

1 © Fox Valley Girls Coding Club Python Flask Project in Glitch

Python Flask Project in Glitch

Objectives:
 Understand Client and Server Communication on the Web

 Understand the difference between Client-side code and Server-side code

 Learn about Python Flask Web Development by creating your own Web site

We will create a Web site with code in Python, HTML, CSS, and JavaScript using Glitch, an on-line

development tool. Before starting the coding project in Glitch, we will set up a code repository in

GitHub, so we will have a place to store our code

Web Client (Browser) / Server Communication --> Request/Response

Communication Protocols:
 Standards are defined for how machines on the Web communicate with each other

 HTTP: HyperText Transfer Protocol

 HTTPS: Secure HTTP; uses certificates to validate and encryption to protect data

 Browser (Client Software): Sends Requests and Presents HTML from Response
 Browser software is on computers and mobile devices

Chrome, Safari, Firefox, Edge, Opera, IE, etc.

 Sends Request for a URL (Uniform Resource Locator) – expects to get HTML back

 Browsers all know how to read HTML

 Executes Client-Side code: JavaScript is widely used and understood by Browsers

Server: Receives Requests and Sends Response:

 Runs Web Server software (IIS, Apache, etc.) that “Serves” up the Web pages

 Sends Response as HTML to the Browser

 Hosts Web application frameworks: e.g., Django or Flask for Python

 Hosts and executes Server-side code modules/files

o Code can be in Python, PHP, Java, C#, etc.

o Image files

 May host complete HTML pages but all or part of the HTML Response could also be generated

“on the fly” by the code

Set up GitHub Code Repository for our Python Flask Project
 Go to https://github.com and sign in or create a new account if you don’t have one

 Go to the Create a new repository page: by clicking the + in the upper right and choosing New

repository or by going to github.com/new

 Fill in the Repository name as “StarterFlask”, write a brief description, check the box to initialize

with a README, and click Create Repository

https://github.com/

2 © Fox Valley Girls Coding Club Python Flask Project in Glitch

Stay logged into GitHub, and follow the steps below to create your Python Flask project in Glitch

Create Python Flask Project in Glitch

Log into Glitch
 While logged in to GitHub, go to Glitch.com

 Click the Sign In button --> Sign In with GitHub

 If this is the first time you sign in to Glitch with GitHub, you will be asked to authorize FogCreek (the

original name of Glitch’s development company) to access your GitHub account

 When you click the Authorize button, you will receive an email from GitHub notifying you that a

third-party OAuth application has been added to your account

 You will also receive a welcoming email from Glitch with some ideas to get started

Create a Project based on a sample Flask/Python application:
 Find the hello-flask world project: type hello-flask into the search box; select the first one

 Try out the app, by typing a new “dream” in the box and clicking Submit

 Click the Remix your own button:

3 © Fox Valley Girls Coding Club Python Flask Project in Glitch

 The editor opens with your own copy of the project! Files are listed in the left column; the

README.md file is selected and shown in the main editor window. A unique project name is

generated by Glitch. In this example, the project is named “organized-oatmeal”. If you prefer a

different name, click the down arrow next to the name and type a new one. Take time to read

the README.md file as it explains the files in the project

 View your Web Site without even changing anything: Click the Show button next to the project

name; try it out; add a dream by typing over the placeholder Dreams! Text

 Connect your project to GitHub:

o If you haven’t allowed Glitch to access your repositories previously:

 At bottom of file list on left, select Tools --> Git, Import, and Export, then click the

Connect GitHub button

 Authorize Access to your GitHub Repositories: If this is the first time connecting, you

will get a confirmation popup; click the Authorize FogCreek button

 Export your project to your GitHub Repo:

o Open Tools --> Git, Import, Export: After you have granted access to your repositories, you

will see the Export to GitHub button

o Load your current project to GitHub by clicking Export to GitHub

o Change “user/repo” to your GitHub user name/name of the repo you created; click OK

4 © Fox Valley Girls Coding Club Python Flask Project in Glitch

o Commit with a comment: a Commit operation in GitHub updates GitHub with your code

changes. It requires a comment. Glitch provides a default one that you can change

A Look at Python Flask

Python Flask is a Web Framework
 Web Framework: software that runs on the Web Server to provide services, resources, code

libraries and API’s to run Web applications. ASP.NET is a framework for running Web

applications in C# and we are going to look at 2 frameworks for running Python server-side code

 Python Web Frameworks:

o Django – a “full stack” framework, often referred to as “batteries included” approach.

Includes lots of tools/libraries for administration, authentication, URL routing, database

interface, etc.

o Flask - a lightweight, extensible framework, for simple, single application Web sites.

o Refer to this article for more info on Django vs Flask:

https://www.codementor.io/garethdwyer/flask-vs-django-why-flask-might-be-better-

4xs7mdf8v

Glitch Simplifies Python Flask Development
What if we wrote the Flask Application on our computer instead of Glitch?

If you were to write a Python Flask application on your computer “from Scratch” you would have to

install a bunch of things starting with the Python language itself, and PIP the package manager for

Python packages. You would then use PIP to install Flask.

pip3 install flask –user

Once the software is installed you would create a python file, in which you’d import Flask and create an

app that is a Flask instance. In the Python code, call the run method of the app to, hopefully, get your

app running on your local host. There is a nice, simple example of this in the article linked above.

https://www.codementor.io/garethdwyer/flask-vs-django-why-flask-might-be-better-4xs7mdf8v
https://www.codementor.io/garethdwyer/flask-vs-django-why-flask-might-be-better-4xs7mdf8v

5 © Fox Valley Girls Coding Club Python Flask Project in Glitch

Glitch does all the behind the scenes setup for us!

Let’s look at what is included in the base project we each created:

Requirements.txt file takes care of telling Glitch what server software to install for our project; in this

case, Flask, and a Python Server for UNIX named Green Unicorn, https://gunicorn.org/

Server.py file is the Python code (file extension .py) that runs on the Server; it imports Flask and creates

a variable named “app” that is the instance of Flask through which all the requests are processed.

Start.sh file is a “shell script” (file extension .sh) that starts the Web application by running the server.py

file

More code follows…

https://gunicorn.org/

6 © Fox Valley Girls Coding Club Python Flask Project in Glitch

Dive into the Python code (server.py file):
Import Code Libraries: code libraries are SO IMPORTANT in development! Here we import the “os”

module to provide access to operating system features, such as environmental variables and we import

several functions from the “flask” module

Create the Flask App Instance: this statement instantiates Flask, i.e., it creates an instance of Flask that

will be referenced by the variable name “app”. Note that it includes several parameters including the

name of the current module (__name__) and the names of folders where application files are found:

Create List of Dreams: a List named DREAMS is created and initially populated with one string value; the

application will be appending more strings to the comma-separated list:

DREAMS = ['Python. Python, everywhere.']

Decorators attach functions to routes (i.e., URL paths)
Decorators in Python: a decorator starts with the “@” followed by the variable name and a function

name. The decorator executes the function defined directly below it. In Flask, one of the most important

decorators is @app.route to define what should happen when specific URLs for the Web site are

requested. In this example, there are functions defined for the homepage, represented by “/” and for

the /dreams route

Note that the index.html file, your Web site’s Home page, is in

the “views” folder and the supporting code files for JavaScript

and CSS are in the “public” folder

When the main Web site is requested

(route(‘/’), the server returns the index.html

page

When a request is posted to the /dreams URL, this

code looks for the request parameter “dreams”

and, if found, appends the dream to the list. It

returns the updated list of dreams in a JSON

format

7 © Fox Valley Girls Coding Club Python Flask Project in Glitch

Decorators are also used to define event handlers for the app

An example in this app is the @app.after_request handler that defines a function named

“apply_kr_hello(response)” to be executed after the server receives a request. It adds information to the

headers returned in the response

The app (instance of Flask) is started with the run() statement; when a module is run as a script, its

name is __main__:

if __name__ == '__main__':

 app.run()

Whew! How does the communication flow exactly?
 It starts with clicking the Submit button on the form on the index.html page

 There is JavaScript hooked into the index.html page by this statement just above the closing

</body> tag: <script src="/public/client.js"></script>

 The client.js file defines a function for the form’s submit event:

o This is Client-side code that does all this:

o Assign the value in the input textbox to the variable “dream”

o POST a request to the server using the /dreams route. The “?” separator in the query

string precedes a list of parameters being passed, an object with one property in format

{parameterName:parameterValue}. Name and value are both “dream”

o Create a new html list item () element containing the dream and append it to the

unordered list () html element having the id “dreams”:

 $('').text(dream).appendTo('ul#dreams');

o Clear the value of the input text field and set focus there

 Look again at server.py for what the server-side code does with a request to /dreams:

o look in the arguments sent in the request for an argument named ‘dream’:

o if found, append the new dream to the list DREAMS, so the in-memory “database” is

updated

o return the updated list in JSON format
@app.route('/dreams', methods=['GET', 'POST'])

def dreams():

 # Add a dream to the in-memory database, if given.

 if 'dream' in request.args:

 DREAMS.append(request.args['dream'])

 # Return the list of remembered dreams.

 return jsonify(DREAMS)

Parameter name = dream

 Parameter value = dream

8 © Fox Valley Girls Coding Club Python Flask Project in Glitch

Use Dev Tools to see Request/Response Flow
 Show your project in its own Window by selecting that option under Show to the right of project

name

 In Chrome, open Dev Tools by using the Shortcut key F12 in Windows, Command Option I in

Mac: https://developers.google.com/web/tools/chrome-devtools/shortcuts

 Select the Network tab in Dev tools

 The Network panel will list each Request/Response as well as resources such as images or files,

but will not populate until you make a request by submitting a dream or refreshing the page

 After entering a new dream with value “Updated dream” the network panel looks like this:

 The items with type xhr are XMLHttpRequest instances and we can examine the Request

and Response details for each

 Select the one that has “dreams?dream=….”; that is the communication where we sent a

new dream to the server with a POST request. Look at the Headers tab first.

Look at the @app.after_request code in server.py

to see how these headers were added

Note the Path is /dreams. Look at the

@app.route(‘dreams’…) code in server.py

Query string parameters are parsed here

https://developers.google.com/web/tools/chrome-devtools/shortcuts

9 © Fox Valley Girls Coding Club Python Flask Project in Glitch

 Now select the Response tab to see what was returned from the server:

 That Response comes from the last line of the function for the /dreams route

Return the list of remembered dreams.

 return jsonify(DREAMS)

 Next select the other request from the list, the one without the dreams? Appended. In my example, it

is organized-oatmeal.glitch.me:

o Look at the Headers and note that there are no query parameters and that the Request

Method is GET

o Look at the Response and note that it is the HTML returned from the server after being

updated by the server-side code

