
Pyroms – Python for ROMS

Kate Hedstrom
Frederic Castruccio

Bob Torgerson

Outline

•  Pyroms description
•  Setup

•  Grid generation

•  Plotting

•  Interpolation

Functionality

•  Grid generation
•  Bathymetry

•  Interpolation

•  Plotting

Grid Generation

•  Based on Pavel Sakov’s gridgen
program

•  Supports convex (beta=+1) and
concave (beta=-1) corners

•  Interactive or not, you decide
– Also interactive mask editing

Bathymetry

•  Comes with etopo2, can load any
other on standard lat,lon grid

•  Clip and smooth with smoothing
options:
– Martinho and Batteen
– Mellor, Ezer and Oey
– Shapiro filter
– Linear programming

Prerequisites

•  Python 2.4-2.6, not 3.0 yet
•  numpy and scipy

•  netCDF4

•  matplotlib

•  basemap

•  Fortran compiler

•  ipython (optional)

•  cmake

Installing Python Packages

•  If root, unpack package and in that
directory:
– sudo python setup.py install

•  If not root, unpack package and in
that directory:
– python setpy.py install –prefix=<pypath>
– Add <pypath> to your PYTHONPATH

environment variable

Download Pyroms

•  This one is git only:
git clone https://github.com/
kshedstrom/pyroms.git!

8	

Setting up pyroms

•  Needs work, but right now we are
using cmake

•  Can’t just do the usual setup.py
because we need to compile
external C/Fortran codes

•  Read the INSTALL.pdf file
– Let’s go through it…

•  Need to update because pyroms
changed (yikes)

Grid Generation

•  Run interactively or in a script
•  Fred sent me code from which to

cut and paste

•  http://www.arsc.edu/~kate/ROMS/
HK/make_grid.py

•  Let’s give it a whirl…

10	

Boundary Selection

•  Begin upper
left

•  Go counter-
clockwise

11	

12	

Fill in the Pink Areas

•  Python code using grd object (needs
work):

!
grd.dx = grd.dx.filled(grd.dx.mean())  
grd.dy = grd.dy.filled(grd.dy.mean())  
grd.dndx = grd.dndx.filled(grd.dndx.mean())  
grd.dmde = grd.dmde.filled(grd.dmde.mean())  
grd.angle = grd.angle.filled(grd.angle.mean())!

13	

14	

ROMS 4

Interactive Commands

•  i – new vertex
•  d – delete a vertex

•  p – set vertex as beta=1 (CCW)

•  m – set vertex as beta=-1 (CW)

•  G – generate grid

•  Sum of betas must be 4

16	

17	

18	

19	

Cartesian Grids

•  if you omit proj=map, gridgen will
generate a Cartesian grid with
x_rho, y_rho, x_u, y_u, ... in meters
for example

•  See circle and box examples

•  Reminder: ipython –pylab or else
you need “from numpy import *”

20	

Plotting

•  Knows about full ROMS geometry

•  Set up info about your domain in an
ascii file
– This info is used by the interpolations as well

•  Uses matplotlib for plotting, with all
its warts (looks like Matlab plots)

21	

Gridid.txt

•  Pointed to by environment variable
PYROMS_GRIDID_FILE

•  Contains a chunk for each grid:
id = BERING!
name = BERING!
grdfile = /archive/u1/uaf/kate/gridpak/Bering/ !
 Bering_grid_4.nc!
N = 60!
grdtype = roms!
Vtrans = 1!
theta_s = 5!
theta_b = 0.4!
Tcline = 10!

22	

 •  Grdtype can also be “z” for
interpolating from MOM/POP

•  Then need a list of depths:
id = ESPRESSO_Z!
name = ESPRESSO_Z!
grdfile = /home/frederic/ROMS_projects/espresso/…
N = 42!
grdtype = z!
depth = [-4500. -4000. -3500. -3000. -2500.
-2000. -1750. -1500. -1250. -1000. \!
 -900. -800. -700. -600. -500.
-400. -300. -250. -200. -175. -150. -125. \!
 -100. -90. -80. -70. -60. -50.
-45. -40. -35. -30. -25. -20. -17.5 -15. \!
 -12.5 -10. -7.5 -5. -2.5 0.]!

23	

Plotting code is in
pyroms_toolbox

•  Zview – constant z surface plots
•  Sview – constant s surface plots

•  Latview – constant latitude
vertical slice

•  Lonview, iview, jview – like above

24	

25	

26	

27	

Interpolation

•  For initial and boundary conditions
from another run
– Either ROMS or POP (SODA)

•  Uses scrip and has to find scrip.so

•  Scrip is a three-phase process:
– Generate the grid NetCDF files into the

scrip input format
– Generate the remapping weights
– Do the interpolation

28	

Boundary Conditions

•  Make one weights file for each
– Side of the grid you want BCs for
– U, V, rho point on the grid
– Could have 12 weights files!

•  Scrip is faster than rnt in Matlab,
but BCs can still take time to
generate

•  Want to gather it all up into one
BC file for ROMS at the end

29	

