Pyramid Blending, Templates, NL Filters

CS194: Intro to Comp. Vision and Comp. Photo
Alexel Efros, UC Berkeley, Fall 2021
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But better than box filter!

Box Filter
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Low-pass, Band-pass, High-pass filters

low-pass:

High-pass / band-pass:
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Edges in Images
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Low Pass vs. High Pass filtering
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Filtering — Sharpening

Detalls




Filtering — Sharpening
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Filtering — Sharpening

Detalls




Filtering — Sharpening
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Filtering — Extreme Sharpening

Detal's




Unsharp mask filter

f+a(f-f*g)=Q+a)f —af*xg=Tf*(1+a)e—ag)

o T |

image blurred unit impulse
image (identity)

.,.!ii;
il
A
LN
I,

unit impulse

Gaussian Laplacian of Gaussian



application: Hybrid Images

What you see... From Far Away Up Close

| see an
angry guy

Aude Oliva & Antonio Torralba & Philippe G Schyns, SIGGRAPH 2006



Application: Hybrid Images

A. Oliva, A. Torralba, P.G. Schyns,
“Hybrid Images,” SIGGRAPH 2006

Gaussian Filter

Laplacian Filter

unitimpulse  Gaussian Laplacian of Gaussian


http://cvcl.mit.edu/hybridimage.htm
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Band-pass filtering in spatial domain

Gaussian Pyramid (low-pass images)




Laplacian Pyramid

Original
Image

How can we reconstruct (collapse) this
pyramid into the original image?



Da Vinci and The Laplacian Pyramid




Da Vinci and The Laplacian Pyramid

coarse components medium components fine details
(peripheral vision) (near peripheral vision) (central vision)

Leonardo playing with peripheral vision

Livingstone, Vision and Art: The Bioloqgy of Seeing



https://www.amazon.com/Vision-Art-Biology-Margaret-Livingstone/dp/0810995549

Blending




Alpha Blending / Feathering
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Affect of Window Size




Affect of Window Size




Good Window Size

“Optimal” Window: smooth but not ghosted



What is the Optimal Window?

To avoid seams

« window = size of largest prominent feature

To avoid ghosting

« window <= 2*size of smallest prominent feature

Natural to cast this in the Fourier domain

» largest frequency <= 2*size of smallest frequency
» image frequency content should occupy one “octave” (power of two)

2




What if the Frequency Spread is Wide

ldea (Burt and Adelson)
« Compute Fq = FFT(lier), Frignt = FFT(ligny)
 Decompose Fourier image into octaves (bands)
- |:Ieft = |:Ieftl + |:Ieft2 t...
- Feather corresponding octaves F.q' with Fy
— Can compute inverse FFT and feather in spatial domain
« Sum feathered octave images in frequency domain

Better implemented in spatial domain



Octaves Iin the Spatial Domain

Lowpass Images

Bandpass Images
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Pyramid Blending
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Pyramid Blending
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Blending Regions

Sy 7




Laplacian Pyramid: Blending

General Approach:
1. Build Laplacian pyramids LA and LB from images A and B
2. Build a Gaussian pyramid GR from selected region R

3. Form a combined pyramid LS from LA and LB using nodes
of GR as weights:
LS(i,)) = GR(1,j,)*LA(l,)) + (1-GR(I,j))*LB(l,))
4. Collapse the LS pyramid to get the final blended image



Horror Photo

© david dmartin (Boston College)



Results from this class (fall 2005)

© Chris Cameron



Simplification: Two-band Blending
Brown & Lowe, 2003

* Only use two bands -- high freg. and low freq. — without downsampling
« Blends low freq. smoothly
* Blend high freq. with no smoothing: use binary alpha

.i‘-’v??




2-band “Laplacian Stack” Blending
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Linear Blending




2-band Blending
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Side note: Image Compression




Lossless Compression (e.g. Huffman coding)

Input image: Pixel code:
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https://www.print-driver.com/stories/huffman-coding-jpeg

Lossless Compression not enough

3 R



Lossy Image Compression (JPEG)
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Block-based Discrete Cosine Transform (DCT)



Jsing DCT In JPEG

ne first coefficient B(0,0) is the DC component,
the average intensity

The top-left coeffs represent low frequencies,
the bottom right — high frequencies

it




Image compression using DCT

Quantize

« More coarsely for high frequencies (which also tend to have smaller
values)

« Many quantized high frequency values will be zero

Encode

 (Can decode with inverse dct

Filter responses
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JPEG Compression Summary

Subsample color by factor of 2
 People have bad resolution for color

Split into blocks (8x8, typically), subtract 128

For each block

a. Compute DCT coefficients

b. Coarsely quantize
— Many high frequency components will become zero

c. Encode (e.g., with Huffman coding)

http://en.wikipedia.org/wiki/YCbCr
http://en.wikipedia.orag/wiki/ JPEG



http://en.wikipedia.org/wiki/YCbCr
http://en.wikipedia.org/wiki/JPEG

Block size in JPEG

Block size

« small block
— faster
— correlation exists between neighboring pixels

« large block
— better compression in smooth regions

* |t's 8x8 in standard JPEG



JPEG compression comparison




Review: Smoothing vs. derivative filters

Smoothing filters
« Gaussian: remove “high-frequency” components;

“low-pass” filter
« Can the values of a smoothing filter be negative?

« What should the values sum to?
— One: constant regions are not affected by the filter

Derivative filters
« Derivatives of Gaussian
« Can the values of a derivative filter be negative?

« What should the values sum to?
— Zero: no response in constant regions

« High absolute value at points of high contrast




Template matching

Goal: find In image

Main challenge: What s a
good similarity or
distance measure

between two patches?

« Correlation

e Zero-mean correlation
« Sum Square Difference
 Normalized Cross Correlation

Side by Derek Hoiem



Matching with filters

Goal: find INn Image

Method O: filter the image with eye patch
h[m,n]=> g[k,1] f[m+k,n+1]
K

o o § ¥ f =image
=28 g = filter

What went wrong?

Input Filtered Image Side by Derek Hoiem



Matching with filters

Goal: find & in iImage
Method 1: filter the image with zero-mean eye

h[m n] = Z(f[k 11-f) (glm+k,n+1])

mean of f

Inpt Filtered Image (scaled) Thresholded Image



Matching with filters

Goal: find & in iImage
Method 2: SSD (L2)
h[m,n]=> (g[k,1]1- f[m+k,n+1])
k,I
—

Inpt 1- sqrt(SSD) Thresholded Image



Matching with filters

Can SSD be implemented with linear filters?
h[m,n]=Z(g[k,I]— flm+k,n+17)°
kI

Side by Derek Hoiem



Matching with filters

. .. What'’s the potential
Goal: find ® In image downside of SSD?

Method 2: SSD
h[m,n]:Z(g[k,I]— 1‘[m+k,n+|])2
o P ] k|

Input 1- sqri(SSD) Side by Derek Hoiem



Matching with filters

Goal: find & in iImage
Method 3: Normalized cross-correlation

mean template mean image patch

l |
> (glk.11-g)(f[m+k.n+11-f, )

h[m,n] = <

[Z(g[k,ll—g)zZ(f[m+k,n+|]— f_m,n)zj

0.5

Side by Derek Hoiem



Matching with filters

Goal: find & in iImage
Method 3: Normalized cross-correlation

Thresholded Image



Matching with filters

Goal: find & in iImage
Method 3: Normalized cross-correlation

Normalized X-Correlation Thresholded Image



Q: What Is the best method to use?

A: Depends

Zero-mean filter: fastest but not a great
matcher

SSD: next fastest, sensitive to overall
Intensity

Normalized cross-correlation: slowest,

Invariant to local average intensity and
contrast

Side by Derek Hoiem
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Reducing Gaussian noise

o=0.05 ag=0.1 o=0.2

o=1 pixel

a=2 pixels

Smoothing with larger standard deviations suppresses noise,
but also blurs the image

Source: S. Lazebnik



Reducing salt-and-pepper noise by Gaussian smoothing
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5x5

3x3




Alternative idea: Median filtering

A median filter operates over a window by
selecting the median intensity in the window

10]15]20
2319027
3313130
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10 15 20 23 |27|30 31 33 90

l Sort

Median value

1011520 l Replace
2312727
3313130

* |s median filtering linear?

Source: K. Grauman



Median filter

What advantage does median filtering
have over Gaussian filtering?

 Robustness to outliers

filters have width 5 :

INPUT

11111111

MEDIAN

MEAN

Source: K. Grauman



Median filter
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Median vs. Gaussian filtering
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A Gentle Introduction
to Bilateral Filtering
and its Applications

'’

SIGGRAPH2007

“Fixing the Gaussian Blur”:
the Bilateral Filter

Sylvain Paris — MIT CSAIL



Blur Comes from
Averaging across Edges

output

Same Gaussian kernel everywhere.



Bilateral Filter [Aurich 95, Smith 97, Tomasi 98]
No Averaging across Edges

The kernel shape depends on the image content.



Bilateral Filter Definition:
an Additional Edge Term

Same idea: weighted average of pixels.

new

not new new
BF[I]D Z Gar(“p_lql)lq
p qeS
normalization space weight range weight
factor



lllustration a 1D Image

* 1D image = line of pixels

* Better visualized as a plot
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Gaussian Blur and Bilateral Filter

Gaussian blur
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[Aurich 95, Smith 97, Tomasi 98]
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Bilateral Filter on a Height Field

|
H
[
[

BF[I], o Ip—all) G, \I,-141) I
W_/ P deS\. ~ J \u ~ W,

[

i
i
il HIH ll

M
i
‘\\W

M

|

-l

|

|
\

reproduced
from [Durand 02]



Space and Range Parameters

V% > G, (lp-al)G.. (| 1, -1, |) l,

" L

* space o,: spatial extent of the kernel, size of
the considered neighborhood.

BF[1], =

* range o, : ‘minimum” amplitude of an edge



Influence of Pixels

Only pixels close in space and in range are considered.
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Exploring the Parameter Space

O = o0
(Gaussian blur)



Varying the Range Parameter

Op = ©
o,=0.25 (Gaussian blur)
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O, = ©
(Gaussian blur)




Varying the Space Parameter

Op = ©
o,=0.25 (Gaussian blur)
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