
International Journal of Computer Applications (0975 – 8887) 

Volume 46– No.20, May 2012 

26 

Python in Computational Science: Applications and 

Possibilities

Md. Golam Rashed 
Department of Civil Engineering, 

Ahsanullah University of Science and Technology 
(AUST), 

Dhaka-1208, Bangladesh 

 

Raquib Ahsan, PhD 

Department of Civil Engineering, 
Bangladesh University of Engineering and Technology 

(BUET), 
Dhaka-1000, Bangladesh 

 

ABSTRACT 

This paper focuses on the role of python in dramatic increase 

in productivity and high-level of code reuse in computational 

science. The salient features of python make it an ideal 

language for scientific computing exposing the shortcomings 

of legacy languages and prototyping platforms. Python 

provides a rich collection of built-in data types such as strings, 

lists, dictionaries; dynamic typing and dynamic binding, 

modules, classes, exceptions handling, automatic memory 

management, multiprocessing, parallel computing 

capabilities. Python can also be used as a glue language to 

wrap around existing static compiled code to obtain optimum 

performance. The uptrend of adopting python as a general 

purpose language along with its vast collection of scientific 

libraries are also reviewed in this paper, which ensures the 

long term presence of python and its growing user base in the 

foreseeable future. 

General Terms 

Computational Science. 

Keywords 

Engineering Simulation, Computational Science, Scientific 

Computing, Open Source, Python. 

1. INTRODUCTION 
Computational science is now considered as the third branch 

of science along with theoretical and experimental science. It 

is essentially comprised of numerical algorithm [1] and 

computational mathematics [2]. Substantial effort in 

computational science has been devoted to the development of 

algorithms, the efficient implementation of programming 

languages, and validation of computational results. 

Computational science application programs often model real 

world changing conditions, Complex Engineering phenomena 

is one of them. Such programs can be developed by either 

coding in high-level language or by combining scripting 

interface to existing compiled library to address the concern 

over computation time [3]. The ease of scripting paradigm and 

the convenience of code reuse along with extended readability 

have made python one of the popular tools in computational 

science. Python is now widely used in various sub fields of 

engineering simulation [4]. 

2. LANGUAGES OF COMPUTATIONAL 

SCIENCE 
Determining the best high-level language for computational 

science is a highly disputed matter because high-level 

language is a rather relative term. The most commonly used 

programming languages in computational science to date are 

FORTRAN and C/C++. 

FORTRAN was the first successful high-level programming 

language to be developed and it arrived in the 1950’s [5]. 

Before the advent of FORTRAN, all programming used to be 

coded in assembly language. Moreover, FORTRAN was 

specifically designed for scientific computing. In the early 

days of computers most computing was scientific in nature 

with some minor computing in business purposes where 

physicists and mathematicians were the original computer 

scientists. FORTRAN's main advantages are that it is very 

straight forward, and it interfaces well with most commonly 

available, pre-written subroutine libraries since these libraries 

generally consist of compiled FORTRAN code. FORTRAN's 

main disadvantages are all associated with its relative 

antiquity. For instance, FORTRAN's control statements are 

very basic, whereas its I/O facilities are primitive in 

comparison to modern languages [6]. 

C was developed in 1970’s by computer scientists to write 

operating systems [7]. Indeed, all UNIX operating systems are 

written in C. C is an extremely flexible and powerful 

language. Amongst its major advantages are its good control 

statements and excellent I/O facilities. C's main disadvantage 

is that, since it was not specifically written to be a scientific 

language, some important scientific features such as complex 

arithmetic are missing. Although C was considered a high-

level language at the time of its inception, it incorporates 

many comparatively low-level features, such as pointers. But 

this is hardly surprisingly, since C was originally designed to 

write operating systems. The low-level features of C such as 

the primitive implementation of arrays sometimes make 

scientific programming more complicated, and undoubtedly 

facilitate programming errors. On the other hand, these 

features allow scientific programmers to write extremely 

efficient code. Since efficiency is generally the most 

important concern in scientific computing, the low-level 

features of C are advantageous [6]. 

C++ is a major extension of C whose main aim is to facilitate 

object-orientated programming which was developed in the 

1980’s [8]. Object-orientation is a completely different 

approach to programming than the more traditional procedural 

approach. It is particularly well suited to large projects 

involving many people who are each writing different 

segments of the same code. However, object-orientation 

represents a large, and somewhat unnecessary, overhead for 

the type of straightforward, single person programming tasks 

considered in computational science [6]. 

Fortran 90 arrived in the 1990’s [9]. FORTRAN 90 is a major 

extension to FORTRAN 77 which does away with many of 

the latter language's objectionable features. In addition, many 

modern features, such as dynamic memory allocation, are 

included in the language for the first time. The major 

disadvantage of this language is the absence of an inexpensive 

compiler. There seems little prospect of this situation 

changing in the near future [6]. 



International Journal of Computer Applications (0975 – 8887) 

Volume 46– No.20, May 2012 

27 

Of the above languages, we can immediately rule out 

FORTRAN, because of the shortcomings such as limited type 

checking, lack of extensibility, reliance on global data etc. 

FORTRAN has become domain specific as a calculation tool 

and is not a general purpose language. Also the archaic 

features of FORTRAN are too embarrassing to use in the 21st 

century complex simulation problems. Most graphical 

interface and visualization packages have no native 

FORTRAN support. C/C++ is the fastest and efficient 

language to code. Almost all visualization and user interface 

packages support the C/C++ language. But being a low-level 

language, it is very hard for scientists and engineers to cope 

with. MATHEMATICA and MATLAB made prototyping 

easy but they cannot be used in large-scale complex 

engineering problems where full control is needed to optimize 

the code [10]. Figure 1 shows that dynamically typed 

languages have gained popularity over the statically typed 

counterparts in the last decade. Among them popularity of 

python as a general purpose programming language as well as 

an ideal programming language for computational science is 

on the rise (Figure 2). 

Figure 1: Uptrend of Dynamically typed language [11] 

 

Figure 2: Increasing popularity of Python among the top 

10 most popular languages [11] 

3. PYTHON 
Python is a general-purpose, high-level programming 

language with remarkable power and very clear syntax whose 

design philosophy emphasizes code readability and therefore 

reduces the cost of program maintenance. Python is the only 

major language to use indentation as a way of creating code 

blocks. This makes Python codes look similar regardless of 

whoever wrote it, which increases code readability [12]. 

Python supports multiple programming paradigms such as 

object-oriented, imperative and functional programming 

styles. Its standard library is large and comprehensive. It 

features a fully dynamic type system and a cycle detecting 

garbage collector for automatic memory management, similar 

to Scheme, Ruby, Perl, and Tcl. Python is often used as a 

scripting language like other dynamic languages, but is also 

used in a wide range of non-scripting contexts. Python code 

can be packaged into standalone executable programs using 

third party tools. 

Python was designed to be highly extensible instead of 

requiring all desired functionality to be built into the 

language's core. New built-in modules can be easily written 

with C, C++ or Cython [13]. Python can also be used as an 

extension language for existing modules and applications that 

need a programmable interface. That is why python is being 

adopted as the best language to model complex engineering 

phenomena in today’s scientific computing [14]. 

Being portable, Python runs on essentially all UNIX systems, 

as well as on DOS/Windows platforms and on the Mac. The 

Python interpreter and the extensive standard library are freely 

available in source or binary form for all major platforms and 

may be freely distributed. Additionally, many free third party 

Python modules, programs and tools, and documentations are 

widely available. 

Debugging in python is very easy since there is no 

compilation step; the edit-test-debug cycle is very fast. The 

interpreter raises an exception upon discovery of an error. The 

interpreter prints a stack trace when the program doesn't catch 

the exception. A source level debugger allows inspection of 

local and global variables, evaluation of arbitrary expressions, 

setting breakpoints, stepping through the code a line at a time, 

and so on [15]. 

3.1 Comparing Python to Other Languages 
The advantage of python over legacy languages in 

computational science is clearly evident from the comparison 

presented in table 1 among C/C++, FORTRAN and Python. 

Many other languages such as Java, Visual Basic, Perl, Ruby, 

Tcl, smalltalk, COBOL, Ada, Algol, Pascal, Haskell and 

Common Lisp and Scheme are also used in scientific 

computing but they are too specialized to adopt for scientific 

use. 

While Visual Basic is easy to read and understand by 

scientists, it runs only in windows and does not provide with 

fast execution speed. Consequently, interest in Visual basic 

has waned over the time. 

Python programs are generally expected to run slower than 

Java programs, but they also take much less time to develop. 

Python programs are typically 3 to 5 times shorter than 

equivalent Java programs because of Python's built-in high-

level data types and its dynamic typing [16]. 

Although Python and Perl came from the same UNIX 

scripting environment, they have different philosophy. Perl 

emphasizes support for common application-oriented tasks 

while Python emphasizes support for common programming 

methodologies such as data structure design and object-

oriented programming which makes Python applicable well 

beyond Perl's niche [16]. 

Tcl traditionally stores all data as strings, is weak on data 

structures, and executes typical code much slower than 

Python. However, Tcl 8.0 addresses the speed issues by 

providing a bytecode compiler with limited data type support, 

and adds namespaces. However, it is still a much more 

cumbersome programming language [16]. 



International Journal of Computer Applications (0975 – 8887) 

Volume 46– No.20, May 2012 

28 

Smalltalk, Common Lisp and Scheme are similar to python 

due to their dynamic typing nature but are far away from 

python’s philosophy when it comes to syntax, built-in data 

types and data structure [16]. 

 

Table 1: Comparison of C/C++, FORTRAN and Python [10] 

Language C/C++ Fortran Python 

Intended use Application, System Application, Numerical 

Computing. 

Application, General, Web, 

Scripting. 

Paradigm Imperative, procedural, object-

oriented (C++). 

Generic, imperative, object-

oriented, procedural. 

Aspect-oriented, functional, 

imperative, object-oriented, 

reflective. 

Type strength strong strong strong 

Type safety unsafe safe safe 

Expression of types explicit explicit implicit 

Type checking static static dynamic 

Failsafe I/O No No Yes 

Statements ratio 1 / 2.5 2 6 

Lines ratio* 1 0.8 6.5 

* The ratio of line count tests won by each language to the number won by C when using the Compare to feature at 

Shootout.alioth.debian.org. C gcc was used for C, C++ g++ was used for C++, and FORTRAN G95 was used for FORTRAN. 

3.2 Advantages of Python in Scientific 

Computing 
Python is used as the core language of many scientific 

software covering fields of Astronomy, Artificial intelligence 

& machine learning, Bayesian Statistics, Biology, 

Neuroscience, Dynamical systems, Economics and 

Econometrics, Electromagnetism, Electrical Engineering, 

Geosciences, Molecular modeling, Signal processing, number 

theory etc. [17]. Python has been successfully embedded in a 

number of software products as a scripting language, 

including in finite element method simulation software such 

as Abaqus and in geographic information system application 

ArcGIS, which are widely used in engineering community 

[18]. 

3.2.1 Code re-uses & Speed 
There is a vast collection of well tested and optimized 

numerical codes such as BLAS & Lapack, written in 

FORTRAN or C [19] [20]. Code re-use would mean to 

integrate the pure computing parts of such codes with new 

developments in another language. Combining C++ and 

FORTRAN, or Java and C, quickly gives a lot of complexity 

for the differences in data structures. Python offers the 

benefits of object-oriented and generic programming, together 

with a syntax that is simpler and clearer than C++ and Java. 

Also, there are several tools which make calling FORTRAN, 

C code easy. Hence, the idea is to write the managing code 

segments in Python, using efficient data structures and 

algorithms in new or old FORTRAN, C/C++ code. 

User time is more valuable than CPU time for prototyping 

scientific code, so an interpreted language like Python is 

acceptable. Python executes bit slower than C/C++, but it 

makes that up with high-level coding with extremely readable, 

simple and elegant syntax while reducing coding time. In 

addition, Python variant Cython can be used to obtain C/C++ 

like speed. One should have clear conception about where, 

when and how much performance is needed. For extreme 

performance, existing C, C++ and FORTRAN codes can be 

wrapped easily with python [13]. 

3.2.2 Parallel computing 
Various Python projects are currently underway that provide 

different parallel architectures, including shared memory 

architectures and message passing interface for distributed 

memory architectures [21]. Vendors of algorithms for high 

performance computing applications are recognizing the 

growth in Python and providing options for customers 

parallelization needs. 

3.2.3 Graphical user interfaces 
Python has various graphical user interface (GUI) frameworks 

available; from the native Tkinter to a number of other cross-

platform solutions such as Gtk, Qt, Tk and wxWidgets. GUI 

programming in Python means that adding cross-platform 

GUIs on top of a scientific application which is an efficient 

process that requires much less code than in C/C++ [22]. 

3.2.4 Scientific libraries 
Python has all major scientific libraries available either as the 

standard library or as third party open source library. SciPy is 

an open source library of algorithms and mathematical tools 

for the Python programming language. SciPy contains 

modules for optimization, linear algebra, integration, 

interpolation, special functions, Fast Fourier Transformation, 

signal and image processing, ODE solvers and other tasks 

common in science and engineering [17]. It has a similar 

audience to applications such as MATLAB, 

MATHEMATICA, GNU Octave, and Scilab. It also includes 

a library called Weave that makes it easier to include C++ 

code in Python and compliments other solutions such as 

SWIG and F2Py for FORTRAN to Python binding. The basic 

data structure in SciPy is a multidimensional array provided 

by the NumPy module. NumPy is a Python package that 

provides extended math capabilities [23]. These include new 

data types, such as long integers of unlimited size and 

complex numbers. It also provides a new array data type that 

allows for the construction of vectors and matrices. All the 

basic operations that can be applied to these new data types 

also are included. SymPy is a symbolic manipulation package, 

written in pure Python. Its aim is to become a full featured 

computer algebra system in Python, while keeping the code as 

simple as possible in order to be comprehensible and easily 

extensible [24]. The Python and C++ interfaces to the vtk 

library for visualization of stationary and time-dependent 

scalar and vector fields in 2D and 3D; results in a tool that can 

give the researcher the best of all worlds, complete 

programming control for automation and real-time 



International Journal of Computer Applications (0975 – 8887) 

Volume 46– No.20, May 2012 

29 

visualization, or User friendly visual construction of 

visualization pipelines [25]. Python Imaging Library with 

various filters built-in provides basic image handling and 

processing for various image types including jpg, gif, tiff, and 

bmp; Reads and writes graphics files, Allows pixel by pixel 

data access and has functions for cropping and transposing an 

image. Matplotlib is a python 2D plotting library which 

produces publication quality figures in a variety of hardcopy 

formats and interactive environments across platforms [26]. 

Mayavi has complemented the 3D visualization capability in 

python during the post processing phase of an engineering 

simulation [27]. The two major scientific library distribution 

packages are Pythonxy and Enthought Python distributions, 

which offer all major scientific libraries, bundled into one 

single package to use in multiple platforms [14]. 

4. CONCLUSION 
Python is an accepted high-level scripting language with a 

growing community in academia and industry. It is an easy to 

learn, powerful programming language. It has efficient high-

level data structures and a simple but effective approach to 

object-oriented programming. The only downside for python 

is the slowness associated with it due to it being an interpreted 

language. But python makes it up by providing elegant syntax 

and dynamic typing, together with coupling capabilities with 

existing libraries which makes it an ideal language for 

computational science programming. 

This paper focuses on the impact that the introduction of 

Python programming language can have on the computational 

science programming practice where emphasis is given on 

static languages in compiled form. A review on increasing 

popularity and rate of adoption of python in scientific 

community is also presented. The use of python in 

computational science programming offers three main 

benefits: 

1. Python code is highly readable, which results in easy code 

maintenance and future development. 

2. Dynamic typing in python provides on the fly prototyping, 

no need to compilation. 

3. Use of python as a glue to existing compiled code in static 

languages saves time and offer high degree of code reuse. 

5. REFERENCES 
[1] Nonweiler, T. R. (1986). Computational Mathematics: 

An Introduction to Numerical Approximation. John 

Wiley & Sons Inc. 

[2] Yang, X.-s. (2008). Introduction To Computational 

Mathematics. World Scientific Publishing Company. 

[3] Rashed, M. G. (2012). Development and Evaluation of 

An Open Source Finite Element Analysis Framework. 

Proceedings of the 1st International Conference on Civil 

Engineering for Sustainable Development. Khulna: 

KUET, Bangladesh. 

[4] Hassan, S., Rao, L. C., & K, G. B. (2012). Script 

Enhanced Unit Cell Approach for the Simulation of 

Compressive Behaviour in Fiber Reinforced Cement 

Composites. International Journal of Computer 

Applications , 44 (20), 32-37. 

[5] McCracken, D. D. (1961). A Guide to FORTRAN 

Programming. New York: Wiley. 

[6] Fitzpatrick, R. (2011, 03 31). Introduction to 

Computational Physics. Retrieved 04 20, 2012, from 

Home Page for Richard Fitzpatrick: 

http://farside.ph.utexas.edu/teaching/329/lectures/lecture

s.html 

[7] Ritchie, D. M. (1993). The Development of the C 

Language. The second ACM SIGPLAN History of 

Programming Languages Conference (pp. 201–208). 

New York: ACM. 

[8] Stroustrup, B. (2000). The C++ Programming Language. 

Addison-Wesley. 

[9] Akin, E. (2003). Object Oriented Programming via 

Fortran 90/95. Cambridge: Cambridge University Press. 

[10] Rashed, M. G., Ahsan, R., & Chowdhury, S. R. (2012). 

Numerical Modelling of Concrete Tensile Strength Test 

by Wrapping Scripting Language with Compiled 

Library. International Journal of Computer Applications , 

40 (14), 34-38. 

[11] TIOBE Programming Community Index. (2012, 04 20). 

Retrieved 04 20, 2012, from TIOBE Software: The 

Coding Standards Company: 

http://www.tiobe.com/index.php/tiobe_index 

[12] Millman, K. (2011). Python for Scientists and Engineers. 

Computing in Science & Engineering , 13 (2), 9 - 12. 

[13] Behnel, S., Bradshaw, R., Citro, C., Dalcin, L., 

Seljebotn, D., & Smith, K. (2011). Cython: The Best of 

Both Worlds. Computing in Science & Engineering , 13 

(2), 31 - 39. 

[14] Pérez, F., Granger, B., & Hunter, J. (2011). Python: An 

Ecosystem for Scientific Computing. Computing in 

Science & Engineering , 13 (2), 13 - 21. 

[15] Rossum, G. v. (2012, 04 20). What is Python? Executive 

Summary. Retrieved 04 20, 2012, from Python 

Documentation Index: 

http://www.python.org/doc/essays/blurb/ 

[16] Rossum, G. v. (1997, 12 30). Comparing Python to Other 

Languages. Retrieved 4 20, 2012, from Python 

Programming Language – Official Website: 

http://www.python.org/doc/essays/comparisons/ 

[17] SciPy. (2012, 4 20). Retrieved 4 20, 2012, from SciPy: 

http://www.scipy.org/Topical_Software 

[18] Butler, H. (2004). A Guide to the Python Universe for 

Esri Users. 24th Annual Esri International User 

Conference. User Conference Proceedings. 

[19] Duff, I. S., Heroux, M. A., & Pozo, R. (2002). An 

overview of the sparse basic linear algebra subprograms: 

The new standard from the BLAS technical forum. ACM 

Transactions on Mathematical Software , 28 (2), 239-

267. 

[20] Anderson, E., Bai, Z., Bischof, C., Blackford, L. S., 

Demmel, J., Dongarra, J. J., et al. (1999). LAPACK 

Users' guide (third ed.). Philadelphia: Society for 

Industrial and Applied Mathematics. 



International Journal of Computer Applications (0975 – 8887) 

Volume 46– No.20, May 2012 

30 

[21] Bruaset, A. M., & Tveito, A. (Eds.). (2006). Numerical 

Solution of Partial Differential Equations on Parallel 

Computers. Berlin: Springer. 

[22] Summerfield, M. (2007). Rapid GUI Programming with 

Python and Qt. New Jersey: Prentice Hall. 

[23] van der Walt, S., Colbert, S., & Varoquaux, G. (2011). 

The NumPy Array: A Structure for Efficient Numerical 

Computation. Computing in Science & Engineering , 13 

(2), 22 - 30. 

[24] Joyner, D., Čertík, O., Meurer, A., & Granger, B. E. 

(2011). Open source computer algebra systems: SymPy. 

ACM Communications in Computer Algebra , 225-234. 

[25] Kloss, G. K. (2009). Python Data Plotting and 

Visualisation Extravaganza. Proceedings of the First 

Kiwi PyCon (New Zealand). Christchurch: The Python 

Papers Monograph. 

[26] Hunter, J. D. (2007). Matplotlib: A 2D Graphics 

Environment. Computing in Science and Engineering , 

90-95. 

[27] Ramachandran, P., & Varoquaux, G. (2011). Mayavi: 3D 

Visualization of Scientific Data. Computing in Science & 

Engineering , 13 (2), 40 - 51. 

 

 

 


