
Python for Algorithmic Trading
The Python Quants GmbH <training@tpq.io>

Table of Contents
Copyright . 1

Preface . 2

Author Biography . 6

1. Python and Algorithmic Trading . 7

1.1. Introduction . 7

1.2. Python for Finance . 7

1.3. Algorithmic Trading . 14

1.4. Python for Algorithmic Trading . 18

1.5. Focus and Prerequisites . 19

1.6. Trading Strategies . 21

1.7. Overview . 22

1.8. Conclusions . 25

1.9. Further Resources . 25

2. Python Infrastructure . 27

2.1. Introduction . 27

2.2. Conda as a Package Manager . 29

2.3. Conda as a Virtual Environment Manager . 36

2.4. Using Docker Containers . 41

2.5. Using Cloud Instances . 48

2.6. Conclusions . 55

2.7. Further Resources . 56

3. Working with Financial Data . 58

3.1. Introduction . 58

3.2. Reading Financial Data From Different Sources . 59

3.3. Working with Open Data Sources . 66

3.4. Eikon Data API . 70

3.5. Storing Financial Data Efficiently . 79

3.6. Conclusions . 94

3.7. Further Resources . 94

3.8. Python Scripts . 95

4. Mastering Vectorized Backtesting . 97

4.1. Introduction . 97

4.2. Making Use of Vectorization . 98

4.3. Strategies based on Simple Moving Averages . 105

4.4. Strategies based on Momentum . 116

4.5. Strategies based on Mean-Reversion . 125

4.6. Conclusions. 131

4.7. Further Resources. 131

4.8. Python Scripts . 133

5. Predicting Market Movements with Machine Learning . 140

5.1. Introduction . 140

5.2. Using Linear Regression for Market Movement Prediction 141

5.3. Using Machine Learning for Market Movement Prediction 157

5.4. Using Deep Learning for Market Movement Prediction 172

5.5. Conclusions. 186

5.6. Further Resources. 187

5.7. Python Scripts . 188

6. Building Classes for Event-based Backtesting . 194

6.1. Introduction . 194

6.2. Backtesting Base Class . 195

6.3. Long Only Backtesting Class . 201

6.4. Long Short Backtesting Class . 205

6.5. Conclusions. 209

6.6. Further Resources. 210

6.7. Python Scripts . 211

7. Working with Real-Time Data and Sockets . 219

7.1. Introduction . 219

7.2. Running a Simple Tick Data Server . 221

7.3. Connecting a Simple Tick Data Client . 224

7.4. Signal Generation in Real-Time . 226

7.5. Visualizing Streaming Data with Plotly . 229

7.6. Conclusions. 243

7.7. Further Resources. 244

7.8. Python Scripts . 244

8. FX Trading with FXCM . 258

8.1. Introduction . 258

8.2. Getting Started . 260

8.3. Retrieving Data . 261

8.4. Working with the API . 267

8.5. Conclusions. 274

8.6. Further Resources. 275

9. CFD Trading with Oanda . 276

9.1. Introduction . 276

9.2. Setting Up an Account . 278

9.3. The Oanda API . 280

9.4. Retrieving Historical Data. 282

9.5. Working with Streaming Data . 289

9.6. Placing Market Orders . 290

9.7. Implementing Trading Strategies in Real-Time . 292

9.8. Retrieving Account Information . 296

9.9. Conclusions. 298

9.10. Further Resources . 299

9.11. Python Scripts . 299

10. Stock Trading with Interactive Brokers . 301

10.1. Introduction . 301

10.2. Setting up an Account . 302

10.3. Python and the IB API . 304

10.4. A Wrapper Class for the IB API . 306

10.5. Retrieving Historical Data from IB . 307

10.6. Working with Streaming Data from the IB API . 312

10.7. Implementing Trading Strategies in Real-Time . 314

10.8. Retrieving Account Information . 318

10.9. Conclusions . 320

10.10. Further Resources . 321

10.11. Python Scripts . 321

11. Trading Cryptocurrencies with Gemini . 331

11.1. Introduction . 331

11.2. Gemini Platform . 334

11.3. Setting Up an Account . 337

11.4. A Wrapper Class for the Gemini API . 338

11.5. Retrieving Historical Data . 340

11.6. Placing and Managing Orders via the API . 344

11.7. Most Recent Transaction History . 351

11.8. Implementing Trading Strategies in Real-Time . 353

11.9. Retrieving Account Information . 358

11.10. Conclusions . 360

11.11. Further Resources . 360

11.12. Python Scripts . 360

12. Automating Trading Operations . 383

12.1. Introduction . 383

12.2. Capital Management . 384

12.3. ML-Based Trading Strategy . 395

12.4. Online Algorithm . 409

12.5. Infrastructure and Deployment . 413

12.6. Logging and Monitoring . 414

12.7. Visual Step-by-Step Overview . 417

12.8. Conclusions . 423

12.9. Further Resources . 424

12.10. Python Script . 424

Appendix A: Python, NumPy, matplotlib, pandas . 428

Introduction. 428

Python Basics. 429

NumPy. 438

matplotlib . 446

pandas . 451

Case Study . 463

Conclusions . 470

Further Resources . 470

Copyright
This document as well as all related codes, Jupyter Notebooks and other materials on

the Quant Platform (http://pyalgo.pqp.io) are copyrighted and only intended for

personal use in the context of a single user license for the Python for Algorithmic

Trading course (http://pyalgo.tpq.io). Any kind of sharing, distribution, duplication,

etc. without written permission by the The Python Quants GmbH is prohibited. The

contents, Python codes, Jupyter Notebooks and other materials come without

warranties or representations, to the extent permitted by applicable law.

Notice that this document is still work in progress and that substantial additions,

changes, updates, etc. will take place in the near future. It is advised to regularly

check for new versions of the document.

(c) Dr. Yves J. Hilpisch, October 2018

1

http://pyalgo.pqp.io
http://pyalgo.tpq.io

Preface
Dataism says that the universe consists of data flows, and the value of any phenomenon

or entity is determined by its contribution to data processing. … Dataism thereby

collapses the barrier between animals [humans] and machines, and expects electronic

algorithms to eventually decipher and outperform biochemical algorithms.

— Yuval Noah Harari (Homo Deus)

Finding the right algorithm to automatically and successfully trade in financial

markets is the holy grail in finance. Not too long ago, Algorithmic Trading was only

available for institutional players with deep pockets and lots of assets under

management. Recent developments in the areas of open source, open data, cloud

compute and storage as well as online trading platforms have leveled the playing

field for smaller institutions and individual traders — making it possible to get

started in this fascinating discipline being equipped with a modern notebook and an

Internet connection only.

Nowadays, Python and its eco-system of powerful packages is the technology

platform of choice for algorithmic trading. Among others, Python allows you to do

efficient data analytics (with e.g. pandas), to apply machine learning to stock market

prediction (with e.g. scikit-learn) or even make use of Google’s deep learning

technology (with tensorflow).

This is a course about Python for Algorithmic Trading. Such a course at the

intersection of two vast and exciting fields can hardly cover all topics of relevance.

However, it can cover a range of important meta topics in-depth:

• financial data: financial data is at the core of every algorithmic trading project;

Python and packages like NumPy and pandas do a great job in handling and

working with structured financial data of any kind (end-of-day, intraday, high

frequency)

• backtesting: no automated, algorithmic trading without a rigorous testing of the

trading strategy to be deployed; the course covers, among others, trading

strategies bases on simple moving averages, momentum, mean-reversion and

machine/deep learning based prediction

2

http://pandas.pydata.org
http://scikit-learn.org
http://tensorflow.org

• real-time data: algorithmic trading requires dealing with real-time data, online

algorithms based on it and visualization in real-time; the course introduces to

socket programming with ZeroMQ and streaming visualization with Plotly

• online platforms: no trading without a trading platform; the course covers

three popular electronic trading platforms: Oanda (CFD trading), Interactive

Brokers (stock and options trading) and Gemini (cryptocurrency trading); it also

provides convenient wrapper classes in Python to get up and running within

minutes

• automation: the beauty as well as some major challenges in algorithmic trading

result from the automation of the trading operation; the course shows how to

deploy Python in the cloud and how to set up an environment appropriate for

automated, algorithmic trading

The course offers a unique learning experience with the following features and

benefits.

coverage of relevant topics

It is the only course covering such a breadth and depth with regard to relevant

topics in Python for Algorithmic trading.

self-contained code base

The course is accompanied by a Git repository with all codes in a self-contained,

executable form (3,000+ lines of code); the repository is available on the Quant

Platform.

book version as PDF

In addition to the online version, there is also a book version as PDF (450+

pages).

online/video training (optional)

The Python Quants offer an online and video training class (not included) based

on this course/book that provides an interactive learning experience (e.g. to see

the code executed live, to ask individual questions) as well as a look at additional

topics or at topics from a different angle.

3

http://oanda.com
http://interactivebrokers.com
http://interactivebrokers.com
http://gemini.com
http://training.tpq.io

real trading as the goal

The coverage of three different online trading platforms puts the student in the

position to start both paper and live trading efficiently. This course equips the

student with relevant, practical and valuable background knowledge.

do-it-yourself & self-paced approach

Since the material and the codes are self-contained and only relying on standard

Python packages, the student has full knowledge of and full control over what is

going on, how to use the code examples, how to change them, etc. There is no

need to rely on third-party platforms, for instance, to do the backtesting or to

connect to the trading platforms. The student can do all this on his/her own with

this course — at a pace that is most convenient — and has every single line of

code to do so available.

user forum

Although you are supposed to be able to do it all by yourself, we are there to help

you. You can post questions and comments in our user forum at any time. We

aim to get back within 24 hours.

The course assumes that the student has — at least on a fundamental level — some

background knowledge both in Python programming as well as in financial trading.

The course materials include Appendix A: Python, NumPy, matplotlib, pandas that

introduces important Python, NumPy, matplotlib and `pandas topics. Good references

to get a sound understanding of the Python topics important for the course are:

• Hilpisch, Yves (2018): Python for Finance. 2nd ed., O’Reilly, Beijing et al.

• McKinney, Wes (2017): Python for Data Analysis. 2nd ed., O’Reilly, Beijing et al.

• Ramalho, Luciano (2016): Fluent Python. O’Reilly, Beijing et al.

• VanderPlas, Jake (2016): Python Data Science Handbook. O’Reilly, Beijing et al.

Background information about algorithmic trading can be found, for instance, in

these books:

• Chan, Ernest (2009): Quantitative Trading. John Wiley & Sons, Hoboken et al.

• Chan, Ernest (2013): Algorithmic Trading. John Wiley & Sons, Hoboken et al.

4

• Kissel, Robert (2013): Algorithmic Trading and Portfolio Management.

Elsevier/Academic Press, Amsterdam et al.

• Narang, Rishi (2013): Inside the Black Box. John Wiley & Sons, Hoboken et al.

Enjoy your journey through the Algorithmic Trading world with Python and get in

touch under training@tpq.io if you have questions or comments.

5

mailto:training@tpq.io

Author Biography
Dr. Yves J. Hilpisch is founder and managing partner of The Python Quants, a group

focusing on the use of open source technologies for financial data science, artificial

intelligence, algorithmic trading and computational finance. Yves is also founder

and CEO of The AI Machine.

He is the author of the books

• Python for Finance (2nd ed., O’Reilly, 2018),

• Derivatives Analytics with Python (Wiley, 2015) and

• Listed Volatility and Variance Derivatives (Wiley, 2017).

Yves lectures on computational finance at the CQF Program, on algorithmic trading

at the EPAT Progrm and is the director for the online training programs leading to

the first University Certificates in Python for Finance & Python for Algorithmic

Trading (awarded by htw saar).

Yves has written the financial analytics library DX Analytics and organizes meetups

and conferences about Python for algorithmic trading, artificial intelligence and

quantitative finance in Frankfurt, Berlin, Paris, London and New York. He has also

given numerous talks and keynote speeches at technology conferences in the United

States, Europe and Asia.

6

http://tpq.io
http://aimachine.io
http://pff.tpq.io
http://dawp.tpq.io
http://lvvd.tpq.io
http://cqf.com
http://quantinsti.com
http://dx-analytics.com
http://hilpisch.com

Chapter 1. Python and Algorithmic
Trading

At Goldman [Sachs] the number of people engaged in trading shares has fallen from a

peak of 600 in 2000 to just two today. [2: “Too Squid to Fail.” The Economist, 29. October

2016.]

— The Economist

1.1. Introduction

This chapter provides background information for, and an overview of, the topics

covered in this book (course). Although Python for Algorithmic Trading is a niche at

the intersection of Python programming and finance, it is a fast-growing one that

touches on such diverse topics as Python deployment, interactive financial analytics,

machine and deep learning, object oriented programming, socket communication,

visualization of streaming data and trading platforms.

For a quick refresher on important Python topics, read Appendix A: Python, NumPy,

matplotlib, pandas first.

1.2. Python for Finance

The Python programming language originated in 1991 with the first release by

Guido van Rossum of a version labeled 0.9.0. In 1994, version 1.0 followed. However,

it took almost two decades for Python to establish itself as a major programming

language and technology platform in the financial industry. Of course, there were

early adopters, mainly hedge funds, but widespread adoption probably started only

around 2011.

One major obstacle to the adoption of Python in the financial industry has been the

fact that the default Python version, called CPython, is an interpreted, high level

language. Numerical algorithms in general and financial algorithms in particular

are quite often implemented based on (nested) loop structures. While compiled, low

level languages like C or C++ are really fast at executing such loops, Python — which

relies on interpretation instead of compilation — is generally quite slow at doing so.

7

As a consequence, pure Python proved too slow for many real-world financial

applications, such as option pricing or risk management.

Although Python was never specifically targeted towards the scientific and financial

communities, many people from these fields nevertheless liked the beauty and

conciseness of its syntax. Not too long ago, it was generally considered good tradition

to explain a (financial) algorithm and at the same time present some pseudo-code as

an intermediate step towards its proper technological implementation. Many felt

that, with Python, the pseudo-code step would not be necessary anymore. And they

were proven mostly correct.

Consider, for instance, the Euler discretization of the geometric Brownian motion as

in Euler discretization of geometric Brownian motion.

Euler discretization of geometric Brownian motion

For decades, the Latex markup language and compiler have been the gold standard

for authoring scientific documents containing mathematical formulae. In many

ways, Latex syntax is similar to or already like pseudo-code when, for example,

layouting equations as in Euler discretization of geometric Brownian motion. In this

particular case, the Latex version looks like this:

S_T = S_0 \exp((r - 0.5 \sigma^2) T + \sigma z \sqrt{T})

In Python, this translates to executable code — given respective variable

definitions — that is also really close to the financial formula as well as to the Latex

representation:

S_T = S_0 * exp((r - 0.5 * sigma ** 2) * T + sigma * z * sqrt(T))

However, the speed issue remains. Such a difference equation, as a numerical

approximation of the respective stochastic differential equation, is generally used to

price derivatives by Monte Carlo simulation or to do risk analysis and management

based on simulation. These tasks in turn can require millions of simulations that

need to be finished in due time — often in almost real-time or at least near-time.

8

Interpreted Python per se was never designed to be fast enough to tackle such

computationally demanding tasks.

In 2006, version 1.0 of the NumPy Python package was released by Travis Oliphant.

NumPy stands for numerical Python, suggesting that it targets scenarios that are

numerically demanding. The base Python interpreter tries to be as general as

possible in many areas, which often leads to quite a bit of overhead at run-time. [3:

For example, list objects are not only mutable, i.e. they can be changed in size, they

can also contain almost any other kind of Python object, like int, float, tuple objects

or list objects themselves.] NumPy, on the other hand, uses specialization as its major

approach to avoid overhead and to be as good and as fast as possible in certain

application scenarios.

The major class of NumPy is the regular array object, called ndarray object for n-

dimensional array. It is immutable, i.e. it cannot be changed in size, and can only

accommodate a single data type, called dtype. This specialization allows for the

implementation of concise and fast code. One central approach in this context is

vectorization. Basically, this approach avoids looping on the Python level and

delegates the looping to specialized NumPy code, implemented in general in C and

therefore rather fast.

Consider the simulation of 1,000,000 end of period values according to Euler

discretization of geometric Brownian motion with pure Python. The major part of

the code below is a for loop with 1,000,000 iterations.

In [1]: %%time
 import random
 from math import exp, sqrt

 S0 = 100 ①
 r = 0.05 ②
 T = 1.0 ③
 sigma = 0.2 ④

 values = [] ⑤

 for _ in range(1000000): ⑥
 ST = S0 * exp((r - 0.5 * sigma ** 2) * T +
 sigma * random.gauss(0, 1) * sqrt(T)) ⑦
 values.append(ST) ⑧
 CPU times: user 1.14 s, sys: 17.2 ms, total: 1.15 s
 Wall time: 1.15 s

9

http://www.numpy.org/
http://www.numpy.org/

① The initial index level.

② The constant short rate.

③ The time horizon in year fractions.

④ The constant volatility factor.

⑤ An empty list object to collect simulated values.

⑥ The main for loop.

⑦ The simulation of a single end-of-period value.

⑧ Appends the simulated value to the list object.

With NumPy, you can avoid looping on the Python level completely by the use of

vectorization. The code is much more concise, more readable, and faster by a factor

of about 25.

In [2]: %%time
 import numpy as np

 S0 = 100
 r = 0.05
 T = 1.0
 sigma = 0.2

 ST = S0 * np.exp((r - 0.5 * sigma ** 2) * T +
 sigma * np.random.standard_normal(1000000) * np.sqrt(T)) ①
 CPU times: user 193 ms, sys: 52.4 ms, total: 245 ms
 Wall time: 253 ms

① This single line of NumPy code simulates all the values and stores them in an

ndarray object.

Vectorization is a powerful concept for writing concise, easy-to-

read and easy-to-maintain code in finance and algorithmic

trading. With NumPy, vectorized code does not only make code

more concise, it also can speed up code execution considerably,

like in the Monte Carlo simulation example by a factor of about

25.

It’s safe to say that NumPy has significantly contributed to the success of Python in

10

science and finance. Many other popular Python packages from the so-called

scientific Python stack build on NumPy as an efficient, performing data structure to

store and handle numerical data. In fact, NumPy is an outgrowth of the SciPy package

project, which provides a wealth of functionality frequently needed in science. The

SciPy project recognized the need for a more powerful numerical data structure and

consolidated older projects like Numeric and NumArray in this area into a new, unifying

one in the form of NumPy.

In algorithmic trading, Monte Carlo simulation might not be the most important use

case for a programming language. However, if you enter the algorithmic trading

space, the management of larger or even big financial time series data sets is, for

example, a very important use case. Just think of the backtesting of (intraday)

trading strategies or the processing of tick data streams during trading hours. This is

where the pandas data analysis package comes into play (pandas home page).

Development of pandas began in 2008 by Wes McKinney, who back then was working

at AQR Capital Management, a big hedge fund operating out of Greenwich,

Connecticut. Like for any other hedge fund, working with time series data is of

paramount importance for AQR Capital Management, but back then Python did not

provide any kind of appealing support for this type of data. Wes’s idea was to create

a package that mimics the capabilities of the R statistical language (http://r-

project.org) in this area. This is reflected, for example, in naming the major class

DataFrame, whose counterpart in R is called data.frame. Not being considered close

enough to the core business of money management, AQR Capital Management open

sourced the pandas project in 2009, which marks the beginning of a major success

story in open source-based data and financial analytics.

Partly due to pandas, Python has become a major force in data and financial

analytics. Many people who adopt Python, coming from diverse other languages, cite

pandas as a major reason for their decision. In combination with open data sources

like Quandl, pandas even allows students to do sophisticated financial analytics with

the lowest barriers of entry ever: a regular notebook with an Internet connection

suffices.

Assume an algorithmic trader is interested in trading Bitcoins, the cryptocurrency

with the largest market capitalization. A first step might be to retrieve data about the

historical exchange rate in USD. Using Quandl data and pandas, such a task is

11

http://pandas.pydata.org/
http://pandas.pydata.org/
http://r-project.org
http://r-project.org
http://quandl.com

accomplished in less than a minute. Historical Bitcoin exchange rate in USD from the

beginning of 2013 until September 2018 shows the plot that results from the Python

code below, which is (omitting some plotting style related parameterizations) only

four lines. Although pandas is not explicitly imported, the Quandl Python wrapper

package by default returns a DataFrame object which is then used to add a simple

moving average (SMA) of 100 days, as well as to visualize the raw data alongside the

SMA.

In [3]: %matplotlib inline ①
 from pylab import mpl, plt ①
 plt.style.use('seaborn') ①
 mpl.rcParams['font.family'] = 'serif' ①

In [4]: import configparser ②
 c = configparser.ConfigParser() ②
 c.read('../pyalgo.cfg') ②
Out[4]: ['../pyalgo.cfg']

In [5]: import quandl as q ③
 q.ApiConfig.api_key = c['quandl']['api_key'] ③
 d = q.get('BCHAIN/MKPRU') ④
 d['SMA'] = d['Value'].rolling(100).mean() ⑤
 d.loc['2013-1-1':].plot(title='BTC/USD exchange rate',
 figsize=(10, 6)); ⑥
 plt.savefig('../../images/ch01/bitcoin_xr.png')

① Imports and configures the plotting package.

② Imports the configparser module and reads credentials.

③ Imports the Quandl Python wrapper package and provides the API key.

④ Retrieves daily data for the Bitcoin exchange rate and returns a pandas DataFrame

object with a single column.

⑤ Calculates the SMA for 100 days in vectorized fashion.

⑥ Selects data from 1st of January 2013 on and plots it.

12

Figure 1. Historical Bitcoin exchange rate in USD from the beginning of 2013 until

September 2018

Obviously, NumPy and pandas measurably contribute to the success of Python in

finance. However, the Python ecosystem has much more to offer in the form of

additional Python packages that solve rather fundamental problems and sometimes

also specialized ones. In this book (course), we will make use of, among others,

packages for data retrieval and storage (e.g. PyTables, TsTables, SQLite) and for

machine and deep learning (e.g. scikit-learn, tensorflow) — to name just two

categories. Along the way, we will also implement classes and modules that will

make any algorithmic trading project more efficient. But the main packages used

throughout will be NumPy and pandas.

While NumPy provides the basic data structure to store numerical

data and work with it, pandas brings powerful time series

management capabilities to the table. It also does a great job of

wrapping functionality from other packages into an easy-to-use

API. The Bitcoin example just described shows that a single

method call on a DataFrame object is enough to generate a plot

with two financial time series visualized. Like NumPy, pandas allows

for rather concise, vectorized code that is also generally executed

quite fast due to heavy use of compiled code under the hood.

13

1.3. Algorithmic Trading

The term algorithmic trading is neither uniquely nor universally defined. On a

rather basic level, it refers to the trading of financial instruments based on some

formal algorithm. An algorithm is a set of operations (mathematical, technical) to be

conducted in a certain sequence to achieve a certain goal. For example, there are

mathematical algorithms to solve a Rubik’s cube. [4: See The Mathematics of the

Rubik’s Cube or Algorithms for Solving Rubik’s Cube.] Such an algorithm can solve

the problem at hand via a step-by-step procedure, often perfectly. Another example

is algorithms for finding the root(s) of an equation if it (they) exist(s) at all. In that

sense, the objective of a mathematical algorithm is often well specified and an

optimal solution is often expected.

But what about the objective of financial trading algorithm? This question is not that

easy to answer in general. It might help to step back for a moment and consider

motives for trading in general. In Dorn et al. (2008), they write:

Trading in financial markets is an important economic activity. Trades are necessary to

get into and out of the market, to put unneeded cash into the market, and to convert back

into cash when the money is wanted. They are also needed to move money around

within the market, to exchange one asset for another, to manage risk, and to exploit

information about future price movements.

The view expressed here is more technical than economic in nature, focusing mainly

on the process itself and only partly on why people initiate trades in the first place.

For our purposes, a non-exhaustive list of financial trading motives of people and

also of financial institution managing money of their own or for others includes:

• beta trading: earning market risk premia by investing, for instance, in

exchange traded funds (ETFs) that replicate the performance of the S&P 500

• alpha generation: earning risk premia independent of the market by, for

example, selling short stocks listed in the S&P 500 or ETFs on the S&P 500

• static hedging: hedging against market risks by buying, for example, out-of-the-

money put options on the S&P 500

• dynamic hedging: hedging against market risks affecting options on the S&P

500 by, for example, dynamically trading futures on the S&P 500 and

14

http://erikdemaine.org/papers/Rubik_ESA2011/paper.pdf
http://erikdemaine.org/papers/Rubik_ESA2011/paper.pdf
http://erikdemaine.org/papers/Rubik_ESA2011/paper.pdf

appropriate cash, money market, or rate instruments

• asset-liability management: trading S&P 500 stocks and ETFs to be able to

cover liabilities resulting from, for example, writing life insurance policies

• market making: providing, for example, liquidity to options on the S&P 500 by

buying and selling options at different bid and ask prices

All these types of trades can be implemented by a discretionary approach, with the

human trader making decisions mainly on his or her own. as well as based on

algorithms supporting the human trader or even replacing him completely in the

decision making process. In this context, computerization of financial trading of

course plays an important role. While in the beginning of financial trading, floor

trading with a large group of people shouting at each other (“open outcry”) was the

only way of executing trades, computerization and the advent of the Internet and

web technologies have revolutionized trading in the financial industry. The quote at

the beginning of this chapter illustrates this impressively in terms of the number of

people actively engaged in financial at Goldman Sachs in 2000 and in 2016. It is a

trend that was foreseen 25 years ago, as Solomon and Corso (1991) point out:

Computers have revolutionized the trading of securities and the stock market is currently

in the midst of a dynamic transformation. It is clear that the market of the future will not

resemble the markets of the past.

Technology has made it possible for information regarding stock prices to be sent all over

the world in seconds. Presently, computers route orders and execute small trades directly

from the brokerage firm’s terminal to the exchange. Computers now link together

various stock exchanges, a practice which is helping to create a single global market for

the trading of securities. The continuing improvements in technology will make it

possible to execute trades globally by electronic trading systems.

Interestingly, one of the oldest and most widely used algorithms is found in dynamic

hedging of options. Already with the publication of the seminal papers about the

pricing of European options by Black and Scholes (1973) and Merton (1973), the

algorithm, called delta hedging, was made available — long before computerized and

electronic trading even started. Delta hedging as a trading algorithm shows how to

hedge away all market risks in a simplified, perfect, continuous model world. In the

real world, with transaction costs, discrete trading, imperfectly liquid markets, and

other frictions (“imperfections”), the algorithm has proven — somewhat surprisingly

15

maybe — its usefulness and robustness as well. It might not allow to perfectly hedge

away market risks affecting options, but it is useful in getting close to the ideal and is

therefore still used on a large scale in the financial industry. [5: See Hilpisch (2015)

for a detailed analysis of delta hedging strategies for European and American

options using Python.]

This book (course) focuses on algorithmic trading in the context of alpha generating

strategies. Although there are more sophisticated definitions for alpha, for the

purposes of this book (course) alpha is seen as the difference between a trading

strategy’s return over some period of time and the return of the benchmark (single

stock, index, cryptocurrency, etc.). For example, if the S&P 500 returns 10% in 2018

and an algorithmic strategy returns 12%, then alpha is +2% points. If the strategy

returns 7%, then alpha is -3% points. In general, such numbers are not adjusted for

risk, and other risk characteristics like maximal drawdown (period) are usually

considered to be of second order importance, if at all.

This book (course) focuses on alpha-generating strategies, i.e.

strategies that try to generate positive returns (above a

benchmark) independent of the market’s performance itself.

Alpha is defined in this book (course) in the simplest way as the

excess return of a strategy over the benchmark financial

instrument.

There are other areas where trading-related algorithms play an important role. One

is the high frequency trading (HFT) space, where speed is typically the discipline in

which players compete. [6: See the book by Lewis (2015) for a non-technical

introduction to HFT.] The motives for HFT are diverse, but market making and alpha

generation probably play a prominent role. Another one is trade execution, where

algorithms are deployed to optimally execute certain non-standard trades. Motives

in this area might include the execution (at best possible prices) of large orders or

the execution of an order with as little market and price impact as possible. A more

subtle motive might be to disguise an order by executing it on a number of different

exchanges.

An important question remains to be addressed: is there any advantage to using

algorithms for trading instead of human research, experience, and discretion? This

question can hardly be answered in any generality. For sure, there are human

16

traders and portfolio managers who have earned, on average, more than their

benchmark for investors over longer periods of time. The paramount example in

this regard is Warren Buffett. On the other hand, statistical analyses show that the

majority of active portfolio managers rarely beat relevant benchmarks consistently.

Referring to the year 2015, Adam Shell writes:

Last year, for example, when the Standard & Poor’s 500-stock index posted a paltry total

return of 1.4% with dividends included, 66% of “actively managed” large-company stock

funds posted smaller returns than the index … The longer-term outlook is just as gloomy,

with 84% of large-cap funds generating lower returns than the S&P 500 in the latest five

year period and 82% falling shy in the past 10 years, the study found. [8: Source: “66% of

Fund Managers Can’t Match S&P Results.” USA Today, March 14, 2016.]

In an empirical study published in December 2016, Harvey et al. (2016) write:

We analyze and contrast the performance of discretionary and systematic hedge funds.

Systematic funds use strategies that are rules‐based, with little or no daily intervention by

humans … We find that, for the period 1996‐2014, systematic equity managers

underperform their discretionary counterparts in terms of unadjusted (raw) returns, but

that after adjusting for exposures to well‐known risk factors, the risk‐adjusted

performance is similar. In the case of macro, systematic funds outperform discretionary

funds, both on an unadjusted and risk‐adjusted basis.

Annualized performance of hedge fund categories reproduces the major

quantitative findings of the study by Harvey et al. (2016). [9: Annualized

performance (above the short term interest rate) and risk measures for hedge fund

categories comprising a total of 9,000 hedge funds over the period from June 1996 to

December 2014.] In the table, factors include traditional ones (equity, bonds, etc.),

dynamic ones (value, momentum, etc.), and volatility (buying at-the-money puts and

calls). The adjusted return appraisal ratio divides alpha by the adjusted return

volatility. For more details and background, see the paper itself.

The study’s results illustrate that systematic (“algorithmic”) macro hedge funds

perform best as a category, both in unadjusted and risk-adjusted terms. They

generate an annualized alpha of 4.85% points over the period studied. These are

hedge funds implementing strategies that are typically global, cross-asset, and often

involve political and macroeconomic elements. Systematic equity hedge funds only

beat their discretionary counterparts on the basis of the adjusted return appraisal

ratio (0.35 vs. 0.25).

17

Table 1. Annualized performance of hedge fund categories

systematic
macro

discretionary
macro

systematic
equity

discretionary
equity

return
average

5.01% 2.86% 2.88% 4.09%

return
attributed to
factors

0.15% 1.28% 1.77% 2.86%

adj. return
average
(alpha)

4.85% 1.57% 1.11% 1.22%

adj. return
volatility

10.93% 5.10% 3.18% 4.79%

adj. return
appraisal
ratio

0.44 0.31 0.35 0.25

Compared to the S&P 500, hedge fund performance over all was quite meager for the

year 2017. While the S&P 500 index returned 21.8%, hedge funds only returned 8.5%

to investors (see http://investopedia.com). This illustrates how hard it is — even with

multi-million dollar budgets for research and technology — to generate alpha.

1.4. Python for Algorithmic Trading

Python is used in many corners of the financial industry, but has become

particularly popular in the algorithmic trading space. There are a few good reasons

for this:

• data analytics capabilities: A major requirement for every algorithmic trading

project is the ability to manage and process financial data efficiently. Python, in

combination with packages like NumPy and pandas, makes life easier in this

regard for every algorithmic trader than most other programming languages.

• handling of modern APIs: Modern online trading platforms like the ones from

FXCM, Oanda and Gemini offer RESTful application programming interfaces

(APIs) and socket (streaming) APIs to access historical and live data. Python is in

general well suited to efficiently interact with such APIs.

18

https://www.investopedia.com/news/2017-hedge-funds-return-less-half-sp-500/
http://fxcm.co.uk
http://oanda.com
http://gemini.com

• dedicated packages: In addition to the standard data analytics packages, there

are multiple packages available that are dedicated to the algorithmic trading

space, such as PyAlgoTrade and Zipline for the backtesting of trading strategies,

and Pyfolio for performing portfolio and risk analysis.

• vendor sponsored packages: More and more vendors in the space release open

source Python packages to facilitate access to their offerings; among them are

online trading platforms like Oanda as well as the leading data providers like

Bloomberg and Thomson Reuters.

• dedicated platforms: Quantopian, for example, offers a standardized

backtesting environment as a web-based platform where the language of choice

is Python and where people can exchange ideas with like-minded others via

different social network features. From its founding until 2018, Quantopian has

attracted around 200,000 users.

• buy- and sell-side adoption: More and more institutional players have adopted

Python to streamline development efforts in their trading departments. This, in

turn, requires more and more staff proficient in Python, which makes learning

Python a worthwhile investment.

• education, training, and books: Prerequisites for the wide-spread adoption of

a technology or programming language are academic and professional

education and training programs in combination with specialized books and

other resources. The Python ecosystem has seen a tremendous growth in such

offerings recently, educating and training more and more people in the use of

Python for finance. This can be expected to reinforce the trend of Python

adoption in the algorithmic trading space.

In summary, it is rather safe to say that Python plays an important role in

algorithmic trading already, and seems to have strong momentum to become even

more important in the near future. It is therefore a good choice for anyone trying to

enter the space, be it as an ambitious “hobby” trader or as a professional employed

by a leading financial institution engaged in automated trading.

1.5. Focus and Prerequisites

The focus of this book (course) is on Python as a programming language for

algorithmic trading. The book (course) assumes that the reader already has some

19

http://gbeced.github.io/pyalgotrade/
https://github.com/quantopian/zipline
https://github.com/quantopian/pyfolio
https://www.bloomberglabs.com/api/
https://developers.thomsonreuters.com/all/api-overviews
http://quantopian.com

experience with Python and popular Python packages used for data analytics. Good

introductory books are, for example, Hilpisch (2018), McKinney (2017), and

VanderPlas (2016), which all can be consulted to build a solid foundation in Python

for data analysis and finance. The reader is also expected to have some experience

with typical tools used for interactive analytics with Python, such as IPython, to

which VanderPlas (2016) also provides an introduction.

This book (course) presents and explains Python code that is applied to the topics at

hand, like backtesting trading strategies or working with streaming data. It cannot

provide a thorough introduction to all packages used in different places. It tries,

however, to highlight those capabilities of the packages that are central to the

exposition (such as vectorization with NumPy).

The book (course) also cannot provide a thorough introduction and overview of all

financial and operational aspects relevant for algorithmic trading. The approach

instead focuses on the use of Python to build the necessary infrastructure for

automated, algorithmic trading systems. Of course, the majority of examples used

are taken from the algorithmic trading space. However, when dealing with, say,

momentum or mean-reversion strategies, they are more or less simply used without

providing (statistical) verification or an in-depth discussion of their intricacies.

Whenever it seems appropriate, references are given that point the reader to

sources that address issues left open during the exposition.

All in all, this book (course) is written for readers who have some experience with

both Python and (algorithmic) trading. For such a reader, the book (course) is a

practical guide to the creation of automated trading systems using Python and

additional packages.

This book (course) uses a number of Python programming

approaches (e.g. object oriented programming) and packages (e.g.

scikit-learn) that cannot be explained in detail. The focus is on

applying these approaches and packages to different steps in an

algorithmic trading process. It is therefore recommended that

those who do not yet have enough Python (for finance)

experience additionally consult more introductory Python texts.

20

1.6. Trading Strategies

Throughout this book (course), four different algorithmic trading strategies are used

as examples. They are introduced briefly below and in some more detail in

Mastering Vectorized Backtesting. All these trading strategies can be classified as

mainly alpha seeking strategies since their main objective is to generate positive,

above-market returns independent of the market direction. Canonical examples

throughout the book (course) when it comes to financial instruments traded are a

stock index, a single stock, or a cryptocurrency (denominated in a fiat currency). The

book (course) does not cover strategies involving multiple financial instruments at

the same time (pair trading strategies, strategies based on baskets, etc.). It also

covers only strategies whose trading signals are derived from structured, financial

time series data and not, for instance, from unstructured data sources like news or

social media feeds. This keeps the discussions and the Python implementations

concise and easier to understand, in line with the approach (discussed earlier) of

focusing on Python for algorithmic trading. [10: See the book by Kissel (2013) for an

overview of topics related to algorithmic trading, the book by Chan (2013) for an in-

depth discussion of momentum and mean-reversion strategies, or the book by

Narang (2013) for a coverage of quantitative and HFT trading in general.]

The remainder of this section gives a quick overview of the four trading strategies

used in this book (course).

1.6.1. Simple Moving Averages

The first type of trading strategy relies on simple moving averages (SMAs) to

generate trading signals and market positionings. These trading strategies have been

popularized by so-called technical analysts or chartists. The basic idea is that a

shorter-term SMA being higher in value than a longer term SMA signals a long

market position and the opposite scenario signals a neutral or short market position.

1.6.2. Momentum

The basic idea behind momentum strategies is that a financial instrument is

assumed to perform in accordance with its recent performance for some additional

time. For example, when a stock index has seen a negative return on average over

the last five days, it is assumed that its performance will be negative tomorrow as

21

well.

1.6.3. Mean-Reversion

In mean-reversion strategies, a financial instrument is assumed to revert to some

mean or trend level if it is currently far enough away from such a level. For

example, assume that a stock trades 10 USD under its 200 days SMA level of 100. It is

then expected that the stock price will return to its SMA level sometime soon.

1.6.4. Machine and Deep Learning

With machine and deep learning algorithms, one generally takes a more black box-

like approach to predicting market movements. In this book (course), we mainly rely

on historical return observations as features to train machine and deep learning

algorithms to predict stock market movements.

This book (course) does not introduce to algorithmic trading in a

systematic fashion. Since the focus lies on applying Python in this

fascinating field, readers not familiar with algorithmic trading

should consult other, dedicated resources on the topic, some of

which are cited in this chapter and the others that follow. But be

aware of the fact that the algorithmic trading world in general is

secretive and that almost everybody who is successful there is

naturally reluctant to share his or her secrets in order to protect

their sources of success, i.e. alpha.

1.7. Overview

Here’s a quick overview of the topics presented in each chapter:

Python Infrastructure

Lays the foundation for all subsequent chapters in that it shows how to set up a

proper Python environment. This chapter mainly uses conda as a package and

environment manager, and illustrates Python deployment via Docker containers

and in the cloud.

22

http://docker.com

Working with Financial Data

Financial times series data is central to every algorithmic trading project. This

chapter shows you how to retrieve financial data from different public data and

also proprietary data sources. It also demonstrates how to store financial time

series data efficiently with Python.

Mastering Vectorized Backtesting

Vectorization is a powerful approach in numerical computation in general and

for financial analytics in particular. This chapter introduces vectorization with

NumPy and pandas, and applies that approach to backtesting SMA-based,

momentum, and mean-reversion strategies.

Predicting Market Movements with Machine Learning

This chapter is dedicated to generating market predictions by the use of machine

learning and deep learning approaches. By mainly relying on past return

observations as features, approaches are presented for predicting tomorrow’s

market direction by using such Python packages as scikit-learn and tensorflow.

Building Classes for Event-based Backtesting

While vectorized backtesting has advantages when it comes to conciseness of

code and performance, it’s limited with regard to the representation of certain

market features of trading strategies; on the other hand, event-based

backtesting—technically implemented by the use of object oriented

programming—allows for a rather granular and more realistic modeling of such

features. This chapter presents and explains in detail a base class as well as two

classes for the backtesting of long-only and long-short trading strategies.

Working with Real-Time Data and Sockets

Needing to cope with real-time or streaming data is a reality even for the

ambitious individual algorithmic trader. The tool of choice is socket

programming, for which this chapter introduces ZeroMQ as a lightweight and

scalable technology. The chapter also illustrates how to make use of Plotly to

create nice looking, interactive, streaming plots. It also presents a wrapper class

that simplifies the creation of such plots in cases where multiple data streams

need to be visualized simultaneously (e.g. in a dashboard-like manner).

23

http://scikit-learn.org/
https://www.tensorflow.org/api_docs/index.html
http://zeromq.org
http://plot.ly

FX Trading with FXCM

FXCM is a forex and Contracts for Difference (CFDs) trading platform which has

recently released a modern RESTful API for algorithmic trading. Available

instruments span multiple asset classes, such as forex, stock indices or

commodities. A Python wrapper package is available which makes algorithmic

trading based on Python code rather convenient efficient (http://fxcmpy.tpq.io).

CFD Trading with Oanda

Oanda is another forex and CFD trading platform offering a broad set of tradable

instruments, e.g. based on foreign exchange pairs, stock indices, commodities or

rates instruments (benchmark bonds). This chapter provides guidance on how to

implement automated, algorithmic trading strategies with Oanda.

Stock Trading with Interactive Brokers

Interactive Brokers is a leading online brokerage platform that focuses on stocks

and options trading. The chapter deals with the Interactive Brokers API which is

technologically based on the Trader Workstation application. It introduces a

Python wrapper class that makes life quite convenient and efficient in this

context.

Trading Cryptocurrencies with Gemini

Cryptocurrencies and related technologies, like blockchains, have been a rather

popular topic in technology as well as financial circles recently. The chapter

covers Gemini as one of the modern platforms that allow for the automated

trading of cryptocurrencies, like Bitcoin or Ether. The chapter presents Python

wrapper classes to simplify most of the typical operations in algorithmic trading

considerably.

[automating_trading]

This chapter deals with capital management, risk analysis and management as

well as with typical tasks in the technical automation of algorithmic trading

operations. It covers, for instance, the Kelly criterion for capital allocation and

leverage in detail.

Appendix A: Python, NumPy, matplotlib, pandas

This appendix provides a concise introduction to the most important Python,

24

http://fxcm.co.uk
http://fxcmpy.tpq.io
http://oanda.com
http://interactivebrokers.com
http://gemini.com

NumPy and pandas topics in the context of the material presented in the main

chapters. It represents a starting point from which one can add to one’s own

Python knowledge over time.

1.8. Conclusions

Python is already a force in finance in general, and is on its way to becoming a

major force in algorithmic trading. There are a number of good reasons to use

Python for algorithmic trading, among them the powerful ecosystem of packages

that allow for efficient data analysis or the handling of modern APIs. There are also

a number of good reasons to learn Python for algorithmic trading, chief among them

the fact that some of the biggest buy- and sell-side institutions make heavy use of

Python in their trading operations and constantly look for seasoned Python

professionals.

This book (course) and online course focuses on applying Python to the different

disciplines in algorithmic trading, like backtesting trading strategies or interacting

with online trading platforms. It cannot replace a thorough introduction to Python

itself nor to trading in general. However, it systematically combines these two

fascinating worlds to provide a valuable source for the generation of alpha in

today’s competitive financial and cryptocurrency markets.

1.9. Further Resources

Research papers cited in this chapter:

• Black, Fischer and Myron Scholes (1973): “The Pricing of Options and Corporate

Liabilities.” Journal of Political Economy, Vol. 81, No. 3, 638-659.

• Harvey, Campbell, Sandy Rattray, Andrew Sinclair and Otto Van Hemert (2016):

“Man vs. Machine: Comparing Discretionary and Systematic Hedge Fund

Performance.” White Paper, Man Group.

• Dorn, Anne, Daniel Dorn, and Paul Sengmueller (2008): “Why do People Trade?”

Journal of Applied Finance, Fall/Winter, 37-50.

• Merton, Robert (1973): “Theory of Rational Option Pricing.” Bell Journal of

Economics and Management Science, Vol. 4, 141-183.

25

• Solomon, Lewis and Louise Corso (1991): “The Impact of Technology on the

Trading of Securities: The Emerging Global Market and the Implications for

Regulation.” The John Marshall Law Review, Vol. 24, No. 2, 299-338.

Books cited in this chapter:

• Chan, Ernest (2013): Algorithmic Trading. John Wiley & Sons, Hoboken et al.

• Kissel, Robert (2013): Algorithmic Trading and Portfolio Management.

Elsevier/Academic Press, Amsterdam et al.

• Lewis, Michael (2015): Flash Boys. W.W. Norton & Company, New York &

London.

• Hilpisch, Yves (2018): Python for Finance. 2nd ed., O’Reilly, Beijing et al.

Resources under http://pff.tpq.io.

• Hilpisch, Yves (2015): Derivatives Analytics with Python. Wiley Finance.

Resources under http://dawp.tpq.io.

• McKinney, Wes (2017): Python for Data Analysis. 2nd ed., O’Reilly, Beijing et al.

• Narang, Rishi (2013): Inside the Black Box. John Wiley & Sons, Hoboken et al.

• VanderPlas, Jake (2016): Python Data Science Handbook. O’Reilly, Beijing et al.

26

http://pff.tpq.io
http://dawp.tpq.io

	Python for Algorithmic Trading
	Table of Contents
	Copyright
	Preface
	Author Biography
	Chapter 1. Python and Algorithmic Trading
	1.1. Introduction
	1.2. Python for Finance
	1.3. Algorithmic Trading
	1.4. Python for Algorithmic Trading
	1.5. Focus and Prerequisites
	1.6. Trading Strategies
	1.7. Overview
	1.8. Conclusions
	1.9. Further Resources

	Chapter 2. Python Infrastructure
	2.1. Introduction
	2.2. Conda as a Package Manager
	2.3. Conda as a Virtual Environment Manager
	2.4. Using Docker Containers
	2.5. Using Cloud Instances
	2.6. Conclusions
	2.7. Further Resources

	Chapter 3. Working with Financial Data
	3.1. Introduction
	3.2. Reading Financial Data From Different Sources
	3.3. Working with Open Data Sources
	3.4. Eikon Data API
	3.5. Storing Financial Data Efficiently
	3.6. Conclusions
	3.7. Further Resources
	3.8. Python Scripts

	Chapter 4. Mastering Vectorized Backtesting
	4.1. Introduction
	4.2. Making Use of Vectorization
	4.3. Strategies based on Simple Moving Averages
	4.4. Strategies based on Momentum
	4.5. Strategies based on Mean-Reversion
	4.6. Conclusions
	4.7. Further Resources
	4.8. Python Scripts

	Chapter 5. Predicting Market Movements with Machine Learning
	5.1. Introduction
	5.2. Using Linear Regression for Market Movement Prediction
	5.3. Using Machine Learning for Market Movement Prediction
	5.4. Using Deep Learning for Market Movement Prediction
	5.5. Conclusions
	5.6. Further Resources
	5.7. Python Scripts

	Chapter 6. Building Classes for Event-based Backtesting
	6.1. Introduction
	6.2. Backtesting Base Class
	6.3. Long Only Backtesting Class
	6.4. Long Short Backtesting Class
	6.5. Conclusions
	6.6. Further Resources
	6.7. Python Scripts

	Chapter 7. Working with Real-Time Data and Sockets
	7.1. Introduction
	7.2. Running a Simple Tick Data Server
	7.3. Connecting a Simple Tick Data Client
	7.4. Signal Generation in Real-Time
	7.5. Visualizing Streaming Data with Plotly
	7.6. Conclusions
	7.7. Further Resources
	7.8. Python Scripts

	Chapter 8. FX Trading with FXCM
	8.1. Introduction
	8.2. Getting Started
	8.3. Retrieving Data
	8.4. Working with the API
	8.5. Conclusions
	8.6. Further Resources

	Chapter 9. CFD Trading with Oanda
	9.1. Introduction
	9.2. Setting Up an Account
	9.3. The Oanda API
	9.4. Retrieving Historical Data
	9.5. Working with Streaming Data
	9.6. Placing Market Orders
	9.7. Implementing Trading Strategies in Real-Time
	9.8. Retrieving Account Information
	9.9. Conclusions
	9.10. Further Resources
	9.11. Python Scripts

	Chapter 10. Stock Trading with Interactive Brokers
	10.1. Introduction
	10.2. Setting up an Account
	10.3. Python and the IB API
	10.4. A Wrapper Class for the IB API
	10.5. Retrieving Historical Data from IB
	10.6. Working with Streaming Data from the IB API
	10.7. Implementing Trading Strategies in Real-Time
	10.8. Retrieving Account Information
	10.9. Conclusions
	10.10. Further Resources
	10.11. Python Scripts

	Chapter 11. Trading Cryptocurrencies with Gemini
	11.1. Introduction
	11.2. Gemini Platform
	11.3. Setting Up an Account
	11.4. A Wrapper Class for the Gemini API
	11.5. Retrieving Historical Data
	11.6. Placing and Managing Orders via the API
	11.7. Most Recent Transaction History
	11.8. Implementing Trading Strategies in Real-Time
	11.9. Retrieving Account Information
	11.10. Conclusions
	11.11. Further Resources
	11.12. Python Scripts

	Chapter 12. Automating Trading Operations
	12.1. Introduction
	12.2. Capital Management
	12.3. ML-Based Trading Strategy
	12.4. Online Algorithm
	12.5. Infrastructure and Deployment
	12.6. Logging and Monitoring
	12.7. Visual Step-by-Step Overview
	12.8. Conclusions
	12.9. Further Resources
	12.10. Python Script

	Appendix A: Python, NumPy, matplotlib, pandas
	Introduction
	Python Basics
	NumPy
	matplotlib
	pandas
	Case Study
	Conclusions
	Further Resources

