4 carbon-tetrachloride 6.89410 1219.580 227.170 -20 101 Y2 0
2 CCL3F trichlorofluoromethane 6.88430 1043.010 236.860 -33 27 Y2 0
3 CCL2F2 dichlorodifluoromethane 6.68619 782.072 235.377 -119 -30 Y6 0

To use this data, you find the line that has the compound you want, and read off the data. You
could do that manually for each component you want but that is tedious, and error prone. Today
we will see how to retrieve the file, then read the data into python to create a database we can use
to store and retrieve the data.

We will use the data to find the temperature at which the vapor pressure of acetone is 400
mmHg.

We use numpy.loadtxt to read the file, and tell the function the format of each column. This
creates a special kind of record array which we can access data by field name.

1 import numpy as np
2 import matplotlib.pyplot as plt
3
4 data = np.loadtxt('data/antoine_data.dat',
5 dtype=[('id', np.int),
6 ('formula', 'S8'),
7 ('name', 'S28'),
8 ('A', np.float),
9 ('B', np.float),

275

http://matlab.cheme.cmu.edu/2011/09/10/reading-parameter-database-text-files-in-matlab/
http://terpconnect.umd.edu/~nsw/ench250/antoine.dat

10 ('C', np.float),
11 ('Tmin', np.float),
12 ('Tmax', np.float),
13 ('??', 'S4'),
14 ('?', 'S4')],
15 skiprows=7)
16
17 names = data['name']
18
19 acetone = data[names == 'acetone']
20
21 # for readability we unpack the array into variables
22 id, formula, name, A, B, C, Tmin, Tmax, u1, u2 = acetone
23
24 T = np.linspace(Tmin, Tmax)
25 P = 10**(A - B / (T + C))
26 plt.plot(T, P)
27 plt.xlabel('T ($^\circ$C)')
28 plt.ylabel('P$_{vap}$ (mmHg)')
29
30 # Find T at which Pvap = 400 mmHg
31 # from our graph we might guess T ~ 40 ^{\circ}C
32
33 def objective(T):
34 return 400 - 10**(A - B / (T + C))
35
36 from scipy.optimize import fsolve
37 Tsol, = fsolve(objective, 40)
38 print(Tsol)
39 print('The vapor pressure is 400 mmHg at T = {0:1.1f} degC'.format(Tsol))
40
41 #Plot CRC data http://en.wikipedia.org/wiki/Acetone_%28data_page%29#Vapor_pressure_of_liquid
42 # We only include the data for the range where the Antoine fit is valid.
43
44 Tcrc = [-59.4, -31.1, -9.4, 7.7, 39.5, 56.5]
45 Pcrc = [1, 10, 40, 100, 400, 760]
46
47 plt.plot(Tcrc, Pcrc, 'bo')
48 plt.legend(['Antoine','CRC Handbook'], loc='best')
49 plt.savefig('images/antoine-2.png')

276

This result is close to the value reported here (39.5 degC), from the CRC Handbook. The
difference is probably that the value reported in the CRC is an actual experimental number.

277

http://en.wikipedia.org/wiki/Acetone_%28data_page%29#Vapor_pressure_of_liquid

14.14 Calculating a bubble point pressure of a mixture

Matlab post
Adapted from http://terpconnect.umd.edu/~nsw/ench250/bubpnt.htm (dead link)
We previously learned to read a datafile containing lots of Antoine coefficients into a database,

and use the coefficients to estimate vapor pressure of a single compound. Here we use those
coefficents to compute a bubble point pressure of a mixture.

The bubble point is the temperature at which the sum of the component vapor pressures is
equal to the the total pressure. This is where a bubble of vapor will first start forming, and the
mixture starts to boil.

Consider an equimolar mixture of benzene, toluene, chloroform, acetone and methanol. Com-
pute the bubble point at 760 mmHg, and the gas phase composition. The gas phase composition
is given by: yi = xi ∗ Pi/PT .

1 import numpy as np
2 from scipy.optimize import fsolve
3
4 # load our thermodynamic data
5 data = np.loadtxt('data/antoine_data.dat',
6 dtype=[('id', np.int),
7 ('formula', 'S8'),
8 ('name', 'S28'),
9 ('A', np.float),

10 ('B', np.float),
11 ('C', np.float),
12 ('Tmin', np.float),
13 ('Tmax', np.float),

278

http://matlab.cheme.cmu.edu/2011/09/15/calculating-a-bubble-point-pressure/
http://terpconnect.umd.edu/~nsw/ench250/bubpnt.htm

14 ('??', 'S4'),
15 ('?', 'S4')],
16 skiprows=7)
17
18 compounds = ['benzene', 'toluene', 'chloroform', 'acetone', 'methanol']
19
20 # extract the data we want
21 A = np.array([data[data['name'] == x.encode(encoding='UTF-8')]['A'][0]
22 for x in compounds])
23 B = np.array([data[data['name'] == x.encode(encoding='UTF-8')]['B'][0]
24 for x in compounds])
25 C = np.array([data[data['name'] == x.encode(encoding='UTF-8')]['C'][0]
26 for x in compounds])
27 Tmin = np.array([data[data['name'] == x.encode(encoding='UTF-8')]['Tmin'][0]
28 for x in compounds])
29 Tmax = np.array([data[data['name'] == x.encode(encoding='UTF-8')]['Tmax'][0]
30 for x in compounds])
31
32 # we have an equimolar mixture
33 x = np.array([0.2, 0.2, 0.2, 0.2, 0.2])
34
35 # Given a T, we can compute the pressure of each species like this:
36
37 T = 67 # degC
38 P = 10**(A - B / (T + C))
39 print(P)
40 print(np.dot(x, P)) # total mole-fraction weighted pressure
41
42 Tguess = 67
43 Ptotal = 760
44
45 def func(T):
46 P = 10**(A - B / (T + C))
47 return Ptotal - np.dot(x, P)
48
49 Tbubble, = fsolve(func, Tguess)
50
51 print('The bubble point is {0:1.2f} degC'.format(Tbubble))
52
53 # double check answer is in a valid T range
54 if np.any(Tbubble < Tmin) or np.any(Tbubble > Tmax):
55 print('T_bubble is out of range!')
56
57 # print gas phase composition
58 y = x * 10**(A - B / (Tbubble + C))/Ptotal
59
60 for cmpd, yi in zip(compounds, y):
61 print('y_{0:<10s} = {1:1.3f}'.format(cmpd, yi))

14.15 The equal area method for the van der Waals equation

Matlab post
When a gas is below its Tc the van der Waal equation oscillates. In the portion of the isotherm

where ∂PR/∂Vr > 0, the isotherm fails to describe real materials, which phase separate into a liquid
and gas in this region.

Maxwell proposed to replace this region by a flat line, where the area above and below the
curves are equal. Today, we examine how to identify where that line should be.

1 import numpy as np
2 import matplotlib.pyplot as plt
3
4 Tr = 0.9 # A Tr below Tc: Tr = T/Tc
5 # analytical equation for Pr. This is the reduced form of the van der Waal

279

http://matlab.cheme.cmu.edu/2011/09/11/the-equal-area-method-for-the-van-der-waals-equation/

6 # equation.
7 def Prfh(Vr):
8 return 8.0 / 3.0 * Tr / (Vr - 1.0 / 3.0) - 3.0 / (Vr**2)
9

10 Vr = np.linspace(0.5, 4, 100) # vector of reduced volume
11 Pr = Prfh(Vr) # vector of reduced pressure
12
13 plt.clf()
14 plt.plot(Vr,Pr)
15 plt.ylim([0, 2])
16 plt.xlabel('V_R')
17 plt.ylabel('P_R')
18 plt.savefig('images/maxwell-eq-area-1.png')

The idea is to pick a Pr and draw a line through the EOS. We want the areas between the line
and EOS to be equal on each side of the middle intersection. Let us draw a line on the figure at y
= 0.65.

1 y = 0.65
2
3 plt.plot([0.5, 4.0], [y, y], 'k--')
4 plt.savefig('images/maxwell-eq-area-2.png')

280

To find the areas, we need to know where the intersection of the vdW eqn with the horizontal
line. This is the same as asking what are the roots of the vdW equation at that Pr. We need all
three intersections so we can integrate from the first root to the middle root, and then the middle
root to the third root. We take advantage of the polynomial nature of the vdW equation, which
allows us to use the roots command to get all the roots at once. The polynomial is V 3

R − 1
3(1 +

8TR/PR) + 3/PR − 1/PR = 0. We use the coefficients t0 get the roots like this.

1 vdWp = [1.0, -1. / 3.0 * (1.0 + 8.0 * Tr / y), 3.0 / y, - 1.0 / y]
2 v = np.roots(vdWp)
3 v.sort()
4 print(v)
5
6 plt.plot(v[0], y, 'bo', v[1], y, 'bo', v[2], y, 'bo')
7 plt.savefig('images/maxwell-eq-area-3.png')

281

14.15.1 Compute areas

for A1, we need the area under the line minus the area under the vdW curve. That is the area
between the curves. For A2, we want the area under the vdW curve minus the area under the line.
The area under the line between root 2 and root 1 is just the width (root2 - root1)*y

1 from scipy.integrate import quad
2
3 A1, e1 = (v[1] - v[0]) * y - quad(Prfh, v[0], v[1])
4 A2, e2 = quad(Prfh, v[1], v[2]) - (v[2] - v[1])* y
5
6 print(A1, A2)
7 print(e1, e2) # interesting these look so large

1 from scipy.optimize import fsolve
2
3 def equal_area(y):
4 Tr = 0.9
5 vdWp = [1, -1.0 / 3 * (1.0 + 8.0 * Tr / y), 3.0 / y, -1.0 / y]
6 v = np.roots(vdWp)
7 v.sort()
8 A1 = (v[1] - v[0]) * y - quad(Prfh, v[0], v[1])
9 A2 = quad(Prfh, v[1], v[2]) - (v[2] - v[1]) * y

10 return A1 - A2
11
12 y_eq, = fsolve(equal_area, 0.65)
13 print(y_eq)
14
15 Tr = 0.9

282

16 vdWp = [1, -1.0 / 3 * (1.0 + 8.0 * Tr / y_eq), 3.0 / y_eq, -1.0 / y_eq]
17 v = np.roots(vdWp)
18 v.sort()
19
20 A1, e1 = (v[1] - v[0]) * y_eq - quad(Prfh, v[0], v[1])
21 A2, e2 = quad(Prfh, v[1], v[2]) - (v[2] - v[1]) * y_eq
22
23 print(A1, A2)

Now let us plot the equal areas and indicate them by shading.

1 fig = plt.gcf()
2 ax = fig.add_subplot(111)
3
4 ax.plot(Vr,Pr)
5
6 hline = np.ones(Vr.size) * y_eq
7
8 ax.plot(Vr, hline)
9 ax.fill_between(Vr, hline, Pr, where=(Vr >= v[0]) & (Vr <= v[1]), facecolor='gray')

10 ax.fill_between(Vr, hline, Pr, where=(Vr >= v[1]) & (Vr <= v[2]), facecolor='gray')
11
12 plt.text(v[0], 1, 'A1 = {0}'.format(A1))
13 plt.text(v[2], 1, 'A2 = {0}'.format(A2))
14 plt.xlabel('V_R')
15 plt.ylabel('P_R')
16 plt.title('T_R = 0.9')
17
18 plt.savefig('images/maxwell-eq-area-4.png')
19 plt.savefig('images/maxwell-eq-area-4.svg')

283

14.16 Time dependent concentration in a first order reversible reaction in a
batch reactor

Matlab post
Given this reaction A
 B, with these rate laws:
forward rate law: −ra = k1CA
backward rate law: −rb = k−1CB
plot the concentration of A vs. time. This example illustrates a set of coupled first order ODES.

1 from scipy.integrate import odeint
2 import numpy as np
3
4 def myode(C, t):
5 # ra = -k1*Ca
6 # rb = -k_1*Cb
7 # net rate for production of A: ra - rb
8 # net rate for production of B: -ra + rb
9

10 k1 = 1 # 1/min;
11 k_1 = 0.5 # 1/min;
12
13 Ca = C[0]
14 Cb = C[1]
15
16 ra = -k1 * Ca
17 rb = -k_1 * Cb
18
19 dCadt = ra - rb
20 dCbdt = -ra + rb
21
22 dCdt = [dCadt, dCbdt]
23 return dCdt
24
25 tspan = np.linspace(0, 5)
26
27 init = [1, 0] # mol/L
28 C = odeint(myode, init, tspan)
29
30 Ca = C[:,0]
31 Cb = C[:,1]
32
33 import matplotlib.pyplot as plt
34 plt.plot(tspan, Ca, tspan, Cb)
35 plt.xlabel('Time (min)')
36 plt.ylabel('C (mol/L)')
37 plt.legend(['C_A', 'C_B'])
38 plt.savefig('images/reversible-batch.png')

284

http://matlab.cheme.cmu.edu/2011/08/07/first-order-reversible-reaction-in-batch-reactor/

That is it. The main difference between this and Matlab is the order of arguments in odeint is
different, and the ode function has differently ordered arguments.

14.17 Finding equilibrium conversion

A common problem to solve in reaction engineering is finding the equilibrium conversion.1 A typical
problem to solve is the following nonlinear equation:

1.44 = X2
e

(1−Xe)2

To solve this we create a function:
f(Xe) = 0 = 1.44− X2

e
(1−Xe)2

and use a nonlinear solver to find the value of Xe that makes this function equal to zero. We
have to provide an initial guess. Chemical intuition suggests that the solution must be between
0 and 1, and mathematical intuition suggests the solution might be near 0.5 (which would give a
ratio near 1).

Here is our solution.

1 from scipy.optimize import fsolve
2
3 def func(Xe):
4 z = 1.44 - (Xe**2)/(1-Xe)**2
5 return z
6
7 X0 = 0.5
8 Xe, = fsolve(func, X0)
9 print('The equilibrium conversion is X = {0:1.2f}'.format(Xe))

1See Fogler, 4th ed. page 1025 for the setup of this equation.

285

14.18 Integrating a batch reactor design equation

For a constant volume batch reactor where A→ B at a rate of −rA = kC2
A, we derive the following

design equation for the length of time required to achieve a particular level of conversion :
t(X) = 1

kCA0

∫X
X=0

dX
(1−X)2

if k = 10−3 L/mol/s and CA0 = 1 mol/L, estimate the time to achieve 90% conversion.
We could analytically solve the integral and evaluate it, but instead we will numerically evaluate

it using scipy.integrate.quad. This function returns two values: the evaluated integral, and an
estimate of the absolute error in the answer.

1 from scipy.integrate import quad
2
3 def integrand(X):
4 k = 1.0e-3
5 Ca0 = 1.0 # mol/L
6 return 1./(k*Ca0)*(1./(1-X)**2)
7
8 sol, abserr = quad(integrand, 0, 0.9)
9 print('t = {0} seconds ({1} hours)'.format(sol, sol/3600))

10 print('Estimated absolute error = {0}'.format(abserr))

You can see the estimate error is very small compared to the solution.

14.19 Uncertainty in an integral equation

In a previous example, we solved for the time to reach a specific conversion in a batch reactor. How-
ever, it is likely there is uncertainty in the rate constant, and possibly in the initial concentration.
Here we examine the effects of that uncertainty on the time to reach the desired conversion.

To do this we have to write a function that takes arguments with uncertainty, and wrap the
function with the uncertainties.wrap decorator. The function must return a single float number
(current limitation of the uncertainties package). Then, we simply call the function, and the
uncertainties from the inputs will be automatically propagated to the outputs. Let us say there is
about 10% uncertainty in the rate constant, and 1% uncertainty in the initial concentration.

1 from scipy.integrate import quad
2 import uncertainties as u
3
4 k = u.ufloat((1.0e-3, 1.0e-4))
5 Ca0 = u.ufloat((1.0, 0.01))# mol/L
6
7 @u.wrap
8 def func(k, Ca0):
9 def integrand(X):

10 return 1./(k*Ca0)*(1./(1-X)**2)
11 integral, abserr = quad(integrand, 0, 0.9)
12 return integral
13
14 sol = func(k, Ca0)
15 print('t = {0} seconds ({1} hours)'.format(sol, sol/3600))

The result shows about a 10% uncertainty in the time, which is similar to the largest uncertainty
in the inputs. This information should certainly be used in making decisions about how long to
actually run the reactor to be sure of reaching the goal. For example, in this case, running the
reactor for 3 hours (that is roughly + 2σ) would ensure at a high level of confidence (approximately
95% confidence) that you reach at least 90% conversion.

286

http://jkitchin.github.io/blog/2013/01/06/Integrating-a-batch-reactor-design-equation/

14.20 Integrating the batch reactor mole balance

An alternative approach of evaluating an integral is to integrate a differential equation. For the
batch reactor, the differential equation that describes conversion as a function of time is:

dX
dt = −rAV/NA0.
Given a value of initial concentration, or volume and initial number of moles of A, we can

integrate this ODE to find the conversion at some later time. We assume that X(t = 0) = 0. We
will integrate the ODE over a time span of 0 to 10,000 seconds.

1 from scipy.integrate import odeint
2 import numpy as np
3 import matplotlib.pyplot as plt
4
5 k = 1.0e-3
6 Ca0 = 1.0 # mol/L
7
8 def func(X, t):
9 ra = -k * (Ca0 * (1 - X))**2

10 return -ra / Ca0
11
12 X0 = 0
13 tspan = np.linspace(0,10000)
14
15 sol = odeint(func, X0, tspan)
16 plt.plot(tspan,sol)
17 plt.xlabel('Time (sec)')
18 plt.ylabel('Conversion')
19 plt.savefig('images/2013-01-06-batch-conversion.png')

You can read off of this figure to find the time required to achieve a particular conversion.

287

14.21 Plug flow reactor with a pressure drop

If there is a pressure drop in a plug flow reactor, 2 there are two equations needed to determine the
exit conversion: one for the conversion, and one from the pressure drop.

dX

dW
= k′

FA0

(1−X
1 + εX

)
y (49)

dX

dy
= −α(1 + εX)

2y (50)

Here is how to integrate these equations numerically in python.

1 import numpy as np
2 from scipy.integrate import odeint
3 import matplotlib.pyplot as plt
4
5 kprime = 0.0266
6 Fa0 = 1.08
7 alpha = 0.0166
8 epsilon = -0.15
9

10 def dFdW(F, W):
11 'set of ODEs to integrate'
12 X = F[0]
13 y = F[1]
14 dXdW = kprime / Fa0 * (1-X) / (1 + epsilon*X) * y
15 dydW = -alpha * (1 + epsilon * X) / (2 * y)
16 return [dXdW, dydW]
17
18 Wspan = np.linspace(0,60)
19 X0 = 0.0
20 y0 = 1.0
21 F0 = [X0, y0]
22 sol = odeint(dFdW, F0, Wspan)
23
24 # now plot the results
25 plt.plot(Wspan, sol[:,0], label='Conversion')
26 plt.plot(Wspan, sol[:,1], 'g--', label='y=P/P_0')
27 plt.legend(loc='best')
28 plt.xlabel('Catalyst weight (lb_m)')
29 plt.savefig('images/2013-01-08-pdrop.png')

Here is the resulting figure.
2Fogler, 4th edition. page 193.

288

14.22 Solving CSTR design equations

Given a continuously stirred tank reactor with a volume of 66,000 dmˆ3 where the reaction A→ B
occurs, at a rate of −rA = kC2

A (k = 3 L/mol/h), with an entering molar flow of F_{A0} = 5
mol/h and a volumetric flowrate of 10 L/h, what is the exit concentration of A?

From a mole balance we know that at steady state 0 = FA0−FA + V rA. That equation simply
states the sum of the molar flow of A in in minus the molar flow of A out plus the molar rate A is
generated is equal to zero at steady state. This is directly the equation we need to solve. We need
the following relationship:

1. FA = v0CA

1 from scipy.optimize import fsolve
2
3 Fa0 = 5.0
4 v0 = 10.
5
6 V = 66000.0 # reactor volume L^3
7 k = 3.0 # rate constant L/mol/h
8
9 def func(Ca):

10 "Mole balance for a CSTR. Solve this equation for func(Ca)=0"
11 Fa = v0 * Ca # exit molar flow of A
12 ra = -k * Ca**2 # rate of reaction of A L/mol/h
13 return Fa0 - Fa + V * ra
14
15 # CA guess that that 90 % is reacted away
16 CA_guess = 0.1 * Fa0 / v0

289

17 CA_sol, = fsolve(func, CA_guess)
18
19 print('The exit concentration is {0} mol/L'.format(CA_sol))

None

It is a little confusing why it is necessary to put a comma after the CA_sol in the fsolve
command. If you do not put it there, you get brackets around the answer.

14.23 Meet the steam tables

Matlab post
We will use the iapws module. Install it like this:

1 pip install iapws

Problem statement: A Rankine cycle operates using steam with the condenser at 100 degC,
a pressure of 3.0 MPa and temperature of 600 degC in the boiler. Assuming the compressor and
turbine operate reversibly, estimate the efficiency of the cycle.

Starting point in the Rankine cycle in condenser.
we have saturated liquid here, and we get the thermodynamic properties for the given temper-

ature. In this python module, these properties are all in attributes of an IAPWS object created at
a set of conditions.

14.23.1 Starting point in the Rankine cycle in condenser.

We have saturated liquid here, and we get the thermodynamic properties for the given temperature.

1 #import iapws
2 #print iapws.__version__
3 from iapws import IAPWS97
4
5 T1 = 100 + 273.15 #in K
6
7 sat_liquid1 = IAPWS97(T=T1, x=0) # x is the steam quality. 0 = liquid
8
9 P1 = sat_liquid1.P

10 s1 = sat_liquid1.s
11 h1 = sat_liquid1.h
12 v1 = sat_liquid1.v

14.23.2 Isentropic compression of liquid to point 2

The final pressure is given, and we need to compute the new temperatures, and enthalpy.

1 P2 = 3.0 # MPa
2 s2 = s1 # this is what isentropic means
3
4 sat_liquid2 = IAPWS97(P=P2, s=s1)
5 T2, = sat_liquid2.T
6 h2 = sat_liquid2.h
7
8 # work done to compress liquid. This is an approximation, since the
9 # volume does change a little with pressure, but the overall work here

290

http://matlab.cheme.cmu.edu/2011/10/31/matlab-meets-the-steam-tables/
https://pypi.python.org/pypi/iapws

10 # is pretty small so we neglect the volume change.
11 WdotP = v1*(P2 - P1);
12
13 print('The compressor work is: {0:1.4f} kJ/kg'.format(WdotP))

The compression work is almost negligible. This number is 1000 times smaller than we computed
with Xsteam. I wonder what the units of v1 actually are.

14.23.3 Isobaric heating to T3 in boiler where we make steam

1 T3 = 600 + 273.15 # K
2 P3 = P2 # definition of isobaric
3 steam = IAPWS97(P=P3, T=T3)
4
5 h3 = steam.h
6 s3 = steam.s
7
8 Qb, = h3 - h2 # heat required to make the steam
9

10 print('The boiler heat duty is: {0:1.2f} kJ/kg'.format(Qb))

14.23.4 Isentropic expansion through turbine to point 4

1 steam = IAPWS97(P=P1, s=s3)
2 T4, = steam.T
3 h4 = steam.h
4 s4 = s3 # isentropic
5 Qc, = h4 - h1 # work required to cool from T4 to T1
6
7 print('The condenser heat duty is {0:1.2f} kJ/kg'.format(Qc))

14.23.5 To get from point 4 to point 1

1 WdotTurbine, = h4 - h3 # work extracted from the expansion
2 print('The turbine work is: {0:1.2f} kJ/kg'.format(WdotTurbine))

14.23.6 Efficiency

This is a ratio of the work put in to make the steam, and the net work obtained from the turbine.
The answer here agrees with the efficiency calculated in Sandler on page 135.

1 eta = -(WdotTurbine - WdotP) / Qb
2 print('The overall efficiency is {0:1.2%}.'.format(eta))

14.23.7 Entropy-temperature chart

The IAPWS module makes it pretty easy to generate figures of the steam tables. Here we generate
an entropy-Temperature graph. We do this to illustrate the path of the Rankine cycle. We need
to compute the values of steam entropy for a range of pressures and temperatures.

1 import numpy as np
2 import matplotlib.pyplot as plt
3

291

4 plt.figure()
5 plt.clf()
6 T = np.linspace(300, 372+273, 200) # range of temperatures
7 for P in [0.1, 1, 2, 5, 10, 20]: #MPa
8 steam = [IAPWS97(T=t, P=P) for t in T]
9 S = [s.s for s in steam]

10 plt.plot(S, T, 'k-')
11
12 # saturated vapor and liquid entropy lines
13 svap = [s.s for s in [IAPWS97(T=t, x=1) for t in T]]
14 sliq = [s.s for s in [IAPWS97(T=t, x=0) for t in T]]
15
16 plt.plot(svap, T, 'r-')
17 plt.plot(sliq, T, 'b-')
18
19 plt.xlabel('Entropy (kJ/(kg K)')
20 plt.ylabel('Temperature (K)')
21 plt.savefig('images/iawps-steam.png')

We can plot our Rankine cycle path like this. We compute the entropies along the non-isentropic
paths.

1 T23 = np.linspace(T2, T3)
2 S23 = [s.s for s in [IAPWS97(P=P2, T=t) for t in T23]]
3
4 T41 = np.linspace(T4, T1 - 0.01) # subtract a tiny bit to make sure we get a liquid
5 S41 = [s.s for s in [IAPWS97(P=P1, T=t) for t in T41]]

And then we plot the paths.

292

1 plt.plot([s1, s2], [T1, T2], 'r-', lw=4) # Path 1 to 2
2 plt.plot(S23, T23, 'b-', lw=4) # path from 2 to 3 is isobaric
3 plt.plot([s3, s4], [T3, T4], 'g-', lw=4) # path from 3 to 4 is isentropic
4 plt.plot(S41, T41, 'k-', lw=4) # and from 4 to 1 is isobaric
5 plt.savefig('images/iawps-steam-2.png')
6 plt.savefig('images/iawps-steam-2.svg')

14.23.8 Summary

This was an interesting exercise. On one hand, the tedium of interpolating the steam tables is
gone. On the other hand, you still have to know exactly what to ask for to get an answer that is
correct. The iapws interface is a little clunky, and takes some getting used to. It does not seem as
robust as the Xsteam module I used in Matlab.

14.24 What region is a point in

Suppose we have a space that is divided by a boundary into two regions, and we want to know if
an arbitrary point is on one region or the other. One way to figure this out is to pick a point that is
known to be in a region, and then draw a line to the arbitrary point counting the number of times
it crosses the boundary. If the line crosses an even number of times, then the point is in the same
region and if it crosses an odd number of times, then the point is in the other region.

Here is the boundary and region we consider in this example:

1 boundary = [[0.1, 0],
2 [0.25, 0.1],

293

3 [0.3, 0.2],
4 [0.35, 0.34],
5 [0.4, 0.43],
6 [0.51, 0.47],
7 [0.48, 0.55],
8 [0.44, 0.62],
9 [0.5, 0.66],

10 [0.55,0.57],
11 [0.556, 0.48],
12 [0.63, 0.43],
13 [0.70, 0.44],
14 [0.8, 0.51],
15 [0.91, 0.57],
16 [1.0, 0.6]]
17
18 import matplotlib.pyplot as plt
19 plt.clf()
20 plt.plot([p[0] for p in boundary],
21 [p[1] for p in boundary])
22 plt.ylim([0, 1])
23 plt.savefig('images/boundary-1.png')

In this example, the boundary is complicated, and not described by a simple function. We will
check for intersections of the line from the arbitrary point to the reference point with each segment
defining the boundary. If there is an intersection in the boundary, we count that as a crossing. We
choose the origin (0, 0) in this case for the reference point. For an arbitrary point (x1, y1), the
equation of the line is therefore (provided x1 !=0):

y = y1
x1x.

Let the points defining a boundary segment be (bx1, by1) and (bx2, by2). The equation for the
line connecting these points (provided bx1 != bx2) is:

294

y = by1 + by2−by1
bx2−bx1(x− bx1)

Setting these two equations equal to each other, we can solve for the value of x, and if bx1 <=
x <= bx2 then we would say there is an intersection with that segment. The solution for x is:

x = mbx1−by1
m−y1/x1

This can only fail ifm = y1/x1 which means the segments are parallel and either do not intersect
or go through each other. One issue we have to resolve is what to do when the intersection is at the
boundary. In that case, we would see an intersection with two segments since bx1 of one segment is
also bx2 of another segment. We resolve the issue by only counting intersections with bx1. Finally,
there may be intersections at values of x greater than the point, and we are not interested in those
because the intersections are not between the point and reference point.

Here are all of the special cases that we have to handle:

295

We will have to do float comparisons, so we will define tolerance functions for all of these. I
tried this previously with regular comparison operators, and there were many cases that did not
work because of float comparisons. In the code that follows, we define the tolerance functions,

296

pycse-chapters/math.org

the function that handles almost all the special cases, and show that it almost always correctly
identifies the region a point is in.

1 import numpy as np
2
3 TOLERANCE = 2 * np.spacing(1)
4
5 def feq(x, y, epsilon=TOLERANCE):
6 'x == y'
7 return not((x < (y - epsilon)) or (y < (x - epsilon)))
8
9 def flt(x, y, epsilon=TOLERANCE):

10 'x < y'
11 return x < (y - epsilon)
12
13 def fgt(x, y, epsilon=TOLERANCE):
14 'x > y'
15 return y < (x - epsilon)
16
17 def fle(x, y, epsilon=TOLERANCE):
18 'x <= y'
19 return not(y < (x - epsilon))
20
21
22 def fge(x, y, epsilon=TOLERANCE):
23 'x >= y'
24 return not(x < (y - epsilon))
25
26 boundary = [[0.1, 0],
27 [0.25, 0.1],
28 [0.3, 0.2],
29 [0.35, 0.34],
30 [0.4, 0.43],
31 [0.51, 0.47],
32 [0.48, 0.55],
33 [0.44, 0.62],
34 [0.5, 0.66],
35 [0.55,0.57],
36 [0.556, 0.48],
37 [0.63, 0.43],
38 [0.70, 0.44],
39 [0.8, 0.51],
40 [0.91, 0.57],
41 [1.0, 0.6]]
42
43 def intersects(p, isegment):
44 'p is a point (x1, y1), isegment is an integer indicating which segment starting with 0'
45 x1, y1 = p
46 bx1, by1 = boundary[isegment]
47 bx2, by2 = boundary[isegment + 1]
48 if feq(bx1, bx2) and feq(x1, 0.0): # both segments are vertical
49 if feq(bx1, x1):
50 return True
51 else:
52 return False
53 elif feq(bx1, bx2): # segment is vertical
54 m1 = y1 / x1 # slope of reference line
55 y = m1 * bx1 # value of reference line at bx1
56 if ((fge(y, by1) and flt(y, by2))
57 or (fle(y, by1) and fgt(y,by2))):
58 # reference line intersects the segment
59 return True
60 else:
61 return False
62 else: # neither reference line nor segment is vertical
63 m = (by2 - by1) / (bx2 - bx1) # segment slope
64 m1 = y1 / x1

297

65 if feq(m, m1): # line and segment are parallel
66 if feq(y1, m * bx1):
67 return True
68 else:
69 return False
70 else: # lines are not parallel
71 x = (m * bx1 - by1) / (m - m1) # x at intersection
72 if ((fge(x, bx1) and flt(x, bx2))
73 or (fle(x, bx1) and fgt(x, bx2))) and fle(x, x1):
74 return True
75 else:
76 return False
77 raise Exception('you should not get here')
78
79 import matplotlib.pyplot as plt
80
81 plt.plot([p[0] for p in boundary],
82 [p[1] for p in boundary], 'go-')
83 plt.ylim([0, 1])
84
85 N = 100
86
87 X = np.linspace(0, 1, N)
88
89 for x in X:
90 for y in X:
91 p = (x, y)
92 nintersections = sum([intersects(p, i) for i in range(len(boundary) - 1)])
93 if nintersections % 2 == 0:
94 plt.plot(x, y, 'r.')
95 else:
96 plt.plot(x, y, 'b.')
97
98 plt.savefig('images/boundary-2.png')

298

If you look carefully, there are two blue points in the red region, which means there is some
edge case we do not capture in our function. Kudos to the person who figures it out. Update: It
was pointed out that the points intersect a point on the line.

15 Units

15.1 Using units in python

Units in Matlab
I think an essential feature in an engineering computational environment is properly handling

units and unit conversions. Mathcad supports that pretty well. I wrote a package for doing it in
Matlab. Today I am going to explore units in python. Here are some of the packages that I have
found which support units to some extent

1. http://pypi.python.org/pypi/units/

2. http://packages.python.org/quantities/user/tutorial.html

3. http://dirac.cnrs-orleans.fr/ScientificPython/ScientificPythonManual/Scientific.
Physics.PhysicalQuantities-module.html

4. http://home.scarlet.be/be052320/Unum.html

5. https://simtk.org/home/python_units

6. http://docs.enthought.com/scimath/units/intro.html

299

http://matlab.cheme.cmu.edu/2011/08/05/using-cmu-units-in-matlab-for-basic-calculations/
https://github.com/jkitchin/matlab-cmu
http://pypi.python.org/pypi/units/
http://packages.python.org/quantities/user/tutorial.html
http://dirac.cnrs-orleans.fr/ScientificPython/ScientificPythonManual/Scientific.Physics.PhysicalQuantities-module.html
http://dirac.cnrs-orleans.fr/ScientificPython/ScientificPythonManual/Scientific.Physics.PhysicalQuantities-module.html
http://home.scarlet.be/be052320/Unum.html
https://simtk.org/home/python_units
http://docs.enthought.com/scimath/units/intro.html

The last one looks most promising.

15.1.1 scimath

scimath may only wok in Python2.

1 import numpy as np
2 from scimath.units.volume import liter
3 from scimath.units.substance import mol
4
5 q = np.array([1, 2, 3]) * mol
6 print(q)
7
8 P = q / liter
9 print(P)

That doesn’t look too bad. It is a little clunky to have to import every unit, and it is clear the
package is saving everything in SI units by default. Let us try to solve an equation.

Find the time that solves this equation.
0.01 = CA0e

−kt

First we solve without units. That way we know the answer.

1 import numpy as np
2 from scipy.optimize import fsolve
3
4 CA0 = 1.0 # mol/L
5 CA = 0.01 # mol/L
6 k = 1.0 # 1/s
7
8 def func(t):
9 z = CA - CA0 * np.exp(-k*t)

10 return z
11
12 t0 = 2.3
13
14 t, = fsolve(func, t0)
15 print 't = {0:1.2f} seconds'.format(t)

Now, with units. I note here that I tried the obvious thing of just importing the units, and
adding them on, but the package is unable to work with floats that have units. For some functions,
there must be an ndarray with units which is practically what the UnitScalar code below does.

1 import numpy as np
2 from scipy.optimize import fsolve
3 from scimath.units.volume import liter
4 from scimath.units.substance import mol
5 from scimath.units.time import second
6 from scimath.units.api import has_units, UnitScalar
7
8 CA0 = UnitScalar(1.0, units = mol / liter)
9 CA = UnitScalar(0.01, units = mol / liter)

10 k = UnitScalar(1.0, units = 1 / second)
11
12 @has_units(inputs="t::units=s",
13 outputs="result::units=mol/liter")
14 def func(t):
15 z = CA - CA0 * float(np.exp(-k*t))
16 return z
17
18 t0 = UnitScalar(2.3, units = second)

300

19
20 t, = fsolve(func, t0)
21 print 't = {0:1.2f} seconds'.format(t)
22 print type(t)

This is some heavy syntax that in the end does not preserve the units. In my Matlab package,
we had to "wrap" many functions like fsolve so they would preserve units. Clearly this package will
need that as well. Overall, in its current implementation this package does not do what I would
expect all the time.3

15.2 Handling units with the quantities module

The quantities module (https://pypi.python.org/pypi/quantities) is another option for han-
dling units in python. We are going to try the previous example. It does not work, because
scipy.optimize.fsolve is not designed to work with units.

1 import quantities as u
2 import numpy as np
3
4 from scipy.optimize import fsolve
5 CA0 = 1 * u.mol / u.L
6 CA = 0.01 * u.mol / u.L
7 k = 1.0 / u.s
8
9 def func(t):

10 return CA - CA0 * np.exp(-k * t)
11
12 tguess = 4 * u.s
13
14 print(func(tguess))
15
16 print(fsolve(func, tguess))

Our function works fine with units, but fsolve does not pass numbers with units back to the
function, so this function fails because the exponential function gets an argument with dimensions
in it. We can create a new function that solves this problem. We need to "wrap" the function we
want to solve to make sure that it uses units, but returns a float number. Then, we put the units
back onto the final solved value. Here is how we do that.

1 import quantities as u
2 import numpy as np
3
4 from scipy.optimize import fsolve as _fsolve
5
6 CA0 = 1 * u.mol / u.L
7 CA = 0.01 * u.mol / u.L
8 k = 1.0 / u.s
9

10 def func(t):
11 return CA - CA0 * np.exp(-k * t)
12
13 def fsolve(func, t0):
14 'wrapped fsolve command to work with units'
15 tU = t0 / float(t0) # units on initial guess, normalized
16 def wrapped_func(t):
17 't will be unitless, so we add unit to it. t * tU has units.'

3Then again no package does yet!

301

https://pypi.python.org/pypi/quantities

18 return float(func(t * tU))
19
20 sol, = _fsolve(wrapped_func, t0)
21 return sol * tU
22
23 tguess = 4 * u.s
24
25 print(fsolve(func, tguess))

It is a little tedious to do this, but we might only have to do it once if we store the new fsolve
command in a module. You might notice the wrapped function we wrote above only works for one
dimensional problems. If there are multiple dimensions, we have to be a little more careful. In the
next example, we expand the wrapped function definition to do both one and multidimensional
problems. It appears we cannot use numpy.array element-wise multiplication because you cannot
mix units in an array. We will use lists instead. When the problem is one-dimensional, the
function will take a scalar, but when it is multidimensional it will take a list or array. We will use
try/except blocks to handle these two cases. We will assume multidimensional cases, and if that
raises an exception because the argument is not a list, we assume it is scalar. Here is the more
robust code example.

1 import quantities as u
2 import numpy as np
3
4 from scipy.optimize import fsolve as _fsolve
5
6 def fsolve(func, t0):
7 '''wrapped fsolve command to work with units. We get the units on
8 the function argument, then wrap the function so we can add units
9 to the argument and return floats. Finally we call the original

10 fsolve from scipy. Note: this does not support all of the options
11 to fsolve.'''
12
13 try:
14 tU = [t / float(t) for t in t0] # units on initial guess, normalized
15 except TypeError:
16 tU = t0 / float(t0)
17
18 def wrapped_func(t):
19 't will be unitless, so we add unit to it. t * tU has units.'
20 try:
21 T = [x1 * x2 for x1,x2 in zip(t, tU)]
22 except TypeError:
23 T = t * tU
24
25 try:
26 return [float(x) for x in func(T)]
27 except TypeError:
28 return float(func(T))
29
30 sol = _fsolve(wrapped_func, t0)
31 try:
32 return [x1 * x2 for x1,x2 in zip(sol, tU)]
33 except TypeError:
34 return sol * tU
35
36 ### Problem 1
37 CA0 = 1 * u.mol / u.L
38 CA = 0.01 * u.mol / u.L
39 k = 1.0 / u.s
40
41 def func(t):
42 return CA - CA0 * np.exp(-k * t)

302

43
44
45 tguess = 4 * u.s
46 sol1, = fsolve(func, tguess)
47 print('sol1 = ',sol1)
48
49 ### Problem 2
50 def func2(X):
51 a,b = X
52 return [a**2 - 4*u.kg**2,
53 b**2 - 25*u.J**2]
54
55 Xguess = [2.2*u.kg, 5.2*u.J]
56 s2a, s2b = fsolve(func2, Xguess)
57 print('s2a = {0}\ns2b = {1}'.format(s2a, s2b))

That is pretty good. There is still room for improvement in the wrapped function, as it does not
support all of the options that scipy.optimize.fsolve supports. Here is a draft of a function that does
that. We have to return different numbers of arguments depending on the value of full_output.
This function works, but I have not fully tested all the options. Here are three examples that work,
including one with an argument.

1 import quantities as u
2 import numpy as np
3
4 from scipy.optimize import fsolve as _fsolve
5
6 def fsolve(func, t0, args=(),
7 fprime=None, full_output=0, col_deriv=0,
8 xtol=1.49012e-08, maxfev=0, band=None,
9 epsfcn=0.0, factor=100, diag=None):

10 '''wrapped fsolve command to work with units. We get the units on
11 the function argument, then wrap the function so we can add units
12 to the argument and return floats. Finally we call the original
13 fsolve from scipy. '''
14
15 try:
16 tU = [t / float(t) for t in t0] # units on initial guess, normalized
17 except TypeError:
18 tU = t0 / float(t0)
19
20 def wrapped_func(t, *args):
21 't will be unitless, so we add unit to it. t * tU has units.'
22 try:
23 T = [x1 * x2 for x1,x2 in zip(t, tU)]
24 except TypeError:
25 T = t * tU
26
27 try:
28 return [float(x) for x in func(T, *args)]
29 except TypeError:
30 return float(func(T))
31
32 sol = _fsolve(wrapped_func, t0, args,
33 fprime, full_output, col_deriv,
34 xtol, maxfev, band,
35 epsfcn, factor, diag)
36
37 if full_output:
38 x, infodict, ier, mesg = sol
39 try:
40 x = [x1 * x2 for x1,x2 in zip(x, tU)]
41 except TypeError:
42 x = x * tU

303

43 return x, infodict, ier, mesg
44 else:
45 try:
46 x = [x1 * x2 for x1,x2 in zip(sol, tU)]
47 except TypeError:
48 x = sol * tU
49 return x
50
51 ### Problem 1
52 CA0 = 1 * u.mol / u.L
53 CA = 0.01 * u.mol / u.L
54 k = 1.0 / u.s
55
56 def func(t):
57 return CA - CA0 * np.exp(-k * t)
58
59
60 tguess = 4 * u.s
61 sol1, = fsolve(func, tguess)
62 print('sol1 = ',sol1)
63
64 ### Problem 2
65 def func2(X):
66 a,b = X
67 return [a**2 - 4*u.kg**2,
68 b**2 - 25*u.J**2]
69
70 Xguess = [2.2*u.kg, 5.2*u.J]
71 sol, infodict, ier, mesg = fsolve(func2, Xguess, full_output=1)
72 s2a, s2b = sol
73 print('s2a = {0}\ns2b = {1}'.format(s2a, s2b))
74
75 ### Problem 3 - with an arg
76 def func3(a, arg):
77 return a**2 - 4*u.kg**2 + arg**2
78
79 Xguess = 1.5 * u.kg
80 arg = 0.0* u.kg
81
82 sol3, = fsolve(func3, Xguess, args=(arg,))
83
84 print('sol3 = ', sol3)

The only downside I can see in the quantities module is that it only handle temperature dif-
ferences, and not absolute temperatures. If you only use absolute temperatures, this would not
be a problem I think. But, if you have mixed temperature scales, the quantities module does not
convert them on an absolute scale.

1 import quantities as u
2
3 T = 20 * u.degC
4
5 print(T.rescale(u.K))
6 print(T.rescale(u.degF))

Nevertheless, this module seems pretty promising, and there are a lot more features than shown
here. Some documentation can be found at http://pythonhosted.org/quantities/.

15.3 Units in ODEs

We reconsider a simple ODE but this time with units. We will use the quantities package again.

304

http://pythonhosted.org/quantities/

Here is the ODE, dCa
dt = −kCa with CA(0) = 1.0 mol/L and k = 0.23 1/s. Compute the

concentration after 5 s.

1 import quantities as u
2
3 k = 0.23 / u.s
4 Ca0 = 1 * u.mol / u.L
5
6 def dCadt(Ca, t):
7 return -k * Ca
8
9 import numpy as np

10 from scipy.integrate import odeint
11
12 tspan = np.linspace(0, 5) * u.s
13
14 sol = odeint(dCadt, Ca0, tspan)
15
16 print(sol[-1])

No surprise, the units are lost. Now we start wrapping odeint. We wrap everything, and then
test two examples including a single ODE, and a coupled set of ODEs with mixed units.

1 import quantities as u
2 import matplotlib.pyplot as plt
3
4 import numpy as np
5 from scipy.integrate import odeint as _odeint
6
7 def odeint(func, y0, t, args=(),
8 Dfun=None, col_deriv=0, full_output=0,
9 ml=None, mu=None, rtol=None, atol=None,

10 tcrit=None, h0=0.0, hmax=0.0, hmin=0.0,
11 ixpr=0, mxstep=0, mxhnil=0, mxordn=12,
12 mxords=5, printmessg=0):
13
14 def wrapped_func(Y0, T, *args):
15 # put units on T if they are on the original t
16 # check for units so we don't put them on twice
17 if not hasattr(T, 'units') and hasattr(t, 'units'):
18 T = T * t.units
19 # now for the dependent variable units. Y0 may be a scalar or
20 # a list or an array. we want to check each element of y0 for
21 # units, and add them to the corresponding element of Y0 if we
22 # need to.
23 try:
24 uY0 = [x for x in Y0] # a list copy of contents of Y0
25 # this works if y0 is an iterable, eg. a list or array
26 for i, yi in enumerate(y0):
27 if not hasattr(uY0[i],'units') and hasattr(yi, 'units'):
28
29 uY0[i] = uY0[i] * yi.units
30
31 except TypeError:
32 # we have a scalar
33 if not hasattr(Y0, 'units') and hasattr(y0, 'units'):
34 uY0 = Y0 * y0.units
35
36 val = func(uY0, t, *args)
37
38 try:
39 return np.array([float(x) for x in val])
40 except TypeError:
41 return float(val)

305

42
43 if full_output:
44 y, infodict = _odeint(wrapped_func, y0, t, args,
45 Dfun, col_deriv, full_output,
46 ml, mu, rtol, atol,
47 tcrit, h0, hmax, hmin,
48 ixpr, mxstep, mxhnil, mxordn,
49 mxords, printmessg)
50 else:
51 y = _odeint(wrapped_func, y0, t, args,
52 Dfun, col_deriv, full_output,
53 ml, mu, rtol, atol,
54 tcrit, h0, hmax, hmin,
55 ixpr, mxstep, mxhnil, mxordn,
56 mxords, printmessg)
57
58 # now we need to put units onto the solution units should be the
59 # same as y0. We cannot put mixed units in an array, so, we return a list
60 m,n = y.shape # y is an ndarray, so it has a shape
61 if n > 1: # more than one equation, we need a list
62 uY = [0 for yi in range(n)]
63
64 for i, yi in enumerate(y0):
65 if not hasattr(uY[i],'units') and hasattr(yi, 'units'):
66 uY[i] = y[:,i] * yi.units
67 else:
68 uY[i] = y[:,i]
69
70 else:
71 uY = y * y0.units
72
73 y = uY
74
75
76 if full_output:
77 return y, infodict
78 else:
79 return y
80
81 ##
82 # test a single ODE
83 k = 0.23 / u.s
84 Ca0 = 1 * u.mol / u.L
85
86 def dCadt(Ca, t):
87 return -k * Ca
88
89 tspan = np.linspace(0, 5) * u.s
90 sol = odeint(dCadt, Ca0, tspan)
91
92 print(sol[-1])
93
94 plt.plot(tspan, sol)
95 plt.xlabel('Time ({0})'.format(tspan.dimensionality.latex))
96 plt.ylabel('C_A ({0})'.format(sol.dimensionality.latex))
97 plt.savefig('images/ode-units-ca.png')
98
99 ##

100 # test coupled ODEs
101 lbmol = 453.59237*u.mol
102
103 kprime = 0.0266 * lbmol / u.hr / u.lb
104 Fa0 = 1.08 * lbmol / u.hr
105 alpha = 0.0166 / u.lb
106 epsilon = -0.15
107
108 def dFdW(F, W, alpha0):
109 X, y = F

306

110 dXdW = kprime / Fa0 * (1.0 - X)/(1.0 + epsilon * X) * y
111 dydW = - alpha0 * (1.0 + epsilon * X) / (2.0 * y)
112 return [dXdW, dydW]
113
114 X0 = 0.0 * u.dimensionless
115 y0 = 1.0
116
117 # initial conditions
118 F0 = [X0, y0] # one without units, one with units, both are dimensionless
119
120 wspan = np.linspace(0,60) * u.lb
121
122 sol = odeint(dFdW, F0, wspan, args=(alpha,))
123 X, y = sol
124
125 print('Test 2')
126 print(X[-1])
127 print(y[-1])
128
129 plt.figure()
130 plt.plot(wspan, X, wspan, y)
131 plt.legend(['X','P/P_0'])
132 plt.xlabel('Catalyst weight ({0})'.format(wspan.dimensionality.latex))
133 plt.savefig('images/ode-coupled-units-pdrpo.png')

307

That is not too bad. This is another example of a function you would want to save in a module
for reuse. There is one bad feature of the wrapped odeint function, and that is that it changes the
solution for coupled ODEs from an ndarray to a list. That is necessary because you apparently
cannot have mixed units in an ndarray. It is fine, however, to have a list of mixed units. This is
not a huge problem, but it changes the syntax for plotting results for the wrapped odeint function
compared to the unwrapped function without units.

15.4 Handling units with dimensionless equations

As we have seen, handling units with third party functions is fragile, and often requires additional
code to wrap the function to handle the units. An alternative approach that avoids the wrapping is
to rescale the equations so they are dimensionless. Then, we should be able to use all the standard
external functions without modification. We obtain the final solutions by rescaling back to the
answers we want.

Before doing the examples, let us consider how the quantities package handles dimensionless
numbers.

1 import quantities as u
2
3 a = 5 * u.m
4 L = 10 * u.m # characteristic length
5
6 print(a/L)
7 print(type(a/L))

308

As you can see, the dimensionless number is scaled properly, and is listed as dimensionless. The
result is still an instance of a quantities object though. That is not likely to be a problem.

Now, we consider using fsolve with dimensionless equations. Our goal is to solve CA =
CA0 exp(−kt) for the time required to reach a desired CA. We let X = Ca/Ca0 and τ = t ∗ k,
which leads to X = exp−τ in dimensionless terms.

1 import quantities as u
2 import numpy as np
3 from scipy.optimize import fsolve
4
5 CA0 = 1 * u.mol / u.L
6 CA = 0.01 * u.mol / u.L # desired exit concentration
7 k = 1.0 / u.s
8
9 # we need new dimensionless variables

10 # let X = Ca / Ca0
11 # so, Ca = Ca0 * X
12
13 # let tau = t * k
14 # so t = tau / k
15
16 X = CA / CA0 # desired exit dimensionless concentration
17
18 def func(tau):
19 return X - np.exp(-tau)
20
21 tauguess = 2
22
23 print(func(tauguess)) # confirm we have a dimensionless function
24
25 tau_sol, = fsolve(func, tauguess)
26 t = tau_sol / k
27 print(t)

Now consider the ODE dCa
dt = −kCa. We let X = Ca/Ca0, so Ca0dX = dCa. Let τ = t ∗ k

which in this case is dimensionless. That means dτ = kdt. Substitution of these new variables
leads to:

Ca0 ∗ k dXdτ = −kCa0X
or equivalently: dX

dτ = −X

1 import quantities as u
2
3 k = 0.23 / u.s
4 Ca0 = 1 * u.mol / u.L
5
6 # Let X = Ca/Ca0 -> Ca = Ca0 * X dCa = dX/Ca0
7 # let tau = t * k -> dt = 1/k dtau
8
9

10 def dXdtau(X, tau):
11 return -X
12
13 import numpy as np
14 from scipy.integrate import odeint
15
16 tspan = np.linspace(0, 5) * u.s
17 tauspan = tspan * k
18
19 X0 = 1
20 X_sol = odeint(dXdtau, X0, tauspan)
21
22 print('Ca at t = {0} = {1}'.format(tspan[-1], X_sol.flatten()[-1] * Ca0))

309

That is pretty much it. Using dimensionless quantities simplifies the need to write wrapper
code, although it does increase the effort to rederive your equations (with corresponding increased
opportunities to make mistakes). Using units to confirm your dimensionless derivation reduces
those opportunities.

16 GNU Free Documentation License
GNU Free Documentation License
Version 1.3, 3 November 2008

Copyright (C) 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
<http://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other
functional and useful document "free" in the sense of freedom: to
assure everyone the effective freedom to copy and redistribute it,
with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible
for modifications made by others.

This License is a kind of "copyleft", which means that derivative
works of the document must themselves be free in the same sense. It
complements the GNU General Public License, which is a copyleft
license designed for free software.

We have designed this License in order to use it for manuals for free
software, because free software needs free documentation: a free
program should come with manuals providing the same freedoms that the
software does. But this License is not limited to software manuals;
it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License
principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that
contains a notice placed by the copyright holder saying it can be
distributed under the terms of this License. Such a notice grants a
world-wide, royalty-free license, unlimited in duration, to use that
work under the conditions stated herein. The "Document", below,

310

refers to any such manual or work. Any member of the public is a
licensee, and is addressed as "you". You accept the license if you
copy, modify or distribute the work in a way requiring permission
under copyright law.

A "Modified Version" of the Document means any work containing the
Document or a portion of it, either copied verbatim, or with
modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of
the Document that deals exclusively with the relationship of the
publishers or authors of the Document to the Document's overall
subject (or to related matters) and contains nothing that could fall
directly within that overall subject. (Thus, if the Document is in
part a textbook of mathematics, a Secondary Section may not explain
any mathematics.) The relationship could be a matter of historical
connection with the subject or with related matters, or of legal,
commercial, philosophical, ethical or political position regarding
them.

The "Invariant Sections" are certain Secondary Sections whose titles
are designated, as being those of Invariant Sections, in the notice
that says that the Document is released under this License. If a
section does not fit the above definition of Secondary then it is not
allowed to be designated as Invariant. The Document may contain zero
Invariant Sections. If the Document does not identify any Invariant
Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed,
as Front-Cover Texts or Back-Cover Texts, in the notice that says that
the Document is released under this License. A Front-Cover Text may
be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy,
represented in a format whose specification is available to the
general public, that is suitable for revising the document
straightforwardly with generic text editors or (for images composed of
pixels) generic paint programs or (for drawings) some widely available
drawing editor, and that is suitable for input to text formatters or
for automatic translation to a variety of formats suitable for input
to text formatters. A copy made in an otherwise Transparent file
format whose markup, or absence of markup, has been arranged to thwart
or discourage subsequent modification by readers is not Transparent.
An image format is not Transparent if used for any substantial amount
of text. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain
ASCII without markup, Texinfo input format, LaTeX input format, SGML

311

or XML using a publicly available DTD, and standard-conforming simple
HTML, PostScript or PDF designed for human modification. Examples of
transparent image formats include PNG, XCF and JPG. Opaque formats
include proprietary formats that can be read and edited only by
proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the
machine-generated HTML, PostScript or PDF produced by some word
processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself,
plus such following pages as are needed to hold, legibly, the material
this License requires to appear in the title page. For works in
formats which do not have any title page as such, "Title Page" means
the text near the most prominent appearance of the work's title,
preceding the beginning of the body of the text.

The "publisher" means any person or entity that distributes copies of
the Document to the public.

A section "Entitled XYZ" means a named subunit of the Document whose
title either is precisely XYZ or contains XYZ in parentheses following
text that translates XYZ in another language. (Here XYZ stands for a
specific section name mentioned below, such as "Acknowledgements",
"Dedications", "Endorsements", or "History".) To "Preserve the Title"
of such a section when you modify the Document means that it remains a
section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which
states that this License applies to the Document. These Warranty
Disclaimers are considered to be included by reference in this
License, but only as regards disclaiming warranties: any other
implication that these Warranty Disclaimers may have is void and has
no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either
commercially or noncommercially, provided that this License, the
copyright notices, and the license notice saying this License applies
to the Document are reproduced in all copies, and that you add no
other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further
copying of the copies you make or distribute. However, you may accept
compensation in exchange for copies. If you distribute a large enough
number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and
you may publicly display copies.

312

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have
printed covers) of the Document, numbering more than 100, and the
Document's license notice requires Cover Texts, you must enclose the
copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify
you as the publisher of these copies. The front cover must present
the full title with all words of the title equally prominent and
visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve
the title of the Document and satisfy these conditions, can be treated
as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit
legibly, you should put the first ones listed (as many as fit
reasonably) on the actual cover, and continue the rest onto adjacent
pages.

If you publish or distribute Opaque copies of the Document numbering
more than 100, you must either include a machine-readable Transparent
copy along with each Opaque copy, or state in or with each Opaque copy
a computer-network location from which the general network-using
public has access to download using public-standard network protocols
a complete Transparent copy of the Document, free of added material.
If you use the latter option, you must take reasonably prudent steps,
when you begin distribution of Opaque copies in quantity, to ensure
that this Transparent copy will remain thus accessible at the stated
location until at least one year after the last time you distribute an
Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the
Document well before redistributing any large number of copies, to
give them a chance to provide you with an updated version of the
Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under
the conditions of sections 2 and 3 above, provided that you release
the Modified Version under precisely this License, with the Modified
Version filling the role of the Document, thus licensing distribution
and modification of the Modified Version to whoever possesses a copy

313

of it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct
from that of the Document, and from those of previous versions
(which should, if there were any, be listed in the History section
of the Document). You may use the same title as a previous version
if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities
responsible for authorship of the modifications in the Modified
Version, together with at least five of the principal authors of the
Document (all of its principal authors, if it has fewer than five),
unless they release you from this requirement.

C. State on the Title page the name of the publisher of the
Modified Version, as the publisher.

D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications

adjacent to the other copyright notices.
F. Include, immediately after the copyright notices, a license notice

giving the public permission to use the Modified Version under the
terms of this License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections
and required Cover Texts given in the Document's license notice.

H. Include an unaltered copy of this License.
I. Preserve the section Entitled "History", Preserve its Title, and add

to it an item stating at least the title, year, new authors, and
publisher of the Modified Version as given on the Title Page. If
there is no section Entitled "History" in the Document, create one
stating the title, year, authors, and publisher of the Document as
given on its Title Page, then add an item describing the Modified
Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for
public access to a Transparent copy of the Document, and likewise
the network locations given in the Document for previous versions
it was based on. These may be placed in the "History" section.
You may omit a network location for a work that was published at
least four years before the Document itself, or if the original
publisher of the version it refers to gives permission.

K. For any section Entitled "Acknowledgements" or "Dedications",
Preserve the Title of the section, and preserve in the section all
the substance and tone of each of the contributor acknowledgements
and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document,
unaltered in their text and in their titles. Section numbers
or the equivalent are not considered part of the section titles.

M. Delete any section Entitled "Endorsements". Such a section
may not be included in the Modified Version.

N. Do not retitle any existing section to be Entitled "Endorsements"
or to conflict in title with any Invariant Section.

314

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or
appendices that qualify as Secondary Sections and contain no material
copied from the Document, you may at your option designate some or all
of these sections as invariant. To do this, add their titles to the
list of Invariant Sections in the Modified Version's license notice.
These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains
nothing but endorsements of your Modified Version by various
parties--for example, statements of peer review or that the text has
been approved by an organization as the authoritative definition of a
standard.

You may add a passage of up to five words as a Front-Cover Text, and a
passage of up to 25 words as a Back-Cover Text, to the end of the list
of Cover Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or
through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or
by arrangement made by the same entity you are acting on behalf of,
you may not add another; but you may replace the old one, on explicit
permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License
give permission to use their names for publicity for or to assert or
imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this
License, under the terms defined in section 4 above for modified
versions, provided that you include in the combination all of the
Invariant Sections of all of the original documents, unmodified, and
list them all as Invariant Sections of your combined work in its
license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and
multiple identical Invariant Sections may be replaced with a single
copy. If there are multiple Invariant Sections with the same name but
different contents, make the title of each such section unique by
adding at the end of it, in parentheses, the name of the original
author or publisher of that section if known, or else a unique number.
Make the same adjustment to the section titles in the list of
Invariant Sections in the license notice of the combined work.

315

In the combination, you must combine any sections Entitled "History"
in the various original documents, forming one section Entitled
"History"; likewise combine any sections Entitled "Acknowledgements",
and any sections Entitled "Dedications". You must delete all sections
Entitled "Endorsements".

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other
documents released under this License, and replace the individual
copies of this License in the various documents with a single copy
that is included in the collection, provided that you follow the rules
of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and
distribute it individually under this License, provided you insert a
copy of this License into the extracted document, and follow this
License in all other respects regarding verbatim copying of that
document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate
and independent documents or works, in or on a volume of a storage or
distribution medium, is called an "aggregate" if the copyright
resulting from the compilation is not used to limit the legal rights
of the compilation's users beyond what the individual works permit.
When the Document is included in an aggregate, this License does not
apply to the other works in the aggregate which are not themselves
derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these
copies of the Document, then if the Document is less than one half of
the entire aggregate, the Document's Cover Texts may be placed on
covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form.
Otherwise they must appear on printed covers that bracket the whole
aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may
distribute translations of the Document under the terms of section 4.
Replacing Invariant Sections with translations requires special

316

permission from their copyright holders, but you may include
translations of some or all Invariant Sections in addition to the
original versions of these Invariant Sections. You may include a
translation of this License, and all the license notices in the
Document, and any Warranty Disclaimers, provided that you also include
the original English version of this License and the original versions
of those notices and disclaimers. In case of a disagreement between
the translation and the original version of this License or a notice
or disclaimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgements",
"Dedications", or "History", the requirement (section 4) to Preserve
its Title (section 1) will typically require changing the actual
title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document
except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense, or distribute it is void, and
will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license
from a particular copyright holder is reinstated (a) provisionally,
unless and until the copyright holder explicitly and finally
terminates your license, and (b) permanently, if the copyright holder
fails to notify you of the violation by some reasonable means prior to
60 days after the cessation.

Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.

Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, receipt of a copy of some or all of the same material does
not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the
GNU Free Documentation License from time to time. Such new versions

317

will be similar in spirit to the present version, but may differ in
detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number.
If the Document specifies that a particular numbered version of this
License "or any later version" applies to it, you have the option of
following the terms and conditions either of that specified version or
of any later version that has been published (not as a draft) by the
Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not
as a draft) by the Free Software Foundation. If the Document
specifies that a proxy can decide which future versions of this
License can be used, that proxy's public statement of acceptance of a
version permanently authorizes you to choose that version for the
Document.

11. RELICENSING

"Massive Multiauthor Collaboration Site" (or "MMC Site") means any
World Wide Web server that publishes copyrightable works and also
provides prominent facilities for anybody to edit those works. A
public wiki that anybody can edit is an example of such a server. A
"Massive Multiauthor Collaboration" (or "MMC") contained in the site
means any set of copyrightable works thus published on the MMC site.

"CC-BY-SA" means the Creative Commons Attribution-Share Alike 3.0
license published by Creative Commons Corporation, a not-for-profit
corporation with a principal place of business in San Francisco,
California, as well as future copyleft versions of that license
published by that same organization.

"Incorporate" means to publish or republish a Document, in whole or in
part, as part of another Document.

An MMC is "eligible for relicensing" if it is licensed under this
License, and if all works that were first published under this License
somewhere other than this MMC, and subsequently incorporated in whole or
in part into the MMC, (1) had no cover texts or invariant sections, and
(2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site
under CC-BY-SA on the same site at any time before August 1, 2009,
provided the MMC is eligible for relicensing.

318

17 Additional References
1. Tutorials on the scientific Python ecosystem: a quick introduction to central tools and tech-

niques. The different chapters each correspond to a 1 to 2 hours course with increasing level
of expertise, from beginner to expert. http://scipy-lectures.org/

319

http://scipy-lectures.org/

Index
animation, 180

BVP, 176

COM, 223
Continuation, 67

derivative
4 point formula, 23
backward difference, 20
centered difference, 20
complex step, 29
FFT, 28
fitting, 26
forward difference, 20
numerical, 20
polynomial, 24
vectorized, 22

Excel, 223

fmin_slsqp, 121
fsolve, 125

integration
quad, 39
Simpson’s rule, 47
trapezoid , 39

integration:trapz, 46
interpolation, 115

cubic, 116
ODE, 140
reverse, 132

LU decomposition,determinant, 62

ODE
coupled, 159
event, 143, 144
parameterized, 148, 149, 151
second order, 152
tolerance, 145

optimization
constrained, 121, 129
Lagrange multipliers, 125
linear programming, 127

PDE
method of lines, 180, 183

nonlinear, 173
pde, 186
plot

double y-axis, 197
subplot, 198

plotting
animation, 180
interactive key press, 205
interactive mouse click, 205

sort, 215

transpose, 55

320

	Overview
	Basic python usage
	Basic math
	Advanced mathematical operators
	Exponential and logarithmic functions

	Creating your own functions
	Defining functions in python
	Advanced function creation
	Lambda Lambda Lambda
	Applications of lambda functions
	Summary

	Creating arrays in python
	Functions on arrays of values
	Some basic data structures in python
	the list
	tuples
	struct
	dictionaries
	Summary

	Indexing vectors and arrays in Python
	2d arrays
	Using indexing to assign values to rows and columns
	3D arrays
	Summary

	Controlling the format of printed variables
	Advanced string formatting

	Math
	Numeric derivatives by differences
	Vectorized numeric derivatives
	2-point vs. 4-point numerical derivatives
	Derivatives by polynomial fitting
	Derivatives by fitting a function and taking the analytical derivative
	Derivatives by FFT
	A novel way to numerically estimate the derivative of a function - complex-step derivative approximation
	Vectorized piecewise functions
	Smooth transitions between discontinuous functions
	Summary

	Smooth transitions between two constants
	On the quad or trapz'd in ChemE heaven
	Numerical data integration
	Combining numerical data with quad
	Summary

	Polynomials in python
	Summary

	Wilkinson's polynomial
	The trapezoidal method of integration
	Numerical Simpsons rule
	Integrating functions in python
	double integrals
	Summary

	Integrating equations in python
	Function integration by the Romberg method
	Symbolic math in python
	Solve the quadratic equation
	differentiation
	integration
	Analytically solve a simple ODE

	Is your ice cream float bigger than mine

	Linear algebra
	Potential gotchas in linear algebra in numpy
	Solving linear equations
	Rules for transposition
	The transpose in Python
	Rule 1
	Rule 2
	Rule 3
	Rule 4
	Summary

	Sums products and linear algebra notation - avoiding loops where possible
	Old-fashioned way with a loop
	The numpy approach
	Matrix algebra approach.
	Another example
	Last example
	Summary

	Determining linear independence of a set of vectors
	another example
	Near deficient rank
	Application to independent chemical reactions.

	Reduced row echelon form
	Computing determinants from matrix decompositions
	Calling lapack directly from scipy

	Nonlinear algebra
	Know your tolerance
	Solving integral equations with fsolve
	Summary notes

	Method of continuity for nonlinear equation solving
	Method of continuity for solving nonlinear equations - Part II
	Counting roots
	Use roots for this polynomial
	method 1
	Method 2

	Finding the nth root of a periodic function
	Coupled nonlinear equations

	Statistics
	Introduction to statistical data analysis
	Basic statistics
	Confidence interval on an average
	Are averages different
	The hypothesis
	Compute the t-score for our data
	Interpretation

	Model selection
	Numerical propagation of errors
	Addition and subtraction
	Multiplication
	Division
	exponents
	the chain rule in error propagation
	Summary

	Another approach to error propagation
	Summary

	Random thoughts
	Summary

	Data analysis
	Fit a line to numerical data
	Linear least squares fitting with linear algebra
	Linear regression with confidence intervals (updated)
	Linear regression with confidence intervals.
	Nonlinear curve fitting
	Nonlinear curve fitting by direct least squares minimization
	Parameter estimation by directly minimizing summed squared errors
	Nonlinear curve fitting with parameter confidence intervals
	Nonlinear curve fitting with confidence intervals
	Graphical methods to help get initial guesses for multivariate nonlinear regression
	Fitting a numerical ODE solution to data
	Reading in delimited text files

	Interpolation
	Better interpolate than never
	Estimate the value of f at t=2.
	improved interpolation?
	The inverse question
	A harder problem
	Discussion

	Interpolation of data
	Interpolation with splines

	Optimization
	Constrained optimization
	Finding the maximum power of a photovoltaic device.
	Using Lagrange multipliers in optimization
	Construct the Lagrange multiplier augmented function
	Finding the partial derivatives
	Now we solve for the zeros in the partial derivatives
	Summary

	Linear programming example with inequality constraints
	Find the minimum distance from a point to a curve.

	Differential equations
	Ordinary differential equations
	Numerical solution to a simple ode
	Plotting ODE solutions in cylindrical coordinates
	ODEs with discontinuous forcing functions
	Simulating the events feature of Matlab's ode solvers
	Mimicking ode events in python
	Solving an ode for a specific solution value
	A simple first order ode evaluated at specific points
	Stopping the integration of an ODE at some condition
	Finding minima and maxima in ODE solutions with events
	Error tolerance in numerical solutions to ODEs
	Solving parameterized ODEs over and over conveniently
	Yet another way to parameterize an ODE
	Another way to parameterize an ODE - nested function
	Solving a second order ode
	Solving Bessel's Equation numerically
	Phase portraits of a system of ODEs
	Linear algebra approaches to solving systems of constant coefficient ODEs

	Delay Differential Equations
	Differential algebraic systems of equations
	Boundary value equations
	Plane Poiseuille flow - BVP solve by shooting method
	Plane poiseuelle flow solved by finite difference
	Boundary value problem in heat conduction
	BVP in pycse
	A nonlinear BVP
	Another look at nonlinear BVPs
	Solving the Blasius equation

	Partial differential equations
	Modeling a transient plug flow reactor
	Transient heat conduction - partial differential equations
	Transient diffusion - partial differential equations

	Plotting
	Plot customizations - Modifying line, text and figure properties
	setting all the text properties in a figure.

	Plotting two datasets with very different scales
	Make two plots!
	Scaling the results
	Double-y axis plot
	Subplots

	Customizing plots after the fact
	Fancy, built-in colors in Python
	Picasso's short lived blue period with Python
	Interactive plotting
	Basic mouse clicks

	key events not working on Mac/org-mode
	Mouse movement
	key press events
	Picking lines
	Picking data points

	Peak annotation in matplotlib

	Programming
	Some of this, sum of that
	Nested lists

	Sorting in python
	Unique entries in a vector
	Lather, rinse and repeat
	Conclusions

	Brief intro to regular expressions
	Working with lists
	Making word files in python
	Interacting with Excel in python
	Writing Excel workbooks
	Updating an existing Excel workbook
	Summary

	Using Excel in Python
	Running Aspen via Python
	Using an external solver with Aspen
	Redirecting the print function
	Getting a dictionary of counts
	About your python
	Automatic, temporary directory changing

	Miscellaneous
	Mail merge with python

	Worked examples
	Peak finding in Raman spectroscopy
	Summary notes

	Curve fitting to get overlapping peak areas
	Notable differences from Matlab

	Estimating the boiling point of water
	Summary

	Gibbs energy minimization and the NIST webbook
	Compute mole fractions and partial pressures
	Computing equilibrium constants

	Finding equilibrium composition by direct minimization of Gibbs free energy on mole numbers
	The Gibbs energy of a mixture
	Linear equality constraints for atomic mass conservation
	Equilibrium constant based on mole numbers
	Summary

	The Gibbs free energy of a reacting mixture and the equilibrium composition
	Summary

	Water gas shift equilibria via the NIST Webbook
	hydrogen
	H_{2}O
	CO
	CO_{2}
	Standard state heat of reaction
	Non-standard state H and G
	Plot how the G varies with temperature
	Equilibrium constant calculation
	Equilibrium yield of WGS
	Compute gas phase pressures of each species
	Compare the equilibrium constants
	Summary

	Constrained minimization to find equilibrium compositions
	summary

	Using constrained optimization to find the amount of each phase present
	Conservation of mass in chemical reactions
	Numerically calculating an effectiveness factor for a porous catalyst bead
	Computing a pipe diameter
	Reading parameter database text files in python
	Calculating a bubble point pressure of a mixture
	The equal area method for the van der Waals equation
	Compute areas

	Time dependent concentration in a first order reversible reaction in a batch reactor
	Finding equilibrium conversion
	Integrating a batch reactor design equation
	Uncertainty in an integral equation
	Integrating the batch reactor mole balance
	Plug flow reactor with a pressure drop
	Solving CSTR design equations
	Meet the steam tables
	Starting point in the Rankine cycle in condenser.
	Isentropic compression of liquid to point 2
	Isobaric heating to T3 in boiler where we make steam
	Isentropic expansion through turbine to point 4
	To get from point 4 to point 1
	Efficiency
	Entropy-temperature chart
	Summary

	What region is a point in

	Units
	Using units in python
	scimath

	Handling units with the quantities module
	Units in ODEs
	Handling units with dimensionless equations

	GNU Free Documentation License
	Additional References
	Index

