
Python	and	Web	Data	Extraction:
Introduction

Alvin Zuyin Zheng
zheng@temple.edu

http://community.mis.temple.edu/zuyinzheng/

Outline

• Overview
• Steps	in	Web	Scraping
– Fetching	a	Webpage
– Download	the	webpage	
– Extracting	information	 from	the	webpage
– Storing	information	in	a	file

• Tutorial	2:	Extracting	Textual	Data	from	10-K

Web	scraping	typically	consist	of

Step	1.	Fetching	a	
webpage

Step	2.	
Downloading	the	

webpage	
(Optional)

Step	3.	Extracting	
information	from	
the	webpage

Step	4.	Storing	
information	in	a	file

Example:	10-K

URL:	
https://www.sec.gov/Archives/edgar/data/1288776/000165204416000012/goog10-k2015.htm

Example:	Table	with	Links

URL:	
https://www.sec.gov/cgi-bin/browse-edgar?action=getcompany&CIK=GOOG&type=10-
K&dateb=&owner=exclude&count=100

https://www.sec.gov/edgar/searchedgar/companysearch.html

Outline

• Overview
• Steps	in	Web	Scraping
– Fetching	a	Webpage
– Downloading	the	webpage	
– Extracting	information	 from	the	webpage
– Storing	information	in	a	file

• Tutorial	2:	Extracting	Textual	Data	from	10-K

Fetching	a	Webpage
• Use	the	urllib2 package	to	open	a	
webpage
– Do	not	need	to	install	manually

>>> import urllib2

>>> urlLink = "https://www.sec.gov/cgi-bin/browse-
edgar?action=getcompany&CIK=GOOG&type=10-
K&dateb=&owner=exclude&count=100"

>>> pageRequest = urllib2.Request(urlLink)

>>> pageOpen = urllib2.urlopen(pageRequest)

>>> pageRead = pageOpen.read()

>>>

Outline

• Overview
• Steps	in	Web	Scraping
– Fetching	a	Webpage
– Downloading	the	webpage	
– Extracting	information	 from	the	webpage
– Storing	information	in	a	file

• Tutorial	2:	Extracting	Textual	Data	from	10-K

Downloading	a	Webpage

• We	often	want	to	download	 the	webpages	because
– We	want	to	limit	web	requests
– Websites	may	change	over	time
– We	want	to	replicate	research

>>> os.chdir
('/Users/alvinzuyinzheng/Dropbox/PythonWorkshop/scripts
/') #Change your working directory

>>> htmlname = "goog10-k2015.htm"

>>> htmlfile = open(htmlname, "wb")

>>> htmlfile.write(pageRead)

>>> htmlfile.close()

Outline

• Overview
• Steps	in	Web	Scraping
– Fetching	a	Webpage
– Download	the	webpage	
– Extracting	information	 from	the	webpage
– Storing	information	in	a	file

• Tutorial	2:	Extracting	Textual	Data	from	10-K

What	is	HTML

• When	performing	web	data	extraction,	we	deal	with	
HTML	files
– Hyper	Text	Markup	Language

• HTML	specifies	 a	set	of tags that	identify	structure	
and	content	type	of	webpages
– Tags:	surrounded	by	angle	brackets	<		>
– most	tags	come	in	pairs,	marking	a	beginning	and	ending	

• E.g., <title> and		</title> enclose	the	title	of	a	page

HTML	Layout

<html>

<head>
<title>HTML examples</title>
</head>

<body>
<h1>HTML demonstration</h1>
<p>This is a sample HTML page.</p>
</body>

</html>

html_example.html Open	in	a	browser:

More	on	HTML	tags:	check	HTML	tutorial	from	W3schools.

View	HTML	Source	Code

• To	inspect	the	HTML	page	in	details,	you	can	
do	one	of	the	following:

– In	Firefox/Chrome	:	Right	click	>	View	Page	Source

– Open	the	HTML	file	in	a	text	editor	(eg,	Notepad++)

Example:	10-K

View	the	webpage	in	browser

Example:	10-K
HTML	source	code:	

Inspect	Elements

• To	inspect	a	specific	element	on	the	HTML	
page,	you	can	do	one	of	the	following:

• In	Chrome:	Right	click	on	the	
element>	 Inspect

• In	Firefox:	Right	click	on	the	
element>	 Inspect	Element

Example:	Table	with	Links

Example:	Table	with	Links
HTML	source	code:	

Ways	to	Extract	Data	from	HTML

• The	bs4	(BeautifulSoup)	Package
– Used	for	pulling	data	out	of	HTML	and	XML	files

• The	re	(regular	expression)	Package
– Can	be	used	for	both	HTML	and	plain	text	files

The	bs4	(Beautiful	Soup)	Package

• Installing	the	package	in	your	command	line	
interface:
pip install beautifulsoup4

• Import	the	package	in	Python
from bs4 import BeautifulSoup

Visit	here	to	learn	more	about	Beautiful	Soup:	
https://www.crummy.com/software/BeautifulSoup/

Example:	Extracting	Links	from	a	Table

Fetching	the	Webpage	with	urllib2

>>> import urllib2

>>> urlLink = “https://www.sec.gov/cgi-bin/browse-
edgar?action=getcompany&CIK=GOOG&type=10-
K&dateb=&owner=exclude&count=100"

>>> pageRequest = urllib2.Request(urlLink)

>>> pageOpen = urllib2.urlopen(pageRequest)

>>> pageRead = pageOpen.read()

>>>

In	Python:

https://www.sec.gov/cgi-bin/browse-edgar?action=getcompany&CIK=GOOG&type=10-
K&dateb=&owner=exclude&count=100

Extracting	the	Links	with	BeautifulSoup

>>> from bs4 import BeautifulSoup

>>> soup = BeautifulSoup(pageRead,"html.parser")

>>> table = soup.find("table",{"class":"tableFile2"})

>>> links = []

>>> for row in table.findAll("tr"):

... cells = row.findAll("td")

... if len(cells)==5:

... link=cells[1].find("a",{"id":"documentsbutton"})

... docLink="https://www.sec.gov"+link['href']

... links.append(docLink)

In	Python:

Extracting	the	Links	with	BeautifulSoup

https://www.sec.gov/Archives/edgar/data/1288776/000119
312516520367/0001193125-16-520367-index.htm

https://www.sec.gov/Archives/edgar/data/1288776/000165
204416000012/0001652044-16-000012-index.htm

https://www.sec.gov/Archives/edgar/data/1288776/000128
877615000008/0001288776-15-000008-index.htm

https://www.sec.gov/Archives/edgar/data/1288776/000128
877614000020/0001288776-14-000020-index.htm

……

What	we	will	get:

• We	talked	about	Regular	Expressions
– Powerful	text	manipulation	tool	for	searching,	
replacing,	and	parsing	text	patterns

• In	Python,	you	need	to	load	the	“re”	package

Extracting	Textual	Data	Using	re

>>> import re

Example:	Item	1	of	10-K

<div style="text-align:left;font-size:10pt;">
<font style="font-family:Arial;font-size:10pt;font-
weight:bold;">ITEM 1.

</div>

Inspect	element	 “ITEM	1.”

HTML	source	code:	

Having	the	subtitle	 “ITEM	1.”	in	bold	makes	sure	that	it	is	 in	the	
subtitle,	not	in	main	text	

Extracting	Textual	Data	Using	re
assume we have pre-processed the webpage

and the page content is stored in a variable “page”

>>> import re

>>> regex="bold;\">\s*Item 1\.(.+?)bold;\">\s*Item 1A\."

>>> match = re.search(regex, page, flags=re.IGNORECASE)

#returns everything between “Item 1.” and “Item 1A.”

>>> match.group(1)

Anatomy	of	the	RE	Pattern
• We	used	the	following	pattern:

'bold;\">\s*Item 1\.(.+?)bold;\">\s*Item 1A\.'

“Item	1.” “Item	1A.”

(.+?)represents	everything	 else	in	between	 that	
will	be	extracted

• What	does	each	element	mean?
Regular	Expression Corresponding	Text

\" "

\s Whitespace	(such	as	space,	tab,	new	line)

* Repeats	the	preceding	character	zero	or	more	times

\. .		(dot)

More	Basic	Patterns
Symbols Meaning
^ Matches the beginning of a line
$ Matches the end of the line
. (dot) Matches any character but a whitespace
\s Matches a single whitespace
* Repeats a character zero or more times
+ Repeats a character one or more times
? Repeats a character zero or 1 times
[xyz] Matches any of x, y, z
\w Matches a letter or digit or underbar
\d Matches a digit [0-9]
() Indicates where string extraction is

to start and end

Outline

• Overview
• Steps	in	Web	Scraping
– Fetching	a	Webpage
– Download	the	webpage	
– Extracting	information	 from	the	webpage
– Storing	information	in	a	file

• Tutorial	2:	Extracting	Textual	Data	from	10-K

Storing	information	to	a	csv	file
Previously we have a list of links extracted

and stored in a variable “links”

>>> import csv

>>> csvOutput = open("IndexLinks.csv", "wb")

>>> csvWriter = csv.writer(csvOutput, quoting =
csv.QUOTE_NONNUMERIC)

>>> for link in links:

... csvWriter.writerow([link])

>>> csvOutput.close()

Outline

• Overview
• Steps	in	Web	Scraping
– Fetching	a	Webpage
– Download	the	webpage	
– Extracting	information	 from	the	webpage
– Storing	information	in	a	file

• Tutorial	2:	Extracting	Textual	Data	from	10-K

Tutorial	2:	Extracting	Textual	Data	from	10-K

• Install	the	Beautiful	Soup	package
pip install beautifulsoup4

• Download	the	following	files	from	our	website,	
and	put	them	into	the	same	folder
• 1GetIndexLinks.py
• 2Get10kLinks.py	
• 3DownLoadHTML.py	
• 4ReadHTML.py	
• CompanyList.csv	

Tutorial	2:	Extracting	Textual	Data	from	10-K

• Changing	Working	Directory
– For	each	of	the	four	scripts,	change	the	working	directory	
to	where	you	put	the	company	list	(CompanyList.csv)	by	
changing	the	following	line:

os.chdir(‘/Users/alvinzuyinzheng/Dropbox/PythonWorkshop/sc
ripts/')

• Run	each	Python	Script	one-by-one

Other	Resources

• Books:
– Web	Scraping	with	Python:	Collecting	Data	from	the	
Modern	Web	(by	Ryan	Mitchell)

– Mining	the	Social	Web:	Data	Mining	Facebook,	Twitter,	
LinkedIn,	Google+,	GitHub,	and	More	(by	Matthew	A.	
Russell)

• Beautiful	Soup	Documentation:
– https://www.crummy.com/software/BeautifulSoup/bs4/d
oc/

