
by Daniel Mikusa
Software Support Engineer @ Pivotal

The SysAdmin's Guide to
Python

About Me
● Daniel Mikusa

○ Blog / Website
○ Twitter / Google Plus
○ Github (Work) / Github (Personal)

● Long time Mac user
● Professional software developer
● Have used Python for the last decade
● Python helped me to build everything from

scripts, to IVR & web apps

http://mikusa.blogspot.com
http://www.mikusa.com/
http://mikusa.blogspot.com
https://twitter.com/dmikusa
https://plus.google.com/+DanielMikusa
https://twitter.com/dmikusa
https://github.com/dmikusa-pivotal
https://github.com/dmikusa
https://github.com/dmikusa-pivotal

Agenda
● Introduction
● Installing Python
● Developing with Python
● Batteries Included: the Standard Library
● Everything Else: Third Party Libraries
● Distributing Your Code

Introduction
● Goals

○ Dive into the world of Python development
○ Show common & good practices for coding
○ Show tools useful to make life easier
○ Showcase why Python is great for SysAdmins
○ Show how to package up your code

● Out of scope
○ Introduction to Python / Python the language
○ Web Development w/Python

Installing Python
● Hey, that’s easy right? Included w/the OS.
● Well…

○ What if you want the latest version?
○ What if you want a specific version?
○ What if you have two apps with different sets of libs?
○ What if you want Python 3?

● Options:
○ Use the system version
○ Install from python.org
○ Pyenv - github.com/yyuu/pyenv

https://www.python.org/downloads/
https://github.com/yyuu/pyenv

Developing with Python

Coding Styles
● Good Style is Important

○ Make code better, more readable, more maintainable
and it helps to squash bugs

● It’s easy w/Python!
○ PEP-8 Style Guide for Python Code
○ PEP-20 Zen of Python
○ flake8 Linter & automated style check

● Integrate flake8 w/your text editor or VCS
○ Git & Mecurial
○ VIM, Sublime Text, Atom & others all support it

https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0020/
https://www.python.org/dev/peps/pep-0020/
https://pypi.python.org/pypi/flake8
https://pypi.python.org/pypi/flake8
http://flake8.readthedocs.org/en/latest/vcs.html
http://flake8.readthedocs.org/en/latest/vcs.html

Text Editors & IDEs
● VIM works great (my preference)

○ Supports: snippets, syntax highlights, validation
(flake8), file browser and code completion

○ python-mode a great place to start
● SublimeText work great too (I hear)
● There are some IDE’s too: PyCharm, PyDev

& NINJA-IDE.
● No right or wrong answer, pick what works

best for you!

https://github.com/klen/python-mode
https://github.com/klen/python-mode

Virtual Environments
● Separate environments for each project
● No dependency overlap / mismatch
● Two Options:

○ virtualenv
○ virtualenvwrapper

● Short how-to guide on each
● One of the few things I install globally
● Pyenv has plugins for both
● Pick one, use it.

https://virtualenv.pypa.io/en/latest/
https://virtualenv.pypa.io/en/latest/
https://virtualenvwrapper.readthedocs.org/
https://virtualenvwrapper.readthedocs.org/
http://docs.python-guide.org/en/latest/dev/virtualenvs/
http://docs.python-guide.org/en/latest/dev/virtualenvs/

Testing Tools
● Python is not compiled, so it’s extra

important to test your code
● Standard library has support the unittest

library, great place to start
● Running tests:

○ python -m unittest <test>
○ nosetests or nosetests <file>
○ Many other options

● Integrate with text editor, VCS or run when
files change (tdaemon) to automate the
process

https://wiki.python.org/moin/PythonTestingToolsTaxonomy
https://wiki.python.org/moin/PythonTestingToolsTaxonomy
https://github.com/brunobord/tdaemon

Project Structure
● No real requirements, can be as little as a

single file or script
● Suggestion:

○ project_root
■ <module_name>/

● __init__.py, <name>.py
■ bin/
■ docs/
■ setup.py
■ tests/

● __init__.py, <name>_test.py
■ scripts/
■ README.md

Other Odds & Ends
● Source control
● Terminal
● Interactive Python Shell

○ default is just python
○ ipython & bpython are alternatives

● Sphinx for docs

http://ipython.org/
http://bpython-interpreter.org/
http://ipython.org/
http://www.sphinx-doc.org/
http://www.sphinx-doc.org/

Demo: Project Setup

Development Workflow

Naive Workflow
● Edit code, run it, use it, find problems, fix
● Strengths

○ get started quickly
○ write small or simple scripts quickly
○ helpful with prototypes, throw-away code or when

you’re trying to figure out an API
● Problems

○ small projects don’t always stay small
○ complexity increases time to find problems
○ using code may not thoroughly test all of it
○ regressions can happen

Test Driven Workflow
● Write tests, tests fail, write code to fix tests
● Strengths

○ fast iteration & feedback
○ test guarantee fitness of all code
○ tests informally document behavior of code
○ maintenance of code is easier

● Problems
○ need to write more code
○ slower to get started
○ some things are hard to test (file systems, networks)

Demo: Dev Workflow

Batteries Included: The
Standard Library

Intro
● Standard library provide much of the

capabilities of Python
● Extensive list of libraries some written in

Python & some written in C
● Integrates with the OS to provide platform

neutral APIs
● Nothing to install, it’s there out-of-the-box
● Full Docs

https://docs.python.org/2.7/library/index.html
https://docs.python.org/2.7/library/index.html

Fundamental Libraries
● Provide basic functionality. Used by tons of

scripts, libraries and applications.
○ re - regular expressions
○ datetime, calendar & time - time & date functionality
○ random - for non-secure randomness
○ itertools - helpers for making fast, efficient iterators

(ifilter, imap, izip)
○ sys - system specific functionality, specifically access

to command line args, python path & exit
○ os - operating system specific apis. Access to

environment variables, user / group info and most of
the file system access

File APIs
● These parts of the standard library allow you

to interact with files & the file system.
○ os - provides basics like open, mkdir, stat, rmdir,

remove and walk
○ os.path - everything needed for path manipulation,

including join, dirname, basename & exists
○ tempfile - create temporary files & directories
○ glob - unix style pattern matching (i.e. *.gif)
○ shutil - high level file ops like copy, move, copytree

and rmtree

Parsing APIs
● Allow you to easily parse info, strings & files

○ argparse, optparse & getopt - command line
argument parsing libraries. argparse is preferred.

○ json - parse & writes json strings & files
○ csv - read & write csv files
○ base64 - RFC 3548 encoders
○ codecs - text encoding
○ pickle, cPickle - Python object serialization
○ there’s a host of others, parsing for HTML, XML

(DOM & SAX) and email

Debugging & Profiling Code
● The old standby, print and the pprint module
● Break points and stepping through code

○ pdb - the python debugger, similar to gdb
○ pudb - an enhanced visual debugger

● Profiling Code
○ timeit - measure execution time of code
○ profile / cProfile - deterministic profiles for code

https://pypi.python.org/pypi/pudb
https://pypi.python.org/pypi/pudb

Other APIs
● Compression

○ zipfile, gzip, bz2 and tar
● Crypto

○ hashlib - secure hashes and digests
○ hmac - keyed hashing for messages

● Logging - app logging & logging config
● Subprocess - spawning subprocesses
● Signal - signal handling
● Socket - low-level socket api
● urllib / urllib2 - send HTTP requests

Everything Else: Third Party
Libraries

Improvements
Libraries that improve on parts of the standard
library.
● requests - http for humans
● wrapt - easy & correct decorators
● pytz - timezone handling
● delorean - Enhanced date & time library
● pycrypto - Cryptographic toolkit
● sh - Easy subprocess launching
● docopt & click - Processing command line

arguments

http://delorean.readthedocs.org/en/latest/
http://delorean.readthedocs.org/en/latest/
https://github.com/amoffat/sh
https://github.com/amoffat/sh
https://github.com/keleshev/docopt
http://click.pocoo.org/4/

New Stuff
Libraries that add new functionality.
● paramiki - SSH / SFTP library
● PyYaml - Yaml library for Python
● matplotlib & pygal - Graph & plotting library
● reportlab - PDF generation
● Other Libraries

https://wiki.python.org/moin/UsefulModules
https://wiki.python.org/moin/UsefulModules

Demo: Pulling it Together

Distributing Your Code

Distutils
● Standard way to package up your library or

scripts
● Great for installing libraries and command

line scripts
● Can publish to PyPi or a private package

repository
● Install

○ From source: python setup.py install
○ From repo: pip install <pkg-name>

https://pypi.python.org/pypi

py2app
● Can be used to create a MacOS app from

your Python code
● Mostly useful when developing GUIs
● Usage is straightforward, RTFM

○ pythonhosted.org/py2app/

https://xkcd.com/293/
https://pythonhosted.org/py2app/
https://pythonhosted.org/py2app/

Demo: Distutils

Summary
● Python is a great language for Sys Admins

○ installed on many systems by default
○ tons of libraries included out-of-the-box
○ great development tools for being productive
○ easy to package code for distribution & sharing

Questions

Feedback

http://j.mp/psumac2015-101

http://j.mp/psumac2015-101
http://j.mp/psumac2015-101

