
Python Programming:
An Introduction to
Computer Science

Chapter 13
Algorithm Design and Recursion

Python Programming, 2/e 1

The University of Western Australia

Objectives

æ To understand the basic techniques for
analyzing the efficiency of algorithms.

æ To know what searching is and understand
the algorithms for linear and binary search.

æ To understand the basic principles of
recursive definitions and functions and be
able to write simple recursive functions.

Python Programming, 2/e 2

The University of Western Australia

Objectives

æ  To understand sorting in depth and know the algorithms for selection sort
and merge sort.

æ  To appreciate how the analysis of algorithms can demonstrate that some
problems are intractable and others are unsolvable.

Python Programming, 2/e 3

The University of Western Australia

Searching

æ  Searching is the process of looking for a particular value in a collection.
æ  For example, a program that maintains a membership list for a club might

need to look up information for a particular member – this involves some
sort of search process.

Python Programming, 2/e 4

The University of Western Australia

A simple Searching Problem

æ  Here is the specification of a simple searching function:

def search(x, nums):
 # nums is a list of numbers and x is a number
 # Returns the position in the list where x occurs

 # or -1 if x is not in the list.
æ  Here are some sample interactions:

>>> search(4, [3, 1, 4, 2, 5])
2
>>> search(7, [3, 1, 4, 2, 5])
-1

Python Programming, 2/e 5

The University of Western Australia

A Simple Searching Problem

æ  In the first example, the function returns the index where 4 appears in the
list.

æ  In the second example, the return value -1 indicates that 7 is not in the list.
æ  Python includes a number of built-in search-related methods!

Python Programming, 2/e 6

The University of Western Australia

A Simple Searching Problem

æ  We can test to see if a value appears in a sequence using in.

if x in nums:
 # do something

æ  If we want to know the position of x in a list, the index method can be
used.
>>> nums = [3, 1, 4, 2, 5]
>>> nums.index(4)
2

Python Programming, 2/e 7

The University of Western Australia

A Simple Searching Problem

æ  The only difference between our search function and index is that
index raises an exception if the target value does not appear in the list.

æ  We could implement search using index by simply catching the exception
and returning -1 for that case.

Python Programming, 2/e 8

The University of Western Australia

A Simple Searching Problem

æ  def search(x, nums):
 try:
 return nums.index(x)
 except:
 return -1

æ  Sure, this will work, but we are really interested in the algorithm used to
actually search the list in Python!

Python Programming, 2/e 9

The University of Western Australia

Strategy 1: Linear Search

æ Pretend you’re the computer, and you were
given a page full of randomly ordered numbers
and were asked whether 13 was in the list.

æ How would you do it?
æ Would you start at the top of the list, scanning

downward, comparing each number to 13? If
you saw it, you could tell me it was in the list. If
you had scanned the whole list and not seen it,
you could tell me it wasn’t there.

Python Programming, 2/e 10

The University of Western Australia

Strategy 1: Linear Search

æ  This strategy is called a linear search, where you search through the list of
items one by one until the target value is found.

æ  def search(x, nums):
 for i in range(len(nums)):
 if nums[i] == x: # item found, return the index value
 return i
 return -1 # loop finished, item was not in list

æ  This algorithm wasn’t hard to develop, and works well for modest-sized
lists.

Python Programming, 2/e 11

The University of Western Australia

Strategy 1: Linear Search

æ  The Python in and index operations both implement linear searching
algorithms.

æ  If the collection of data is very large, it makes sense to organize the data
somehow so that each data value doesn’t need to be examined.

Python Programming, 2/e 12

The University of Western Australia

Strategy 1: Linear Search

æ If the data is sorted in ascending order (lowest
to highest), we can skip checking some of the
data.

æ As soon as a value is encountered that is greater
than the target value, the linear search can be
stopped without looking at the rest of the data.

æ On average, this will save us about half the
work.

Python Programming, 2/e 13

The University of Western Australia

Strategy 2: Binary Search

æ If the data is sorted, there is an even better
searching strategy – one you probably already
know!

æ Have you ever played the number guessing
game, where I pick a number between 1 and
100 and you try to guess it? Each time you
guess, I’ll tell you whether your guess is
correct, too high, or too low. What strategy do
you use?

Python Programming, 2/e 14

The University of Western Australia

Strategy 2: Binary Search

æ  Young children might simply guess numbers at random.
æ  Older children may be more systematic, using a linear search of 1, 2, 3, 4,

… until the value is found.
æ  Most adults will first guess 50. If told the value is higher, it is in the range

51-100. The next logical guess is 75.

Python Programming, 2/e 15

The University of Western Australia

Strategy 2: Binary Search

æ  Each time we guess the middle of the remaining numbers to try to narrow
down the range.

æ  This strategy is called binary search.
æ  Binary means two, and at each step we are diving the remaining group of

numbers into two parts.

Python Programming, 2/e 16

The University of Western Australia

Strategy 2: Binary Search

æ We can use the same approach in our binary
search algorithm! We can use two variables
to keep track of the endpoints of the range in
the sorted list where the number could be.

æ Since the target could be anywhere in the
list, initially low is set to the first location in
the list, and high is set to the last.

Python Programming, 2/e 17

The University of Western Australia

Strategy 2: Binary Search

æ The heart of the algorithm is a loop that looks at
the middle element of the range, comparing it to
the value x.

æ If x is smaller than the middle item, high is
moved so that the search is confined to the
lower half.

æ If x is larger than the middle item, low is moved
to narrow the search to the upper half.

Python Programming, 2/e 18

The University of Western Australia

Strategy 2: Binary Search

æ  The loop terminates when either
•  x is found
•  There are no more places to look

(low > high)

Python Programming, 2/e 19

The University of Western Australia

Strategy 2: Binary Search

def search(x, nums):
 low = 0
 high = len(nums) - 1
 while low <= high: # There is still a range to search
 mid = (low + high)//2 # Position of middle item
 item = nums[mid]
 if x == item: # Found it! Return the index
 return mid
 elif x < item: # x is in lower half of range
 high = mid - 1 # move top marker down
 else: # x is in upper half of range
 low = mid + 1 # move bottom marker up
 return -1 # No range left to search,
 # x is not there

Python Programming, 2/e 20

The University of Western Australia

Comparing Algorithms

æ Which search algorithm is better, linear or
binary?
•  The linear search is easier to understand and

implement
•  The binary search is more efficient since it doesn’t

need to look at each element in the list
æ Intuitively, we might expect the linear search to

work better for small lists, and binary search for
longer lists. But how can we be sure?

Python Programming, 2/e 21

The University of Western Australia

Comparing Algorithms

æ One way to conduct the test would be to code
up the algorithms and try them on varying sized
lists, noting the runtime.
•  Linear search is generally faster for lists of length 10

or less
•  There was little difference for lists of 10-1000
•  Binary search is best for 1000+ (for one million list

elements, binary search averaged .0003 seconds
while linear search averaged 2.5 second)

Python Programming, 2/e 22

The University of Western Australia

Comparing Algorithms

æ While interesting, can we guarantee that these
empirical results are not dependent on the type
of computer they were conducted on, the
amount of memory in the computer, the speed
of the computer, etc.?

æ We could abstractly reason about the algorithms
to determine how efficient they are. We can
assume that the algorithm with the fewest
number of “steps” is more efficient.

Python Programming, 2/e 23

The University of Western Australia

Comparing Algorithms

æ  How do we count the number of “steps”?
æ  Computer scientists attack these problems by analyzing the number of steps

that an algorithm will take relative to the size or difficulty of the specific
problem instance being solved.

Python Programming, 2/e 24

The University of Western Australia

Comparing Algorithms

æ For searching, the difficulty is determined by the
size of the collection – it takes more steps to
find a number in a collection of a million
numbers than it does in a collection of 10
numbers.

æ How many steps are needed to find a value in a
list of size n?

æ In particular, what happens as n gets very large?

Python Programming, 2/e 25

The University of Western Australia

Comparing Algorithms

æ Let’s consider linear search.
•  For a list of 10 items, the most work we might have to do

is to look at each item in turn – looping at most 10 times.
•  For a list twice as large, we would loop at most 20 times.
•  For a list three times as large, we would loop at most 30

times!

æ The amount of time required is linearly related
to the size of the list, n. This is what computer
scientists call a linear time algorithm.

Python Programming, 2/e 26

The University of Western Australia

Comparing Algorithms

æ Now, let’s consider binary search.
•  Suppose the list has 16 items. Each time through the

loop, half the items are removed. After one loop, 8
items remain.

•  After two loops, 4 items remain.
•  After three loops, 2 items remain
•  After four loops, 1 item remains.

æ If a binary search loops i times, it can find a
single value in a list of size 2i.

Python Programming, 2/e 27

The University of Western Australia

Comparing Algorithms

æ  To determine how many items are examined in a list of
size n, we need to solve for i, or .

æ  Binary search is an example of a log time algorithm –
the amount of time it takes to solve one of these
problems grows as the log of the problem size.

Python Programming, 2/e 28

2in = 2logi n=

The University of Western Australia

Comparing Algorithms

æ This logarithmic property can be very powerful!
æ Suppose you have the New York City phone

book with 12 million names. You could walk up
to a New Yorker and, assuming they are listed in
the phone book, make them this proposition:
“I’m going to try guessing your name. Each
time I guess a name, you tell me if your name
comes alphabetically before or after the name I
guess.” How many guesses will you need?

Python Programming, 2/e 29

The University of Western Australia

Comparing Algorithms

æ Our analysis shows us the answer to this
question is .

æ We can guess the name of the New Yorker in 24
guesses! By comparison, using the linear search
we would need to make, on average, 6,000,000
guesses!

Python Programming, 2/e 30

2log 12000000

The University of Western Australia

Comparing Algorithms

æ  Earlier, we mentioned that Python uses linear search in its built-in searching
methods. We doesn’t it use binary search?
•  Binary search requires the data to be sorted
•  If the data is unsorted, it must be sorted first!

Python Programming, 2/e 31

The University of Western Australia

Recursive Problem-Solving

æ  The basic idea between the binary search algorithm was to successfully
divide the problem in half.

æ  This technique is known as a divide and conquer approach.
æ  Divide and conquer divides the original problem into subproblems that are

smaller versions of the original problem.

Python Programming, 2/e 32

The University of Western Australia

Recursive Problem-Solving

æ  In the binary search, the initial range is the entire list. We look at the
middle element… if it is the target, we’re done. Otherwise, we continue by
performing a binary search on either the top half or bottom half of the list.

Python Programming, 2/e 33

The University of Western Australia

Recursive Problem-Solving

Algorithm: binarySearch – search for x in nums[low]…nums[high]

mid = (low + high)//2

if low > high
 x is not in nums

elsif x < nums[mid]
 perform binary search for x in nums[low]…nums[mid-1]

else

 perform binary search for x in nums[mid+1]…nums[high]

æ  This version has no loop, and seems to refer to itself! What’s going on??

Python Programming, 2/e 34

The University of Western Australia

Recursive Definitions

æ  A description of something that refers to itself is called a recursive
definition.

æ  In the last example, the binary search algorithm uses its own description –
a “call” to binary search “recurs” inside of the definition – hence the label
“recursive definition.”

Python Programming, 2/e 35

The University of Western Australia

Recursive Definitions

æ  Have you had a teacher tell you that you can’t use a word in its own
definition? This is a circular definition.

æ  In mathematics, recursion is frequently used. The most common example is
the factorial:

æ  For example, 5! = 5(4)(3)(2)(1), or
5! = 5(4!)

Python Programming, 2/e 36

! (1)(2)...(1)n n n n= − −

The University of Western Australia

Recursive Definitions

æ In other words,

æ Or

æ This definition says that 0! is 1, while the
factorial of any other number is that number
times the factorial of one less than that number.

Python Programming, 2/e 37

! (1)!n n n= −
1 if 0

!
(1)! otherwise

n
n

n n
=⎧

= ⎨
−⎩

The University of Western Australia

Recursive Definitions

æ  Our definition is recursive, but definitely not circular. Consider 4!
•  4! = 4(4-1)! = 4(3!)
•  What is 3!? We apply the definition again

4! = 4(3!) = 4[3(3-1)!] = 4(3)(2!)
•  And so on…

4! = 4(3!) = 4(3)(2!) = 4(3)(2)(1!) = 4(3)(2)(1)(0!) = 4(3)(2)(1)(1) =
24

Python Programming, 2/e 38

The University of Western Australia

Recursive Definitions

æ  Factorial is not circular because we eventually get to 0!, whose definition
does not rely on the definition of factorial and is just 1. This is called a base
case for the recursion.

æ  When the base case is encountered, we get a closed expression that can be
directly computed.

Python Programming, 2/e 39

The University of Western Australia

Recursive Definitions

æ All good recursive definitions have these two
key characteristics:
•  There are one or more base cases for which no

recursion is applied.
•  All chains of recursion eventually end up at one of

the base cases.
æ The simplest way for these two conditions to

occur is for each recursion to act on a smaller
version of the original problem. A very small
version of the original problem that can be
solved without recursion becomes the base
case.

Python Programming, 2/e 40

The University of Western Australia

Recursive Functions

æ  We’ve seen previously that factorial can be calculated using a loop
accumulator.

æ  If factorial is written as a separate function:
def fact(n):
 if n == 0:
 return 1
 else:
 return n * fact(n-1)

Python Programming, 2/e 41

The University of Western Australia

Recursive Functions

æ  We’ve written a function that calls itself, a recursive function.
æ  The function first checks to see if we’re at the base case (n==0). If so,

return 1. Otherwise, return the result of multiplying n by the factorial of
n-1, fact(n-1).

Python Programming, 2/e 42

The University of Western Australia

Recursive Functions

>>> fact(4)
24
>>> fact(10)
3628800
>>> fact(100)
933262154439441526816992388562667004907159682643816214685929638952

175999932299156089414639761565182862536979208272237582511852109
16864000000000000000000000000L

>>>
æ  Remember that each call to a function starts that function anew, with its

own copies of local variables and parameters.

Python Programming, 2/e 43

The University of Western Australia

Recursive Functions

Python Programming, 2/e 44

The University of Western Australia

Example: String Reversal

æ  Python lists have a built-in method that can be used to reverse the list.
What if you wanted to reverse a string?

æ  If you wanted to program this yourself, one way to do it would be to
convert the string into a list of characters, reverse the list, and then convert
it back into a string.

Python Programming, 2/e 45

The University of Western Australia

Example: String Reversal

æ  Using recursion, we can calculate the reverse of a string without the
intermediate list step.

æ  Think of a string as a recursive object:
•  Divide it up into a first character and “all the rest”
•  Reverse the “rest” and append the first character to the end of it

Python Programming, 2/e 46

The University of Western Australia

Example: String Reversal

æ  def reverse(s):
 return reverse(s[1:]) + s[0]

æ  The slice s[1:] returns all but the first character of the string.
æ  We reverse this slice and then concatenate the first character (s[0]) onto

the end.

Python Programming, 2/e 47

The University of Western Australia

Example: String Reversal

æ  >>> reverse("Hello")

Traceback (most recent call last):
 File "<pyshell#6>", line 1, in -toplevel-
 reverse("Hello")
 File "C:/Program Files/Python 2.3.3/z.py", line 8, in reverse
 return reverse(s[1:]) + s[0]
 File "C:/Program Files/Python 2.3.3/z.py", line 8, in reverse
 return reverse(s[1:]) + s[0]
…
 File "C:/Program Files/Python 2.3.3/z.py", line 8, in reverse
 return reverse(s[1:]) + s[0]
RuntimeError: maximum recursion depth exceeded

æ  What happened? There were 1000 lines of errors!

Python Programming, 2/e 48

The University of Western Australia

Example: String Reversal

æ  Remember: To build a correct recursive function, we need a base case that
doesn’t use recursion.

æ  We forgot to include a base case, so our program is an infinite recursion.
Each call to reverse contains another call to reverse, so none of them
return.

Python Programming, 2/e 49

The University of Western Australia

Example: String Reversal

æ Each time a function is called it takes some
memory. Python stops it at 1000 calls, the
default “maximum recursion depth.”

æ What should we use for our base case?
æ Following our algorithm, we know we will

eventually try to reverse the empty string. Since
the empty string is its own reverse, we can use
it as the base case.

Python Programming, 2/e 50

The University of Western Australia

Example: String Reversal

æ  def reverse(s):
 if s == "":
 return s
 else:
 return reverse(s[1:]) + s[0]

æ  >>> reverse("Hello")
'olleH'

Python Programming, 2/e 51

The University of Western Australia

Example: Anagrams

æ  An anagram is formed by rearranging the letters of a word.
æ  Anagram formation is a special case of generating all permutations

(rearrangements) of a sequence, a problem that is seen frequently in
mathematics and computer science.

Python Programming, 2/e 52

The University of Western Australia

Example: Anagrams

æ  Let’s apply the same approach from the previous example.
•  Slice the first character off the string.
•  Place the first character in all possible locations within the anagrams

formed from the “rest” of the original string.

Python Programming, 2/e 53

The University of Western Australia

Example: Anagrams

æ Suppose the original string is “abc”. Stripping off
the “a” leaves us with “bc”.

æ Generating all anagrams of “bc” gives us “bc”
and “cb”.

æ To form the anagram of the original string, we
place “a” in all possible locations within these
two smaller anagrams: [“abc”, “bac”, “bca”,
“acb”, “cab”, “cba”]

Python Programming, 2/e 54

The University of Western Australia

Example: Anagrams

æ  As in the previous example, we can use the empty string as our base case.
æ  def anagrams(s):

 if s == "":
 return [s]
 else:
 ans = []
 for w in anagrams(s[1:]):
 for pos in range(len(w)+1):
 ans.append(w[:pos]+s[0]+w[pos:])
 return ans

Python Programming, 2/e 55

The University of Western Australia

Example: Anagrams

æ A list is used to accumulate results.
æ The outer for loop iterates through each

anagram of the tail of s.
æ The inner loop goes through each position in the

anagram and creates a new string with the
original first character inserted into that position.

æ The inner loop goes up to len(w)+1 so the new
character can be added at the end of the
anagram.

Python Programming, 2/e 56

The University of Western Australia

Example: Anagrams

æ  w[:pos]+s[0]+w[pos:]
•  w[:pos] gives the part of w up to, but not including, pos.
•  w[pos:] gives everything from pos to the end.
•  Inserting s[0] between them effectively inserts it into w at pos.

Python Programming, 2/e 57

The University of Western Australia

Example: Anagrams

æ  The number of anagrams of a word is the factorial of the length of the
word.

æ  >>> anagrams("abc")
['abc', 'bac', 'bca', 'acb', 'cab', 'cba']

Python Programming, 2/e 58

The University of Western Australia

Example: Fast Exponentiation

æ  One way to compute an for an integer n is to multiply a by itself n times.
æ  This can be done with a simple accumulator loop:

def loopPower(a, n):
 ans = 1
 for i in range(n):
 ans = ans * a
 return ans

Python Programming, 2/e 59

The University of Western Australia

Example: Fast Exponentiation

æ We can also solve this problem using divide and
conquer.

æ Using the laws of exponents, we know that 28 =
24(24). If we know 24, we can calculate 28 using
one multiplication.

æ What’s 24? 24 = 22(22), and 22 = 2(2).
æ 2(2) = 4, 4(4) = 16, 16(16) = 256 = 28
æ We’ve calculated 28 using only three

multiplications!

Python Programming, 2/e 60

The University of Western Australia

Example: Fast Exponentiation

æ We can take advantage of the fact that an = an//

2(an//2)
æ This algorithm only works when n is even. How

can we extend it to work when n is odd?
æ 29 = 24(24)(21)

Python Programming, 2/e 61

The University of Western Australia

Example: Fast Exponentiation

æ  This method relies on integer division (if n is 9, then n//2 = 4).
æ  To express this algorithm recursively, we need a suitable base case.
æ  If we keep using smaller and smaller values for n, n will eventually be equal

to 0 (1//2 = 0), and a0 = 1 for any value except a = 0.

Python Programming, 2/e 62

The University of Western Australia

Example: Fast Exponentiation

æ  def recPower(a, n):
 # raises a to the int power n
 if n == 0:
 return 1
 else:
 factor = recPower(a, n//2)
 if n%2 == 0: # n is even
 return factor * factor
 else: # n is odd
 return factor * factor * a

æ  Here, a temporary variable called factor is introduced so that we don’t need
to calculate an//2 more than once, simply for efficiency.

Python Programming, 2/e 63

The University of Western Australia

Example: Binary Search

æ Now that you’ve seen some recursion examples,
you’re ready to look at doing binary searches
recursively.

æ Remember: we look at the middle value first,
then we either search the lower half or upper
half of the array.

æ The base cases are when we can stop
searching,namely, when the target is found or
when we’ve run out of places to look.

Python Programming, 2/e 64

The University of Western Australia

Example: Binary Search

æ  The recursive calls will cut the search in half each time by specifying the
range of locations that are “still in play”, i.e. have not been searched and
may contain the target value.

æ  Each invocation of the search routine will search the list between the given
low and high parameters.

Python Programming, 2/e 65

The University of Western Australia

Example: Binary Search

æ  def recBinSearch(x, nums, low, high):
 if low > high: # No place left to look, return -1
 return -1
 mid = (low + high)//2
 item = nums[mid]
 if item == x:
 return mid
 elif x < item: # Look in lower half
 return recBinSearch(x, nums, low, mid-1)
 else: # Look in upper half
 return recBinSearch(x, nums, mid+1, high)

æ  We can then call the binary search with a generic search wrapping function:

def search(x, nums):
 return recBinSearch(x, nums, 0, len(nums)-1)

Python Programming, 2/e 66

The University of Western Australia

Recursion vs. Iteration

æ There are similarities between iteration (looping)
and recursion.

æ In fact, anything that can be done with a loop
can be done with a simple recursive function!
Some programming languages use recursion
exclusively.

æ Some problems that are simple to solve with
recursion are quite difficult to solve with loops.

Python Programming, 2/e 67

The University of Western Australia

Recursion vs. Iteration

æ In the factorial and binary search problems, the
looping and recursive solutions use roughly the
same algorithms, and their efficiency is nearly
the same.

æ In the exponentiation problem, two different
algorithms are used. The looping version takes
linear time to complete, while the recursive
version executes in log time. The difference
between them is like the difference between a
linear and binary search.

Python Programming, 2/e 68

The University of Western Australia

Recursion vs. Iteration

æ  So… will recursive solutions always be as efficient or more efficient than
their iterative counterpart?

æ  The Fibonacci sequence is the sequence of numbers 1,1,2,3,5,8,…
•  The sequence starts with two 1’s
•  Successive numbers are calculated by finding the sum of the previous

two

Python Programming, 2/e 69

The University of Western Australia

Recursion vs. Iteration

æ  Loop version:
•  Let’s use two variables, curr and prev, to calculate the next number

in the sequence.
•  Once this is done, we set prev equal to curr, and set curr equal to

the just-calculated number.
•  All we need to do is to put this into a loop to execute the right number

of times!

Python Programming, 2/e 70

The University of Western Australia

Recursion vs. Iteration

æ  def loopfib(n):
 # returns the nth Fibonacci number

 curr = 1
 prev = 1
 for i in range(n-2):
 curr, prev = curr+prev, curr
 return curr

æ Note the use of simultaneous assignment to
calculate the new values of curr and prev.

æ The loop executes only n-2 since the first two
values have already been “determined”.

Python Programming, 2/e 71

The University of Western Australia

Recursion vs. Iteration

æ The Fibonacci sequence also has a recursive
definition:

æ This recursive definition can be directly turned
into a recursive function!

æ  def fib(n):
 if n < 3:
 return 1
 else:
 return fib(n-1)+fib(n-2)

Python Programming, 2/e 72

1 if 3
()

(1) (2) otherwise
n

fib n
fib n fib n

<⎧
= ⎨

− + −⎩

The University of Western Australia

Recursion vs. Iteration

æ  This function obeys the rules that we’ve set out.
•  The recursion is always based on smaller values.
•  There is a non-recursive base case.

æ  So, this function will work great, won’t it? – Sort of…

Python Programming, 2/e 73

The University of Western Australia

Recursion vs. Iteration

æ The recursive solution is extremely
inefficient, since it performs many
duplicate calculations!

Python Programming, 2/e 74

The University of Western Australia

Recursion vs. Iteration

æ  To calculate fib(6), fib(4)is calculated twice,
fib(3)is calculated three times, fib(2)is
calculated four times… For large numbers, this
adds up!

Python Programming, 2/e 75

The University of Western Australia

Recursion vs. Iteration

æ Recursion is another tool in your problem-solving
toolbox.

æ Sometimes recursion provides a good solution
because it is more elegant or efficient than a
looping version.

æ At other times, when both algorithms are quite
similar, the edge goes to the looping solution on
the basis of speed.

æ Avoid the recursive solution if it is terribly
inefficient, unless you can’t come up with an
iterative solution (which sometimes happens!)

Python Programming, 2/e 76

The University of Western Australia

Sorting Algorithms

æ  The basic sorting problem is to take a list and rearrange it so that the
values are in increasing (or nondecreasing) order.

Python Programming, 2/e 77

The University of Western Australia

Naive Sorting: Selection Sort

æ  To start out, pretend you’re the computer, and you’re given a shuffled
stack of index cards, each with a number. How would you put the cards
back in order?

Python Programming, 2/e 78

The University of Western Australia

Naive Sorting: Selection Sort

æ One simple method is to look through the
deck to find the smallest value and place that
value at the front of the stack.

æ Then go through, find the next smallest
number in the remaining cards, place it
behind the smallest card at the front.

æ Rinse, lather, repeat, until the stack is in
sorted order!

Python Programming, 2/e 79

The University of Western Australia

Naive Sorting: Selection Sort

æ  We already have an algorithm to find the smallest item in a list (Chapter 7).
As you go through the list, keep track of the smallest one seen so far,
updating it when you find a smaller one.

æ  This sorting algorithm is known as a selection sort.

Python Programming, 2/e 80

The University of Western Australia

Naive Sorting: Selection Sort

æ The algorithm has a loop, and each time through
the loop the smallest remaining element is
selected and moved into its proper position.
•  For n elements, we find the smallest value and put it

in the 0th position.
•  Then we find the smallest remaining value from

position 1 – (n-1) and put it into position 1.
•  The smallest value from position 2 – (n-1) goes in

position 2.
•  Etc.

Python Programming, 2/e 81

The University of Western Australia

Naive Sorting: Selection Sort

æ When we place a value into its proper position,
we need to be sure we don’t accidentally lose
the value originally stored in that position.

æ If the smallest item is in position 10, moving it
into position 0 involves the assignment:
nums[0] = nums[10]

æ This wipes out the original value in nums[0]!

Python Programming, 2/e 82

The University of Western Australia

Naive Sorting: Selection Sort

æ  We can use simultaneous assignment to swap the values between nums[0]
and nums[10]:
nums[0],nums[10] = nums[10],nums[0]

æ  Using these ideas, we can implement our algorithm, using variable bottom
for the currently filled position, and mp is the location of the smallest
remaining value.

Python Programming, 2/e 83

The University of Western Australia

Naive Sorting: Selection Sort

 def selSort(nums):
 # sort nums into ascending order

 n = len(nums)

 # For each position in the list (except the very last)

 for bottom in range(n-1):
 # find the smallest item in nums[bottom]..nums[n-1]

 mp = bottom # bottom is smallest initially
 for i in range(bottom+1, n): # look at each position
 if nums[i] < nums[mp]: # this one is smaller
 mp = i # remember its index

 # swap smallest item to the bottom
 nums[bottom], nums[mp] = nums[mp], nums[bottom]

Python Programming, 2/e 84

The University of Western Australia

Naive Sorting: Selection Sort

æ Rather than remembering the minimum value
scanned so far, we store its position in the list in
the variable mp.

æ New values are tested by comparing the item in
position i with the item in position mp.

æ bottom stops at the second to last item in the
list. Why? Once all items up to the last are in
order, the last item must be the largest!

Python Programming, 2/e 85

The University of Western Australia

Naive Sorting: Selection Sort

æ  The selection sort is easy to write and works well for moderate-sized lists,
but is not terribly efficient. We’ll analyze this algorithm in a little bit.

Python Programming, 2/e 86

The University of Western Australia

Divide and Conquer:
Merge Sort

æ  We’ve seen how divide and conquer works in other types of problems. How
could we apply it to sorting?

æ  Say you and your friend have a deck of shuffled cards you’d like to sort.
Each of you could take half the cards and sort them. Then all you’d need is
a way to recombine the two sorted stacks!

Python Programming, 2/e 87

The University of Western Australia

Divide and Conquer:
Merge Sort

æ  This process of combining two sorted lists into a single sorted list is called
merging.

æ  Our merge sort algorithm looks like:
split nums into two halves
sort the first half
sort the second half
merge the two sorted halves back into nums

Python Programming, 2/e 88

The University of Western Australia

Divide and Conquer:
Merge Sort

æ  Step 1: split nums into two halves
•  Simple! Just use list slicing!

æ  Step 4: merge the two sorted halves back
into nums
•  This is simple if you think of how you’d do it

yourself…
•  You have two sorted stacks, each with the smallest

value on top. Whichever of these two is smaller will
be the first item in the list.

Python Programming, 2/e 89

The University of Western Australia

Divide and Conquer:
Merge Sort

•  Once the smaller value is removed, examine both top
cards. Whichever is smaller will be the next item in
the list.

•  Continue this process of placing the smaller of the top
two cards until one of the stacks runs out, in which
case the list is finished with the cards from the
remaining stack.

•  In the following code, lst1 and lst2 are the smaller
lists and lst3 is the larger list for the results. The
length of lst3 must be equal to the sum of the
lengths of lst1 and lst2.

Python Programming, 2/e 90

The University of Western Australia

Divide and Conquer:
Merge Sort
def merge(lst1, lst2, lst3):
 # merge sorted lists lst1 and lst2 into lst3

 # these indexes keep track of current position in each list
 i1, i2, i3 = 0, 0, 0 # all start at the front
 n1, n2 = len(lst1), len(lst2)

 # Loop while both lst1 and lst2 have more items

 while i1 < n1 and i2 < n2:
 if lst1[i1] < lst2[i2]: # top of lst1 is smaller
 lst3[i3] = lst1[i1] # copy it into current spot in lst3
 i1 = i1 + 1
 else: # top of lst2 is smaller
 lst3[i3] = lst2[i2] # copy itinto current spot in lst3
 i2 = i2 + 1
 i3 = i3 + 1 # item added to lst3, update position

Python Programming, 2/e 91

The University of Western Australia

Divide and Conquer:
Merge Sort
 # Here either lst1 or lst2 is done. One of the following loops
 # will execute to finish up the merge.

 # Copy remaining items (if any) from lst1
 while i1 < n1:
 lst3[i3] = lst1[i1]
 i1 = i1 + 1
 i3 = i3 + 1

 # Copy remaining items (if any) from lst2
 while i2 < n2:
 lst3[i3] = lst2[i2]
 i2 = i2 + 1
 i3 = i3 + 1

Python Programming, 2/e 92

The University of Western Australia

Divide and Conquer:
Merge Sort

æ  We can slice a list in two, and we can merge these new sorted lists back
into a single list. How are we going to sort the smaller lists?

æ  We are trying to sort a list, and the algorithm requires two smaller sorted
lists… this sounds like a job for recursion!

Python Programming, 2/e 93

The University of Western Australia

Divide and Conquer:
Merge Sort

æ  We need to find at least one base case that does not require a recursive
call, and we also need to ensure that recursive calls are always made on
smaller versions of the original problem.

æ  For the latter, we know this is true since each time we are working on
halves of the previous list.

Python Programming, 2/e 94

The University of Western Australia

Divide and Conquer:
Merge Sort

æ Eventually, the lists will be halved into lists
with a single element each. What do we know
about a list with a single item?

æ It’s already sorted!! We have our base case!
æ When the length of the list is less than 2, we

do nothing.
æ We update the mergeSort algorithm to make it

properly recursive…

Python Programming, 2/e 95

The University of Western Australia

Divide and Conquer:
Merge Sort

if len(nums) > 1:

 split nums into two halves
 mergeSort the first half

 mergeSort the seoncd half

 mergeSort the second half

 merge the two sorted halves back into nums

Python Programming, 2/e 96

The University of Western Australia

Divide and Conquer:
Merge Sort
def mergeSort(nums):
 # Put items of nums into ascending order
 n = len(nums)
 # Do nothing if nums contains 0 or 1 items
 if n > 1:
 # split the two sublists
 m = n/2
 nums1, nums2 = nums[:m], nums[m:]
 # recursively sort each piece
 mergeSort(nums1)
 mergeSort(nums2)
 # merge the sorted pieces back into original list
 merge(nums1, nums2, nums)

Python Programming, 2/e 97

The University of Western Australia

Divide and Conquer:
Merge Sort

æ  Recursion is closely related to the idea of mathematical induction, and it
requires practice before it becomes comfortable.

æ  Follow the rules and make sure the recursive chain of calls reaches a base
case, and your algorithms will work!

Python Programming, 2/e 98

The University of Western Australia

Comparing Sorts

æ  We now have two sorting algorithms. Which one should we use?
æ  The difficulty of sorting a list depends on the size of the list. We need to

figure out how many steps each of our sorting algorithms requires as a
function of the size of the list to be sorted.

Python Programming, 2/e 99

The University of Western Australia

Comparing Sorts

æ Let’s start with selection sort.
æ In this algorithm we start by finding the smallest

item, then finding the smallest of the remaining
items, and so on.

æ Suppose we start with a list of size n. To find the
smallest element, the algorithm inspects all n
items. The next time through the loop, it
inspects the remaining n-1 items. The total
number of iterations is:
n + (n-1) + (n-2) + (n-3) + … + 1

Python Programming, 2/e 10
0

The University of Western Australia

Comparing Sorts

æ  The time required by selection sort to sort a list of n items is proportional to
the sum of the first n whole numbers, or .

æ  This formula contains an n2 term, meaning that the number of steps in the
algorithm is proportional to the square of the size of the list.

Python Programming, 2/e 10
1

()1
2

n n +

The University of Western Australia

Comparing Sorts

æ  If the size of a list doubles, it will take four times as long to sort. Tripling
the size will take nine times longer to sort!

æ  Computer scientists call this a quadratic or n2 algorithm.

Python Programming, 2/e 10
2

The University of Western Australia

Comparing Sorts

æ  In the case of the merge sort, a list is divided into two pieces and each
piece is sorted before merging them back together. The real place where
the sorting occurs is in the merge function.

Python Programming, 2/e 10
3

The University of Western Australia

Comparing Sorts

æ  This diagram shows how [3,1,4,1,5,9,2,6] is sorted.
æ  Starting at the bottom, we have to copy the n values into the second level.

Python Programming, 2/e 10
4

The University of Western Australia

Comparing Sorts

æ From the second to third levels the n values
need to be copied again.

æ Each level of merging involves copying n
values. The only remaining question is how
many levels are there?

Python Programming, 2/e 10
5

The University of Western Australia

Comparing Sorts

æ  We know from the analysis of binary search that this is just log2n.
æ  Therefore, the total work required to sort n items is nlog2n.
æ  Computer scientists call this an n log n algorithm.

Python Programming, 2/e 10
6

The University of Western Australia

Comparing Sorts

æ So, which is going to be better, the n2 selection
sort, or the n logn merge sort?

æ If the input size is small, the selection sort might
be a little faster because the code is simpler and
there is less overhead.

æ What happens as n gets large? We saw in our
discussion of binary search that the log function
grows very slowly, so nlogn will grow much
slower than n2.

Python Programming, 2/e 10
7

The University of Western Australia

Comparing Sorts

Python Programming, 2/e 10
8

The University of Western Australia

Hard Problems

æ  Using divide-and-conquer we could design efficient algorithms for searching
and sorting problems.

æ  Divide and conquer and recursion are very powerful techniques for
algorithm design.

æ  Not all problems have efficient solutions!

Python Programming, 2/e 10
9

The University of Western Australia

Towers of Hanoi

æ One elegant application of recursion is to the
Towers of Hanoi or Towers of Brahma puzzle
attributed to Édouard Lucas.

æ There are three posts and sixty-four concentric
disks shaped like a pyramid.

æ The goal is to move the disks from one post to
another, following these three rules:

Python Programming, 2/e 11
0

The University of Western Australia

Towers of Hanoi

•  Only one disk may be moved at a time.
•  A disk may not be “set aside”. It may only be

stacked on one of the three posts.
•  A larger disk may never be placed on top of a

smaller one.

Python Programming, 2/e 11
1

The University of Western Australia

Towers of Hanoi

æ  If we label the posts as A, B, and C, we could
express an algorithm to move a pile of disks from A
to C, using B as temporary storage, as:
Move disk from A to C
Move disk from A to B
Move disk from C to B

Python Programming, 2/e 11
2

The University of Western Australia

Towers of Hanoi

æ  Let’s consider some easy cases –
•  1 disk

Move disk from A to C
•  2 disks

Move disk from A to B
Move disk from A to C
Move disk from B to C

Python Programming, 2/e 11
3

The University of Western Australia

Towers of Hanoi

•  3 disks
To move the largest disk to C, we first need to move the two smaller
disks out of the way. These two smaller disks form a pyramid of size 2,
which we know how to solve.
Move a tower of two from A to B
Move one disk from A to C
Move a tower of two from B to C

Python Programming, 2/e 11
4

The University of Western Australia

Towers of Hanoi

æ  Algorithm: move n-disk tower from source to destination
via resting place

move n-1 disk tower from source to resting place
move 1 disk tower from source to destination
move n-1 disk tower from resting place to destination

æ  What should the base case be? Eventually we will be moving a tower of size
1, which can be moved directly without needing a recursive call.

Python Programming, 2/e 11
5

The University of Western Australia

Towers of Hanoi

æ In moveTower, n is the size of the tower
(integer), and source, dest, and temp are
the three posts, represented by “A”, “B”, and
“C”.

æ  def moveTower(n, source, dest, temp):
 if n == 1:
 print("Move disk from", source, "to", dest+".")
 else:
 moveTower(n-1, source, temp, dest)
 moveTower(1, source, dest, temp)
 moveTower(n-1, temp, dest, source)

Python Programming, 2/e 11
6

The University of Western Australia

Towers of Hanoi

æ To get things started, we need to supply
parameters for the four parameters:
def hanoi(n):
 moveTower(n, "A", "C", "B")

æ  >>> hanoi(3)
Move disk from A to C.
Move disk from A to B.
Move disk from C to B.
Move disk from A to C.
Move disk from B to A.
Move disk from B to C.
Move disk from A to C.

Python Programming, 2/e 11
7

The University of Western Australia

Towers of Hanoi

æ Why is this a “hard
problem”?

æ How many steps in
our program are
required to move a
tower of size n?

Number of
Disks

Steps in
Solution

1 1

2 3

3 7

4 15

5 31

Python Programming, 2/e 11
8

The University of Western Australia

Towers of Hanoi

æ To solve a puzzle of size n will require 2n-1
steps.

æ Computer scientists refer to this as an
exponential time algorithm.

æ Exponential algorithms grow very fast.
æ For 64 disks, moving one a second, round the

clock, would require 580 billion years to
complete. The current age of the universe is
estimated to be about 15 billion years.

Python Programming, 2/e 11
9

The University of Western Australia

Towers of Hanoi

æ Even though the algorithm for Towers of
Hanoi is easy to express, it belongs to a class
of problems known as intractable problems –
those that require too many computing
resources (either time or memory) to be
solved except for the simplest of cases.

æ There are problems that are even harder
than the class of intractable problems.

Python Programming, 2/e 12
0

The University of Western Australia

The Halting Problem

æ Let’s say you want to write a program that looks
at other programs to determine whether they
have an infinite loop or not.

æ We’ll assume that we need to also know the
input to be given to the program in order to
make sure it’s not some combination of input
and the program itself that causes it to infinitely
loop.

Python Programming, 2/e 12
1

The University of Western Australia

The Halting Problem

æ Program Specification:
•  Program: Halting Analyzer
•  Inputs: A Python program file. The input for the

program.
•  Outputs: “OK” if the program will eventually stop.
“FAULTY” if the program has an infinite loop.

æ You’ve seen programs that look at programs
before – like the Python interpreter!

æ The program and its inputs can both be
represented by strings.

Python Programming, 2/e 12
2

The University of Western Australia

The Halting Problem

æ  There is no possible algorithm that can meet this specification!
æ  This is different than saying no one’s been able to write such a program…

we can prove that this is the case using a mathematical technique known as
proof by contradiction.

Python Programming, 2/e 12
3

The University of Western Australia

The Halting Problem

æ  To do a proof by contradiction, we assume the opposite of what we’re
trying to prove, and show this leads to a contradiction.

æ  First, let’s assume there is an algorithm that can determine if a program
terminates for a particular set of inputs. If it does, we could put it in a
function:

Python Programming, 2/e 12
4

The University of Western Australia

The Halting Problem

æ  def terminates(program, inputData):
 # program and inputData are both strings
 # Returns true if program would halt when run
 # with inputData as its input

æ If we had a function like this, we could write the
following program:

æ  # turing.py

def terminates(program, inputData):
 # program and inputData are both strings
 # Returns true if program would halt when run
 # with inputData as its input

Python Programming, 2/e 12
5

The University of Western Australia

The Halting Problem

def main():
 # Read a program from standard input
 lines = []
 print("Type in a program (type 'done' to quit).")
 line = input("")
 while line != "done":
 lines.append(line)
 line = input("")
 testProg = "\n".join(lines)

 # If program halts on itself as input, go into
 # an inifinite loop
 if terminates(testProg, testProg):
 while True:
 pass # a pass statement does nothing

Python Programming, 2/e 12
6

The University of Western Australia

The Halting Problem

æ  The program is called “turing.py” in honor of Alan Turing, the British
mathematician who is considered to be the “father of Computer Science”.

æ  Let’s look at the program step-by-step to see what it does…

Python Programming, 2/e 12
7

The University of Western Australia

The Halting Problem

æ turing.py first reads in a program typed by
the user, using a sentinel loop.

æ The join method then concatenates the
accumulated lines together, putting a newline
(\n) character between them.

æ This creates a multi-line string representing the
program that was entered.

Python Programming, 2/e 12
8

The University of Western Australia

The Halting Problem

æ turing.py next uses this program as not only
the program to test, but also as the input to
test.

æ In other words, we’re seeing if the program you
typed in terminates when given itself as input.

æ If the input program terminates, the turing
program will go into an infinite loop.

Python Programming, 2/e 12
9

The University of Western Australia

The Halting Problem

æ  This was all just a set-up for the big question: What happens when we run
turing.py, and use turing.py as the input?

æ  Does turing.py halt when given itself as input?

Python Programming, 2/e 13
0

The University of Western Australia

The Halting Problem

æ In the terminates function, turing.py will be
evaluated to see if it halts or not.

æ We have two possible cases:
•  turing.py halts when given itself as input

– Terminates returns true
– So, turing.py goes into an infinite loop
– Therefore turing.py doesn’t halt, a contradiction

Python Programming, 2/e 13
1

The University of Western Australia

The Halting Problem

•  Turing.py does not halt
– terminates returns false
– When terminates returns false, the program quits
– When the program quits, it has halted, a

contradiction

æ The existence of the function terminates
would lead to a logical impossibility, so we can
conclude that no such function exists.

Python Programming, 2/e 13
2

The University of Western Australia

Conclusions

æ  Computer Science is more than programming!
æ  The most important computer for any computing professional is between

their ears.
æ  You should become a computer scientist!

Python Programming, 2/e 13
3

