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ABSTRACT

Performance and accuracy of the Continuous Trace Geometric Model
are tested by means of a satellite and station positioning experiment which
uses actual observations. The data are right ascension and declination from
three passes of PAGEOS observed with BC-4 cameras. The cameras were
located at Beltsville, Maryland; Moses Lake, Washington; and Revilla
Gigedo Is., Mexico,

The data are preprocessed to eliminate time synchronization and to
recover camera orientations and plate continuous traces. Coordinates
and relative covariance matrices of the satellite are computed assuming
Beltsville and Moses Lake stations to be perfectly located., The
position of Revilla Gigedo is evaluated by adjusting its coordinates using

a least square procedure applied to the Contimious Trace Technique.

Modifications to and extentions of the analytical development of the
Continuous Trace Technique as discussed in the Phase I Report are

presented. N

The results of the experiment show that the accuracy and practicality
of the Continuous Trace Technique is comparable with the accuracy and
practicality of other geometrical techniques employing the same data with
synchronization. Satellite and station positions are obtained with a
precision of a few parts per million which is in agreement with the precision

of the measured input data.
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SECTION 1

INTRODUCTION AND SUMMARY

INTRODUCTION

Geodetic tracking cameras are used to observe sunlight reflected from

passive satellites to obtain accurate data useful for adjusting the tracking

|

station location. Usual methods of adjustment make use of the geometric
aspects of spatial triangulation theory and require highly accurate timing
"l to recover the simultaneous observations. Simultaneity is accomplished
through the synchronization of the shutters of the cameras to a common time

reference system. As an alternative, the Continuous Trace Technique employs

S-S

a continuous observation of satellite passes with Earth fixed cameras. Thus,
continuous traces are generated on the camera plates. This technique avoids

any requirement for synchronization, and the complexity and cost of tracking

- ——

cameras are thereby reduced.

! The objective of the present study is to test the performance and accuracy

of the geometric model of the Continuous Trace Technique using actual data.

Two questions are of primary interest for testing purposes. First,
is the model capable of producing satellite and station positions from the
i geometric configurations found in practice? Second, what is the magnitude

of the actual error? Error propagation is highly dependent on the geometry

of the station/satellite system and on the number of observations. Therefore,
the use of real data is preferable to the utilization of simulated observations

¢ because (a) no hypothesis is necessary to reproduce the actual satellite

- trajectory, (b) the data are affected by the actual errors, and (c) a comparison

with other methods is not affected by peculiarities in the testing hypotheses.

To the best of our knowledge, no continuous trace observations have
been reduced to date. However, a large number of optical observations of
e passive, sun-reflecting satellites have been made with time synchronized
cameras. Among the data a.vailabl‘e, BC-4 camera observations of PAGEQOS,
made and reduced by USC&GS, are particularly suitable for testing purposes.

The data are expressed as right ascension and declination of satellite position



and an average of 200 points per plate are available. Therefore, a continuous
trace representation of the satellite plate image is derivable without

introducing bias.

Descriptions of tile data employed and of the analysis performed are
reported in Section 4. Section 5 describes the implementation of the testing
method with computer programs. The final results are presented and
discussed in Section 6. The mathematical formulation of the equations
employed in the programs and the derivation of the covariance matrix analysis
can be found in Section 7. The appendices contain mathematical details

of the analytical derivations.

SUMMARY

The methodology employed by Computer Sciences Corporation to perform

the test consisted of three steps:

1. Data associated with three events observed from three stations were
transformed to Cartesian camera plate coordinates and timing correspondence
was eliminated. Thus, we reproduced the original plate measurements of the
satellite track without time reference. The orientation of the camera at

the epoch was reduced to an Earth fixed system.

2. Plate measurements and camera orientations from two stations were
employed to compute the coordinates of some satellite positions on the
observed orbital arcs and to estimate the covariance matrices of the

coordinate errors.

3. The position of the third station was adjusted by means of a least
square procedure to obtain the best fit between plate measurements and

computed satellite positions.

Particular care was devoted to the derivation of error covariance matrix
estimates to assure the validity of the testing methodology. This derivation
was the result of an original study of error propagation theory applied to the

Continuous Trace Technique.

The results of the computations show a good agreement between

theoretical expectations and practical outputs. Satellite positions were
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obtained with an accuracy comparable to the estimated precision of
plate measurements. No degradation was observed. The actual measured
data gave the satellite coordinates with a precision of a few parts per

million.
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SECTION 2

CONCLUSIONS

Testing of the Continuous Trace Method with real data and comparison
of the results with those derived from the same data with established methods
has demonstrated the effectiveness of the method for both orbit determination

and station location.

The principal limitation occurs with the use of parallel orbital arcs
for station adjustment. This is expected from the theory since it corresponds
to an insufficient amount of information. Mathematically, parallel arcs
create systems of equations which are ill-conditioned and thus give meaning-

less answers.

The test shows that the Continuous Trace Technique is capable of
solving the station adjustment problem when the proper amount of information
is available. This conclusion has been reached from single event solutions
assuming that only one coordinate is to be corrected. The resulting precision
of the correction has an average value of about 20 meters which is in

agreement with the precision of the initial data.

Computation of satellite positions shows that the Continuous Trace
Technique will be useful for orbit determination. The coordinates of
observed orbit points have been recovered with an accuracy of about 60
meters. This error reflects the direct propagation of plate measurements

errors since no a priori constraint was available for the orbits.

The tests reported herein demonstrated that the Continuous Trace
Technique is a valuable tool for orbit determination and geodetic station
adjustment. Use of the technique should significantly reduce the cost of

satellite photogrammetry.
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SECTION 3

RECOMMENDATIONS

With the conclusion of this Phase II effort, we have shown that the:
Continuous Trace Technique (CONTRA) is both feasible and practical for
geodetic satellite data processing. The theoretical basis for CONTRA has
been analyzed (Phase I) and the geometrical aspects tested experimentally

as described in the remainder of this report (Phase II).

The experimental test employed only the geometrical information in
the satellite data. This limitation was imposed in order to avoid interference
between the problems associated with the determination of orbit parameters
and those associated with station positioning. If orbital constraints can be
included, the station location accuracy could be improved substantially.
Therefore, modification of the technique to include orbital constraints is the
logical next step in evaluating the overall accuracy and practicality of

CONTRA. A five step approach is recommended:

1, Define an orbit model suitable for use with CONTRA data which
can be related to an Earth-fixed coordinate system without

requiring a timing reference (see reference 5, pages 16-20).

2. Derive an error model which converts uncertainties in the

measured data into uncertainties in the orbital parameters.

3. Develop a statistical method to discriminate those orbit

model parameters which can be meaningfully determined.

4. Implement a testing program which provides a definitive
understanding of the overall accuracy of CONTRA for station

location and orbit determination.

5. Provide NASA with recommendations concerning future utilization
of existing camera networks. Determine the realizable benefits
associated with maintaining and operating inexpensive camera

stations throughout the world.
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SECTION 4

J DESCRIPTION OF TESTING METHODOLOGY

In this section we review the fundamental concepts of the Continuous
Trace Technique, and we summarize the theory of error propagation as it is
g applied to the Continuous Trace case. Further, we describe the original

input data used to test the Technique.

¥
) 4.1 REVIEW OF BASIC CONCEPTS

During Phase I of the Continuous Trace Technique analysis, Computer

it Bt

Sciences Corporation investigated the theoretical possibility of deriving
3 geodetic information from continuous trace observations of passive satellites.

! The theory is based on the following hypotheses:

o 1. At least three Earth fixed cameras observe overlapping arcs of

a satellite pass.

2. The orientation of each camera in an Earth fixed system has

been established by independent means to astronomical accuracy.

3, The coordinates of at least two stations are known to geodetic

accuracy.

To find the position of the satellite, we employ the observations made

)
i
b
id

from the two known stations. A homological correspondence is established
between points on the two associated traces.* Once the homology has been
established, the satellite position is obtained by means of an elementary

triangulation procedure.

In practice, we represent the trace by tabularizing the trace point

coordinates measured from the plate. We proceed as follows (Fig 1):

The homological correspondence between points on the two traces
does not exist if the stations and the observed orbital arc lie in the same
plane. In this case, each point on one trace corresponds to a point on the other
trace and the Continuous Trace Technique cannot be applied. This
difficulty can be avoided by careful observational planning.
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Figure 1 Orbit Points Determination
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1. DPoint Ql is taken from the table corresponding to trace-1. Its

coordinates are transformed to the geocentric reference system.
2. The two stations S1 and S2 determine a plane through Ql‘

3. The plane intersects the trace-2 at a point QZ' This point is

the homolog of Ql’

4. The two rays S1 Ql and SZQZ then determine the satellite position
P.

In theory, the third station coordinates are completely determined if
three positions of the satellite are known, In fact, the continuous trace
obtained from a station S3 defines a cone that has its vertex in the third
station unknown position. This cone is analytically represented by an
equation that relates the coordinates of the station, say XS’ YS’ ZS, and

the coordinates of the observed satellite, say X, Y, Z.

F(XS,Y Zo, X,Y,2)=0

S Ts’
Since we know the coordinates of three satellite positions, we have a system

of three equations which can be solved for the unknown Xq, Y, Zg.

In practice, we can obtain more than three satellite positions from
the same observed arc. Therefore, we can employ the redundancy of the
system of equations to adjust the third station using a least square procedure.
However, if the orbital arc is very short we face the problem of an ill-
conditioned system because the arc is almost a straight line and the cone
becomes indistinguishable from a plane. In this case, only that component
of the adjustment normal to the plane can be reliably evaluated. At least
three non-parallel arcs are necessary for a complete adjustment of the

unknown stations.

4.2 MEASUREMENT ERROR PROPAGATION

There are various errors associated with the measurement of the
coordinates from the photographic plate such as those due to shimmer effect,
comparator irregularities, and human error. However, we consider only

the random residual of these errors. In practice, this residual has an rms
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amplitude of a few parts per million.

To determine a satellite position, we need two points - one from each of
two plates. There are, of course, four linear components of the error, one for
each trace coordinate. However, some of these components do not affect
the accuracy of the satellite position determination. The number of error
components which must be considered depends on the geometric character-

istics of the tracking system as explained in the next paragraph.

First, let us consider the conventional case of simultaneous observations,
In this case, we know a priori which pair of images corresponds to the same
satellite position. The satellite is at the intersection of two straight lines.
The system is over-determined because we have four equations with three
unknown coordinates. The redundancy can be employed to reduce the four
linear components of error to three. It follows that measurement errors
affect all three coordinates of the satellite position and the resulting
covariance matrix has rank three. On the other hand, the geometry of
the Continuous Trace Technique is very different from the conventional case.
The satellite coordinates are evaluated via the procedure delineated in
Section 4.1 by determining the homologous points. To determine them, we
establish an arbitrary plane through the two stations. Since the placement
of the plane is arbitrary, measurement errors normal to the plane are of

no consequence. Therefore, only two coordinates of the satellite position

are affected by the measurement errors - namely, those which position the
satellite within the plane. However, when we use the Continuous Trace Technique
we consider the trace as a whole and we disregard the particular identity of
any specific point, In other words, if we interchange the positions of two
nearby points on the trace, the point coordinates will vary but we cannot
recognize any variation in the trace as a whole. Therefore, the error com-
ponent which interchanges two nearby points does not affect the trace, and
we should take into account only that component which is normal to the trace.
It follows that only two coordinates of satellite position are affected by
measurement errors and that only two of the four measurement error com-
ponents have some effects. The corresponding covariance matrix will have
rank two. The rigorous computation of this covariance matrix is offered in

Section 7. 3.
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4,3 DATA EMPLOYED IN THE TESTING

An experimental test of the performance of the Continuous Trace
“y Technique requires input data coming from real observations of actual
b gsatellite orbits. However, to our knowledge, no optical observations in

a continuous mode have been reduced to date. Therefore, we decided to

employ the results of plate reductions made by USC&GS from observations

b

of PAGEQOS passes with BC-4 ballistic cameras located in a worldwide

| network of stations.

Advantages of employing these data are:

[N

1. ZEach plate contains an average of 200-400 satellite images spaced

every 0.8 sec in time. Therefore, it is feasible to consider these images as

belonging to a continuous track of the satellite.

it

2. Plate measurements have been reduced to right ascension and

declination of station-satellite directions with a highly accurate procedure
that takes into account astronomic refraction, lens and scale distortions,

and plate inclination.

3. The same data have been employed by independent investigators
i in station positioning problems whose result can be employed for comparison

purposes. (Ref 1 & 4)

[ 4. Among the observed events, three events are observed from three
stations. This is the minimum of observations necessary to perform the

station adjustment.

A disadvantage of using these data is that the plate reduction procedure
: introduces a statistical correlation among the data of the same plate. However,
we remark that: 1) the final solution is still unbiased even if the correlation

is neglected, 2) the data we use are plate coordinates which are less corre-

et

e

lated than astronomical coordinates, and 3) we employ well separated
points of the trace. Therefore, we assume that the correlation among the

measured data points is negligible.

10
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The satellite data employed are the observations of the events 4182,
. 4236, and 4267 from stations located at Beltsville, Maryland; Moses Lake,
Washington; and Revilla Gigedo Is., Mexico.

_—
i
o5
4

We assume that we know the positions of Beltsville, Maryland and

Moses Lake, Washington exactly. These two stations are used as baseline

to evaluate the satellite positions. - The third station, Revilla Gigedo Is.,
Mexico is considered unknown in the testing, Therefore, we do not

% constrain the adjusted values of its coordinates to any preassumed value.
However, we use very good estimates of coordinate starting values in order
to avoid the necessity of an iterative procedure in the least square adjustment.
Using a good estimate does not harm the test validity because we are mainly
1y interested in the degree to which the covariance matrix of the adjustment

5 reflects the global effect of error propagation.

The station coordinates which were used were obtained from the C-7

i

Datum (Ref 4) and are given in Table 1.

? TABLE 1

}

1 X (m) Y (m) Z (m)
. Beltsville, Md. 1130773 4 -4830833 3994706
. Moses Lake, Wash. -2127831 -3785842 4656029
i Revilla Gigedo Is., Mex. -2160983 -5642717 2035347

'
3
H
1
4
§

11
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SECTION 5

DESCRIPTION OF THE COMPUTER PROGRAMS

The program package employed to test the Continuous Trace Technique

reflects the various aspects of the testing methodology described in Section 4.
The operations necessary to perform the test are:

1. Extract the satellite event data from the National Space Science

Data Center magnetic tape.

2. Recover plate coordinates of the satellite images and camera

orientations.

3. Rotate the plates axes to be parallel to the trace, and evaluate

the interpolation polynomials used in computing the derivatives.

4, Find the homological correspondence between the two traces from the
known stations for the same event, determine satellite position and evaluate

the covariance matrix.

5. Perform the least square adjustment of the third station.

A block diagram that shows the data flow among the programs is given
in Fig. 2.

The programs present no particular difficulty from a data processing
point of view. Therefore, we present only a brief summary of the operations
in the following sections. In Section 7, we describe the mathematical formulas

involved.

5.1 DATA EXTRACTION

This program extracts the observational data from the NSSDC Tape and
loads a disk file after checking for sequence, format, and completeness.
The data stored on the disk are: 1) event and station identifiers, 2) event

date, and 3) time, right ascension and declination of each trace point,

12



{
i

i
§
ik

NSSCD
Tape

P/

Extract
Data

P2/

Recover
Traces and
Orientation

P/
Plate axes
Rotations and
Orthogonal
Polynomials

S
)

P

%,

WA,

Station

]

Adustment

Mexico

Revilla Gigedo s.

| e oy

Beltsville and
Moses Lake

P4/

Satellite
Position and
Convariance

Matrix

—— Test Results

Figure 2 Program Data Flow

13



o

o

— .
H i S, éf\ !
LS N A

5.2 CONTINUQUS TRACE AND ORIENTATION
This program performs the following operations:

1, Corrects the data for phase angle, parallactic refraction and

planetary aberration.

2., Transforms right ascension and declination system to Greenwich

hour angle and declination system.

3. Ewvaluates the direction cosines of the rays which project the

satellite positions onto the plate.

4, [Evaluates the matrix orientation of the established camera system.
This system is arbitrarily chosen so that the optical axis is pointing toward

the approximate center of the observed arc and is normal to the plate.

5. Calculates the intersections of the projecting rays with the camera

plate and computes the image coordinates.

The output data are stored in a disk file. These data for each plate
are: 1) Camera Orientation Matrix, and 2) (x, y) coordinates of each trace

point.

The time information is employed by this program to convert from the
inertial to an Earth fixed system of reference. Time is not employed in
subsequent computations. We remark that time inaccuracies are equivalent
to an error along the trace and do not effect the trace accuracy as discussed

in Section 4. 2.

5.3 PLATE AXES ROTATION AND ORTHOGONAL POLYNOMIAL FITTING

The axes of each camera reference system are rotated around the
optical axis, z, so that the x axis is parallel to a linear average of the trace.
In this way, the straight line component of the continuous trace is reduced to

a constant and the possible curvature is easily discriminated.

The coordinates of each trace point are correspondingly transformed.

These points are the sampled representation of the continuous trace.

A polynomial is fitted through the points using the method of

orthogonal polynomials (Ref 2). This method yields the automatic choice
of the best polynomial degree. The fitting is employed to evaluate the

14
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direction cosines of tangents to the trace. These direction cosines are

necessary to evaluate the covariance matrix.

5.4 SATELLITE POSITION AND COVARIANCE MATRIX

For each event, ten satellite positions are evaluated. Trace points
are randomly taken from the firsttrace (Beltsville, Maryland) in such a

way that the ten points are approximately equispaced.

The homologous point on the second trace (Moses Lake, Washington)
is evaluated with respect to each selected point on the first trace. Since
the second trace is represented with a large number of sampled points,
we employ a simple linear interpolation to solve the homology equation.
We avoid using the polynomial fitting for interpolation purposes in order
to maintain the statistical independence among the evaluated satellite

positions.

The covariance matrix corresponding to each satellite position is
evaluated in a rigorous way, taking into account the points discussed in

Section 4. 2.

5.5 STATION ADJUSTMENT

The coordinates of the third station (Revilla Gigedo Is., Mexico) are

adjusted in this program by means of a rigorous least square procedure.

The procedure simultaneously corrects satellite, trace, and third

station coordinates by minimizing the weighted squared values of the satellite
and trace coordinate corrections, The third station coordinates are considered
as unconstrained parameters because: 1) there is no covariance matrix
available for the third station, and 2) it would be difficult to isolate the

effects of the a priori constraints on the final results of the adjustment.

The equations employed in the adjustment assure that the differences
between measured and computed values of the trace coordinates are zero
after the adjustment. We do not employ any iteration to solve the equations

since the starting values of the third station coordinates are very accurate

15
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and, therefore, the evaluated corrections are known to be within the
linearity limits. In fact, no correction resulted to be larger than 40 m

which corresponds to 10 pp million of the station coordinates.

The principal difficulty in the adjustment stems from the ill-conditioned
matrix of the station coordinates in their normal system. The traces are
almost parallel to each other. An approximate method for checking the
matrix condition is employed. For a severely ill-conditioned matrix,
only the station coordinates that appear to be meaningful are adjusted.
Although we do not claim to have adjusted the station coordinates to their

best values, the results are valid for testing purposes.

16
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SECTION 6

DISCUSSION OF THE RESULTS

Processing real camera data provided significant results for the following

three areas:

1. Values of the coordinates for satellite positions and the corresponding

covariance matrices,

2. Corrections to the third station coordinates and the corresponding

covariance matrix.

3. Estimates of the standard deviations and the degree of the
polynomials obtained from the trace fitting procedure. These estimates are

employed to evaluate the observational data.

6.1 TRACE CHARACTERISTICS <

Estimates of the standard deviation, ¢, and the degree of the fitting

polynomial, Pd, associated with each event and station are given in Table 2.

TABLE 2
Event 4182 4235 4267
T 106 Pd o 106 Pd o 106 Pd
Station
6002 9.32 2 5.81 3 10, 46
6003 7.12 2 12. 86 2 6.44
6038 29.3 2 . 9. 40 2 7.85

The standard deviation estimates are normalized to a focal length

value of 1. The average value of the estimates is

o =8.23 10'6

this is equivalent to a plate measurement error of

R O"P =3,7 [72¢2}
for a 450 mm focal length camera.

17



This value is in close agreement with values found in the BC-4 camera

literature.

The best fitting curve is second degree, a parabola which represents
the image of a short arc of a Keplerian orbit. The two third degree cases
correspond to the longest arcs observed and probably represent earth
rotation effects. However, the coefficients of both second and third degree

have very small values since the average curvature of the trace is less
than 0. 1%.

6.2 SATELLITE POSITIONS

The printouts of the program that computes the satellite position
coordinates and correlation matrices are shown in Figures 3, 4, and 5

for the three events analyzed.

The data for each computed point is contained on four lines of printout
with the event number and point and line indices being listed at the end of

each line. In each group of four lines, the data is presented as follows:

Line 1: Identifiers

Line 2: ~Geocentric position coordinates X, Y, Z (m)

Line 3: Covariance matrix diagonal terms CV“, CVZZ’ CV33 (mz)
Line 4: Covariance matrix off-diagonal terms CV,,, CV13, CV,s (mz)

The most important data are the correlation matrix values. Some
of the matrices in the figures are highly correlated having factors as great
as 0.9 between the Y and Z coordinates. This is due to the error propagation

characteristics of the Continuous Trace Technique discussed in Section 4. 2.

The squared estimates of the standard deviations of the coordinates
are represented by the diagonal elements of the matrix. Average rms errors

in position coordinates are:

Event 4182 g=51m
Event 4236 =88 m
Event 4267 =44 m

These values agree with the results of the error estimates obtained by

fitting polynomials to plate measurements. They correspond to an average

18
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of 8 parts per million of the satellite slant range. (Slant range between

- PAGEQS and the two stations analyzed was approximately 6500 km. )

6.3 STATION ADJUSTMENT

The principal difficulty encountered in adjusting the coordinates of
the third station was caused by the ill-conditioned system of equations. This
ill-conditioning was caused by: 1) each trace being almost a straight line,
thus limiting the observer to adjusting only one coordinate of the station
with each event, and 2) the three observed arcs of the satellite being almost

parallel.

The results of adjusting the station coordinates with a single trace
are presented in Figure 6. The first three lines for each event correspond

to the normal equation®™ Ng AS = Eq where:
Line 1 contains the known terms ESl’ ESZ’ ES3

Line 2 contains the diagonal entries of the normal matrix N

NSl 1’ NSZZ’ NS33

S

S12’ NSl3’ NSZ3

The second group of three lines for each event correspond to the inverse

Line 3 contains the off-diagonal terms N

solution of the equation above; that is,

g - cv.  E

AS = (Ng) s s Eg

where Line 1 contains ASI, /.\SZ, AS3, in meters
Line 2 contains CVSll' CVSZZ’ CVS33’ in squared meters
Line 3 contains CVSIZ’ CVSI3’ CVSZ3’ in squared meters

All data are expressed with reference to the camera system corresponding

to the event.

To avoid serious ill-conditioning effects, we solved only for the station

coordinate along the normal to the trace. The undetermined values were left

* Refer to Section 7.6 for a complete development of the normal equation.
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Figure 6 Single Event Station Adjustment Results
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equal to zero. Although the normal matrix for event 4236 appeared to be
better conditioned, a solution for the component along the trace obtained

a meaningless result.

Since we employed very reliable station coordinates as starting values

in the adjustment, we should expect very small values for the resulting .

corrections. In fact, the corrections in the direction of the narmal to the
trace range from -40.8 m to 13.1 m with estimated errors ranging from
’ 52.9 m (r.m.s.) to 17.5 m (r.m.s.) respectively., These values are in
agreement with the observation precisions (Section 6.1). However, the
j value of the along trace correction for event 4236 is very large which
shows the ill-conditioning effects. In fact, we obtained anomalous results:

-3039.8 m for the correction, and 3750 m (r.m.s.) for the estimated error.

I

The printouts present also the degrees of freedom and estimates of
the standard deviation (SIG) of measurements having unit weight. The values
’ of SIG are nearly 1 because we employed the inverse of the covariance matrices
; as weighting matrices. The higher value of SIG for event 4236 is a further
indication that we cannot solve for two coordinates. Solving for only one
coordinate rather than two would reduce value of SIG for event 4236 from

2.7 to 2, 3.

PR

] A completely different pattern is shown by the output of the global
adjustment. In this case, the degrading effect of the ill-conditioned normal
; matrix on the computations could not be avoided, because we did not have
a-priori information about the significance of individual coordinates. The
results are presented in Figure 7 with the same reading key as for Figure 6.

i The principal characteristics of this adjustment are the following:

1. The vector of known terms has an amplitude comparable to that

defined for the case of a single event adjustment.
e 2. The normal matrix is highly correlated.

3. The resulting correction to the coordinates and the corresponding

estimated errors are enormous.
4, The standard deviation of the unit weight is much less than 1.

These characteristics confirm that we cannot rely upon the global

adjustment results for testing purposes.
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Figure 7 Global Adjustment Results
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SECTION 7

MATHEMATICAL DERIVATIONS

This section develops the analytical expressions of the equations
employed in implementing the programs.

The equations are, in general, a straightforward derivation of sphe'rical
astronomy, projective geometry and Continuous Trace theory as derived in
Phase I report. In this Phase II report, particular emphasis is given to
analysis and evaluation of satellite position covariance matrices (Section 7. 5)
and of station coordinates’' adjustment (Section 7.6 and 7. 7), work which was

not treated in detail in Phase I,

7.1 TRACE AND CAMERA ORIENTATION RECOVERY

The first step in the analysis of the Continuous Trace Method consists

in recovering the traces on the BC-4 camera plates corresponding to each

- satellite observation and determining the camera orientation in an Earth fixed

reference system.

The data available are right ascention, «, declination, 8, and Greenwich
mean time, t(GMT), of the satellite observations provided from the plate
reduction procedure by USC&GS [Ref. 3].

Correction to the data should be made for parallactic refraction,
aberration, travel time and phase. We employed the values obtained from the

results of [Ref. 4]. No correction for nutation was considered [ Ref. 5],

The Earth fixed reference system is the Geocentric mean equatorial

system (X, Y, Z)

where X is in the Greenwich meridian and in the mean

equatorial plane

Y is in the mean equatorial plane and eastward

Z is the mean polar axis
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In this system the direction from the station to the satellite is expressed
by means of spherical longitude ¥ and latitude . Neglecting the effects of

precession, nutation and acceleration of the Earth center gives [Ref. 6J:
1) the spherical longitude
P =a - GSTO - 1.0027379t (sec)

where GSTO is the Greenwich mean time at Oh UT and
1.0027379 converts the UT to a mean sidereal

interval,
and 2) the spherical latitude
=95
Therefore, the unit vector of the direction from station to satellite has

components Vl’ VZ’ V3:

V. = cos ® cos {

1
V, =cos o sin
V3 =sin ¢

in the average terrestrial system.

The actual orientations of the cameras are not contained in the data
available to us. Therefore, it is assumed that each camera is generally
aimed toward a point near the middle of the observed satellite orbital arc.

This point is somehow arbitrarily chosen since its position is immaterial for

generating traces.

We indicate with o, and 50 the right ascension and declination of the
camera axis and with zbo and ®, the corresponding spherical longitude and

latitude. The orientation of the camera system is therefore assumed to be
z the optical axis
vy normal to the optical axis in the mean equatorial plane eastward

x right-handed complement axis
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From this definition the unit vectors of the camera axes are:

-
h

; = sing cos zbo

x, = sin g sin zbo
Xy =~ CO8 @

Y = - sin {bo

y, = cos d)o

y3 =0

z = cos @ cos zbo
z, = cos @ sin zbo
zg = sin ®,

in the spherical longitude and latitude Earth fixed system.

The system of unit vectors generates the orthogonal matrix that
transforms the coordinates of a general vector from the camera system to
the Earth spherical system.

This transformation can be expressed by the matrix relationship

VI A1 =\ [
Va Il %272 %2 )| 2

\' v

3 X3 Y3 %3 3

where Vi Yy and v, are the components in the camera system. In matrix

form we have

vVv="T v

CG

To recover the coordinates of the trace points on the plate, we assume
that the camera system has its origin in the optical center of projection and

that the plate plane is normal to the z axis and has equations

z = f

" where f is the camera focal length. A trace point is the intercept of the plate

plane with a ray from the camera optical center to the satellite. The
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coordinates (x, y, z) of the trace points are easily obtained in the camera

system by means of:
? 1) evaluating the components of the unit vector corresponding to a ray
L direction in the camera system.

. - 1
:;Z;:;E;gg v T C GV

2) evaluating the trace coordinates

| v
x=f —\-7-}-
3
} .
y =1 ;;2*
/ 3
1
z =1
j A certain number of randomly chosen points have been generated for

each trace. The coordinates of these points and the matrices of the camera
systems are the starting data for the numerical analysis of the Continuous

Trace Method.

- 7.2 GENERATION OF TRACE RELATED CAMERA AXES

The camera axes defined in Section 7.1 give a coordinate system which
is referenced to the photographic plate by means of the axes x and y. These
b axes have no relation to the trace of the satellite orbit arc because we chose

A them arbitrarily.

d However, the trace is better represented by means of two axes that
’ are related to the global pattern of the trace. The trace is, in general, almost
rectilinear and thus wé choose one of the axes, £, to represent the linearity
1 of the shape and the other, 7, to account for the deviations from linearity
(Fig. 8).

. We obtain two advantages by using the £, 7 plate system: 1) the

numerical computations are more easily programmed, and 2) the deviations

! from linearity are easily identified and recognized in the final least square
adjustment where they have a fundamental effect on the ill-condition of the

normal matrix of the station correction system.
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To generate the £, m axes, we consider the trace points as mass points.

Thereafter, we choose £, 7 to be parallel respectively to the minimum and

maximum principal axes of inertia of the mass points. In this way, the
coordinates 7 of the trace contains no component of the linear part. In fact,
the coordinate 1 would have the randomly distributed values of the measure-
ment errors if the true trace were exactly a straight line. The analytical,

details of the transformation are in'Appendix A.

The result of the transformation is a rotation by an angle 8 around the

z axis of the camera and thus it is

3 cos B sin B 0\ /x
v={n]=|-sinBcosBO y |= Tgv
z 0 0 1 z

The new matrix T that relates the new camera axes to the system is

RG
obtained from TCG (previously computed, Section 7. 1) and TB by means of the
relations
v = Tév
= TCGU
= ! =
v TCG TBU TRGU
= 1
and, thus TRG TCG TB

The covariance matrix of the measurements will accordingly transform

as

=T, C T!

Ce.m " TB Cx, v B

7.3 REPRESENTATION OF THE CONTINUOUS TRACE

The traces of the observed satellite orbital arcs consist of a set of
points which sample the continuous trace on the photographic plate. However,
we need the local tangent of the trace to compute the effects that a variation of

the trace itself has on the adjustment of station coordinates. The tangent is
evaluated by means of derivatives and this is accomplished by representing

the trace with a continuous line.
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In general a two dimension continuous line is represented implicitly

with an equation relating the coordinates of the points on the line:

F(x,y) =0

In the cases at hand, the trace is almost a straight line in the (€, M) coordinates
| (Section 7.2) and, the values of £ are never greater than the focal length, f,
(actually we have -0.15 f < £ < +0.15 f). Therefore, it is possible to neglect

every contribution from powers of M higher than one and from products of 7

i)

by powers of £ and to represent the trace with 1) as an explicit function of £.

Expanding this function in a power series of £ results in a polynomial

[ S

representation:

1 ] ,
! n—ao+a1€+a2€, +...

The coefficients of the polynomial are computed by means of a least
square fitting through the points of the trace in the (§, 7) coordinates by
means of the method of orthogonal polynomials [Ref. 2]. This method retains

! only those terms of the series that are significant and minimizes the error
resulting from the combination of series truncation and of measurement

random noise. Some details are in Appendix B.

The polynomial fittings will furnish us with an estimate of the standard
deviation of the measurement. However, the polynomial representation is
not employed to evaluate satellite positions and station adjustment in order to

maintain the statistical independence of the trace points.

7.4 SATELLITE POSITION EVALUATION
ﬁ This section deals with the problem of finding the satellite positions
corresponding to the traces obtained at two known stations. Satellite positions

. are necessary to establish the corrections of the third station coordinates,

e

and they are also used in independent investigations such as orbit determination
and geopotential analysis. Therefore, the problem is considered as a separate

; aspect of the Continuous Trace Technique.
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We start from the hypothesis that we know:

1) the position of two stations S1 and S2 which we assume coincident

with the optical centers of the corresponding cameras,

2) the matrices T, and T2 that relate the camera axes of each station

1
to the Geocentric System, and

3) the focal lengths fl and f2 of each camera, and the relationships
{n, E}i;i = 1,2, among the plate plane coordinates of the points of

each trace.

Positions of the satellite on the observed orbital arc are obtained in two
steps. The first step is the identification of homologous points Q1 and QZ on
the two traces. Homologous points are those points on each trace that
correspond to the same satellite position. The second step is the evaluation
of the coordinates of a satellite position corresponding to two homologous

points.

Homologous points are derived from a one-to-one correspondence
between the two traces. We consider any plane in the family of planes through
51

[Figure 9). The plane will in general intersect each photographic trace at a

and SZ’ and we assume that the orbital arc intersects this plane at B

point, say Ql and QZ respectively for S1 and SZ' Since the points Ql and QZ
are on the same plane through Sl’ S2 and B, it follows that Ql and QZ are the

images of B. Therefore, Ql and Q2 are homologous points.

To identify homologous points in practice, we choose any point Ql on
the first trace and we consider the plane through Sl’ SZ and Ql' The inter-
section between the plane Sl’ SZ’ Ql and the second trace is the homologous
Q, of Ql'

The point QZ is obtained by means of the homology equation, that in

vectorial notation has the form

(SlQl XSISZ) ©S,Q, =0
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The position B of the satellite is obtained directly by means of
triangulation in the plane through Sl’ SZ’ Ql and QZ' It is the intersection of
the two straight lines through S1 and Q1 and through SZ and Q2 [Figure 10]. In

vectorial notation we have

B =S1 +CB SlQl

where the coefficient CB is:
D sin Y,

C. = i
B — y
|s79| Sin 7q

Details for the solution of the homology equation are reported in

Appendix C.

The Continuous Trace Technique fails if the homology equation
vanishes or is unsolvable. The equation vanishes if all points of the two

traces lie on the same plane through S1 and SZ' This is the case when the

observed orbital arc is entirely contained in a plane through S1 and SZ' The
equation is unsolvable if no homology exists between the two traces. This

occurs if the two stations observe nonoverlapping portions of the same orbit.

7.5 MEASUREMENT ERRORS AND SATELLITE POSITION COVARIANCE
MATRIX
The covariance matrix of satellite position is the statistical representa-
tion of the random errors in the coordinates of the satellite. It is defined as
the statistical average of the product of the random error vector and its

transponse. In symbols
CV =<3B + 3B'>

These random errors in the satellite coordinates are due to the errors
in measuring the coordinates of the traces on the plates. In order to derive
the covariance matrix of satellite position, we assume that the covariance
matrix of each plate measurement is known. In order to simplify the

computations, we further assume: 1) that the measurement errors have a

35



[—

[

|
.

S

Figure 10 Plane Triangulation
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H ‘zero average and are statistically independent, and 2) that the standard
: deviation, 02, is a constant, independent of the direction, for each plate.

y Therefore, the covariance matrix for every point of a plate is

10
2

in the camera reference system.

To evaluate CV we should compute the error 3B as a function of the
measurement errors. This is accomplished by differentiating the expression
3 for B obtained in Section 7.4
B = S1 + CB SIQI

To obtain B we follow four steps:

[Te————

1) Arbitrarily establish a plane through Sl and SZ'

2) Find the homologous points Ql and QZ on the two traces.

3) Ewvaluate the lengths of the two vectors SIQI and SZQZ and the

: angles Y1 and Y, between these vectors and the vector SISZ'
4) Compute the coordinates of B.

The variables affected by measurement errors are the lengths and
angles evaluated in step 3. These variables affect the position of B in the
plane through S1 and SZ’ Therefore, the error 3B is entirely in this plane
and has no component along the normal to the plane. Actually, the two angles
Y1 and Y, are the only independent variables of the triangulation, and 3B can be

completely defined in terms of the errors 571 and B‘yz.
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The analytical details and the relationship between angle errors and
measurement errors are described in Appendix D. The resulting covariance
matrix of the satellite position can be represented by

H
2 M. C.M.)

_ .2 2 !
CV =a (b1 I\/[1C1M1+b2 2CoM,

where a, bl’ b2 are coefficients
1\/11 and I\/I2 are two matrices

The definition of these quantities is presented in Appendix D.

The matrices C1 and C2 represent the covariance matrices of measure-
ments errors in the two plates relative to the continuous traces. The

derivation of these matrices deserves a particular discussion.

The coordinates £, m of a point on a photographic plate are affected by
measurements error df, d7M that we assumed to be statistically independent with a
constant standard deviation. This is also true if we consider a particular
point of the trace. However, we do not use the points of a continuous trace
as if they have an individual identity; we use the trace as a whole. In other
words, if we let every point of the trace slide along the trace itself, we
change the coordinates of each point of the trace but the trace as a whole is
completely unaffected. Therefore, we can disregard those measurement

errors that do not affect the trace considered as a continuous curve.

To state this observation analytically, let us consider point p on the
trace and assume that measurement errors have only first order effects.
Construct two axes t and n which are tangent and normal to the trace at
point p (see Figure 11). An error in measuring the coordinates of p has
components dn normal to and dt along the trace. The component 3t does not

affect the trace and should be deleted. Thus in the local axes t, n, the covariance

matrix for each point of the trace is

0\ (023n0) 000
<| an >=¢2l010
0 000
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Propagation of Plate Error to the Trace
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C=0

Transformation to plate axes £, 7

&\ - 1 1 -0\ /t

e e

n \/1+n'2 nt 1/\n

gives the covariance matrix

2 e -\ [t
- (v}
C=——s
1+ \n 1 n
where n' =a%17(€)

is the derivative of the function n = n(£) which represents the trace.

In summary, the analysis of the errors in the satellite position shows

that:

1) Satellite position error has only two components different from

zero, and

2) One of the components of each plate measurement error has no effect.

7.6 LEAST SQUARE ADJUSTMENT OF STATION COORDINATES

Station coordinates are adjusted by means of a least square fitting
between the measured trace relative to the station and the trace computed
from the satellite positions. We assume that the orientation of the camera
is known along with the coordinates of the trace points in the camera system.

Furthermore, we assume that the station coordinates are accurately known

a priori.
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; Let us consider N positions of the satellite on the observed orbital arc,
say Pl’ ses, PN. In order to simplify the analytical expressions, we will

express station and satellite positions in the camera system. In this system,

a satellite point P will have coordinates

P=ly
4 z
§
the station will have coordinates
o
x
_‘; s
S = Ve
1 x

d 5

and a point on the plate will have coordinates

E f
The true values of these coordinates should satisfy the constraints

N that: 1) the points S, p, and P lie on a straight line, and 2) the point p lies

on the trace. Therefore, we have the straight line equations

G (S, P, P)=f(Y‘YS)-"7(Z-ZS)=O

(x - x)

£=f(V-Vs)

41



ot d

b i

N

and the trace equation

n = n(§)

The true values of the coordinates are given by the approximate values

plus a correction

P=P +AP
(o]

S =S _+AS
[¢]

P =p, TA4p

where index o refers to the approximate values.

By means of least square method, we compute AP, AS, and Ap such

that the variance

N N
2 _ ! : 1
Ve = El AP,w AP, + El ApLVAp; +AS wghS

is a minimum, with the linearized constraints

= ! ! ! = i=
G (S, Pi, Pi.) GO+GPAP1+GSAS +GpAPi 0 i=1,...,N

We employ Lagrange multipliers, )\i , to solve the problem of

minimization. Thus, we have the system of linear equations

il

vviAP.1 + GP)\i 0

v,8p, +G.A =0/ i=1,...,N

pi
N
WS + 12=:1 Ggh; = 0

1
o
e

S

1 ! 1 =
(GPAP.1+GpAp.l+G AS +G_ i=1,....N

In these equations GP, Gp, C’S indicate the vectors of partial
derivatives of the function G(S, P, p) with respect to the coordinates of P, p,
and S respectively. The matrices Wi Vi Wg are the weighting matrices of

the corrections AP, Ap and AS respectively.
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C=0

Since we are interested in determining station positions, we solve the
% system for the unknown AS. The weighting matrices are the inverses of
the covariance matrices of the errors of the corresponding quantities.

Therefore,

APi

- CViGP)\i

=
o
i

= - C.G A,
ipi
g and
1
A= (G, + GéAS]
1
The coefficient C)\i is given by
1 - 1
C)\.1 GPCViGp + GpC.le

Substitution of the expression of )‘i in the equation for AS gives

N
1
3 1 .
; [ + }: c GSGS] AS = - 1};1 = G,Gg

Ai Ai

o This is the normal equation of AS

3 NSAS = -ES
%

N . '
) where NS = Wq + Z G GSGS
j i=1 T\

. N 1
i = _—_
Eg 2:4 c,; JoUs

If the normal equation can be solved, we have the corrections to the

station coordinates. The covariance matrix of the station coordinates is

£ given by

-1

2
CVg =0 Ng
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where 002 is the standard deviation of the unit weight observation

ch _ V2
- o N-3
A
b and N @ 2

2 o
ve =) - AS'N.AS

~ Cy. S

i=1 TAi
oy The number of degrees of freedom of the adjustment is clearly N-3.

The results are extended to the observations of n passes if we add, term
by term, the equations relative to each pass. However, we should express the
| adjustment AS to the same system of coordinates by means of the camera
orientation matrices Tj’ j=1,...n. Therefore, we obtain the compound

system of equations

NSTAS = - EST

et

n
— 1
Ngr = jz::1 T NSJ.Tj

ERE——

!
§
i
A

n
Egp = J.E::l TiEg;

Details of the computations of the derivatives are reported in

Appendix E.

The normal equation relative to a single pass is singular if the trace is
a straight line. In this case,only one component of the correction AS can be

evaluated, namely the component along the 7 axes.

In practice, the trace is almost a straight line and the normal equation

can be ill-conditioned. To solve the normal equation, we employ a test that

detects the ill-conditioned cases. Thereafter, we solve the equation only for

the meaningful correction components.
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7.7 CASE OF A STRAIGHT LINE TRACE

We can easily discuss the case where the trace is a straight line

because the plate axes are parallel to the trace [Section 7.2].
The trace equation is

; n=n

(o]

where 'n0 is a constant, and the trace derivative ' = 0.

Let us assume that no reliable information about AS is known. There-

! fore, Wg = 0 and the normal matrix is singular. In fact [Appendix E]
j
N
ey N. = -—-1— G G'
| S G S8
- and
i 0 0
G‘ = 2
‘ GS g = 0o f- - fno
}
2
\ 0 'fno My
?.
b when n' = 0.

3 By means of a rotation around the § axes we can obtain n, = 0. The

000\ N o\ N ¢
1 _ o)
<010>ZC AS—f(l)glc

000/ i=1 7)i 0 Ai

system thus becomes

o v

N It is apparent that we have sufficient information to adjust only one

coordinate of AS, namely the coordinate along the N axes. The correction is

Q

™z
@)
o}

(8S)

-
I
et
>
[

3
Hslp—l

M=
Ol”
o
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The standard deviation for the unique component is

2
2 _ T
Oasn TN
£ =
i=1 “Ai

where the standard deviation of the unit weight observation is

Son w2 - (2 (X ))
on  N-1 io1 CM i=1 CM i=1 CM

since we have in this case N-1 degrees of freedom.

All the coordinates of AS can be adjusted only if we have at least three

observed passes which are not parallel to a common plane.
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APPENDIX A

TRANSFORMATION TO PRINCIPAL AXES OF INERTIA

Measurement of a photographic plate containing a continuous trace

results in a set of n points Pi’ each of which can be expressed in terms of

the plate coordinates (x, )

Pi=(xi, y.l) i=1, ...n

By considering each of the observed points to be a unit of mass, we can
define a set of principle axes of inertia for the entire set. To apply this
data to the continuous trace, we need then to refer the individual points to a
system of axes (£, m) which are parallel to the principal axes of inertia and
which produce a minimum moment of inertia about £. This is obtained by a

rotation of the x, y system by an angle f:

(5) =( cos B sin B) (x)
n -sinfB cos B/ \y

Since the principal axes of inertia have their origin in the center of mass

of the system, we compute the coordinates of the center by means of

Yo/ B i=1\Yy
Therafter, the principal axes of inertia are obtained by the equation:

n
?::1(51'5&("1'"):0

C

and the moment of inertia around £ is a minimum if

- 2 _ < 2
Lo € > (m-n)
i=1 i=1

Substituting the values of § and 7 as a function of x and y reduces the

equation defining the principal axes to

b2 J 4+b@ _ -J })-T =0



L
i
@

Ty,
‘é_/'@%d
_sin B
where b = CosB
n
= L - L - = x v =
Juv izz:l (u1 uc) (v1 vc) u , Y X, ¥

Solving the equation gives

@ -7
sin B = sign (J_ ) b2
xy 2VD

) D+((J__~J_)
cos B = vD XX yy
2VD

where D=(J -3 )% +473°
XX vy x

)

Yy

The inequality, which assures a minimum moment of inertia about £,

is always satisfied since sin B has the sign of ny.
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APPENDIX B

BEST POLYNOMIAL FITTING BY MEANS OF
ORTHOGONAL POLYNOMIALS

We assume that y is a function of x and can be represented with a

polynomial series of x.

k
Y:de lx‘SX
k=0k M

If we retain only the first n terms of the series

n

_ k
T T2 4

k

we have a truncation error which is given by

IS
YV yr) 7 k:z;'ﬂ s

i
N values of x, say{xi} i=1,...,N, and each measurement of Vi has a

We know N measured values of y, say {yo} i=1,...,Ncorresponding to

standard deviationgo.

We fit a polynomial to the data in order to: 1) evaluate the best
estimates of the truncated series and 2) determine what value of n minimizes
the sum of squared truncation error and standard deviation of the truncated
series. In other words, we want to find those terms of the series which are

significant with respect to the measured data.

The first step is to represent the truncated polynomial series by means
of a set of orthogonal polynomials. A set of orthogonal polynomials over the

N points {xl} is computed by means of the recursive relationships:
po(X) - 1,

pk(x) = (x - ak) pk_l(x) - bkpk-Z(X) k=1,2,3,...



4
1

2 2
0 = [X pk—l(X):l - [pk I(X)]
- [sz_l (X)] - [Pk z(x)-|
a,=b, =by =0

where pk(x) is a k-degree polynomial
and [ ] means summation over the N points {xl}
These polynomials are orthogonal, that is

[phpk] =0 h#k

The truncated series

(n)T Z d x

can be represented by means of the set of orthogonal polynomials with

n

Vin) ~ k§0 1P )

where the coefficients ¢y are linearly related to the coefficients dk through

the system of equations

C

- [2<x) é n [ 1)

The average of the squared truncation error is computed by means of

m =% (- V(n))z] "N > of [ )

r
k=n+1
The best estimates "c'k of the coefficients Cy k=1,...,n are immediately
evaluated with the measured values {y?} i=1,...N from the relationships

_ [yopk(x)]

Tk [pli(X)i

A-4
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with a standard deviation given by

i 2 _ o 2
G T e —————
N ko [p2 )
G { k

where ¢ is the standard deviation of the measured values y;) .

Employing the estimates Tk of ¢, gives estimates Y(n) of Y(n)

n
Vo= ¢, Py (%)
(n) kE:O k vk

v
¥

:

1
A

with an average standard deviation given by

2 2

n
o—-" = =0
Y(n) N

o Bmin g

The best value of n is therefore the one that minimizes the sum of

[ S—

standard dewviation and truncation:

: | rz +0-—2
(n) Y(n)

= min

Since

2 2 12T 2
*m) = T(n-1) " N n [Pn(X)]

the minimum is obtained when

a1 [Pﬁ 1(X)] <o” < =, [Przl(x)]

For practical purposes, an estimate of 0_2. is obtained from

o” = }n [(VO ) 3;(n))Z:’

|

2

& ([+97] - £ =)
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APPENDIX C

SOLUTION OF THE HOMOLOGY EQUATION

The homology equation identifies the point Q, on the second trace which
corresponds to a given point Ql on the first trace. From the notation of

Section 7.4, we have
5207 (515, 5,9, =0
In this appendix we show the explicit derivation of the homology
equation and a method for its solution.

Consider a point Ql on the first trace. The vector S—I—thas the

coordinates

.gl

in the first camera system and has coordinates
5191 =Ty

in the geocentric system.

Let us indicate with E the geocentric system coordinates of the vector

E that results from the cross product of SI_S2 and STE)_I

In this same system, the second trace is represented by the relations

N
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fZ
m, =n, (§;)

Therefore, the homology equation becomes
e1£2 + ez'nz(gz) + e3f2 =0
where €2 is the unknown quantity.

This equation can be solved by means of the Newton-Raphson method if
the trace is represented with an analytical function of EZ’ i.e., if

n, = TIZ(EZ) is analytical.

We will use, instead, a method of searching and linear interpolation
since in general the trace is represented with a tabular function of EZ’ i.e.,

we have a table {52, n, } .
We use c to indicate the value of the function of &'2

c = e1€2 + e,m, +e3f2

We search the table of 4, for two consecutive entries P and P such that
c; =edy; Tepmy; tegf, <0
and
¢, = e1€ZS te, M, teyf, 20

Once we have found P and 4, s We assume g, has the interpolated value

C.
_ Ly _
4 = 9; - c, - (G5 = 9p;)

If the value of c¢c does not change sign we recognize that there is no
homologous point on trace-2 relative to the point Q1 on trace-1. If the value
of ¢ is a constant equal to zero, we recognize that the homology equation

vanishes and, thus, the orbital arc lies on a plane through S1 and SZ'

A-T7
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APPENDIX D
DERIVATION OF THE COVARIANCE MATRIX OF
SATELLITE POSITION

This appendix presents a derivation of the covariance matrix of
satellite position based on data obtained with continuous trace camera
observations. Figure 12 presents the geometry and some of the notation

used.
Also
Py the vector TQ
p, the vector S Q
D o the distance SISZ

b - the unit vector from S1 toward S2

h < the unit vector normal to b, in the plane (Sl’ SZ’ B)

and toward the same side of B

n - the vector (bxh)

We define the angles Yy ‘)’2 ‘73 by means of thevvector products
e, = (p1 xb) =~ ‘pll sin‘v1 n
e, = (p2 xb) = - ‘pz‘ sin)’2 n
ey = (P, xpy) = - |p 1 lp,l siny;

where lpl stands for magnitude of vector p.

The unit vectors along Py and p, are given by

P1 b h
= cos + sin ¥
5,1 4! 1

)
P2

From Figure 12 and Section 7.4 we have the position of the satellite

= cos ‘)’Zb + sin '}’zh

Py

B=s, +T
1 B|P1|

A-8
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) sin 72

where I"B =D

sin 73
The differential of B is therefore given by
py 3y ( Py )
3B =T | - +3{ ——
B\Tp,T Tg IP1]
The second term within the parentheses can be computed from
|P1

P
B( 1 ) = (- sin ‘ylb + cos ‘)’11'1) B‘yl

since b and h are not affected by measurement errors.

The first term within the parentheses can be computed from

BI"B ) cos ‘)/2 _ cos ‘}’3 3y
I"B sin ¥, 2 sin ‘)/3 3
Since
the differential can be reduced to
BI‘B i} cos ¥V, . sin ¥, .
IB sin ‘)/3 1 sin 72 sin ‘V3 2

Substituting this expression in the equation of 3B and taking into account

the equation of B(pl/lp1 I ), reduces the equation of 3B to

__sin Yy sinv, [ p, 3 Py 3’)’2
°oB =D 2 |p, | siny, " |p;| sin¥
sin ‘)/3 2 1 1 2
We note that the difference between the two indices is due to the

assumed direction for b that is from Si to SZ' Interchanging the indices will

also invert the direction of b and therefore the sign.
To evaluate 3y/sin ¥ we note that

3y _ 1 cos¥

sin‘)’_-zsinzy

3 (In c052 ¥)
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and
2
cos® Y= "P—((p‘,‘t;))')"
Therefore
o 2 (p- b)2
“ 3(Iln cos™¥) = dln —(%—137—
| -, 3(p:b) _3(p-p)
1 (p-b)  (p-p)
_ bl p!
"2 ((p-b)'(p-p))ap

since the scalar product of two vectors is the product of the transpose of

7 the first times the second.
Finally, we obtain

!} 3y _ cosY p' _ b! 3p
siny .2 \(pp) (ph)

;
' Substitution in the last expression of 3B gives

sin ‘y1 sin 'yz p2 cos Vl Pl' b!
- - : - %7 OP
sin ¥y Sin Y3 [Pa| sin® y, \P1'P1) (Py7P)J

9B =D

. » 1
sin 72 sin ')/1 P1 cos ‘YZ ( PZ ) b! >Bp
sin ¥, sin 73 |p1| sinz v, (PZ‘PZ) (Pz'b) 2
. We note that
! sin ¥ P (e ,-e,)
} S].B = D Si.n 2 1 = D (el.ez) pl
Y3 |Pqf 1°%3
siny, p (eyce,)
S;B =D 71 - =D (el- 2) P2
3 | Pp) 2' 3
! sin vy (e ,-e,)
2 1 72
———cos ¥, = —— (p;°b)
sin ¥, 1 (el 63) 1
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sin vy (el- e,
j ———cos ¥, = (p,-b)
3 siny, 2 (e2 e3) 2.
g sin? v _ (el- ey
o 1 (pl' pl)
Z cin? _ (e, e,)
2 (P, P,)

Therefore, the relationship between variation of satellite coordinates

and variation of trace points is

| (ey-e,)
- 3B = ey e,) (6,87 B ((pl-b)p'1 - (1:\1-p1)b')5101

| (e;-e,)
" Te, e, (o) 2) ((p2 b)p, - (102-p2)b')ap2

L -]

This relationship can be expressed by

B 3B = a (blMlapl -b Mzapz)
j where a = (e1 ez)
ok 1
b, =
r i (ei-e3) (ei-ei)
: and
- ° ! - - H
(p;b) SjBP-l (p;-P;) Sij
i=1,2 j=1,2 i#j
7 The covariance matrix of the satellite coordinates' random errors is
CV =< 3BaB!'>
bZM CM, + b2 M, C M
1 1 2 27272
' N
| where Ci =< api Bpi > i=1,2

are the covariance matrices of the random errors of the trace points'.
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To evaluate the product MiCiM; in practice, we observe that covariance

matrices of the Ci‘s are known in the camera coordinates [_Section 7.5]

12 1
°i2 no °
Ci:1+ = - 1 0 i=1,2
L 0 0 o0

We can express them as the product of a vector d times its transposed

vector d'

C. =d.d! i=1,2
1 11

where di is the vector representing Bpi in the camera system

1
o, -1
d, = F7—/—77— 1 i=1,2
i 12 ?
LAn \ o

Therefore, we operate directly on the vector d before performing the products

M C M'. We compute the vector

D. =M,T, 1 i=1,2

where Ti transforms the coordinates from camera system to geocentric

system. Doing so, we obtain

2
o .
2 71
1+'r,i

M.C.M. =
1 1 1

Finally, the covariance matrix CV is given by

_ 2 2 1 2 1
CV = a“ (k; D; D] +k; D,D,)
O
where k, = i=1,2
i Z\L/2 ’
(e5e3) (eyep) (1 +m;7)

This method reduces the direct product of square matrices to axes
transformations and product of vectors. Thus, we can obtain a considerable

saving of computer time.
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| The values of o, and ‘n; are evaluated in practice by means of fitting a
polynomial through the trace with the procedure described in Appendix B.
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APPENDIX E

COMPUTATION OF MATRICES IN THE
LEAST SQUARE SOLUTION

The matrices involved in the normal equation of the least square
a procedure are evaluated from the partial derivatives of the constraints

equations. These equations are given by [Section 7.6]

"‘ G(S, P, p)=f(y-y)-n(z-2)
i
; n=mn (£
x-x
E=f—
i s

To evaluate the partial derivatives we use the fact that 1 is a function

i of £,and £ is a function of (x - xs) and (z - zS).

We indicate the derivative of the trace equation by

[oR}

-_n
77' - d
j €
Ny
Therefore, we have
§ ag
-n'(z - z2)) 57
‘T - ' <14
Gp f-'n(z—zs)ay
i
: d
‘1 -n' (Z'Zs)'a‘g‘"
88 77 (Z ZS)
Gp = - (z - zs)
’ 0
Gg = - Gp
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To complete the evaluation
.a_.g = f . ég_ - 0 . @_Q = o g
ox z -z 'y > Oz z -z

_fn'
GP = f
-n +&n'
nl
Gp =-(z-2z )11
0
in'
Gg =\ ~-f
n - &n'

The value of the coefficients Cy [Section 7.6] can be directly computed

from

=G

C\y " CGp

cVG. +G' CG
P "p p

CV is given in the geocentric system; therefore, we have to convert GP from

camera system to geocentric system

GP =T Gp
Further, from Section 7.5
2 nlz _nl 0
c=—3—= | 1 o
1
1+m 0o 0 0

where 0-2 is the standard deviation of the plate measurements. Thus,

12,2
G'CG =0.2' (Z-ZS)Z(—l—i-Z)_
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Once the values of C)\ are known, the normal matrix is

N 1
2} GS Wy
i=1 i

Q
>—'

where

2,2

f'n -fzn' n' (m - &EN")

G Gr =| -q £ -£ (n - M'E)
tn' (- n'E) -fM-n€) (- &N

and the known vector is

N G
E = Z ....B_G
S {516 ®



