
Python 2.7 Quick Reference

Contents

Front matter

Invocation Options

Environment variables

Lexical entities : keywords, identifiers, string literals, boolean constants, numbers, sequences, dictionaries, sets,

operators

Basic types and their operations: None, bool, Numeric types, sequence types, list, dictionary , string, file, set, named

tuples, date/time

Advanced types

Statements: assignment, conditional expressions, control flow, exceptions, name space, function def, class def

Iterators; Generators; Descriptors; Decorators

Built-in Functions

Built-in Exceptions

Standard methods & operators redefinition in user-created Classes

Special informative state attributes for some ty pes

Important modules : sy s, os, posix , posixpath, shutil, time, string, re, math, compressions

List of modules in the base distribution

Workspace exploration and idiom hints

Py thon mode for Emacs

Front matter

Version 2.7 (What's new?)

Check updates at http://rgruet.free.fr/#QuickRef.

Please report errors, inaccuracies and suggestions to Richard Gruet (pqr at rgruet.net).

Creative Commons License.

Last updated on April 16, 2013.

Apr 16, 2013

Som e cor r ect ion s, see bottom , by Stefa n McKin n on Høj-Edw a r ds.

Oct, 2011

u pg r a ded by Stefa n McKin n on Høj-Edw a r ds for Py th on 2 .7

Feb 10, 2009

u pg r a ded by Rich a r d Gr u et a n d Josh Ston e for Py th on 2 .6

Dec 14, 2006

u pg r a ded by Rich a r d Gr u et for Py th on 2 .5

Feb 17, 2005,

u pg r a ded by Rich a r d Gr u et for Py th on 2 .4

Oct 3, 2003

u pg r a ded by Rich a r d Gr u et for Py th on 2 .3

May 11, 2003, rev 4

u pg r a ded by Rich a r d Gr u et for Py th on 2 .2 (r esty led by A n dr ei)

Aug 7, 2001

u pg r a ded by Sim on Br u n n in g for Py th on 2 .1

May 16, 2001

u pg r a ded by Rich a r d Gr u et a n d Sim on Br u n n in g for Py th on 2 .0

Jun 18, 2000

u pg r a ded by Rich a r d Gr u et for Py th on 1 .5 .2

Oct 20, 1995

cr ea ted by Ch r is Hoffm a n n for Py th on 1 .3

Color coding:
Featu r es a dded in 2 .7 sin ce 2 .6

Featu r es a dded in 2 .6 sin ce 2 .5

Featu r es a dded in 2 .5 sin ce 2 .4

A lin k

Originally based on:

Py thon Bestiary , author: Ken Manheimer

Py thon manuals, authors: Guido van Rossum and Fred Drake

py thon-mode.el, author: Tim Peters

and the readers of comp.lang.python

Useful links :

Python's nest : http://www.py thon.org

Official documentation: http://docs.py thon.org/2.7 /

Other doc & free books : FAQs, Div e into Py thon (from 2004), Py thon Cookbook - Popular Py thon recipes, Thinking in

Py thon (from 2001), Text processing in Py thon (from 2003)

Getting started: Py thon Tutorial, 7 m n to Hello World (windows)

Topics: HOWTOs, Databases, Web program m ing, XML, Web Serv ices, Parsers, NumPy & SciPy - Numeric & Scientific

Com puting, GUI program ming, Distributing

Where to find packages: Py thon Package Index (Py PI), Py thon Eggs, SourceForge (search "py thon"), Easy Install, O'Reilly

Py thon Dev Center

Wiki: m oinmoin

Newsgroups: com p.lang.py thon and com p.lang.py thon.announce

Misc pages: Daily Py thon URL

Python Development : http://www.py thon.org/dev /

Jython - Jav a im plem entation of Py thon: http://www.jy thon.org/

IronPython - Py thon on .Net: http://www.codeplex.com/Wiki/View.aspx?ProjectName=IronPy thon

ActivePython: http://www.Activ eState.com/ASPN/Py thon/

Help desk: help@py thon.org

2 excellent (but som ehow outdated) Python reference books: Py thon Essential Reference (Py thon 2.1) by Dav id Beazley &

Guido Van Rossum (Other New Riders) and Py thon in a nutshell by Alex martelli (O'Reilly).

Python 2.4 Reference Card (cheatsheet) by Laurent Pointal, designed for printing (1 5 pages).

Online Py thon 2 .2 Quick Reference by the New Mexico Tech Computer Center.

Tip: From within the Py thon interpreter, ty pe help, help(object) or help("name") to get help.

Invocation Options

python[w] [-BdEhim OQsStuUv VWxX3] [-c command | scriptFile | -] [args]

 (py thonw does not open a terminal/console; py thon does)

Invocation Options

Opt ion Effect

-B Prev ents m odule imports from creating .pyc or .pyo files (see also env t v ariable PYTHONDONTWRITEBYTECODE=x and

attribute sys.dont_write_bytecode).

-d Output parser debugging information (also PYTHONDEBUG=x)

-E Ignore env ironment v ariables (such as PYTHONPATH)

-h Print a help message and exit (formerly -?)

-i Inspect interactiv ely after running script (also PYTHONINSPECT=x) and force prompts, ev en if stdin appears not to be

a terminal.

-m

module

Search for module on sys.path and runs the module as a script. (Implementation improv ed in 2 .5: module runpy)

-O Optim ize generated by tecode (also PYTHONOPTIMIZE=x). Asserts are suppressed.

-OO Rem ov e doc-strings in addition to the -O optimizations.

-Q arg Div ision options: -Qold (default), -Qwarn, -Qwarnall, -Qnew

-s Disables the user-specific module path (also PYTHONNOUSERSITE=x)

-S Don't perform import site on initialization.

-t Issue warnings about inconsistent tab usage (-tt: issue errors).

-u Unbuffered binary stdout and stderr (also PYTHONUNBUFFERED=x).

-U Force Py thon to interpret all string literals as Unicode literals.

-v Verbose (trace im port statements) (also PYTHONVERBOSE=x).

-V Print the Py thon v ersion number and exit.

-W arg Warning control (arg is action:m essage:category :module:lineno)

-x Skip first line of source, allowing use of non-unix Form s of #!cmd

-X Disable class based built-in exceptions (for backward com patibility m anagem ent of exceptions)

-3 Em it a DeprecationWarning for Py thon 3.x incompatibilities that 2to3 cannot triv ially fix

-c

command

Specify the com mand to execute (see next section). This term inates the option list (following options are passed as

argum ents to the comm and).

scriptFile The name of a py thon file (.py) to execute. Read from stdin.

- Program read from stdin (default; interactiv e m ode if a tty).

args Passed to script or comm and (in sys.argv[1:])

 If no scriptFile or com mand, Py thon enters interactiv e mode.

Available IDEs in std distrib: IDLE (tkinter based, portable), Pythonwin (on Windows). Other free IDEs: IPy thon

(enhanced interactive Py thon shell - 2011), Eric (2011), SPE (2010), BOA constructor (GUI Builder - 2011), PyDev

(Eclipse plugin - 2011).

Typical python module header :

#!/usr/bin/env python

-*- coding: latin1 -*-

Since 2.3 the encoding of a Python source file must be declared as one of the two first lines (or defaults to 7 bits Ascii)

[PEP-0263], with the format:

-*- coding: encoding -*-

Std encodings are defined here, e.g. ISO-8859-1 (aka latin1), iso-8859-15 (latin9), UTF-8... Not all encodings supported,

in particular UTF-16 is not supported.

It's now a syntax error if a module contains string literals with 8-bit characters but doesn't have an encoding

It's now a syntax error if a module contains string literals with 8-bit characters but doesn't have an encoding

declaration (was a warning before).

Since 2.5, from __future__ import feature statements must be declared at beginning of source file.

Site customization: File sitecustomize.py is automatically loaded by Py thon if it exists in the Py thon path (ideally

located in ${PYTHONHOME}/lib/site-packages/).

T ip: when launching a Py thon script on Windows,

<pythonHome>\python myScript.py args ... can be reduced to :

myScript.py args ... if <py thonHom e> is in the PATH env t v ariable, and further reduced to :

myScript args ... prov ided that .py;.pyw;.pyc;.pyo is added to the PATHEXT env t v ariable.

Environment variables

Environment variables

Variable Effect

PYTHONHOME Alternate prefix directory (or prefix:exec_prefix). The default module search path uses prefix/lib

PYTHONPATH Augments the default search path for module files. The format is the same as the shell's $PATH:

one or m ore directory pathnames separated by ':' or ';' without spaces around (sem i-) colons !

On Windows Py thon first searches for Registry key

HKEY_LOCAL_MACHINE\Software\Python\PythonCore\x.y\PythonPath (default v alue). You

can create a key named after y our application with a default string v alue giv ing the root

directory path of y our appl.

Alternativ ely , y ou can create a text file with a .pth extension, containing the path(s), one per

line, and put the file som ewhere in the Py thon search path (ideally in the site-packages/

directory). It's better to create a .pth for each application, to m ake easy to uninstall them .

PYTHONSTARTUP If this is the nam e of a readable file, the Py thon com m ands in that file are executed before the

first prompt is display ed in interactiv e m ode (no default).

PYTHONDEBUG If non-em pty , sam e as -d option

PYTHONINSPECT If non-em pty , sam e as -i option

PYTHONOPTIMIZE If non-em pty , sam e as -O option

PYTHONUNBUFFERED If non-em pty , sam e as -u option

PYTHONVERBOSE If non-em pty , sam e as -v option

PYTHONCASEOK If non-em pty , ignore case in file/module nam es (im ports)

PYTHONDONTWRITEBYTECODE If non-em pty , sam e as -B option

PYTHONIOENCODING Alternate encodingname or encodingname:errorhandler for stdin, stdout, and stderr, with

the sam e choices accepted by str.encode().

PYTHONUSERBASE Prov ides a priv ate site-packages directory for user-specific modules. [PEP-03 7 0]

- On Unix and Mac OS X, defaults to ~/.local/, and modules are found in a v ersion-specific

subdirectory like lib/python2.6/site-packages.

- On Windows, defaults to %APPDATA%/Python and Python26/site-packages.
PYTHONNOUSERSITE If non-em pty , sam e as -s option

PYTHONWARNINGS Allows controlling warnings, sam e as -W option

Notable lexical entities

Keywords

 and del for is raise

 assert elif from lambda return

 break else global not try

 class except if or while

 continue exec import pass with
 def finally in print yield

(List of key words av ailable in std module: keyword)

Illegitimate Tokens (only v alid in strings): $? (plus @ before 2.4)

A statement must all be on a single line. To break a statement ov er multiple lines, use "\", as with the C preprocessor.

Exception: can always break when inside any (), [], or {} pair, or in triple-quoted strings.

More than one statement can appear on a line if they are separated with semicolons (";").

Comments start with "#" and continue to end of line.

Identifiers

(letter | "_") (letter | digit | "_")*

Python identifiers keywords, attributes, etc. are case-sensitive.

Special forms: _ident (not imported by 'from module import *'); __ident__ (sy stem defined name); __ident (class-

priv ate name mangling).

String literals

Two flavors: str (standard 8 bits locale-dependent strings, like ascii, iso 8859-1 , utf-8, ...) and unicode (16 or 32 bits/char in utf-

16 mode or 32 bits/char in utf-32 mode); one common ancestor basestring.

16 mode or 32 bits/char in utf-32 mode); one common ancestor basestring.

Literal

"a string enclosed by double quotes"

'another string delimited by single quotes and with a " inside'

'''a string containing embedded newlines and quote (') m arks, can be delim ited with triple quotes.'''

""" m ay also use 3- double quotes as delim iters """

b"An 8-bit string" - A bytes instance, a forward-com patible form for an 8-bit string'

B"Another 8-bit string"

u'a unicode string'

U"Another unicode string"

r'a raw string where \ are kept (literalized): handy for regular expressions and windows paths!'

R"another raw string" -- raw strings cannot end with a \

ur'a unicode raw string'

UR"another raw unicode"

Use \ at end of line to continue a string on next line.

Adjacent strings are concatened, e.g. 'Monty ' 'Python' is the same as 'Monty Python'.

u'hello' + ' world' --> u'hello world' (coerced to unicode)

String Literal Escapes

Escape Meaning

\newline Ignored (escape newline)

\\ Backslash (\)

\e Escape (ESC)

\v Vertical Tab (VT)

\' Single quote (')

\f Formfeed (FF)

\ooo char with octal v alue ooo

\" Double quote (")

\n Linefeed (LF)

\a Bell (BEL)

\r Carriage Return (CR)

\xhh char with hex v alue hh

\b Backspace (BS)

\t Horizontal Tab (TAB)

\uxxxx Character with 1 6-bit hex v alue xxxx (unicode only)

\Uxxxxxxxx Character with 32-bit hex v alue xxxxxxxx (unicode only)

\N{name} Character named in the Unicode database (unicode only), e.g. u'\N{Greek Small Letter Pi}' <=>
u'\u03c0'.

(Conv ersely , in module unicodedata, unicodedata.name(u'\u03c0') == 'GREEK SMALL LETTER PI')

\AnyOtherChar left as-is, including the backslash, e.g. str('\z') == '\\z'

NUL byte (\000) is not an end-of-string marker; NULs may be embedded in strings.

Strings (and tuples) are immutable: they cannot be modified.

Boolean constants

True

False

Since 2 .3, they are of new ty pe bool.

Numbers

Decimal integer: 1234, 1234567890546378940L (or l)

Binary integer: 0b10, 0B10, 0b10101010101010101010101010101010L (begins with a 0b or 0B)

Octal integer: 0177, 0o177, 0O177, 0177777777777777777L (begins with a 0 , 0o, or 0O)

Hex integer: 0xFF, 0XFFFFffffFFFFFFFFFFL (begins with 0x or 0X)

Long integer (unlim ited precision): 1234567890123456L (ends with L or l) or long(1234)

Float (double precision): 3.14e-10, .001, 10., 1E3

Complex: 1J, 2+3J, 4+5j (ends with J or j, + separates (float) real and imaginary parts)

Integers and long integers are unified starting from release 2.2 (the L suffix is no longer required)

Sequences

Strings and tuples are im mutable, lists are m utable.

Strings (ty pes str and unicode) of length 0, 1 , 2 (see abov e)

 '', '1 ', "1 2", 'hello\n'

Tuples (ty pe tuple) of length 0, 1 , 2 , etc:

 () (1 ,) (1 ,2) # parentheses are optional if len > 0

Lists (ty pe list) of length 0, 1 , 2 , etc:

 [] [1] [1 ,2]

Indexing is 0-based. Negative indices (usually) mean count backwards from end of sequence.

Sequence slicing [starting-at-index : but-less-than-index [: step]]. Start defaults to 0, end to len(sequence), step to 1.

Sequence slicing [starting-at-index : but-less-than-index [: step]]. Start defaults to 0, end to len(sequence), step to 1.

 a = (0,1,2,3,4,5,6,7)

 a[3] == 3

 a[-1] == 7

 a[2:4] == (2, 3)

 a[1:] == (1, 2, 3, 4, 5, 6, 7)

 a[:3] == (0, 1, 2)

 a[:] == (0,1,2,3,4,5,6,7) # makes a copy of the sequence.

 a[::2] == (0, 2, 4, 6) # Only even numbers.
 a[::-1] = (7, 6, 5, 4, 3 , 2, 1, 0) # Reverse order.

Dictionaries (Mappings)

Dictionaries (ty pe dict) of length 0, 1 , 2, etc: {key: value} {1 : 'first'} {1 : 'first', 'two': 2 , key:value}

Key s must be of a hashable type; Values can be any ty pe.

Dictionaries are unordered, ie. iterating over a dictionary provides key /value pairs in arbitrary order. OrderedDict in the

collections module works as regular dictionaries but iterates ov er keys and values in a guaranteed order depending on when a

key was first inserted.

Sets

A set kan either be mutable or immutable. Curly brackets ({}) are used to surround the contents of the resulting mutable set; set

literals are distinguished from dictionaries by not containing colons and values. An empty {} continues to represent an empty

dictionary; use set() for an empty set.

Operators and their evaluation order

Operators and their evaluation order

Highest Operator Comment

 , [...] {...} `...` Tuple, list & dict. creation; string conv .

s[i] s[i:j] s.attr f(...) indexing & slicing; attributes, function calls

+x, -x, ~x Unary operators

x**y Power

x*y x/y x%y m ult, div ision, modulo

x+y x-y addition, substraction

x<<y x>>y Bit shifting

x&y Bitwise "and"; also intersection of sets

x^y Bitwise exclusiv e or

x|y Bitwise "or"; also union of sets

x<y x<=y x>y x>=y x==y x!=y x<>y

x is y x is not y

x in s x not in s

Comparison,

identity ,

m embership

not x boolean negation

x and y boolean and

x or y boolean or

Lowest lambda args: expr anony m ous function

Alternate names are defined in module operator (e.g. __add__ and add for +)

Most operators are ov erridable

Basic types and their operations

Comparisons (defined between any types)

Comparisons

Comparison Meaning Notes

< strictly less than (1)

<= less than or equal to

> strictly greater than

>= greater than or equal to

== equal to

!= or <> not equal to

is object identity (2)

is not negated object identity (2)

Notes:

Comparison behavior can be overridden for a giv en class by defining special method __cmp__.

(1) X < Y < Z < W has expected meaning, unlike C

(2) Compare object identities (i.e. id(object)), not object values.

None

None is used as default return v alue on functions. Built-in single object with ty pe NoneType. Might become a key word in the

future.

Input that ev aluates to None does not print when running Py thon interactiv ely .

None is now a constant ; try ing to bind a v alue to the nam e "None" is now a sy ntax error.

None is now a constant ; try ing to bind a v alue to the nam e "None" is now a sy ntax error.

Boolean operators

Boolean values and operators

Value or Operator Evaluat es t o Notes

built-in bool(expr) True if expr is true, False otherwise. see True, False

None, num eric zeros, em pty sequences and m appings considered False

all other v alues considered True

not x True if x is False, else False

x or y if x is False then y, else x (1)

x and y if x is False then x, else y (1)

Notes:

Truth testing behav ior can be ov erridden for a given class by defining special method __nonzero__.

(1) Evaluate second arg only if necessary to determine outcome.

Numeric types

Floats , inte ge rs , lo ng inte gers , Dec imals .

Floats (ty pe float) are implem ented with C doubles.

Integers (ty pe int) are im plemented with C longs (signed 32 bits, maxim um v alue is sys.maxint)

Long integers (ty pe long) hav e unlim ited size (only lim it is sy stem resources).

Integers and long integers are unified starting from release 2.2 (the L suffix is no longer required). int() returns a long

integer instead of raising OverflowError. Ov erflowing operations such as 2<<32 no longer tr igger FutureWarning and

return a long integer.

Since 2 .4, new ty pe Decimal introduced (see m odule: decim al) to compensate for some lim itations of the floating point ty pe,

in particular with fractions. Unlike floats, decimal numbers can be represented exactly ; exactness is preserv ed in

calculations; precision is user settable v ia the Context ty pe [PEP 3 27].

Operato rs o n a l l numeric types

Operators on all numeric types

Operat ion Result Notes

abs(x) the absolute v alue of x

int (x) x conv erted to integer (2)

long(x) x conv erted to long integer (2)

float (x) x conv erted to floating point

-x x negated

+x x unchanged

x + y the sum of x and y

x - y difference of x and y

x * y product of x and y

x / y true div ision of x by y : 1 /2 -> 0.5 (1)

x // y floor div ision operator: 1 //2 -> 0 (1)

x % y x m odulo y

divmod(x, y) the tuple (x//y, x%y)

x ** y x to the power y (the same as pow(x,y))

Notes:

(1) / is still a floor div ision (1/2 == 0) unless validated by a from __future__ import division.

(2) int and long has bit_length() method that returns the number of bits necessary to represent its argument in binary .

classes may override methods __truediv__ and __floordiv__ to redefine these operators.

Bit o perato rs o n intege rs and lo ng inte gers

Bit operators

Operat ion Result

~x the bits of x inv erted

x ^ y bitwise exclusiv e or of x and y

x & y bitwise and of x and y

x | y bitwise or of x and y

x << n x shifted left by n bits

x >> n x shifted right by n bits

Comple x Numbers

Type complex, represented as a pair of machine-lev el double precision floating point numbers.

The real and imaginary value of a complex number z can be retrieved through the attributes z.real and z.imag.

Numeric e xc ept ions

TypeError

r a ised on a pplicat ion of a r ith m et ic oper a tion to n on -n u m ber

OverflowError

n u m er ic bou n ds exceeded

ZeroDivisionError

r a ised w h en zer o secon d a r g u m en t of div or m odu lo op

Operations on all sequence types (lists, tuples, strings)

Operations on all sequence types

Operat ion Result Notes

x in s True if an item of s is equal to x, else False (3)

x not in s False if an item of s is equal to x, else True (3)

s1 + s2 the concatenation of s1 and s2

s * n, n*s n copies of s concatenated

s[i] i'th item of s, origin 0 (1)

s[i: j]

s[i: j:step]

Slice of s from i (included) to j(excluded). Optional step v alue, possibly negativ e (default: 1). (1), (2)

s.count (x) returns num ber of i's for which s[i] == x

s.index(x[, start[,

stop]])

returns sm allest i such that s[i]==x. start and stop lim it search to only part of the sequence. (4)

len(s) Length of s

min(s) Smallest item of s

max(s) Largest item of s

reversed(s) [2.4] Returns an iterator on s in rev erse order. s must be a sequence, not an iterator (use

reversed(list(s)) in this case. [PEP 3 22]

sorted(iterable [, cmp]

 [, cm p=cmpFunc]

 [, key =keyGetter]

 [, rev erse=bool])

[2.4] works like the new in-place list.sort(), but sorts a new list created from the iterable.

Notes:

(1) if i or j is negativ e, the index is relativ e to the end of the string, ie len(s)+i or len(s)+j is substituted. But note that -0 is

still 0.

(2) The slice of s from i to j is defined as the sequence of items with index k such that i<= k < j.

If i or j is greater than len(s), use len(s). If j is omitted, use len(s). If i is greater than or equal to j, the slice is empty .

(3) For strings: x in s is True if x is a substring of s.

(4) Raises a ValueError exception when x is not found in s (i.e. out of range).

Operations on mutable sequences (type list)

Operations on mutable sequences

Operat ion Result Notes

s[i] =x item i of s is replaced by x

s[i:j [:step]] = t slice of s from i to j is replaced by t

del s[i:j[:step]] sam e as s[i:j] = []

s.append(x) sam e as s[len(s) : len(s)] = [x] (6)

s.extend(x) sam e as s[len(s):len(s)]= x (5) (6)

s.count (x) returns num ber of i's for which s[i] == x

s.index(x[, start[, stop]]) returns sm allest i such that s[i]==x. start and stop lim it search to only part of

the list.

(1)

s.insert(i, x) sam e as s[i:i] = [x] if i>= 0. i == -1 inserts before the last elem ent.

s.remove(x) sam e as del s[s.index(x)] (1)

s.pop([i]) sam e as x = s[i]; del s[i]; return x (4)

s.reverse() rev erses the item s of s in place (3)

s.sort ([cmp])

s.sort ([cm p=cmpFunc]

 [, key =keyGetter]

 [, rev erse=bool])

sorts the items of s in place (2), (3)

Notes:

(1) Raises a ValueError exception when x is not found in s (i.e. out of range).

(2) The sort() method takes an optional argument cmp specify ing a comparison function taking 2 list items and returning

-1 , 0, or 1 depending on whether the 1st argument is considered smaller than, equal to, or larger than the 2nd argument.

Note that this slows the sorting process down considerably . Since 2.4, 2 optional keywords args are added: key is a

function of one argument that used to extract a comparison key from each list element (faster than cmp). Also, see

attrgetter and itemgetter in the operator module. reverse: If True, rev erse the sense of the comparison used.

Since Python 2.3, the sort is guaranteed "stable". This means that two entries with equal keys will be returned in the same

order as they were input. For example, you can sort a list of people by name, and then sort the list by age, resulting in a

list sorted by age where people with the same age are in name-sorted order.

(3) The sort() and reverse() methods modify the list in place for economy of space when sorting or reversing a large

list. They don't return the sorted or rev ersed list to remind y ou of this side effect.

(4) The pop() method is not supported by mutable sequence ty pes other than lists. The optional argument i defaults to -1 ,

so that by default the last item is remov ed and returned.

(5) Raises a TypeError when x is not a list object.

(6) append vs. ex tend: append takes any object and places as last element in list, while extend only takes a iterable object

and extends the list with each element in x.

Operations on mappings / dictionaries (type dict)

Operations on mappings

Operat ion Result Notes

len(d) The num ber of item s in d

dict()

dict(**kwargs)

dict(iterable)

dict(d)

Creates an empty dictionary .

Creates a dictionary init with the key word args kwargs.

Creates a dictionary init with (key , v alue) pairs prov ided by iterable.

Creates a dictionary which is a copy of dictionary d.

d.fromkeys(iterable, value=None) Class m ethod to create a dictionary with key s prov ided by iterator, and

all v alues set to value.

d[k] The item of d with key k (1)

d[k] = x Set d[k] to x

del d[k] Rem ov es d[k] from d (1)

d.clear() Rem ov es all item s from d

d.copy () A shallow copy of d

d.has_key(k)

k in d

True if d has key k, else False

d.items() A copy of d's list of (key , item) pairs (2)

d.keys() A copy of d's list of key s (2)

d1.update(d2) for k, v in d2.items(): d1[k] = v

Since 2.4, update(**kwargs) and update(iterable) m ay also be used.

d.values() A copy of d's list of v alues (2)

d.get (k [, defaultval]) The item of d with key k (3)

d.setdefault (k[,defaultval]) d[k] if k in d, else defaultval (and inserts it) (4)

d.iteritems() Returns an iterator ov er (key , v alue) pairs.

d.iterkeys() Returns an iterator ov er the mapping's keys.

d.itervalues() Returns an iterator ov er the mapping's values.

d.pop(k[, default]) Rem ov es key k and returns the corresponding v alue. If key is not found,

default is returned if giv en, otherwise KeyError is raised.

d.popitem() Rem ov es and returns an arbitrary (key , v alue) pair from d

d.viewitems() Returns a view object of the (key , v alue) pairs (5)

d.viewkeys() Returns a view object of the mappings keys (5)

d.viewvalues() Returns a view object of the mappings values (5)

Notes:

TypeError is raised if key is not acceptable.

(1) KeyError is raised if key k is not in the map.

(2) Keys and v alues are listed in random order.

(3) Nev er raises an exception if k is not in the map, instead it returns defaultval. defaultval is optional, when not

provided and k is not in the map, None is returned.

(4) Nev er raises an exception if k is not in the map, instead returns defaultVal, and adds k to map with value defaultVal.

defaultVal is optional. When not provided and k is not in the map, None is returned and added to map.

(5) A view object provides a dynamic v iew on the dictionary 's entries, which means that when the dictionary changes,

the v iew reflects these changes. A v iew object is also iterable.

Operations on strings (types str & unicode)

These string methods largely (but not completely) supersede the functions available in the string module.

The str and unicode ty pes share a common base class basestring.

Operations on strings

Operat ion Result Notes

s.capitalize() Returns a copy of s with its first character capitalized, and the rest of the

characters lowercased.

s.center(width[, fillChar=' ']) Returns a copy of s centered in a string of length width, surrounded by the

appropriate num ber of fillChar characters.

(1)

s.count (sub[, start[, end]]) Returns the num ber of occurrences of substring sub in string s. (2)

s.decode([encoding[, errors]]) Returns a unicode string representing the decoded v ersion of str s, using the

giv en codec (encoding). Useful when reading from a file or a I/O function that

handles only str. Inv erse of encode.

(3)

s.encode([encoding[, errors]]) Returns a str representing an encoded v ersion of s. Mostly used to encode a

unicode str ing to a str in order to print it or write it to a file (since these I/O

functions only accept str), e.g. u'légère'.encode('utf8'). Also used to encode

a str to a str, e.g. to zip (codec 'zip') or uuencode (codec 'uu') it. Inv erse of

decode.

(3)

s.endswith(suffix [, start[, end]]) Returns True if s ends with the specified suffix, otherwise return false. Since 2.5

suffix can also be a tuple of strings to try .

(2)

s.expandtabs([tabsize]) Returns a copy of s where all tab characters are expanded using spaces. (4)

s.find(sub [,start[,end]]) Returns the lowest index in s where substring sub is found. Returns -1 if sub is not

found.

(2)

s.format(*args, *kwargs) Returns s after replacing numeric and nam ed form atting references found in

braces {}. (details)

s.index(sub[, start[, end]]) like find(), but raises ValueError when the substring is not found. (2)

s.isalnum() Returns True if all characters in s are alphanum eric, False otherwise. (5)

s.isalpha() Returns True if all characters in s are alphabetic, False otherwise. (5)

s.isdigit() Returns True if all characters in s are digit characters, False otherwise. (5)

s.islower() Returns True if all characters in s are lowercase, False otherwise. (6)

s.isspace() Returns True if all characters in s are whitespace characters, False otherwise. (5)

s.istit le() Returns True if string s is a titlecased string, False otherwise. (7)

s.isupper() Returns True if all characters in s are uppercase, False otherwise. (6)

separator.join(seq) Returns a concatenation of the strings in the sequence seq, separated by string

separator, e.g.: ",".join(['A', 'B', 'C']) -> "A,B,C"

separator, e.g.: ",".join(['A', 'B', 'C']) -> "A,B,C"

s.ljust/rjust/center(width[,

fillChar=' '])

Returns s left/right justified/centered in a string of length width. (1), (8)

s.lower() Returns a copy of s conv erted to lowercase.

s.lstrip([chars]) Returns a copy of s with leading chars (default: blank chars) rem ov ed.

s.partition(separ) Searches for the separator separ in s, and returns a tuple (head, sep, tail)

containing the part before it, the separator itself, and the part after it. If the

separator is not found, returns (s, '', '').

s.replace(old, new[, maxCount =-1]) Returns a copy of s with the first maxCount (-1 : unlim ited) occurrences of

substring old replaced by new .

(9)

s.rfind(sub[, start[, end]]) Returns the highest index in s where substring sub is found. Returns -1 if sub is

not found.

(2)

s.rindex(sub[, start[, end]]) like rfind(), but raises ValueError when the substring is not found. (2)

s.rpartition(separ) Searches for the separator separ in s, starting at the end of s, and returns a tuple

(head, sep, tail) containing the (left) part before it, the separator itself, and

the (right) part after it. If the separator is not found, returns ('', '', s).

s.rstrip([chars]) Returns a copy of s with trailing chars(default: blank chars) rem ov ed, e.g.

aPath.rstrip('/') will remov e the trailing '/'from aPath if it exists

s.split ([separator[, maxsplit]]) Returns a list of the words in s, using separator as the delim iter string. (1 0)

s.rsplit ([separator[, maxsplit]]) Sam e as split, but splits from the end of the string. (1 0)

s.split lines([keepends]) Returns a list of the lines in s, breaking at line boundaries. (1 1)

s.startswith(prefix [, start[, end]]) Returns True if s starts with the specified prefix, otherwise returns False.

Negativ e numbers m ay be used for start and end. Since 2.5 prefix can also be a

tuple of strings to try .

(2)

s.strip([chars]) Returns a copy of s with leading and trailing chars(default: blank chars)

rem ov ed.

s.swapcase() Returns a copy of s with uppercase characters conv erted to lowercase and v ice

v ersa.

s.t it le() Returns a titlecased copy of s, i.e. words start with uppercase characters, all

rem aining cased characters are lowercase.

s.translate(table[, deletechars='']) Returns a copy of s m apped through translation table table. Characters from

deletechars are rem ov ed from the copy prior to the m apping. Since 2 .6 table m ay

also be None (identity transformation) - useful for using translate to delete

chars only .

(1 2)

s.upper() Returns a copy of s conv erted to uppercase.

s.zfill(width) Returns the num eric string left filled with zeros in a string of length width.

Notes:

(1) Padding is done using spaces or the giv en character.

(2) If optional argument start is supplied, substring s[start:] is processed. If optional arguments start and end are

supplied, substring s[start:end] is processed.

(3) Default encoding is sys.getdefaultencoding(), can be changed v ia sys.setdefaultencoding(). Optional argument

errors may be given to set a different error handling scheme. The default for errors is 'strict', meaning that encoding

errors raise a ValueError. Other possible v alues are 'ignore' and 'replace'. See also module codecs.

(4) If optional argument tabsize is not given, a tab size of 8 characters is assumed.

(5) Returns False if string s does not contain at least one character.

(6) Returns False if string s does not contain at least one cased character.

(7) A titlecased string is a string in which uppercase characters may only follow uncased characters and lowercase

characters only cased ones.

(8) s is returned if width is less than len(s).

(9) If the optional argument maxCount is giv en, only the first maxCount occurrences are replaced.

(10) If separator is not specified or None, any whitespace string is a separator. If maxsplit is given, at most maxsplit splits

are done.

(11) Line breaks are not included in the resulting list unless keepends is giv en and true.

(12) table must be a string of length 256.

String fo rmatt ing w ith the % ope rato r

formatString % args --> ev aluates to a string

formatString mixes normal text with C printf format fields :

%[flag][width][.precision] formatCode

where formatCode is one of c, s, i, d, u, o, x , X, e, E, f, g, G, r, % (see table below).

The flag characters -, +, blank, # and 0 are understood (see table below).

Width and precision may be a * to specify that an integer argument giv es the actual width or precision. Examples of

width and precision :

Examples

Format st ring Result

'%3d' % 2 ' 2'

'%*d' % (3, 2) ' 2'

'%-3d' % 2 '2 '

'%03d' % 2 '002'

'% d' % 2 ' 2'

'%+d' % 2 '+2'

'%+3d' % -2 ' -2'

'%- 5d' % 2 ' 2 '

'%.4f' % 2 '2.0000'

'%.4f' % 2 '2.0000'

'%.*f' % (4, 2) '2.0000'

'%0*.*f' % (10, 4, 2) '00002.0000'

'%10.4f' % 2 ' 2.0000'

'%010.4f' % 2 '00002.0000'

%s will conv ert any ty pe argument to string (uses str() function)

args may be a single arg or a tuple of args

'%s has %03d quote types.' % ('Python', 2) == 'Python has 002 quote types.'

Right-hand-side can also be a mapping:

a = '%(lang)s has %(c)03d quote types.' % {'c':2, 'lang':'Python'}

(vars() function very handy to use on right-hand-side)

Format codes

Code Meaning

d Signed integer decim al.

i Signed integer decim al.

o Unsigned octal.

u Unsigned decimal.

x Unsigned hexadecim al (lowercase).

X Unsigned hexadecim al (uppercase).

e Floating point exponential format (lowercase).

E Floating point exponential format (uppercase).

f Floating point decim al format.

F Floating point decim al format.

g Sam e as "e" if exponent is greater than -4 or less than precision, "f" otherwise.

G Sam e as "E" if exponent is greater than -4 or less than precision, "F" otherwise.

c Single character (accepts integer or single character string).

r String (conv erts any py thon object using repr()).

s String (conv erts any py thon object using str()).

% No argument is conv erted, results in a "%" character in the result. (The complete specification is %%.)

Conversion flag characters

Flag Meaning

The v alue conv ersion will use the "alternate form".

0 The conv ersion will be zero padded.

- The conv erted v alue is left adjusted (ov errides "-").

 (a space) A blank should be left before a positiv e number (or empty string) produced by a signed conv ersion.

+ A sign character ("+" or "-") will precede the conv ersion (ov errides a "space" flag).

String templat ing

Since 2.4 [PEP 292] the string module provides a new mechanism to substitute v ariables into template strings.

Variables to be substituted begin with a $. Actual v alues are provided in a dictionary v ia the substitute or safe_substitute

methods (substitute throws KeyError if a key is missing while safe_substitute ignores it) :

 t = string.Template('Hello $name, you won $$$amount') # (note $$ to literalize $)

 t.substitute({'name': 'Eric', 'amount': 100000}) # -> u'Hello Eric, you won $100000'

String fo rmatt ing w ith fo rmat()

Since 2.6 [PEP 3101] string formatting can also be done with the format() method:

"string-to-format".form at(args)

Format fields are specified in string-to-format, surrounded by {}, while actual values are args to format():

{[field][!conversion][:format_spec]}

Each field refers to an arg either by its position (>=0), or by its name if it's a keyword argument. If left out, automatic

numbering is used, so the first {...} specifier will use the first argument, the next specifier will use the next argument,

and so on. Autonumbering cannot be mixed with explicit numbering, but it can be mixed with named fields. The same arg

can be referenced more than once.

The conversion can be !s or !r to call str() or repr() on the field before formatting.

The format_spec takes the following form:

[[fill]align][sign][#][0][width][,][.precision][type]

The align flag controls the alignment when padding values (see table below), and can be preceded by a fill

character. A fill cannot be used on its own.

The sign flag controls the display of signs on numbers (see table below).

The # flag adds a leading 0b, 0o, or 0x for binary , octal, and hex conversions.

The 0 flag zero-pads numbers, equivalent to having a fill-align of 0=.

The width is a number giv ing the minimum field width. Padding will be added according to align until this width is

achieved.
The , option indicates that commas should be included in the output as a thousands separator.

The , option indicates that commas should be included in the output as a thousands separator.

For floating-point conversions, precision giv es the number of places to display after the decimal point. For non-

numeric conv ersion, precision giv es the maximum field width.

The type specifies how to present numeric ty pes (see tables below).

Braces can be doubled ({{ or }}) to insert a literal brace character.

Alignment flag characters

Flag Meaning

< Left-aligns the field and pads to the right (default for non-num bers)

> Right-aligns the field and pads to the left (default for numbers)

= Inserts padding between the sign and the field (num bers only)

^ Aligns the field to the center and pads both sides

Sign flag characters

Flag Meaning

+ Display s a sign for all numbers

- Display s a sign for negativ e numbers only (default)

 (a space) Display s a sign for negativ e num bers and a space for positiv e num bers

Integer type flags

Flag Meaning

b Binary format (base 2)

c Character (interprets integer as a Unicode code point)

d Decimal format (base 1 0) (default)

o Octal form at (base 8)

x Hexadecim al form at (base 1 6) (lowercase)

X Hexadecim al form at (base 1 6) (uppercase)

Floating-point type flags

Flag Meaning

e Exponential format (lowercase)

E Exponential format (uppercase)

f Fixed-point form at

F Fixed-point form at (sam e as "f")

g General format - same as "e" if exponent is greater than -4 or less than precision, "f" otherwise. (default)

G General format - Sam e as "E" if exponent is greater than -4 or less than precision, "F" otherwise.

n Number form at - Same as "g", except it uses locale settings for separators.

% Percentage - Multiplies by 1 00 and display s as "f", followed by a percent sign.

For examples, see Format examples in the Py thon documentation.

Operations on files (type file)

(Type file). Created with built-in functions open() [preferred] or its alias file(). May be created by other modules' functions as

well.

Unicode file names are now supported for all functions accepting or returning file names (open, os.listdir, etc...).

Operato rs o n file o b je c ts

File operations

Operat ion Result

f.close() Close file f.

f.fileno() Get fileno (fd) for file f.

f.flush() Flush file f's internal buffer.

f.isatty () 1 if file f is connected to a tty -like dev , else 0.

f.next () Returns the next input line of file f, or raises StopIteration when EOF is hit. Files are their own

iterators. next is im plicitly called by constructs like for line in f: print line.

f.read([size]) Read at m ost size by tes from file f and return as a string object. If size om itted, read to EOF.

f.readline() Read one entire line from file f. The returned line has a trailing \n, except possibly at EOF. Return ''

on EOF.

f.readlines() Read until EOF with readline() and return a list of lines read.

f.xreadlines() Return a sequence-like object for reading a file line-by -line without reading the entire file into

memory . From 2.2 , use rather: for line in f (see below).

for line in f: do something... Iterate ov er the lines of a file (using readline)

f.seek(offset[, whence=0]) Set file f's position, like "stdio's fseek()".

whence == 0 then use absolute indexing.

whence == 1 then offset relativ e to current pos.

whence == 2 then offset relativ e to file end.

f.tell() Return file f's current position (by te offset).

f.truncate([size]) Truncate f's size. If size is present, f is truncated to (at m ost) that size, otherwise f is truncated at

current position (which rem ains unchanged).

f.write(str) Write string to file f.

f.writelines(list) Write list of strings to file f. No EOL are added.

File Exc ept ions

EOFError

En d-of-file h it w h en r ea din g (m a y be r a ised m an y t im es, e.g . if f is a t ty).

IOError

Oth er I/O-r ela ted I/O oper a tion fa ilu r e

Operation on sets (types set & frozenset)

set and frozenset (immutable set). Sets are unordered collections of unique (non duplicate) elements. Elements must be

hashable. frozensets are hashable (thus can be elements of other sets) while sets are not. All sets are iterable.

A set may be created with set(iterable) or curly brackets ({}), which also allows for list comprehensions, using curly brackets

instead of square brackets.

Classes Sets and ImmutableSet in the module sets is now deprecated.

Main Set operations

Operat ion Result

set/frozenset([iterable=None]) [using built-in ty pes] Builds a set or frozenset from the giv en iterable (default:

empty), e.g. set([1,2,3]), set("hello").

len(s) Cardinality of set s.

elt in s / not in s True if elem ent elt belongs / does not belong to set s.

for elt in s: process elt... Iterates on elem ents of set s.

s1.issubset (s2) True if ev ery elem ent in s1 is in iterable s2.

s1.issuperset(s2) True if ev ery elem ent in s2 is in iterable s1.

s.add(elt) Adds elem ent elt to set s (if it doesn't already exist).

s.remove(elt) Rem ov es element elt from set s. KeyError if element not found.

s.discard(elt) Rem ov es element elt from set s if present.

s.pop() Rem ov es and returns an arbitrary elem ent from set s; raises KeyError if em pty .

s.clear() Rem ov es all elements from this set (not on im m utable sets!).

s1.intersection(s2[, s3...]) or s1&s2 Returns a new Set with elem ents common to all sets (in the m ethod s2, s3,... can be

any iterable).

s1.union(s2[, s3...]) or s1|s2 Returns a new Set with elem ents from either set (in the m ethod s2, s3,... can be any

iterable).

s1.difference(s2[, s3...]) or s1-s2 Returns a new Set with elem ents in s1 but not in any of s2, s3 ... (in the m ethod s2,

s3,... can be any iterable)

s1.symmetric_difference(s2) or s1^s2 Returns a new Set with elem ents in either s1 or s2 but not both.

s.copy() Returns a shallow copy of set s.

s.update(iterable1[, iterable2...]) Adds all v alues from all giv en iterables to set s.

Named Tuples

Python 2.6 module collections introduces the namedtuple dataty pe. The factory function namedtuple(typename, fieldnames)

creates subclasses of tuple whose fields are accessible by name as well as index :

Create a named tuple class 'person':

person = collections.namedtuple('person', 'name firstName age') # field names separated by space or comma

assert issubclass(person, tuple)

assert person._fields == ('name', 'firstName', 'age')

Create an instance of person:

jdoe = person('Doe', 'John', 30)

assert str(jdoe) == "person(name='Doe', firstName='John', age=30)"

assert jdoe[0] == jdoe.name == 'Doe' # access by index or name is equivalent

assert jdoe[2] == jdoe.age == 30

Convert instance to dict:

assert jdoe._asdict() == {'age': 30, 'name': 'Doe', 'firstName': 'John'}

Although tuples are normally immutable, one can change field values via _replace():

jdoe._replace(age=25, firstName='Jane')

assert str(jdoe) == "person(name='Doe', firstName='Jane', age=25)"

Date/Time

Python has no intrinsic Date and Time ty pes, but prov ides 2 built-in modules:

time: time access and conv ersions

datetime: classes date, time, datetime, timedelta, tzinfo.

calendar: with functions such as isleap(year), leapdays(y1, y2) and weekday(year, month, day).

See also the third-party module: mxDateTime.

Advanced Types

- See manuals for more details -

Module objects

Class objects

Class instance objects

Type objects (see m odule: ty pes)

File objects (see abov e)

Slice objects

Ellipsis object, used by extended slice notation (unique, nam ed Ellipsis)

Null object (unique, nam ed None)

XRange objects

Callable ty pes:

User-defined (written in Py thon):

User-defined Function objects

User-defined Method objects

Built-in (written in C):

Built-in Function objects

Built-in Method object

Internal Ty pes:

Code objects (by te-com pile executable Py thon code: bytecode)

Frame objects (execution frames)

Traceback objects (stack trace of an exception)

Statements

Statement Result

pass Null statem ent

del name[, name]* Unbind name(s) from object. Object will be indirectly (and autom atically) deleted only

if no longer referenced.

print[>> fileobject,] [s1 [, s2]* [,] Writes to sy s.stdout, or to fileobject if supplied. Puts spaces between argum ents. Puts

newline at end unless statem ent ends with comma [if nothing is printed when using a

comm a, try calling sys.stdout.flush()]. Print is not required when running

interactiv ely , sim ply ty ping an expression will print its v alue, unless the v alue is None.

exec x [in globals [, locals]] Executes x in nam espaces prov ided. Defaults to current nam espaces. x can be a string,

open file-like object or a function object. locals can be any m apping ty pe, not only a

regular Py thon dict. See also built-in function execfile.

callable(value,... [id=value] , [*args],

[**kw])

Call function callable with parameters. Param eters can be passed by name or be omitted

if function defines default v alues. E.g. if callable is defined as "def callable(p1=1,

p2=2)"

"callable()" <=> "callable(1 , 2)"

"callable(1 0)" <=> "callable(1 0, 2)"

"callable(p2=99)" <=> "callable(1 , 99)"

*args is a tuple of positional argum ents.

**kw is a dictionary of keyword arguments.

See function definition.

Assignment operators

Assignment operators

Operator Result Notes

a = b Basic assignment - assign object b to label a (1)(2)

a += b Roughly equiv alent to a = a + b (3)

a -= b Roughly equiv alent to a = a - b (3)

a *= b Roughly equiv alent to a = a * b (3)

a /= b Roughly equiv alent to a = a / b (3)

a //= b Roughly equiv alent to a = a // b (3)

a %= b Roughly equiv alent to a = a % b (3)

a **= b Roughly equiv alent to a = a ** b (3)

a &= b Roughly equiv alent to a = a & b (3)

a |= b Roughly equiv alent to a = a | b (3)

a ^= b Roughly equiv alent to a = a ^ b (3)

a >>= b Roughly equiv alent to a = a >> b (3)

a <<= b Roughly equiv alent to a = a << b (3)

Notes:

(1) Can unpack tuples, lists, and strings:

first, second = l[0:2] # equivalent to: first=l[0]; second=l[1]

[f, s] = range(2) # equivalent to: f=0; s=1

c1,c2,c3 = 'abc' # equivalent to: c1='a'; c2='b'; c3='c'

(a, b), c, (d, e, f) = ['ab', 'c', 'def'] # equivalent to: a='a'; b='b'; c='c'; d='d'; e='e'; f='f'

Tip: x,y = y,x swaps x and y.

(2) Multiple assignment possible:

a = b = c = 0

list1 = list2 = [1, 2, 3] # list1 and list2 points to the same list (l1 is l2)

(3) Not exactly equivalent - a is ev aluated only once. Also, where possible, operation performed in-place - a is modified

rather than replaced.

Conditional Expressions

Conditional Expressions (not statements) hav e been added since 2.5 [PEP 308]:

result = (whenTrue if condition else whenFalse)

is equiv alent to:

if condition:

 result = whenTrue

else:

 result = whenFalse

() are not mandatory but recommended.

Control Flow statements

Control flow statements

Statement Result

if condition:

 suite

[elif condition: suite]*

[else:

 suite]

Usual if/else if/else statem ent. See also Conditional Expressions for one-line if-statem ents.

while condition:

 suite

[else:

 suite]

Usual while statement. The else suite is executed after loop exits, unless the loop is exited with

break.

for element in sequence:

 suite

[else:

 suite]

Iterates ov er sequence, assigning each elem ent to element. Use built-in range or xrange function to

iterate a number of times. The else suite is executed at end unless loop exited with break.

Also see List com prehensions.

break Imm ediately exits for or while loop.

continue Imm ediately does next iteration of for or while loop.

return [result] Exits from function (or method) and returns result (use a tuple to return m ore than one v alue). If

no result giv en, then returns None.

yield expression (Only used within the body of a generator function, outside a try of a try..finally). "Returns" the

ev aluated expression.

Exception statements

Exception statements

Statement Result

assert expr[, message] expr is ev aluated. if false, raises exception AssertionError with m essage. Before 2.3 ,

inhibited if __debug__ is 0.

try:

 block1

[except [exception [, value]]:

 handler]+

[except [exception [as value]]:

 handler]+

[else:

 else-block]

Statem ents in block1 are executed. If an exception occurs, look in except clause(s) for

matching exception(s). If matches or bare except, execute handler of that clause. If no

exception happens, else-block in else clause is executed after block1. If exception has a

v alue, it is put in v ariable value. exception can also be a tuple of exceptions, e.g.

except(KeyError, NameError), e: print e.

2.6 also supports the key word as instead of a comm a between the exception and the

value, which will become a mandatory change in Py thon 3 .0 [PEP31 1 0].

try:

 block1

finally:

 final-block

Statem ents in block1 are executed. If no exception, execute final-block (ev en if block1 is

exited with a return, break or continue statem ent). If exception did occur, execute

final-block and then imm ediately re-raise exception. Ty pically used to ensure that a

resource (file, lock...) allocated before the try is freed (in the final-block) whatev er

the outcome of block1 execution. See also the with statem ent below.

try:

 block1

[except [exception [, value]]:

 handler1]+

[except [exception [as value]]:

 handler]+

[else:

 else-block]

finally:

 final-block

Unified try /except/finally . Equiv alent to a try...except nested inside a

try..finally [PEP3 41]. See also the with statem ent below.

with allocate-expression [as variable]:

 with-block

with allocate-expression as variable [,

allocate-expression2 as variable2:

 with-block

Alternativ e to the try...finally structure [PEP343].

allocate-expression should ev aluate to an object that supports the context management

protocol, representing a resource. This object may return a v alue that can optionally

be bound to variable (v ariable is not assigned the result of expression).

The object can then run set-up code before with-block is executed and som e clean-

up code is executed after the block is done, ev en if the block raised an exception.

Standard Py thon objects such as files and locks support the context m anagem ent

protocol:

with open('/etc/passwd', 'r ') as f: # file automatically closed on block exit

 for line in f:

 print line

 print line

with threading.Lock(): # lock automatically released on block exit

 do something...

- You can write y our own context m anagers.

- Helper functions are av ailable in m odule contextlib.

In 2.5 the statem ent m ust be enabled by : from __future__ import

with_statement. The statem ent is alway s enabled starting in Py thon 2 .6.

raise exceptionInstance Raises an instance of a class deriv ed from BaseException (preferred form of raise).

raise exceptionClass [, value [,

traceback]]

Raises exception of giv en class exceptionClass with optional v alue value. Arg traceback

specifies a traceback object to use when printing the exception's backtrace.

raise A raise statement without arguments re-raises the last exception raised in the current

function.

An exception is an instance of an exception class.

Exception classes must be deriv ed from the predefined class: Exception, e.g.:

class TextException(Exception): pass
try:

 if bad:

 raise TextException()
except Exception:

 print 'Oops' # This will be printed because TextException is a subclass of Exception

When an error message is printed for an unhandled exception, the class name is printed, then a colon and a space, and

finally the instance converted to a string using the built-in function str().

All built-in exception classes deriv es from StandardError, itself deriv ed from Exception.

[PEP 352]: Exceptions can now be new-sty le classes, and all built-in ones are. Built-in exception hierarchy slightly

reorganized with the introduction of base class BaseException. Raising strings as exceptions is now deprecated (warning).

Name Space Statements

Imported module files must be located in a directory listed in the Python path (sys.path). Since 2.3, they may reside in a zip

file [e.g. sy s.path.insert(0, "aZipFile.zip")].

Absolute/relative imports (since 2.5 [PEP328]):

Feature must be enabled by: from __future__ import absolute_import: will probably be adopted in 2.7 .

Imports are normally relative: modules are searched first in the current directory/package, and then in the builtin

modules, resulting in possible ambiguities (e.g. masking a builtin sy mbol).

When the new feature is enabled:

import X will look up for module X in sys.path first (absolute import).

import .X (with a dot) will still search for X in the current package first, then in builtins (relative import).

import ..X will search for X in the package containing the current one, etc...

Packages (>1 .5): a package is a name space which maps to a directory including module(s) and the special initialization

module __init__.py (possibly empty).

Packages/directories can be nested. Y ou address a module's sy mbol v ia [package.[package...].module.symbol.

[1 .51: On Mac & Windows, the case of module file names must now match the case as used in the import statement]

Name space statements

Statement Result

import module1 [as name1] [,

module2]*

Imports modules. Mem bers of module m ust be referred to by qualify ing with

[package.]module nam e, e.g.:

import sys; print sys.argv

import package1.subpackage.module
package1.subpackage.module.foo()

module1 renamed as name1, if supplied.
from module import name1 [as

othername1][, name2]*

Imports nam es from m odule module in current nam espace.

from sys import argv; print argv

from package1 import module; module.foo()
from package1.module import foo; foo()

name1 renam ed as othername1, if supplied.

[2 .4] You can now put parentheses around the list of nam es in a from module import

names statement (PEP 328).
from module import * Imports all nam es in module, except those starting with "_". Use sparsely, beware of

name clashes!

from sys import *; print argv
from package.module import *; print x

Only legal at the top lev el of a m odule.

If module defines an __all__ attribute, only names listed in __all__ will be im ported.

NB: "from package import *" only imports the sy m bols defined in the package's

__init__.py file, not those in the package's modules !
global name1 [, name2] Names are from global scope (usually meaning from module) rather than local (usually

m eaning only in function).

E.g. in function without global statem ents, assuming "x" is nam e that hasn't been used in

function or m odule so far:

- Try to read from "x" -> NameError

- Try to write to "x" -> creates "x" local to function

If "x" not defined in function, but is in m odule, then: - Try to read from "x", gets v alue from

m odule

- Try to write to "x", creates "x" local to function

But note "x[0]=3" starts with search for "x", will use to global "x" if no local "x".

Function Definition

def funcName ([paramList]):

 suite

Creates a function object and binds it to nam e funcName.

paramList ::= [param [, param]*]

param ::= value | id=value | *id | **id

Args are passed by "call-by -object-reference". This means, that mutable objects can be modified (ie. inout parameters),

while immutable are passed by v alue (ie. in parameters).

Use return to return (None) from the function, or return value to return value. Use a tuple to return more than one

v alue, e.g. return 1,2,3

Keyword arguments arg=value specify a default value (evaluated at function def. time). They can only appear last in the

param list, e.g. foo(x, y=1, s='').

Pseudo-arg *args captures a tuple of all remaining non-key word args passed to the function, e.g. if def foo(x, *args):

... is called foo(1, 2, 3), then args will contain (2,3).

Pseudo-arg **kwargs captures a dictionary of all extra key word arguments, e.g. if def foo(x, **kwargs): ... is called

foo(1, y=2, z=3), then kwargs will contain {'y':2, 'z':3}. if def foo(x, *args, **kwargs): ... is called foo(1, 2,

3, y=4, z=5), then args will contain (2, 3), and kwargs will contain {'y':4, 'z':5}

args and kwargs are conv entional names, but other names may be used as well.

*args and **kwargs can be "forwarded" (indiv idually or together) to another function, e.g.

def f1(x, *args, **kwargs):

 f2(*args, **kwargs)

Since 2.6, **kwargs can be any mapping, not only a dict.

See also Anonymous functions (lambdas).

Class Definition

class className [(super_class1[, super_class2]*)]:

 suite

Creates a class object and assigns it name className.

suite may contain local "defs" of class m ethods and assignm ents to class attributes.

Examples:

class MyClass (class1, class2): ...

 Creates a class object inheriting from both class1 and class2. Assigns new class object to name MyClass.

class MyClass: ...

 Creates a base class object (inheriting from nothing). Assigns new class object to name MyClass. Since 2.5 the equiv alent

syntax class MyClass(): ... is allowed.

class MyClass (object): ...

 Creates a new-style class (inheriting from object makes a class a new-style class -available since Py thon 2.2-). Assigns new

class object to name MyClass.

First arg to class instance methods (operations) is alway s the target instance object, called 'self' by conv ention.

Special static method __new__(cls[,...]) called when instance is created. 1st arg is a class, others are args to __init__(),

more details here

Special method __init__() is called when instance is created.

Special method __del__() called when no more reference to object.

Create instance by "calling" class object, possibly with arg (thus instance=apply (aClassObject, args...) creates an

instance!)

Example:

class c (c_parent):

 def __init__(self, name):

 self.name = name

 def print_name(self):

 print "I'm", self.name

 def call_parent(self):

 c_parent.print_name(self)

 c_parent.print_name(self)

instance = c('tom')

print instance.name

'tom'

instance.print_name()

"I'm tom"

Call parent's super class by accessing parent's method directly and passing self explicitly (see call_parent in example above).

Many other special methods available for implementing arithmetic operators, sequence, mapping indexing, etc...

Type s / c lasse s unific at io n

Base types int, float, str, list, tuple, dict and file now (2.2) behav e like classes derived from base class object, and may

be subclassed:

x = int(2) # built-in cast function now a constructor for base type

y = 3 # <=> int(3) (litterals are instances of new base types)

print type(x), type(y) # int, int

assert isinstance(x, int) # replaces isinstance(x, types.IntType)

assert issubclass(int, object) # base types derive from base class 'object'.

s = "hello" # <=> str("hello")

assert isinstance(s, str)

f = 2.3 # <=> float(2.3)

class MyInt(int): pass # may subclass base types

x,y = MyInt(1), MyInt("2")

print x, y, x+y # => 1,2,3

class MyList(list): pass

l = MyList("hello")

print l # ['h', 'e', 'l', 'l', 'o']

New-style classes extends object. Old-style classes don't.

Documentat ion Strings

Modules, classes and functions may be documented by placing a string literal by itself as the first statement in the suite. The

documentation can be retrieved by getting the '__doc__' attribute from the module, class or function.

Example:

class C:

 "A description of C"

 def __init__(self):

 "A description of the constructor"

 # etc.

c.__doc__ == "A description of C".
c.__init__.__doc__ == "A description of the constructor"

Iterators

An iterator enumerates elements of a collection. It is an object with a single method next() returning the next element or

raising StopIteration.

Y ou get an iterator on obj v ia the new built-in function iter(obj), which calls obj.__class__.__iter__().

A collection may be its own iterator by implementing both __iter__() and next().

Built-in collections (lists, tuples, strings, dict) implement __iter__(); dictionaries (maps) enumerate their keys; files

enumerates their lines.

Y ou can build a list or a tuple from an iterator, e.g. list(anIterator)

Python implicitly uses iterators wherever it has to loop :

for elt in collection:

if elt in collection:

when assigning tuples: x,y,z= collection

Generators

A generator is a function that retains its state between 2 calls and produces a new value at each inv ocation. The v alues

are returned (one at a time) using the key word yield, while return or raise StopIteration() are used to notify the end of

v alues.

A ty pical use is the production of IDs, names, or serial numbers. Fancier applications like nanothreads are also possible.

To use a generator: call the generator function to get a generator object, then call generator.next() to get the next

v alue until StopIteration is raised.

2.4 introduces generator expressions [PEP 289] similar to list comprehensions, except that they create a generator

that will return elements one by one, which is suitable for long sequences :

 linkGenerator = (link for link in get_all_links() if not link.followed)

 for link in linkGenerator:

 ...process link...

Generator expressions must appear between parentheses.

[PEP342] Generators before 2.5 could only produce output. Now values can be passed to generators v ia their method

send(value). yield is now an expression returning a v alue, so val = (yield i) will yield i to the caller, and will

reciprocally evaluate to the value "sent" back by the caller, or None.

Two other new generator methods allow for additional control:

throw(type, value=None, traceback=None) is used to raise an exception inside the generator (appears as raised

by the yield expression).

close() raises a new GeneratorExit exception inside the generator to terminate the iteration.

Since 2.6 Generator objects have a gi_code attribute that refers to the original code object backing the generator.

Example:

def genID(initialValue=0):

 v = initialValue

 while v < initialValue + 1000:

 yield "ID_%05d" % v

 v += 1

 return # or: raise StopIteration()

generator = genID() # Create a generator

for i in range(10): # Generates 10 values
 print generator.next()

Descriptors / Attribute access

Descriptors are objects implementing at least the first of these 3 methods representing the descriptor protocol:

__get__(self, obj, type=None) --> value

__set__(self, obj, value)

__delete__(self, obj)

Python now transparently uses descriptors to describe and access the attributes and methods of new-sty le classes (i.e.

deriv ed from object).)

Built-in descriptors now allow to define:

Static methods : Use staticmethod(f) to make method f(x) static (unbound), or (recommended) use decorator

@staticmethod.

Class methods: like a static but takes the Class as 1st argument => Use f = classmethod(f) to make method

f(theClass, x) a class method, or (recommended) use decorator @classmethod.

Properties : A property is an instance of the new built-in type property, which implements the descriptor

protocol for attributes => Use propertyName = property(fget=None, fset=None, fdel=None, doc=None) to define

a property inside or outside a class. Then access it as propertyName or obj.propertyName.

Since 2.6, the new decorators @prop.getter, @prop.setter, and @prop.deleter add functions to an existing

property :

class C(object):

 @property # (since Python 2.4)

 def x(self):

 return self._x

 @x.setter

 def x(self, value):

 self._x = value

 @x.deleter

 def x(self):

 del self._x

Slots. New sty le classes can define a class attribute __slots__ to constrain the list of assignable attribute names,

to avoid typos (which is normally not detected by Python and leads to the creation of new attributes), e.g.

__slots__ = ('x', 'y')

Note: According to recent discussions, the real purpose of slots seems still unclear (optimization?), and their use

should probably be discouraged.

Decorators for functions, methods & classes

[PEP 318] A decorator D is noted @D on the line preceding the function/method it decorates :

 @D

 def f(): ...

and is equivalent to:

 def f(): ...

 f = D(f)

thus, a decorator can be any function returning another function usually applied as a function transformation.

Sev eral decorators can be applied in cascade :

Sev eral decorators can be applied in cascade :

 @A

 @B

 @C

 def f(): ...

is equiv alent to:

 f = A(B(C(f)))

A decorator is just a function taking the function to be decorated and returns the same function or some new callable

thing.

Decorator functions can take arguments:

 @A

 @B

 @C(args)

becomes :

 def f(): ...

 _deco = C(args)

 f = A(B(_deco(f)))

The decorators @staticmethod and @classmethod replace more elegantly the equiv alent declarations f =

staticmethod(f) and f = classmethod(f).

[PEP 3129] Decorators may also be applied to classes:

 @D

 class C(): ...

is equiv alent to:

 class C(): ...

 C = D(C)

Some selected decorators

@staticmethod - makes a method static (unbound) from an instance.

@classmethod - A class method receives the class as implicit first argument, just like an instance method receives the

instance.

@prop.getter, @prop.setter and @prop.deleter - Use a function for getting, setting or deleting the property prop

Misc

lambda [param_list]: returnedExpr

Creates an anonymous function.

returnedExpr m ust be an expression, not a statement (e.g., not "if xx:...", "print xxx", etc.) and thus can't contain newlines. Used

mostly for filter(), m ap(), reduce() functions, and GUI callbacks.

List comprehensions

result = [expression for item1 in sequence1 [if condition1]

 [for item2 in sequence2 ... for itemN in sequenceN]

]

is equiv alent to:

result = []

for item1 in sequence1:

 for item2 in sequence2:

 ...

 for itemN in sequenceN:

 if (condition1) and further conditions:

 result.append(expression)

List comprehensions for dictionaries and sets

>>> {x: x*x for x in range(6)}

 {0: 0, 1: 1, 2: 4, 3: 9, 4: 16, 5: 25} # Dictionary

Equiv alent to:

>>> dict([(x, x*x) for x in range(6)])

Sets:

>>> {('a'*x) for x in range(6)}

 set(['', 'a', 'aa', 'aaa', 'aaaa', 'aaaaa'])

See also Generator expressions.

Built-In Functions

Built-in functions are defined in a module automatically imported.

Built-in functions are defined in a module _builtin__ automatically imported.

Built-In Functions

Funct ion Result

__import__(name[,

globals[,locals[,from list]]])

Imports module within the giv en context (see library reference for m ore details)

abs(x) Returns the absolute v alue of the num ber x.

all(iterable) Returns True if bool(x) is True for all v alues x in the iterable.

any(iterable) Returns True if bool(x) is True for any v alue x in the iterable.

apply(f, args[, keywords]) Calls func/m ethod f with argum ents args and optional key words. Deprecated since 2.3,

replace apply(func, args, keywords) with func(*args, **keywords) [details]

basestring() Abstract superclass of str and unicode; can't be called or instantiated directly , but useful in:

isinstance(obj, basestring).

bin(x) Conv erts a number to a binary string.

bool([x]) Conv erts a v alue to a Boolean, using the standard truth testing procedure. If x is false or om itted,

returns False; otherwise returns True. bool is also a class/ty pe, subclass of int. Class bool

cannot be subclassed further. Its only instances are False and True. See also boolean operators

buffer(object[, offset[, size]]) Returns a Buffer from a slice of object, which m ust support the buffer call interface (string,

array , buffer). Non essential function, see [details]

bytearray (iterable)

bytearray (length)

Constructs a mutable sequence of bytes. This ty pe supports m any of the same operations

av ailable in strs and lists. The latter form sets the size and initializes to all zero by tes.

bytes(object) Constructs an 8-bit string representation of an object. Equiv alent to str for now, but this can be

used to explicitly indicate strings which should not be unicode when conv erting to Py thon 3 .0

[PEP3 1 1 2]

callable(x) Returns True if x callable, else False.

chr(i) Returns one-character string whose ASCII code is integer i.

classmethod(function) Returns a class m ethod for function. A class m ethod receiv es the class as im plicit first argum ent,

just like an instance method receiv es the instance. To declare a class method, use this idiom :

 class C:
 def f(cls, arg1, arg2, ...): ...

 f = classmethod(f)

Then call it on the class C.f() or on an instance C().f(). The instance is ignored except for its

class. If a class m ethod is called for a deriv ed class, the deriv ed class object is passed as the implied

first argument.

Since 2.4 y ou can alternativ ely use the decorator notation:

 class C:
 @classmethod

 def f(cls, arg1, arg2, ...): ...

cmp(x,y) Returns negativ e, 0, positiv e if x < , ==, > to y respectiv ely .

coerce(x,y) Returns a tuple of the two numeric argum ents conv erted to a comm on ty pe. Non essential

function, see [details]

compile(string, filename, kind[,

flags[, dont_inherit]])

Com piles string into a code object. filename is used in error message, can be any string. It is

usually the file from which the code was read, or e.g. '<string>' if not read from file. kind can

be 'eval' if string is a single stmt, or 'single' which prints the output of expression statements

that ev aluate to som ething else than None, or be 'exec'. New args flags and dont_inherit concern

future statements. Since 2.6 the function accepts keyword arguments as well as positional

param eters.

complex(real[, image]) Creates a complex object (can also be done using J or j suffix, e.g. 1+3J). Since 2.6, also accepts

strings, with or without parenthesis, e.g. complex('1+3J') or complex('(1+3J)').

delattr(obj, name) Deletes the attribute named name of object obj <=> del obj.name

dict([mapping-or-sequence]) Returns a new dictionary initialized from the optional argum ent (or an empty dictionary if no

argument). Argument m ay be a sequence (or any thing iterable) of pairs (key ,v alue).

dir([object]) Without args, returns the list of names in the current local sy m bol table. With a module, class or

class instance object as arg, returns the list of nam es in its attr. dictionary . Since 2 .6 object can

ov erride the std im plem entation v ia special m ethod __dir__().

divmod(a,b) Returns tuple (a//b, a%b)

enumerate(iterable[, start=0]) Iterator returning pairs (index, item) from iterable, e.g. List(enumerate('Py')) -> [(0,

'P'), (1, 'y')]. 2 .6: Arg start specifies initial index v alue (default: 0).

eval(s[, globals[, locals]]) Ev aluates string s, representing a single py thon expression, in (optional) globals, locals contexts.

s m ust hav e no NUL's or newlines. s can also be a code object. locals can be any m apping ty pe,

not only a regular Py thon dict.

Exam ple:

x = 1; assert eval('x + 1') == 2

(To execute statements rather than a single expression, use Py thon statement exec or built-in

function execfile)

execfile(file[, globals[,locals]]) Executes a file without creating a new module, unlike import. locals can be any m apping ty pe,

not only a regular Py thon dict.

file(filename[,mode[,bufsize]]) Opens a file and returns a new file object. Alias for open.

filter(function,sequence) Constructs a list from those elem ents of sequence for which function returns true. function takes

one parameter.

float (x) Conv erts a number or a string to floating point. Since 2.6, x can be one of the strings 'nan',

'+inf', or '-inf' to represent respectiv ely IEEE 7 54 Not A Num ber, positiv e and negativ e

infinity . Use module math functions isnan() and isinf() to check for NAN or infinity .

format(value[, format_spec]) Formats an object with the giv en specification (default '') by calling its __format__ m ethod.

frozenset([iterable]) Returns a frozenset (imm utable set) object whose (im mutable) elem ents are taken from

iterable, or em pty by default. See also Sets.

iterable, or em pty by default. See also Sets.

getattr(object,name[,default])) Gets attribute called name from object, e.g. getattr(x, 'f') <=> x.f). If not found, raises

AttributeError or returns default if specified.

globals() Returns a dictionary containing the current global v ariables.

hasattr(object, name) Returns true if object has an attribute called name.

hash(object) Returns the hash v alue of the object (if it has one).

help([object]) Inv okes the built-in help sy stem . No argument -> interactiv e help; if object is a string (name of

a module, function, class, method, key word, or docum entation topic), a help page is printed on

the console; otherwise a help page on object is generated.

hex(x) Conv erts a number x to a hexadecimal string.

id(object) Returns a unique integer identifier for object. Since 2 .5 alway s returns non-negativ e num bers.

input([prompt]) Prints prompt if giv en. Reads input and evaluates it. Uses line editing / history if m odule

readline av ailable.

For un-ev aluated input, see raw_input.

int (x[, base]) Conv erts a number or a string to a plain integer. Optional base param eter specifies base from

which to conv ert string v alues.

intern(aString) Enters aString in the table of interned strings and returns the string. Since 2.3, interned

strings are no longer 'immortal' (never garbage collected), see [details]

isinstance(obj, classInfo) Returns true if obj is an instance of class classInfo or an object of type classInfo (classInfo m ay

also be a tuple of classes or ty pes). If issubclass(A,B) then isinstance(x,A) =>
isinstance(x,B)

issubclass(class1, class2) Returns true if class1 is deriv ed from class2 (or if class1 is class2).

iter(obj[,sentinel]) Returns an iterator on obj. If sentinel is absent, obj m ust be a collection implementing either

__iter__() or __getitem__(). If sentinel is giv en, obj will be called with no arg; if the v alue

returned is equal to sentinel, StopIteration will be raised, otherwise the v alue will be returned.

See Iterators.

len(obj) Returns the length (the num ber of item s) of an object (sequence, dictionary , or instance of class

implem enting __len__).

list([seq]) Creates an empty list or a list with same elem ents as seq. seq m ay be a sequence, a container

that supports iteration, or an iterator object. If seq is already a list, returns a shallow copy of it.

locals() Returns a dictionary containing current local v ariables.

long(x[, base]) Conv erts a number or a string to a long integer. Optional base param eter specifies the base from

which to conv ert string v alues.

map(function, sequence[,

sequence, ...])

Returns a list of the results of apply ing function to each item from sequence(s). If more than one

sequence is giv en, the function is called with an argum ent list consisting of the corresponding

item of each sequence, substituting None for missing v alues when not all sequences hav e the

sam e length. If function is None, returns a list of the items of the sequence (or a list of tuples if

m ore than one sequence). => You m ight also consider using list comprehensions instead of

map().

max(iterable[, key=func])

max(v1, v2, ...[, key=func])

With a single argum ent iterable, returns the largest item of a non-em pty iterable (such as a

string, tuple or list). With more than one argument, returns the largest of the arguments. The

optional key arg is a function that takes a single argum ent and is called for ev ery v alue in the

list.

min(iterable[, key=func])

min(v1, v2, ...[, key=func])

With a single argum ent iterable, returns the smallest item of a non-em pty iterable (such as a

string, tuple or list). With more than one argument, returns the sm allest of the argum ents. The

optional key arg is a function that takes a single argum ent and is called for ev ery v alue in the

list.

next(iterator[, default]) Returns the next item from iterator. If iterator exhausted, returns default if specified, or raises

StopIteration otherwise.

object () Returns a new featureless object. object is the base class for all new style classes, its m ethods are

com mon to all instances of new sty le classes.

oct(x) Conv erts a number to an octal string.

open(filename [, mode='r',

[bufsize]])

Returns a new file object. See also alias file(). Use codecs.open() instead to open an encoded file

and prov ide transparent encoding / decoding.

filename is the file nam e to be opened

mode indicates how the file is to be opened:

'r ' for reading

'w' for writing (truncating an existing file)

'a' opens it for appending

'+ ' (appended to any of the prev ious modes) open the file for updating (note that

'w+'truncates the file)

'b' (appended to any of the prev ious modes) open the file in binary mode

'U' (or 'rU') open the file for reading in Universal Newline mode: all v ariants of EOL

(CR, LF, CR+LF) will be translated to a single LF ('\n').

bufsize is 0 for unbuffered, 1 for line buffered, negativ e or om itted for sy stem default, >1

for a buffer of (about) the giv en size.

ord(c) Returns integer ASCII v alue of c (a string of len 1). Works with Unicode char.

pow(x, y [, z]) Returns x to power y [m odulo z]. See also ** operator.

property ([fget[, fset[, fdel[,

doc]]]])

Returns a property attribute for new-style classes (classes deriv ing from object). fget, fset, and

fdel are functions to get the property v alue, set the property v alue, and delete the property ,

respectiv ely . Ty pical use:
class C(object):

 def __init__(self): self.__x = None

 def getx(self): return self.__x

 def setx(self, value): self.__x = value

 def delx(self): del self.__x

 x = property(getx, setx, delx, "I'm the 'x' property.")

print(*args [, sep=' ']

[, end='\n'] [, file=sy s.stdout])

When __future__.print_function is activ e, the print statement is replaced by this function

[PEP3 1 05]. Each item in args is printed to file with sep as the delim iter, and finally followed by

end.

Each of these statements:

 print 'foo', 42

 print 'foo', 42,

 print >> sys.stderr 'warning'

can now be written in this functional form :

 print('foo', 42)

 print('foo', 42, end='')

 print('warning', file=sys.stderr)

range([start,] end [, step]) Returns list of ints from >= start and < end.

With 1 arg, list from 0..arg-1

With 2 args, list from start..end-1

With 3 args, list from start up to end by step

raw_input([prompt]) Prints prompt if giv en, then reads string from std input (no trailing \n). See also input().

reduce(f, list [, init]) Applies the binary function f to the item s of list so as to reduce the list to a single v alue. If init is

giv en, it is "prepended" to list.

reload(module) Re-parses and re-initializes an already im ported m odule. Useful in interactiv e mode, if y ou want

to reload a m odule after fixing it. If m odule was sy ntactically correct but had an error in

initialization, m ust import it one m ore tim e before calling reload().

repr(object) Returns a string containing a printable and if possible evaluable representation of an object.

<=> `object` (using backquotes). Class redefinable (__repr__). See also str()

round(x, n=0) Returns the floating point v alue x rounded to n digits after the decimal point.

set([iterable]) Returns a set object whose elements are taken from iterable, or em pty by default. See also Sets.

setattr(object, name, value) This is the counterpart of getattr().setattr(o, 'foobar', 3) <=> o.foobar = 3. Creates attribute if it

doesn't exist!

slice([start,] stop[, step]) Returns a slice object representing a range, with R/O attributes: start, stop, step.

sorted(iterable[, cmp[, key[,

reverse]]])

Returns a new sorted list from the item s in iterable. This contrasts with list.sort() that sorts

lists in place and doesn't apply to imm utable sequences like strings or tuples. See sequences.sort

m ethod.

staticmethod(function) Returns a static m ethod for function. A static m ethod does not receiv e an im plicit first argument.

To declare a static m ethod, use this idiom :

 class C:
 def f(arg1, arg2, ...): ...

 f = staticmethod(f)

Then call it on the class C.f() or on an instance C().f(). The instance is ignored except for its

class.

Since 2.4 y ou can alternativ ely use the decorator notation:

 class C:
 @staticmethod

 def f(arg1, arg2, ...): ...

str(object) Returns a string containing a nicely printable representation of an object. Class ov erridable

(__str__). See also repr().

sum(iterable[, start=0]) Returns the sum of a sequence of num bers (not strings), plus the v alue of param eter. Returns

start when the sequence is empty .

super(type[, object-or-type]) Returns the superclass of type. If the second argum ent is om itted the super object returned is

unbound. If the second argument is an object, isinstance(obj, type) must be true. If the

second argum ent is a ty pe, issubclass(type2, type) m ust be true. Ty pical use:

class C(B):

 def meth(self, arg):

 super(C, self).meth(arg)

tuple([seq]) Creates an empty tuple or a tuple with sam e elem ents as seq. seq m ay be a sequence, a container

that supports iteration, or an iterator object. If seq is already a tuple, returns itself (not a copy).

type(obj) Returns a type object [see module types] representing the ty pe of obj. Example: import ty pes if

ty pe(x) == ty pes.StringTy pe: print 'It is a string'. NB: it is better to use instead: if isinstance(x,

ty pes.StringTy pe)...

unichr(code) Returns a unicode string 1 char long with giv en code.

unicode(string[,

encoding[,error]]])

Creates a Unicode string from a 8-bit string, using the giv en encoding name and error treatm ent

('strict', 'ignore',or 'replace'}. For objects which prov ide a __unicode__() method, it will call this

m ethod without argum ents to create a Unicode string.

vars([object]) Without arguments, returns a dictionary corresponding to the current local sy m bol table. With

a module, class or class instance object as argument, returns a dictionary corresponding to the

object's sy mbol table. Useful with the "%" string form atting operator.

xrange(start [, end [, step]]) Like range(), but doesn't actually store entire list all at once. Good to use in "for" loops when there

is a big range and little m emory .

zip(seq1[, seq2,...]) [No, that's not a com pression tool! For that, see m odule zipfile] Returns a list of tuples where each

tuple contains the nth elem ent of each of the argum ent sequences. Since 2.4 returns an em pty

list if called with no argum ents (was raising TypeError before).

Built-In Exception classes

BaseException

Mother of all exceptions (was Exception before 2.5). New-sty le class. exception.args is a tuple of the arguments passed to the

constructor.Since 2.6 the exception.message attribute is deprecated.

KeyboardInterrupt & SystemExit were mov ed out of Exception because they don't really represent errors, so now a

KeyboardInterrupt & SystemExit were mov ed out of Exception because they don't really represent errors, so now a

try:...except Exception: will only catch errors, while a try:...except BaseException: (or simply try:..except:) will still

catch everything.

GeneratorExit

Raised by the close() method of generators to terminate the iteration. Before 2.6 was derived from Exception.

KeyboardInterrupt

On user entry of the interrupt key (often `CTRL-C'). Before 2.5 was derived from Exception.

SystemExit

On sys.exit(). Before 2.5 was derived from Exception.

Exception

Base of all errors. Before 2.5 was the base of all exceptions.

GeneratorExit

Mov ed under BaseException.

StandardError

Base class for all built-in exceptions; derived from Exception root class.

ArithmeticError

Base class for arithmetic errors.

FloatingPointError

When a floating point operation fails.

OverflowError

On excessively large arithmetic operation.

ZeroDivisionError

On div ision or modulo operation with 0 as 2nd argument.

AssertionError

When an assert statement fails.

AttributeError

On attribute reference or assignment failure

EnvironmentError

On error outside Py thon; error arg. tuple is (errno, errMsg...)

IOError

I/O-related operation failure.

OSError

Used by the os module's os.error exception.

WindowsError

When a Windows-specific error occurs or when the error number does not correspond to an

errno value.

EOFError

Immediate end-of-file hit by input() or raw_input()

ImportError

On failure of import to find module or name.

KeyboardInterrupt

Mov ed under BaseException.

LookupError

base class for IndexError, KeyError

IndexError

On out-of-range sequence subscript

KeyError

On reference to a non-ex istent mapping (dict) key

MemoryError

On recoverable memory exhaustion

NameError

On failure to find a local or global (unqualified) name.

UnboundLocalError

On reference to an unassigned local variable.

ReferenceError

On attempt to access to a garbage-collected object v ia a weak reference proxy .

RuntimeError

Obsolete catch-all; define a suitable error instead.

NotImplementedError

On method not implemented.

SyntaxError

On parser encountering a syntax error

IndentationError

On parser encountering an indentation sy ntax error

TabError

On improper mixture of spaces and tabs

SystemError

On non-fatal interpreter error - bug - report it !

TypeError

On passing inappropriate type to built-in operator or function.

ValueError

On argument error not covered by TypeError or more precise.

UnicodeError

UnicodeError

On Unicode-related encoding or decoding error.

UnicodeDecodeError

On Unicode decoding error.

UnicodeEncodeError

On Unicode encoding error.

UnicodeTranslateError

On Unicode translation error.

StopIteration

Raised by an iterator's next() method to signal that there are no further values.

SystemExit

Mov ed under BaseException.

Warning

Base class for warnings (see module warning)

DeprecationWarning

Warning about deprecated code.

FutureWarning

Warning about a construct that will change semantically in the future.

ImportWarning

Warning about probable mistake in module import (e.g. missing __init__.py).

OverflowWarning

Warning about numeric overflow. Won't exist in Python 2.5.

PendingDeprecationWarning

Warning about future deprecated code.

RuntimeWarning

Warning about dubious runtime behavior.

SyntaxWarning

Warning about dubious sy ntax.

UnicodeWarning

When attempting to compare a Unicode string and an 8-bit string that can't be converted to Unicode using

default ASCII encoding (raised a UnicodeDecodeError before 2.5).

UserWarning

Warning generated by user code.

Standard methods & operators redefinition in classes

Standard methods & operators map to special methods '__method__' and thus can be redefined (mostly in user-defined

classes), e.g.:

class C:

 def __init__(self, v): self.value = v

 def __add__(self, r): return self.value + r

a = C(3) # sort of like calling C.__init__(a, 3)
a + 4 # is equivalent to a.__add__(4)

Special methods for any class

Method Descript ion

__new__(cls[, ...]) Instance creation (on construction). If __new__ returns an instance of cls then __init__ is

called with the rest of the argum ents (...), otherwise __init__ is not inv oked. More details

here.

__init__(self, args) Instance initialization (on construction)

__del__(self) Called on object dem ise (refcount becomes 0)

__repr__(self) repr() and `...` conv ersions

__str__(self) str() and print statement

__sizeof__(self) Returns amount of memory used by object, in by tes (called by sys.getsizeof()).

__format__(self, format_spec) format() and str.format() conv ersions

__cmp__(self,other) Compares self to other and returns <0, 0, or >0. Implements >, <, == etc...

__index__(self) [PEP357] Allows using any object as integer indice (e.g. for slicing). Must return a single

integer or long integer v alue.

__lt__(self, other) Called for self < other comparisons. Can return any thing, or can raise an exception.

__le__(self, other) Called for self <= other comparisons. Can return any thing, or can raise an exception.

__gt__(self, other) Called for self > other comparisons. Can return any thing, or can raise an exception.

__ge__(self, other) Called for self >= other comparisons. Can return any thing, or can raise an exception.

__eq__(self, other) Called for self == other comparisons. Can return any thing, or can raise an exception.

__ne__(self, other) Called for self != other (and self <> other) com parisons. Can return any thing, or can raise an

exception.

__hash__(self) Compute a 32 bit hash code; hash() and dictionary ops. Since 2.5 can also return a long

integer, in which case the hash of that v alue will be taken.Since 2.6 can set __hash__ = None

to v oid class inherited hashability .

__nonzero__(self) Returns 0 or 1 for truth v alue testing. when this method is not defined, __len__() is called if

defined; otherwise all class instances are considered "true".

__getattr__(self,name) Called when attribute lookup doesn't find name. See also __getattribute__.

__getattribute__(self, name) Same as __getattr__ but always called whenev er the attribute name is accessed.

__dir__(self) Returns the list of names of v alid attributes for the object. Called by builtin function dir(),

but ignored unless __getattr__ or __getattribute__ is defined.

__setattr__(self, name, value) Called when setting an attribute (inside, don't use "self.name = value", use instead

"self.__dict__[name] = value")

__delattr__(self, name) Called to delete attribute <name> .

__call__(self, *args, **kwargs) Called when an instance is called as function: obj(arg1, arg2, ...) is a shorthand for

obj.__call__(arg1, arg2, ...).

__enter__(self) For use with context managers, i.e. when entering the block in a with-statement. The with

statem ent binds this m ethod's return v alue to the as object.

__exit__(self, type, value,

traceback)

When exiting the block of a with-statement. If no errors occured, type, value, traceback are

None. If an error occured, they will contain inform ation about the class of the exception, the

exception object and a traceback object, respectiv ely . If the exception is handled properly ,

return True. If it returns False, the with-block re-raises the exception.

Operators

See list in the operator module. Operator function names are prov ided with 2 variants, with or without leading & trailing '__'

(e.g. __add__ or add).

Numeric operations special methods

Operator Special method

self + other __add__(self, other)

self - other __sub__(self, other)

self * other __mul__(self, other)

self / other __div__(self, other) or __truediv__(self,other) if __future__.division is activ e.

self // other __floordiv__(self, other)

self % other __mod__(self, other)

divmod(self,other) __divmod__(self, other)

self ** other __pow__(self, other)

self & other __and__(self, other)

self ̂other __xor__(self, other)

self | other __or__(self, other)

self << other __lshift__(self, other)

self >> other __rshift__(self, other)

bool(self) __nonzero__(self) (used in boolean testing)

-self __neg__(self)

+self __pos__(self)

abs(self) __abs__(self)

~self __invert__(self) (bitwise)

self += other __iadd__(self, other)

self -= other __isub__(self, other)

self *= other __imul__(self, other)

self /= other __idiv__(self, other) or __itruediv__(self,other) if __future__.division is in effect.

self //= other __ifloordiv__(self, other)

self %= other __imod__(self, other)

self **= other __ipow__(self, other)

self &= other __iand__(self, other)

self ^= other __ixor__(self, other)

self |= other __ior__(self, other)

self <<= other __ilshift__(self, other)

self >>= other __irshift__(self, other)

Conversions

built -in funct ion Specia l method

int (self) __int__(self)

long(self) __long__(self)

float (self) __float__(self)

complex(self) __complex__(self)

oct(self) __oct__(self)

hex(self) __hex__(self)

coerce(self, other) __coerce__(self, other)

Right-hand-side equivalents for all binary operators exist (__radd__, __rsub__, __rmul__, __rdiv__, ...).

They are called when class instance is on r-h-s of operator:

a + 3 calls __add__(a, 3)

3 + a calls __radd__(a, 3)

Special operations for containers

Operat ion Special method Notes

All sequences and maps :

len(self) __len__(self) length of object, >= 0. Length 0 == false

self[k] __getitem__(self, k) Get elem ent at indice /key k (indice starts at 0). Or, if k is a slice object, return

a slice.
 __missing__(self, key) Hook called when key is not found in the dictionary , returns the default v alue.

self[k] = value __setitem__(self, k, value) Set elem ent at indice/key /slice k.

del self[k] __delitem__(self, k) Delete element at indice/key /slice k.

del self[k] __delitem__(self, k) Delete element at indice/key /slice k.

elt in self

elt not in self

__contains__(self, elt)

not __contains__(self, elt)

More efficient than std iteration thru sequence.

iter(self) __iter__(self) Returns an iterator on elements (key s for m appings <=> self.iterkeys()). See

iterators.

Sequences, genera l methods, plus:

self[i:j] __getslice__(self, i, j) Deprecated since 2.0, replaced by __getitem__ with a slice object as

parameter.

self[i:j] = seq __setslice__(self, i, j,seq) Deprecated since 2.0, replaced by __setitem__ with a slice object as

parameter.

del self[i:j] __delslice__(self, i, j) Sam e as self[i:j] = [] - Deprecated since 2.0, replaced by __delitem__ with a

slice object as param eter.

self * n __mul__(self, n) (__repeat__ in the official doc but doesn't work!)

self + other __add__(self, other) (__concat__ in the official doc but doesn't work!)

Mappings, general methods, plus:

hash(self) __hash__(self) hashed v alue of object self is used for dictionary key s

Special informative state attributes for some types:

T ip: use module inspect to inspect live objects.

Lists & Dictionaries

Att ribute Meaning

__methods__ (list, R/O): list of method names of the object Deprecated, use dir() instead

Modules

Att ribute Meaning

__doc__ (string/None, R/O): doc string (<=> __dict__['__doc__'])

__name__ (string, R/O): m odule name (also in __dict__['__nam e__'])

__package__ (string/None, R/W): If defined, package nam e used for relativ e im ports (also in __dict__['__package__']).

[PEP366].

__dict__ (dict, R/O): m odule's nam e space

__file__ (string/undefined, R/O): pathnam e of .py c, .py o or .py d (undef for modules statically linked to the interpreter).

__path__ (list/undefined, R/W): List of directory paths where to find the package (for packages only).

Classes

Att ribute Meaning

__doc__ (string/None, R/W): doc string (<=> __dict__['__doc__'])

__name__ (string, R/W): class name (also in __dict__['__name__'])

__module__ (string, R/W): m odule name in which the class was defined

__bases__ (tuple, R/W): parent classes

__dict__ (dict, R/W): attributes (class nam e space)

Instances

Att ribute Meaning

__class__ (class, R/W): instance's class

__dict__ (dict, R/W): attributes

User defined functions

Att ribute Meaning

__doc__ (string/None, R/W): doc string

__name__ (string, R/O): function name

func_doc (R/W): sam e as __doc__

func_name (R/O, R/W from 2.4): sam e as __nam e__

func_defaults (tuple/None, R/W): default args v alues if any

func_code (code, R/W): code object representing the compiled function body

func_globals (dict, R/O): ref to dictionary of func global v ariables

User-defined Methods

Att ribute Meaning

__doc__ (string/None, R/O): Doc string

__name__ (string, R/O): Method nam e (sam e as im _func.__name__)

im_class (class, R/O): Class defining the m ethod (may be a base class)

im_self (instance/None, R/O): Target instance object (None if unbound). Since 2.6 use __self__ instead, will be deprecated

in 3.0.

__self__ (instance/None, R/O): Target instance object (None if unbound).

im_func (function, R/O): Function object. Since 2.6 use __func__ instead, will be deprecated in 3 .0.

__func__ (function, R/O): Function object.

Built-in Functions & methods

Att ribute Meaning

__doc__ (string/None, R/O): doc string

__name__ (string, R/O): function name

__self__ [methods only] target object

__members__ list of attr nam es: ['__doc__','__name__','__self__']) Deprecated, use dir() instead.

Codes

Att ribute Meaning

co_name (string, R/O): function nam e

co_argcount (int, R/0): num ber of positional args

co_nlocals (int, R/O): number of local v ars (including args)

co_varnames (tuple, R/O): nam es of local v ars (starting with args)

co_code (string, R/O): sequence of by tecode instructions

co_consts (tuple, R/O): literals used by the by tecode, 1 st one is function doc (or None)

co_names (tuple, R/O): nam es used by the by tecode

co_filename (string, R/O): filename from which the code was com piled

co_firstlineno (int, R/O): first line num ber of the function

co_lnotab (string, R/O): string encoding by tecode offsets to line num bers.

co_stacksize (int, R/O): required stack size (including local v ars)

co_flags (int, R/O): flags for the interpreter bit 2 set if function uses "*arg" sy ntax, bit 3 set if function uses

'**key words' sy ntax

Frames

Att ribute Meaning

f_back (fram e/None, R/O): prev ious stack fram e (toward the caller)

f_code (code, R/O): code object being executed in this fram e

f_locals (dict, R/O): local v ars

f_globals (dict, R/O): global v ars

f_builtins (dict, R/O): built-in (intrinsic) names

f_restricted (int, R/O): flag indicating whether function is executed in restricted m ode

f_lineno (int, R/O): current line num ber

f_lasti (int, R/O): precise instruction (index into by tecode)

f_trace (function/None, R/W): debug hook called at start of each source line

f_exc_type (Ty pe/None, R/W): Most recent exception ty pe

f_exc_value (any , R/W): Most recent exception v alue

f_exc_traceback (traceback/None, R/W): Most recent exception traceback

Tracebacks

Att ribute Meaning

tb_next (fram e/None, R/O): next lev el in stack trace (toward the fram e where the exception occurred)

tb_frame (fram e, R/O): execution frame of the current lev el

tb_lineno (int, R/O): line number where the exception occured

tb_lasti (int, R/O): precise instruction (index into by tecode)

Slices

Att ribute Meaning

start (any /None, R/O): lowerbound, included

stop (any /None, R/O): upperbound, excluded

step (any /None, R/O): step v alue

Complex numbers

Att ribute Meaning

real (float, R/O): real part

imag (float, R/O): im aginary part

xranges

Att ribute Meaning

tolist (Built-in method, R/O): ?

Important Modules

sys

Sy stem-specific parameters and functions.

Some sys variables

Variable Content

argv The list of com mand line argum ents passed to a Py thon script. sys.argv[0] is the script name.

builtin_m odule_nam es A list of strings giv ing the names of all m odules written in C that are linked into this interpreter.

by teorder Nativ e by te order, either 'big'(-endian) or 'little'(-endian).

copy right A string containing the copy right pertaining to the Py thon interpreter.

dont_write_by tecode If True, prev ents Py thon from from writing .py c or .py o files (sam e as inv ocation option -B).

exec_prefix

prefix

Root directory where platform-dependent Py thon files are installed, e.g. 'C:\\Py thon23', '/usr'.

executable Nam e of executable binary of the Py thon interpreter (e.g. 'C:\\Py thon23 \\py thon.exe',

'/usr/bin/py thon')

exitfunc User can set to a parameterless function. It will get called before interpreter exits. Deprecated since 2.4.

Code should be using the existing atexit module

flags Status of comm and line flags, as a R/O struct. [details]

float_info A structseq holding inform ation about the float ty pe (precision, internal representation, etc...).

float_info A structseq holding inform ation about the float ty pe (precision, internal representation, etc...).

[details]

last_ty pe, last_v alue,

last_traceback

Set only when an exception not handled and interpreter prints an error. Used by debuggers.

maxint Maxim um positiv e v alue for integers. Since 2.2 integers and long integers are unified, thus integers

hav e no lim it.

maxunicode Largest supported code point for a Unicode character.

modules Dictionary of m odules that hav e already been loaded.

path Search path for external m odules. Can be m odified by program. sys.path[0] == directory of script

currently executed.

platform The current platform, e.g. "sunos5", "win32"

ps1 , ps2 Prompts to use in interactiv e m ode, norm ally ">>>" and "..."

stdin, stdout, stderr File objects used for I/O. One can redirect by assigning a new file object to them (or any object: with a

m ethod write(string) for stdout/stderr, or with a m ethod readline() for stdin).

__stdin__,__stdout__ and __stderr__ are the default v alues.

subv ersion Info about Py thon build v ersion in the Subv ersion repository : tuple (interpreter-nam e, branch-name,

rev ision-range), e.g. ('CPython', 'tags/r25', '51908').

v ersion String containing v ersion info about Py thon interpreter.

v ersion_info Tuple containing Py thon v ersion info - (major, minor, micro, level, serial).

winv er Version number used to form registry key s on Windows platform s (e.g. '2 .2 ').

Some sys functions

Funct ion Result

_current_frames() Returns the current stack frames for all running threads, as a dictionary m apping thread

identifiers to the topm ost stack frame currently activ e in that thread at the time the function

is called.

display hook The function used to display the output of com mands issued in interactiv e m ode - defaults to

the builtin repr(). __displayhook__ is the original v alue.

excepthook Can be set to a user defined function, to which any uncaught exceptions are passed.

__excepthook__ is the original v alue.

exit(n) Exits with status n (usually 0 means OK). Raises SystemExit exception (hence can be caught

and ignored by program)

getcheckinterv al() /

setcheckinterv al(interval)

Gets / Sets the interpreter's thread switching interv al (in num ber of by tecode instructions,

default: 1 0 until 2.2 , 1 00 from 2.3).

getrefcount(object) Returns the reference count of the object. Generally 1 higher than y ou m ight expect, because

of object arg temp reference.

getsizeof(object[, default]) Returns the amount of memory used by object, in by tes. Calls o.__sizeof__() if av ailable.

default returned if size can't be determ ined. [details]
settrace(func) Sets a trace function: called before each line of code is exited.

setprofile(func) Sets a profile function for performance profiling.

exc_info() Info on exception currently being handled; this is a tuple (exc_ty pe, exc_v alue,

exc_traceback). Warning: assigning the traceback return v alue to a local v ariable in a

function handling an exception will cause a circular reference.

setdefaultencoding(encoding) Change default Unicode encoding - defaults to 7 -bit ASCII.

getrecursionlim it() Retriev e m aximum recursion depth.

setrecursionlim it() Set m aximum recursion depth (default 1 000).

os

Miscellaneous operating sy stem interfaces. Many functions, see the for a comprehensive list!

"synonym" for whatev er OS-specific module (nt, mac, posix...) is proper for current environment. This module uses posix

whenev er possible.

See also M.A. Lemburg's utility platform.py (now included in 2.3+).

Some os variables

Variable Meaning

nam e name of O/S-specific m odule (e.g. "posix", "mac", "nt")

path O/S-specific m odule for path m anipulations.

On Unix, os.path.split() <=> posixpath.split()

curdir string used to represent current directory (eg '.')

pardir string used to represent parent directory (eg '..')

sep string used to separate directories ('/' or '\'). Tip: Use os.path.join() to build portable paths.

altsep Alternate separator if applicable (None otherwise)

pathsep character used to separate search path com ponents (as in $PATH), eg. ';' for windows.

linesep line separator as used in text files, ie '\n' on Unix, '\r\n' on Dos/Win, '\r' on Mac.

Some os functions

Funct ion Result

makedirs(path[, mode=07 7 7]) Recursiv e directory creation (create required interm ediary dirs); os.error if fails.

rem ov edirs(path) Recursiv e directory delete (delete interm ediary empty dirs); fails (os.error) if the

directories are not empty .

renames(old, new) Recursiv e directory or file renaming; os.error if fails.

urandom(n) Returns a string containing n by tes of random data.

posix

Posix OS interfaces.

Posix OS interfaces.

Do not import this module directly , import os instead ! (see also module: shutil for file copy & remove functions)

posix Variables

Variable Meaning

env iron dictionary of env ironment v ariables, e.g. posix.environ['HOME'].

error exception raised on POSIX-related error.

Corresponding v alue is tuple of errno code and perror() string.

Some posix functions

Funct ion Result

access(path, mode) Returns True if the requested access to path is granted. Use mode=F_OK to check for existence, or an

OR-ed com bination of R_OK, W_OK, and X_OK to check for r, w, x permissions.

chdir(path) Changes current directory to path.

chm od(path, mode) Changes the mode of path to the num eric mode

close(fd) Closes file descriptor fd opened with posix.open.

_exit(n) Im mediate exit, with no cleanups, no Sy stem Exit, etc... Should use this to exit a child process.

execv (p, args) "Become" executable p with args args

getcwd() Returns a string representing the current working directory .

getcwdu() Returns a Unicode string representing the current working directory .

getpid() Returns the current process id.

getsid() Calls the sy stem call getsid() [Unix].

fork() Like C's fork(). Returns 0 to child, child pid to parent [Not on Windows].

kill(pid, signal) Like C's kill [Not on Windows].

listdir(path) Lists (base)nam es of entries in directory path, excluding '. ' and '.. '. If path is a Unicode string, so will

be the returned strings.

lseek(fd, pos, how) Sets current position in file fd to position pos, expressed as an offset relativ e to beginning of file

(how=0), to current position (how=1), or to end of file (how=2).

mkdir(path[, mode]) Creates a directory nam ed path with num eric mode (default 07 7 7). Actual permissions = (mode &

~umask & 07 7 7). To set directly the permissions, use chmod() after dir creation.

open(file, flags, mode) Like C's open(). Returns file descriptor. Use file object functions rather than this low lev el ones.

pipe() Creates a pipe. Returns pair of file descriptors (r, w) [Not on Windows].

popen(command, mode='r',

bufSize=0)

Opens a pipe to or from command. Result is a file object to read to or write from , as indicated by

mode being 'r ' or 'w'. Use it to catch a com mand output ('r ' mode), or to feed it ('w' m ode).

rem ov e(path) See unlink.

rename(old, new) Renam es/mov es the file or directory old to new . [error if target nam e already exists]

renames(old, new) Recursiv e directory or file renaming function. Works like rename(), except creation of any

interm ediate directories needed to make the new pathnam e good is attempted first. After the

rename, directories corresponding to rightm ost path segments of the old name will be pruned

away using rem ov edirs().

rm dir(path) Remov es the em pty directory path

read(fd, n) Reads n by tes from file descriptor fd and return as string.

stat(path) Returns st_mode, st_ino, st_dev , st_nlink, st_uid,st_gid, st_size, st_atime, st_m time, st_ctime.

[st_ino, st_uid, st_gid are dum my on Windows]

sy stem(command) Executes string command in a subshell. Returns exit status of subshell (usually 0 means OK). Since

2.4 use subprocess.call() instead.

times() Returns accumulated CPU tim es in sec (user, sy stem, children's user, children's sy s, elapsed real

tim e) [3 last not on Windows].

unlink(path) Unlinks ("deletes") the file (not dir!) path. Same as: remove.

utim e(path, (aTime, mTime)) Sets the access & modified time of the file to the giv en tuple of v alues.

wait() Waits for child process completion. Returns tuple of pid, exit_status [Not on Windows].

waitpid(pid, options) Waits for process pid to complete. Returns tuple of pid, exit_status [Not on Windows].

walk(top[, topdown=True [,

onerror=None[,

followlinks=False]]])

Generates a list of file nam es in a directory tree, by walking the tree either top down or bottom up.

For each directory in the tree rooted at directory top (including top itself), it y ields a 3-tuple

(dirpath, dirnam es, filenames) - more info here. See also os.path.walk().

2.6: New followlinks parameter. If True, v isit directories pointed to by links (beware of infinite

recursion!).

write(fd, str) Writes str to file fd. Returns nb of by tes written.

posixpath

Posix pathname operations.

Do not import this module directly , import os instead and refer to this module as os.path . (e.g. os.path.exists(p))!

posixpath functions

Funct ion Result

abspath(path) Returns absolute path for path, taking current working dir in account.

com m onprefix(list) Returns the longuest path prefix (taken character-by -character) that is a prefix of all paths in list (or ''

if list em pty).

dirnam e/basenam e(path) directory and nam e parts of path. See also split.

exists(path) True if path is the path of an existing file or directory . See also lexists.

expanduser(path) Returns a copy of path with "~" expansion done.

expandv ars(path) Returns string that is (a copy of) path with env ironm ent v ars $name or ${name} expanded. [Windows:

case significant; m ust use Unix: $v ar notation, not %v ar%; 2.6: Notation %name% also supported.]

getatim e(path) Returns last access time of path (integer nb of seconds since epoch).

getctime(path) Returns the metadata change time of path (integer nb of seconds since epoch).

getctime(path) Returns the metadata change time of path (integer nb of seconds since epoch).

getmtim e(path) Returns last modification tim e of path (integer nb of seconds since epoch).

getsize(path) Returns the size in by tes of path. os.error if file inexistent or inaccessible.

isabs(path) True if path is absolute.

isdir(path) True if path is a directory .

isfile(path) True if path is a regular file.

islink(path) True if path is a sy m bolic link.

ismount(path) True if path is a m ount point [true for all dirs on Windows].

join(p[,q[,...]]) Joins one or more path components in a way suitable for the current OS.

lexists(path) True if the file specified by path exists, whether or not it's a sy m bolic link (unlike exists).

normcase(path) Normalizes case of path. Has no effect under Posix.

normpath(path) Normalizes path, elim inating double slashes, etc...

realpath(path) Returns the canonical path for path, elim inating any sy m bolic links encountered in the path.

relpath(path[, start]) Returns a relativ e filepath to path, from the current directory by default, or from start if specified.

sam efile(f1, f2) True if the 2 paths f1 and f2 reference the same file.

sam eopenfile(f1, f2) True if the 2 open file objects f1 and f2 reference the sam e file.

sam estat(s1, s2) True if the 2 stat buffers s1 and s2 reference the same file.

split(p) Splits p into (head, tail) where tail is last pathnam e com ponent and head is ev ery thing leading up to

that. <=> (dirname(p), basename(p))

splitdriv e(p) Splits path p in a pair ('driv e:', tail) [Windows]

splitext(p) Splits into (root, ext) where last comp of root contains no periods and ext is em pty or starts with a

period. 2 .6: Do not split on leading period.

walk(p, visit, arg) Calls the function visit with argum ents (arg, dirname, names) for each directory recursiv ely in the

directory tree rooted at p (including p itself if it's a dir). The argum ent dirname specifies the v isited

directory , the argument names lists the files in the directory . The visit function m ay modify names to

influence the set of directories v isited below dirname, e.g. to av oid v isiting certain parts of the tree. See

also os.walk() for an alternativ e.

shutil

High-lev el file operations (copy ing, deleting).

Main shutil functions

Funct ion Result

copy (src, dest) Copies the contents of file src to file dest, retaining file perm issions.

copy tree(src, dest[, symlinks=False

[, ignore=None]])

Recursiv ely copies an entire directory tree rooted at src into dest (which should not

already exist). If symlinks is true, links in src are kept as such in dest.

2.6: New ignore callable argum ent. Will be called with each directory path and a list of

the directory 's contents, must return a list of nam es to ignore.

shutil.ignore_patterns() can be used to exclude glob-sty le patterns, e.g.:

shutil.copytree('projects/myProjUnderSvn', 'exportDir',

ignore=shutil.ignore_patterns('*~', '.svn'))

mov e(src, dest) Recursiv ely m ov es a file or directory to a new location.

rm tree(path [, ignore_errors

[, onerror]])

Deletes an entire directory tree, ignoring errors if ignore_errors is true, or calling

onerror(func, path, sy s.exc_info()) if supplied, with argum ents func (faulty function),

and path (concerned file). This function fails when the files are Read Only .

make_archiv e(base_name, format

[, root_dir [, base_dir [, verbose

[, dry_run [, owner [, group

[, logger]]]]]]])

Create an archiv e file (eg. zip or tar) and returns its name. base_name is the name of the

file to create, including the path, minus any format-specific extension. format is the

archiv e form at: one of “zip”, “tar”, “bztar” or “gztar”. root_dir is a directory that will be

the root directory of the archiv e; ie. we ty pically chdir into root_dir before creating the

archiv e. base_dir is the directory where we start archiv ing from ; ie. base_dir will be the

comm on prefix of all files and directories in the archiv e. root_dir and base_dir both

default to the current directory . owner and group are used when creating a tar archiv e.

By default, uses the current owner and group. logger is an instance of logging.Logger.

(and also: copyfile, copymode, copystat, copy2)

time

Time access and conversions.

(see also module mxDateTime if you need a more sophisticated date/time management)

Variables

Variable Meaning

altzone Signed offset of local DST tim ezone in sec west of the 0th meridian.

day light Non zero if a DST timezone is specified.

timezone The offset of the local (non-DST) timezone, in seconds west of UTC.

tznam e A tuple (nam e of local non-DST tim ezone, nam e of local DST timezone).

Some functions

Funct ion Result

clock() On Unix: current processor tim e as a floating point number expressed in seconds.

On Windows: wall-clock seconds elapsed since the 1 st call to this function, as a floating point

number (precision < 1 µs).

time() Returns a float representing UTC time in seconds since the epoch.

gmtim e([secs]), Returns a 9-tuple representing tim e. Current tim e is used if secs is not prov ided.

localtime([secs]) Since 2.2 , returns a struct_time object (still accessible as a tuple) with the following attributes:

Index At t ribute Values

0 tm_y ear Year (e.g. 1 993)

1 tm_mon Month [1 ,1 2]

2 tm_mday Day [1 ,31]

3 tm_hour Hour [0,23]

4 tm_min Minute [0,59]

5 tm_sec Second [0,61]; The 61 accounts for leap seconds and (the v ery rare)

double leap seconds.

6 tm_wday Weekday [0,6], Monday is 0

7 tm_y day Julian day [1 ,3 66]

8 tm_isdst Day light flag: 0, 1 or -1 ; -1 passed to mktime() will usually work

asctime([timeTuple]), 24-character string of the following form : 'Mon Apr 03 08:3 1 :1 4 2006'. timeTuple defaults to

localtime() if om itted.

ctim e([secs]) equiv alent to asctime(localtime(secs))

mktim e(timeTuple) Inv erse of localtime(). Returns a float representing a num ber of seconds.

strftime(format[, timeTuple]) Formats a tim e tuple as a string, according to format (see table below). Current tim e is used if

timeTuple is om itted.

strptime(string[, format]) Parses a string representing a time according to format (same form at as for strftime(), see

below), default "%a %b %d %H:%M:%S %Y" = asctim e form at.

Returns a tim e tuple/struct_time.

sleep(secs) Suspends execution for secs seconds. secs can be a float.

Formatting in strftime() and strptime()

Direct iv e Meaning

%a Locale's abbrev iated weekday name.
%A Locale's full weekday nam e.
%b Locale's abbrev iated month nam e.
%B Locale's full m onth name.
%c Locale's appropriate date and time representation.
%d Day of the month as a decimal num ber [01 ,31].
%f Microsecond as a decim al num ber [0,999999], zero-padded on the left.
%H Hour (24-hour clock) as a decim al num ber [00,23].
%I Hour (1 2-hour clock) as a decim al num ber [01 ,1 2].
%j Day of the y ear as a decim al num ber [001 ,366].
%m Month as a decim al num ber [01 ,1 2].
%M Minute as a decimal number [00,59].
%p Locale's equiv alent of either AM or PM.
%S Second as a decim al num ber [00,61]. Yes, 61 !
%U Week num ber of the y ear (Sunday as the first day of the week) as a decim al num ber [00,53]. All day s in a new y ear

preceding the first Sunday are considered to be in week 0.
%w Weekday as a decimal number [0(Sunday),6].
%W Week num ber of the y ear (Monday as the first day of the week) as a decim al num ber [00,53]. All day s in a new y ear

preceding the first Sunday are considered to be in week 0.
%x Locale's appropriate date representation.
%X Locale's appropriate time representation.
%y Year without century as a decimal number [00,99].
%Y Year with century as a decim al num ber.
%Z Tim e zone nam e (no characters if no time zone exists).
%z UTC offset in the form +HHMM or -HHMM (em pty string if the date is naive).
%% A literal "%" character.

string

Common string operations.

As of Python 2.0, much (though not all) of the functionality provided by the string module hav e been superseded by built-in

string methods.

Since 2.5 (?) all string module methods are considered deprecated => use built-in string methods instead.

Some string constant

Constant Meaning

digits The string '01 23 4567 89'.

hexdigits, octdigits Legal hexadecimal & octal digits.

letters, uppercase, lowercase, whitespace Strings containing the appropriate characters, taking the current locale into

account.

ascii_letters, ascii_lowercase,

ascii_uppercase

Strings containing Ascii characters.

Some string functions

Funct ion Result

expandtabs(s, tabSize) Returns a copy of string s with tabs expanded.

find/rfind(s, sub[, start=0[, end=0]) Returns the lowest/highest index in s where the substring sub is found such that sub is

wholly contained in s[start:end]. Return -1 if sub not found.

ljust/rjust/center(s, width[, fillChar=' ']) Returns a copy of string s; left/right justified/centered in a field of giv en width, padded

with spaces or the giv en character. s is nev er truncated.

lower/upper(s) Returns a string that is (a copy of) s in lowercase/uppercase.

lower/upper(s) Returns a string that is (a copy of) s in lowercase/uppercase.

split(s[, sep=whitespace[, maxsplit=0]]) Returns a list containing the words of the string s, using the string sep as a separator.

rsplit(s[, sep=whitespace[, maxsplit=0]]) Same as split abov e but starts splitting from the end of string, e.g.

'A,B,C'.split(',', 1) == ['A', 'B,C'] but 'A,B,C'.rsplit(',', 1) ==
['A,B', 'C']

join(words[, sep=' ']) Concatenates a list or tuple of words with interv ening separators; inv erse of split.

replace(s, old, new[, maxsplit=0] Returns a copy of string s with all occurrences of substring old replaced by new . Lim its

to maxsplit first substitutions if specified.

strip(s[, chars=None]) Returns a string that is (a copy of) s without leading and trailing chars (default:

whitespace), if any . Also: lstrip, rstrip.

re (sre)

Regular expression operations.

Handles Unicode strings. Implemented in new module sre, re now a mere front-end for compatibility .

Patterns are specified as strings. Tip: Use raw strings (e.g. r'\w*') to literalize backslashes.

Regular expression syntax

Form Descript ion

. Matches any character (including newline if DOTALL flag specified).

^ Matches start of the string (of ev ery line in MULTILINE m ode).

$ Matches end of the string (of ev ery line in MULTILINE m ode).

* 0 or m ore of preceding regular expression (as many as possible).

+ 1 or more of preceding regular expression (as many as possible).

? 0 or 1 occurrence of preceding regular expression.

*?, +?, ?? Same as *, + and ? but m atches as few characters as possible.

{m ,n} Matches from m to n repetitions of preceding RE.

{m ,n}? Idem , attem pting to m atch as few repetitions as possible.

[] Defines character set: e.g. '[a-zA-Z]' to m atch all letters (see also \w \S).

[^] Defines com plem ented character set: matches if char is NOT in set.

\ Escapes special chars '*?+&$|()' and introduces special sequences (see below). Due to Py thon string rules, write as '\\'

or r '\' in the pattern string.

\\ Matches a litteral '\'; due to Py thon string rules, write as '\\\\' in pattern string, or better using raw string: r'\\'.

| Specifies alternativ e: 'foo|bar' m atches 'foo' or 'bar'.

(...) Matches any RE inside (), and delimits a group.

(?:...) Idem but doesn't delimit a group (non capturing parenthesis).

(?

P<name>...)

Matches any RE inside (), and delimits a named group, (e.g. r '(?P< id>[a-zA-Z_]\w*)' defines a group named id).

(?P=name) Matches whatev er text was m atched by the earlier group named name.

(?=...) Matches if ... m atches next, but doesn't consume any of the string e.g. 'Isaac (?=Asim ov)' m atches 'Isaac' only if

followed by 'Asim ov '.

(?!...) Matches if ... doesn't m atch next. Negativ e of (?=...).

(?<=...) Matches if the current position in the string is preceded by a match for ... that ends at the current position. This is

called a positive lookbehind assertion.

(?<!...) Matches if the current position in the string is not preceded by a match for This is called a negative lookbehind

assertion.

(?

(group)A|B)

[2.4+] group is either a numeric group ID or a group nam e defined with (?Pgroup...) earlier in the expression. If

the specified group m atched, the regular expression pattern A will be tested against the string; if the group didn't

m atch, the pattern B will be used instead.

(?#...) A com ment; ignored.

(?letters) letters is one or more of 'i', 'L', 'm', 's', 'u', 'x'. Sets the corresponding flags (re.I, re.L, re.M, re.S, re.U, re.X) for the

entire RE. See the compile() function for equiv alent flags.

Special sequences

Sequence Descript ion

\number Matches content of the group of the sam e number; groups are numbered starting from 1 .

\A Matches only at the start of the string.

\b Em pty str at beginning or end of word: '\bis\b' m atches 'is', but not 'his'.

\B Em pty str NOT at beginning or end of word.

\d Any decim al digit (<=> [0-9]).

\D Any non-decim al digit char (<=> [^0-9]).

\s Any whitespace char (<=> [\t\n\r\f\v]).

\S Any non-whitespace char (<=> [^ \t\n\r\f\v]).

\w Any alphaNum eric char (depends on LOCALE flag).

\W Any non-alphaNumeric char (depends on LOCALE flag).

\Z Matches only at the end of the string.

Variables

Variable Meaning

error Exception when pattern string isn't a v alid regexp.

Functions

Funct ion Result

com pile(pattern[,flags=0]) Compiles a RE pattern string into a regular expression object.

Flags (com binable by |):
I or IGNORECASE <=> (?i)

I or IGNORECASE <=> (?i)

ca se in sen sit iv e m a tch in g

L or LOCALE <=> (?L)

m a ke \w , \W, \b, \B depen den t on th e cu r r en t loca le

M or MULTILINE <=> (?m)

m a tch es ev er y n ew lin e a n d n ot on ly sta r t/en d of th e w h ole str in g

S or DOTALL <=> (?s)

'. ' m a tch es A LL ch a r s, in clu din g n ew lin e

U or UNICODE <=> (?u)

Ma ke \w , \W , \b, a n d \B depen den t on th e Un icode ch a r a cter pr oper t ies da ta base.

X or VERBOSE <=> (?x)

Ig n or es w h itespa ce ou tside ch a r a cter sets

escape(string) Returns (a copy of) string with all non-alphanum erics backslashed.

match(pattern, string[, flags]) If 0 or m ore chars at beginning of string m atches the RE pattern string, returns a

corresponding MatchObject instance, or None if no m atch.

search(pattern, string[, flags]) Scans thru string for a location m atching pattern, returns a corresponding MatchObject

instance, or None if no m atch.

split(pattern, string[, maxsplit=0

[, flags=0]])

Splits string by occurrences of pattern. If capturing () are used in pattern, then

occurrences of patterns or subpatterns are also returned.

findall(pattern, string) Returns a list of non-ov erlapping m atches of pattern in string, either a list of groups or a

list of tuples if the pattern has more than 1 group.

finditer(pattern, string[, flags]) Returns an iterator ov er all non-ov erlapping m atches of pattern in string. For each match,

the iterator returns a match object. Em pty matches are included in the result unless they

touch the beginning of another match.

sub(pattern, repl, string[, count=0

[, flags]])

Returns string obtained by replacing the (count first) leftmost non-ov erlapping

occurrences of pattern (a string or a RE object) in string by repl; repl can be a string or a

function called with a single MatchObj arg, which m ust return the replacem ent string.

subn(pattern, repl, string[, count=0

[, flags]])

Same as sub(), but returns a tuple (newString, num berOfSubsMade).

Regular Expression Objects

RE objects are returned by the compile function.

re object attributes

Att ribute Descript ion

flags Flags arg used when RE obj was compiled, or 0 if none prov ided.

groupindex Dictionary of {group nam e: group num ber} in pattern.

pattern Pattern string from which RE obj was com piled.

re object methods

Method Result

match(string[, pos][, endpos]) If zero or more characters at the beginning of string match this regular expression, returns a

corresponding MatchObject instance. Returns None if the string does not m atch the pattern;

note that this is different from a zero-length m atch.

The optional second parameter pos giv es an index in the string where the search is to start; it

defaults to 0. This is not completely equiv alent to slicing the string; the '' pattern character

m atches at the real beginning of the string and at positions just after a newline, but not

necessarily at the index where the search is to start.

The optional param eter endpos lim its how far the string will be searched; it will be as if the

string is endpos characters long, so only the characters from pos to endpos will be searched for a

m atch.

search(string[, pos][, endpos]) Scans through string looking for a location where this regular expression produces a match, and

returns a corresponding MatchObject instance. Returns None if no position in the string

m atches the pattern; note that this is different from finding a zero-length m atch at som e point

in the string.

The optional pos and endpos param eters hav e the same m eaning as for the match() method.

split(string[, maxsplit=0]) Identical to the split() function, using the compiled pattern.

findall(string[, pos[, endpos]]) Identical to the findall() function, using the com piled pattern.

finditer(string[, pos[, endpos]]) Identical to the finditer() function, using the com piled pattern.

sub(repl, string[, count=0]) Identical to the sub() function, using the com piled pattern.

subn(repl, string[, count=0]) Identical to the subn() function, using the compiled pattern.

Match Objects

Match objects are returned by the match & search functions.

Match object attributes

Att ribute Descript ion

pos Value of pos passed to search or m atch functions; index into string at which RE engine started search.

endpos Value of endpos passed to search or match functions; index into string bey ond which RE engine won't go.

re RE object whose m atch or search function produced this MatchObj instance.

string String passed to match() or search().

Match object methods

Method Result

group([g1, g2, ...]) Returns one or more groups of the m atch. If one arg, result is a string; if m ultiple args, result is a tuple

group([g1, g2, ...]) Returns one or more groups of the m atch. If one arg, result is a string; if m ultiple args, result is a tuple

with one item per arg. If gi is 0, returns the entire m atching string; if 1 <= gi <= 99, returns string

matching group #gi (or None if no such group); gi may also be a group name.

groups() Returns a tuple of all groups of the match; groups not participating to the m atch hav e a v alue of None.

Returns a string instead of tuple if len(tuple)== 1 .

start(group),

end(group)

Returns indices of start & end of substring m atched by group (or None if group exists but didn't contribute

to the match).

span(group) Returns the 2-tuple (start(group), end(group)); can be (None, None) if group didn't contibute to the

match.

Lexical scanners using regular expressions

There's an undocumented class in the re module called re.Scanner. The following recipee is from stackoverflow:

import re

scanner=re.Scanner([

 (r"[0-9]+", lambda scanner,token:("INTEGER", token)),

 (r"[a-z_]+", lambda scanner,token:("IDENTIFIER", token)),

 (r"[,.]+", lambda scanner,token:("PUNCTUATION", token)),

 (r"\s+", None), # None == skip token.

])

results, remainder=scanner.scan("45 pigeons, 23 cows, 11 spiders.")

print results

which results in

[('INTEGER', '45'),

 ('IDENTIFIER', 'pigeons'),

 ('PUNCTUATION', ','),

 ('INTEGER', '23'),

 ('IDENTIFIER', 'cows'),

 ('PUNCTUATION', ','),

 ('INTEGER', '11'),

 ('IDENTIFIER', 'spiders'),

 ('PUNCTUATION', '.')]

math

For complex number functions, see module cmath. For intensive number crunching, see Numerical Python and the Py thon and

Scientific computing page.

Constants

Name Value

pi 3.1 41 5926535897 931

e 2.7 1 8281 8284590451

Functions

Name Result

acos(x) Returns the arc cosine (measured in radians) of x.

acosh(x) Returns the hy perbolic arc cosine (measured in radians) of x.

asin(x) Returns the arc sine (m easured in radians) of x.

asinh(x) Returns the hy perbolic arc sine (m easured in radians) of x.

atan(x) Returns the arc tangent (measured in radians) of x.

atan2(y, x) Returns the arc tangent (measured in radians) of y/x. The result is between -pi and pi. Unlike atan(y/x), the

signs of both x and y are considered.

atanh(x) Returns the hy perbolic arc tangent (measured in radians) of x.

ceil(x) Returns the ceiling of x as a float. This is the smallest integral v alue >= x.

copy sign(x, y) Copies the sign bit of an IEEE 7 54 num ber, returning the absolute v alue of x combined with the sign bit of y,

e.g. copysign(1, -0.0) returns -1.0.

cos(x) Returns the cosine of x (measured in radians).

cosh(x) Returns the hy perbolic cosine of x.

degrees(x) Conv erts angle x from radians to degrees.

erf(x) Return the error function at x.

erfc(x) Return the com plem entary error function at x.

exp(x) Returns e raised to the power of x.

exmp1 (x) Return e**x - 1 with less loss of precision at small floats than exp(x) - 1.

fabs(x) Returns the absolute v alue of the float x.

factorial(n) returns n!

floor(x) Returns the floor of x as a float. This is the largest integral v alue <= x.

fm od(x, y) Returns fm od(x, y), according to platform C. x % y may differ.

frexp(x) Returns the m antissa and exponent of x, as pair (m, e). m is a float and e is an int, such that x = m * 2 .**e. If

x is 0, m and e are both 0. Else 0.5 <= abs(m) < 1 .0.

fsum (iterable) Returns an accurate floating point sum of v alues in iterable (assum es IEEE-7 54 floating point arithm etic).

gam m a(x) Return the Gam ma function at x.

hy pot(x, y) Returns the Euclidean distance sqrt(x*x + y*y).

isinf(x) Returns True if x is infinite (positiv e or negativ e).

isnan(x) Returns True if x is not a num ber.

ldexp(x, i) x * (2**i)

lgamm a(x) Return the natural logarithm of the absolute v alue of the Gamm a function at x.

lgamm a(x) Return the natural logarithm of the absolute v alue of the Gamm a function at x.

log(x[, base]) Returns the logarithm of x to the giv en base. If the base is not specified, returns the natural logarithm (base e)

of x.

log1 0(x) Returns the base 1 0 logarithm of x.

log1 p(x) Returns the natural logarithm of 1 +x (base e). The result is computed in a way which is accurate for x near

zero.

modf(x) Returns the fractional and integer parts of x. Both results carry the sign of x. The integer part is returned as a

float.

pow(x, y) Returns x**y (x to the power of y). Note that for y=2, it is m ore efficient to use x*x.

radians(x) Conv erts angle x from degrees to radians.

sin(x) Returns the sine (m easured in radians) of x.

sinh(x) Returns the hy perbolic sine of x.

sqrt(x) Returns the square root of x.

tan(x) Returns the tangent (measured in radians) of x.

tanh(x) Returns the hy perbolic tangent of x.

trunc(x) Returns the Real v alue x truncated to an Integral. Delegates to x.__trunc__().

Compressions

Python contains several modules for working with compressed files. The builtin function zip does not have anything to do with

zipping, think instead of a zipper.

There are three different concepts with compressions:

compression of data

compression of a single file (e.g. gzip, bz2)

compression of archives, ie. zip-files with multple files

Compression of data

Module Descript ion

zlib Com pression and decompression of data (strings), using the zlib library .

bz2 Sequential compression and decom pression using classes BZ2Compressor and BZ2Decompressor, or One-shot

(de)compression though functions compress() and decompress().

Compression of single file

Module Descript ion

gzip Read and write gzip-com pressed files as were they norm al files, using the GzipFile class.

bz2 Read and write bz2-compressed files as were they normal files, using the BZ2File class.

Compression of archives

Module Descript ion

zipfile Work with ZIP archiv es.

See the method ZipFile.open for reading a single file in the archiv e as a norm al file.

tarfile Read and write tar archiv e files.

shutil The function make_archive prov ides means for packaging a directory into a archiv e.

List of modules and packages in base distribution

Built-ins and content of python Lib directory . The subdirectory Lib/site-packages contains platform-specific packages and

modules.

[Main distributions (Windows, Unix), some OS specific modules may be missing]

Standard library modules

Operat ion Result

__builtin__ Prov ide direct access to all `built-in' identifiers of Py thon, e.g. __builtin__.open is the full nam e

for the built-in function open().

__future__ Future statement definitions. Used to progressiv ely introduce new features in the language.

__main__ Represent the (otherwise anony m ous) scope in which the interpreter's m ain program executes --

com mands read either from standard input, from a script file, or from an interactiv e prom pt.

Ty pical idiom to check if a code was run as a script (as opposed to being imported):

if __name__ == '__main__':

 main() # (this code was run as script)

abc (new in 2 .6) Abstract Base Classes (ABC) [PEP 3 1 1 9]. Equiv alent of Jav a interfaces. The m odule

collections defines interfaces/ABCs for many behav iors/protocols/data structures (Iterable,

Hashable, Sequence, Set, etc...).

aifc Stuff to parse AIFF-C and AIFF files.

any dbm Generic interface to all dbm clones. (dbhash, gdbm, dbm, dumbdbm).

argparse Parser for comm and-line options, argum ents and sub-com mands. For m ore C-like comm and-line

processing, see getopt.

array Efficient array s of num eric v alues.

ast (new in 2 .6) Helpers to process Trees of the Py thon Abstract Sy ntax gramm ar.

asy nchat A class supporting chat-sty le (comm and/response) protocols.

asy ncore Basic infrastructure for asy nchronous socket serv ice clients and serv ers.

atexit Register functions to be called at exit of Py thon interpreter.

audiodev Classes for manipulating audio dev ices (currently only for Sun and SGI). Deprecated since 2.6.

audioop Manipulate raw audio data. 2.5: Supports the a-LAW encoding.

audioop Manipulate raw audio data. 2.5: Supports the a-LAW encoding.

base64 Conv ersions to/from base64 transport encoding as per RFC-1 521 .

BaseHTTPServ er HTTP serv er base class

Bastion "Bastionification" utility (control access to instance v ars).

bdb A generic Py thon debugger base class.

binascii Conv ert between binary and ASCII.

binhex Macintosh binhex com pression/decompression.

bisect Bisection algorithms.

bsddb (Optional) im prov ed BSD database interface [package].

bz2 BZ2 com pression.

calendar Calendar printing functions.

cgi Wraps the WWW Form s Com mon Gateway Interface (CGI).

CGIHTTPServ er CGI-sav v y HTTP Serv er.

cgitb Traceback m anager for CGI scripts.

chunk Read IFF chunked data.

cm ath Mathematical functions for complex numbers. See also m ath.

cm d A generic class to build line-oriented comm and interpreters.

cm p Efficiently com pare files, boolean outcom e only .

cm pcache Sam e, but caches 'stat' results for speed.

code Utilities needed to em ulate Py thon's interactiv e interpreter.

codecs Lookup existing Unicode encodings and register new ones. 2.5: support for incremental codecs.

codeop Utilities to compile possibly incomplete Py thon source code.

collections High-perform ance container dataty pes. 2 .4: The only dataty pe defined is a double-ended queue

deque. 2 .5: Ty pe deque has now a remove m ethod. New ty pe defaultdict. 2 .6: New ty pe

namedtuple. Define many ABCs (Abstract Base Classes) like Container, Hashable, Iterable,

Sequence, Set...

colorsy s Conv ersion functions between RGB and other color sy stems.

com m ands Execute shell comm ands v ia os.popen [Unix].

com pileall Force "com pilation" of all .py files in a directory .

ConfigParser Configuration file parser (much like windows .ini files).

contextlib Utilities for with statem ent contexts.

Cookie HTTP state (cookies) m anagem ent.

copy Generic shallow and deep copy ing operations.

copy _reg Helper to prov ide extensibility for m odules pickle/cPickle.

cPickle Faster, C im plem entation of pickle.

cProfile Faster, C im plem entation of profile.

cry pt Function to check Unix passwords [Unix].

cStringIO Faster, C im plem entation of StringIO.

csv Tools to read com m a-separated files (of v ariations thereof). 2.5: Sev eral enhancements.

cty pes "Foreign function" library for Py thon. Prov ides C com patible data ty pes, and allows to call functions

in dlls/shared libraries. Can be used to wrap these libraries in pure Py thon.

curses Terminal handling for character-cell display s [Unix/OS2/DOS only].

datetim e Improv ed date/tim e ty pes (date, time, datetime, timedelta). 2.5: New m ethod

strptime(string, format) for class datetime. 2 .6: strftime() new form at code %f expanding to

num ber of s.

dbhash (g)dbm-com patible interface to bsdhash.hashopen.

decim al Decim al floating point arithm etic.

difflib Tool for com paring sequences, and com puting the changes required to conv ert one into another.

2.5: Im prov ed SequenceMatcher.get_matching_blocks() m ethod .

dircache Sorted list of files in a dir , using a cache. Deprecated since 2.6.

dircm p Defines a class to build directory diff tools on.

dis By tecode disassem bler.

distutils Package installation sy stem . 2.5: Function setup enhanced with new key word parameters

requires, provides, obsoletes, and download_url [PEP3 1 4].

distutils.com mand.register Registers a m odule in the Py thon package index (Py PI). This comm and plugin adds the register

com mand to distutil scripts.

distutils.debug

distutils.em xccom piler

distutils.log

distutils.sy sconfig In 2.7 m ov ed to separate module sysconfig.

dl Call C functions in shared objects [Unix]. Deprecated since 2 .6.

doctest Unit testing fram ework based on running examples embedded in docstrings. 2 .5: New SKIP option.

New encoding arg to testfile() function.

DocXMLRPCServ er Creation of self-docum enting XML-RPC serv ers, using py doc to create HTML API doc on the fly . 2 .5:

New attribute rpc_paths.

dospath Com mon operations on DOS pathnam es.

dum bdbm A dum b and slow but sim ple dbm clone.

dum p Print py thon code that reconstructs a v ariable.

dum my _thread

dum my _threading Helpers to m ake it easier to write code that uses threads where supported, but still runs on Py thon

v ersions without thread support. The dum m y modules simply run the threads sequentially .

em ail A package for parsing, handling, and generating email m essages. New v ersion 3 .0 dropped v arious

deprecated APIs and rem ov es support for Py thon v ersions earlier than 2 .3. 2 .5: Updated to v ersion

4.0.

encodings New codecs: idna (IDNA strings), koi8_u (Ukranian), palmos (Palm OS 3 .5), punycode

(Puny code IDNA codec), string_escape (Py thon string escape codec: replaces non-printable chars

w/ Py thon-sty le string escapes). New codecs in 2 .4: HP Roman8, ISO_8859-1 1 , ISO_8859-1 6,

PCTP-1 54, TIS-620; Chinese, Japanese and Korean codecs.

errno Standard errno sy stem sy m bols. The v alue of each sy m bol is the corresponding integer v alue.

errno Standard errno sy stem sy m bols. The v alue of each sy m bol is the corresponding integer v alue.

exceptions Class based built-in exception hierarchy .

fcntl The fcntl() and ioctl() sy stem calls [Unix].

filecm p File and directory com parison.

fileinput Helper class to quickly write a loop ov er all standard input files. 2.5: Made more flexible (Unicode

filenames, mode parameter, etc...)

find Find files directory hierarchy m atching a pattern.

fnm atch Filenam e matching with shell patterns.

formatter Generic output formatting.

fpectl Floating point exception control [Unix].

fpformat General floating point formatting functions. Deprecated since 2.6.

fractions (new in 2 .6) Rational Num bers.

ftplib An FTP client class. Based on RFC 959.

functools Tools for functional-sty le program ming. See in particular function partial() [PEP309].

future_builtins (new in 2 .6) Py thon 3 builtins. Prov ides functions that exist in 2.x, but hav e different behav ior in

Py thon 3 (ascii, m ap, filter, hex...). To write Py thon 3 com patible code, im port the functions from

this m odule, e.g.:

from future_builtins import m ap

...code using Py thon3-sy le m ap()...

gc Perform garbage collection, obtain GC debug stats, and tune GC parameters. 2.5: New get_count()

function. gc.collect() takes a new generation argument.

gdbm GNU's reinterpretation of dbm [Unix].

getopt Standard com m and line processing in C getopt() sty le. See also argparse.

getpass Utilities to get a password and/or the current user name.

gettext Internationalization and localization support.

glob Filenam e "globbing" utility .

gopherlib Gopher protocol client interface.

grp The group database [Unix].

grep 'grep' utilities.

gzip Read & write gzipped files.

hashlib Secure hashes and m essage digests.

heapq Heap queue (priority queue) helpers. 2.5: nsmallest() and nlargest() takes a key key word

param .

hm ac HMAC (Key ed-Hashing for Message Authentication).

hotshot.stones Helper to run the py stone benchmark under the Hotshot profiler.

htmlentity defs HTML character entity references.

htmllib HTML2 parsing utilities. Deprecated since 2.6; see HTMLParser-class.

HTMLParser Simple HTML and XHTML parser.

httplib HTTP1 client class.

idlelib (package) Support library for the IDLE dev elopment env ironment.

ihooks Hooks into the "import" m echanism . Deprecated since 2 .6.

im ageop Manipulate raw im age data. Deprecated since 2.6; rem ov ed in Py thon 3.

im aplib IMAP4 client.Based on RFC 2060.

im ghdr Recognizing im age files based on their first few by tes.

im p Access the import internals.

im putil Prov ides a way of writing custom ized import hooks.

inspect Get information about liv e Py thon objects.

io (new in 2 .6) Core tools for working with stream s [PEP 31 1 6]. Define Abstract Base Classes

RawIOBase (I/O operations: read, write, seek..), BufferedIOBase (buffering), and TextIOBase

(reading & writing strings).

itertools Tools to work with iterators and lazy sequences. 2.5: islice() accepts None for start & step args.

2.6: Sev eral new functions: izip_longest, product, combinations, permutations.

json (new in 2 .6) JSON (Jav aScript Object Notation) interchange format support.

key word List of Py thon key words.

knee A Py thon re-implementation of hierarchical m odule import.

linecache Cache lines from files.

linuxaudiodev Linux /dev /audio support. Replaced by ossaudiodev(Linux).

locale Support for number form atting using the current locale settings. 2.5: format() modified; new

functions format_string() and currency()

logging (package) Tools for structured logging in log4j sty le.

macpath Pathname (or related) operations for the Macintosh [Mac].

macurl2path Mac specific m odule for conv ersion between pathnam es and URLs [Mac].

mailbox Classes to handle Unix sty le, MMDF sty le, and MH sty le m ailboxes. 2.5: added capability to m odify

mailboxes in addition to reading them.

mailcap Mailcap file handling (RFC 1 524).

marshal Internal Py thon object serialization.

markupbase Shared support for scanning document ty pe declarations in HTML and XHTML.

math Mathematical functions. See also cmath

md5 MD5 m essage digest algorithm . 2.5: Now a m ere wrapper around new library hashlib.

Deprecated since 2 .6, use hashlib module instead.

mhlib MH (mailbox) interface. Deprecated since 2.6.

mimetools Various tools used by MIME-reading or MIME-writing program s. Deprecated since 2 .6.

mimety pes Guess the MIME ty pe of a file.

Mim eWriter Generic MIME writer. Deprecated since 2 .3, use email package instead.

mimify Mimification and unmimification of m ail messages. Deprecated since 2.6, use email package

instead.

mm ap Interface to m em ory -m apped files - they behav e like m utable strings.

mm ap Interface to m em ory -m apped files - they behav e like m utable strings.

modulefinder Tools to find what m odules a giv en Py thon program uses, without actually running the program .

msilib Read and write Microsoft Installer files [Windows].

msv crt File & Console Windows-specific operations [Windows].

multifile A readline()-sty le interface to the parts of a multipart m essage. Deprecated since 2 .6.

multiprocessing (new in 2 .6) Process-based "threading" interface. Allows to fully lev erage multiple processors on

a m achine [Windows, Unix] [PEP 37 1].

mutex Mutual exclusion -- for use with m odule sched. See also std module threading, and glock.

netrc Parses and encapsulates the netrc file form at.

new Creation of runtime internal objects (interface to interpreter object creation functions). Deprecated

since 2 .6.

nis Interface to Sun's NIS (Yellow Pages) [Unix]. 2 .5: New domain arg to nis.match() and

nis.maps().

nntplib An NNTP client class. Based on RFC 97 7 .

ntpath Com mon operations on Windows pathnames [Windows].

nturl2path Conv ert a NT pathnam e to a file URL and v ice v ersa [Windows].

numbers Numeric Abstract Base Classes (ABC) [PEP 31 41]. Define a ty pe hierarchy for numbers:

Number, Complex, Real, Rational, Integral.

olddifflib Old v ersion of difflib (helpers for com puting deltas between objects)?

operator Standard operators as functions. 2.5: itemgetter() and attrgetter() now supports multiple

fields.

optparse Improv ed comm and-line option parsing library (see also getopt). 2 .5: Updated to Optik library 1 .51 .

os OS routines for Mac, DOS, NT, or Posix depending on what sy stem we're on. 2 .5: os.stat() return

time v alues as floats; new constants to os.lseek(); new functions wait3() and wait4(); on

FreeBSD, os.stat() returns tim es with nanosecond resolution.

os.path Com mon pathname m anipulations.

os2em xpath os.path support for OS/2 EMX.

packmail Create a self-unpacking shell archiv e.

parser Access Py thon parse trees.

pdb A Py thon debugger.

pickle Pickling (sav e/serialize and restore/deserialize) of Py thon objects (a faster C im plem entation exists

in built-in module: cPickle). 2.5: Value returned by __reduce__() must be different from None.

pickletools Tools to analy ze and disassem ble pickles.

pipes Conv ersion pipeline templates [Unix].

pkgutil Tools to extend the m odule search path for a giv en package. 2 .5: PEP302's import hooks support;

works for packages in ZIP form at archiv es.

platform Get info about the underly ing platform .

poly Poly nom ials.

popen2 Spawn a comm and with pipes to its stdin, stdout, and optionally stderr. Superseded by m odule

subprocess since 2 .4. Deprecated since 2.6.

poplib A POP3 client class.

posix Most comm on POSIX sy stem calls [Unix].

posixpath Com mon operations on POSIX pathnam es.

pprint Support to pretty -print lists, tuples, & dictionaries recursiv ely .

pre Support for regular expressions (RE) - see re.

profile Class for profiling py thon code. 2.5: See also new fast C im plem entation cProfile

pstats Class for printing reports on profiled py thon code. 2.5: new stream arg to Stats constructor.

pty Pseudo term inal utilities [Linux, IRIX].

pwd The password database [Unix].

py _com pile Routine to "com pile" a .py file to a .py c file.

py clbr Parse a Py thon file and retriev e classes and m ethods.

py doc Generate Py thon documentation in HTML or text for interactiv e use.

py expat Interface to the Expat XML parser. 2 .5: now uses V2.0 of the expat parser.

Py Unit Unit test fram ework inspired by JUnit. See unittest.

Queue A m ulti-producer, multi-consum er queue. 2 .6: New queue v ariants PriorityQueue and

LifoQueue.

quopri Conv ersions to/from quoted-printable transport encoding as per RFC 1 521 .

rand Don't use unless y ou want compatibility with C's rand().

random Random v ariable generators.

re Regular Expressions.

readline GNU readline interface [Unix].

reconv ert Conv ert old ("regex") regular expressions to new sy ntax ("re").

regexp Backward compatibility for m odule "regexp" using "regex".

regex_sy ntax Flags for regex.set_syntax().

regsub Regexp-based split and replace using the obsolete regex m odule.

repr Alternate repr() implementation.

resource Resource usage inform ation [Unix].

rexec Restricted execution facilities ("safe" exec, ev al, etc).

rfc822 Parse RFC-8222 m ail headers.

rgbim g Read and write 'SGI RGB' files.

rlcompleter Word completion for GNU readline 2 .0 [Unix]. 2 .5: Doesn't depend on readline any more; now

works on non-Unix platforms.

robotparser Parse robot.txt files, useful for web spiders.

sched A generally useful ev ent scheduler class.

select Waiting for I/O com pletion.

sets A Set dataty pe im plem entation based on dictionaries. Deprecated since 2.6, use built-in ty pes set

and frozenset instead.

sgm llib A parser for SGML, using the deriv ed class as a static DTD.

sha SHA-1 message digest algorithm. 2.5: Now a mere wrapper around new library hashlib.

sha SHA-1 message digest algorithm. 2.5: Now a mere wrapper around new library hashlib.

Deprecated since 2 .6, use hashlib instead.

shelv e Manage shelv es of pickled objects.

shlex Lexical analy zer class for sim ple shell-like sy ntaxes.

shutil Utility functions for copy ing files and directory trees.

signal Set handlers for asy nchronous ev ents.

SimpleHTTPServ er Simple HTTP Serv er.

SimpleXMLRPCServ er Simple XML-RPC Serv er. 2.5: New attribute rpc_paths.

site Append m odule search paths for third-party packages to sys.path.

sm tpd An RFC 2821 SMTP serv er.

sm tplib SMTP/ESMTP client class.

sndhdr Sev eral routines that help recognizing sound.

socket Socket operations and some related functions. Now supports tim eouts thru function

settimeout(t). Also supports SSL on Windows. 2.5: Now supports AF_NETLINK sockets on Linux;

new socket m ethods recv_buf(buffer), recvfrom_buf(buffer), getfamily(), gettype() and

getproto() .

SocketServ er Generic socket serv er classes.

spwd Access to the UNIX shadow password database [Unix].

sqlite3 DB-API 2.0 interface for SQLite databases.

sre Support for regular expressions (RE). See re.

stat Constants/functions for interpreting results of os.

statv fs Constants for interpreting statv fs struct as returned by os.statvfs() and os.fstatvfs() (if they

exist). Deprecated since 2.6.

string A collection of string operations (see Strings).

StringIO File-like objects that read/write a string buffer (a faster C implem entation exists in built-in module

cStringIO).

stringprep Normalization and m anipulation of Unicode strings.

struct Perform conv ersions between Py thon v alues and C structs represented as Py thon strings. 2 .5: faster

(new pack() and unpack() m ethods); pack and unpack to and from buffer objects v ia m ethods

pack_into and unpack_from.

subprocess Subprocess management. Replacement for os.sy stem, os.spawn*, os.popen*, popen2.* [PEP324]

sunau Stuff to parse Sun and NeXT audio files.

sunaudio Interpret sun audio headers.

sy mbol Non-term inal sy m bols of Py thon gram m ar (from "gram init.h").

sy mtable Interface to the com piler 's internal sy m bol tables.

sy s Sy stem-specific parameters and functions.

sy sconfig Prov ides access to Py thon’s configuration inform ation like the list of installation paths and the

configuration v ariables relev ant for the current platform .

sy slog Unix sy slog library routines [Unix].

tabnanny Check Py thon source for am biguous indentation.

tarfile Tools to read and create TAR archiv es. 2.5: New method TarFile.extractall().

telnetlib TELNET client class. Based on RFC 854.

tempfile Tem porary files and filenames. 2.6: New classes SpooledTemporaryFile and

NamedTemporaryFile.

term ios POSIX sty le tty control [Unix].

test Regression tests package for Py thon.

textwrap Tools to wrap paragraphs of text.

thread Multiple threads of control (see also threading below).

threading New threading m odule, emulating a subset of Jav a's threading m odel. 2 .5: New function

stack_size([size]) allows to get/set the stack size for threads created. 2.6: Sev eral functions

renam ed or replaced by properties, new property Thread.ident. See also new m odule

multiprocessing.

threading_api (doc of the threading m odule).

time Tim e access and conv ersions.

timeit Benchm ark tool.

Tix Extension widgets for Tk.

Tkinter Py thon interface to Tcl/Tk.

toaiff Conv ert "arbitrary " sound files to AIFF (Apple and SGI's audio form at). Deprecated since 2.6.

token Token constants (from "token.h").

tokenize Tokenizer for Py thon source.

trace Tools to trace execution of a function or program .

traceback Extract, form at and print inform ation about Py thon stack traces.

tty Terminal utilities [Unix].

turtle LogoMation-like turtle graphics.

ty pes Define names for all ty pe sy m bols in the std interpreter.

tzparse Parse a timezone specification.

unicodedata Interface to unicode properties. 2 .5: Updated to Unicode DB 4.1 .0; Version 3.2 .0 still av ailable as

unicodedata.ucd_3_2_0. 2 .6: Updated to Unicode DB 5.1 .0.

unittest Py thon unit testing framework, based on Erich Gamm a's and Kent Beck's JUnit.

urllib Open an arbitrary URL.

urllib2 An extensible library for opening URLs using a v ariety of protocols.

urlparse Parse (absolute and relativ e) URLs.

user Hook to allow user-specified custom ization code to run.

UserDict A wrapper to allow subclassing of built-in dict class (useless with new-style classes. Since Py thon

2.2 , dict is subclassable).

UserList A wrapper to allow subclassing of built-in list class (useless with new-style classes. Since Py thon 2 .2,

list is subclassable)

UserString A wrapper to allow subclassing of built-in string class (useless with new-style classes. Since Py thon

UserString A wrapper to allow subclassing of built-in string class (useless with new-style classes. Since Py thon

2.2 , str is subclassable).

util some useful functions that don't fit elsewhere !!

uu Implementation of the UUencode and UUdecode functions.

uuid UUID objects according to RFC 41 22.

warnings Py thon part of the warnings subsy stem. Issue warnings, and filter unwanted warnings.

wav e Stuff to parse WAVE files.

weakref Weak reference support for Py thon. Also allows the creation of proxy objects. 2 .5: new m ethods

iterkeyrefs(), keyrefs(), itervaluerefs() and valuerefs().

webbrowser Platform independent URL launcher. 2 .5: sev eral enhancem ents (m ore browsers supported, etc...).

whatsound Sev eral routines that help recognizing sound files.

whichdb Guess which db package to use to open a db file.

whrandom Wichm ann-Hill random number generator (obsolete, use random instead).

winsound Sound-play ing interface for Windows [Windows].

wsgiref WSGI Utilities and Reference Im plementation.

xdrlib Implements (a subset of) Sun XDR (eXternal Data Representation).

xml.dom Classes for processing XML using the DOM (Docum ent Object Model). 2.3: New modules

expatbuilder, m inicom pat, NodeFilter, xm lbuilder.

xml.etree.ElementTree Subset of Fredrik Lundh's ElementTree library for processing XML.

xml.parsers.expat An interface to the Expat non-v alidating XML parser.

xml.sax Classes for processing XML using the SAX API.

xmlrpclib An XML-RPC client interface for Py thon. 2.5: Supports returning datetime objects for the XML-RPC

date ty pe.

xreadlines Prov ides a sequence-like object for reading a file line-by -line without reading the entire file into

mem ory . Deprecated since release 2 .3. Use for line in file instead. Rem ov ed since 2.4

zipfile Read & write PK zipped files. 2.5: Supports ZIP64 v ersion, a .zip archiv e can now be larger than

4GB. 2 .6: Class ZipFile has new methods extract() and extractall().

zipimport ZIP archiv e importer.

zlib Com pression compatible with gzip. 2.5: Compress and Decompress objects now support a copy()

method.

zm od Demonstration of abstruse mathematical concepts.

Workspace exploration and idiom hints

dir(object) list v alid attributes of object (which can be a module, ty pe or class object)
dir() list nam es in current local sy mbol table.
if __name__ == '__main__':

 main()
inv oke main() if running as script

map(None, lst1, lst2, ...) merge lists; see also zip(lst1 , lst2 , ...)
b = a[:] create a copy b of sequence a
b = list(a) If a is a list, create a copy of it.
a,b,c = 1,2,3 Multiple assignment, sam e as a=1 ; b=2; c=3
for key, value in dic.items(): ... Works also in this context
if 1 < x <= 5: ... Works as expected
for line in fileinput.input(): ... Process each file in comm and line args, one line at a time
_ (underscore) in interactiv e m ode, refers to the last v alue printed.

Python Mode for Emacs

Emacs goodies available here.

(The following has not been revised, probably not up to date - any contribution welcome -)

Type C-c ? when in python-mode for extensive help.

INDENTATION

Primarily for entering new code:

 TAB indent line appropriately

 LFD insert newline, then indent

 DEL reduce indentation, or delete single character

Primarily for reindenting existing code:

 C-c : guess py-indent-offset from file content; change locally

 C-u C-c : ditto, but change globally

 C-c TAB reindent region to match its context

 C-c < shift region left by py-indent-offset

 C-c > shift region right by py-indent-offset

MARKING & MANIPULATING REGIONS OF CODE

C-c C-b mark block of lines

M-C-h mark smallest enclosing def

C-u M-C-h mark smallest enclosing class

C-c # comment out region of code

C-u C-c # uncomment region of code

MOVING POINT

C-

c C-p move to statement preceding point

C-c C-n move to statement following point

C-c C-u move up to start of current block

M-C-a move to start of def

M-C-a move to start of def

C-u M-C-a move to start of class

M-C-e move to end of def

C-u M-C-e move to end of class

EXECUTING PYTHON CODE

C-c C-c sends the entire buffer to the Python interpreter

C-c | sends the current region

C-c ! starts a Python interpreter window; this will be used by

 subsequent C-c C-c or C-c | commands

VARIABLES

py-indent-offset indentation increment

py-block-comment-prefix comment string used by py-comment-region

py-python-command shell command to invoke Python interpreter

py-scroll-process-buffer t means always scroll Python process buffer

py-temp-directory directory used for temp files (if needed)

py-beep-if-tab-change ring the bell if tab-width is changed

Changes to this document

April, 2013 (Stefan McKinnon Høj-Edwards)

Cor r ect ion s

A dded str iketh r ou g h to depr eca ted m odu les in m odu le-list .

Cor r ected lin ks in m odu les list .

A dded a r ecipee for th e secr et re.Scanner.

A dded con tex t m a n ag er m eth ods to specia l m eth ods in cla sses.

Oct, 2011 (Stefan McKinnon Høj-Edwards)

Upg r a ded to Py th on 2 .7

Prior to Oct. 2011,

see La st u pda ted on -list

