Q1.Three cyclic alcohols, cyclohexan-1,2-diol, cyclohexan-1,3-diol and cyclohexan-1,4-diol were compared using ${ }^{13} \mathrm{C}$ n.m.r. spectroscopy.

cyclohexan-1,2-diol cyclohexan-1,3-diol cyclohexan-1,4-diol
The ${ }^{13} \mathrm{C}$ n.m.r. spectrum of cyclohexan-1,2-diol is shown below.

(a) (i) Explain why there are three peaks.
\qquad
\qquad
\qquad
(ii) Proton n.m.r. chemical shift data is shown in Table 1 on the reverse of the Periodic Table. Chemical shift values for ${ }^{13} \mathrm{C}$ vary similarly with chemical environment.

Suggest the δ value of the peak in the spectrum above which corresponds to the absorption for carbon atom 1 in cyclohexan-1,2-diol.
\qquad
(b) (i) Predict the number of peaks in the ${ }^{13} \mathrm{C}$ n.m.r. spectrum of cyclohexan-1,3-diol.
\qquad
(ii) Predict the number of peaks in the ${ }^{13} \mathrm{C}$ n.m.r. spectrum of cyclohexan-1,4-diol.
\qquad
(c) Suggest why the structures drawn above represents several stereoisomers.

Q2. N.m.r. spectroscopy can be used to study the structures of organic compounds.
(a) Compound \mathbf{J} was studied using ${ }^{1} \mathrm{H}$ n.m.r. spectroscopy.

(i) Identify a solvent in which \mathbf{J} can be dissolved before obtaining its ${ }^{1} \mathrm{H}$ n.m.r. spectrum.
\qquad
(ii) Give the number of peaks in the ${ }^{1} \mathrm{H}$ n.m.r. spectrum of \mathbf{J}.
\qquad
(iii) Give the splitting pattern of the protons labelled a.
\qquad
(iv) Give the IUPAC name of \mathbf{J}.
(b) Compound \mathbf{K} was studied using ${ }^{13} \mathrm{C}$ n.m.r. spectroscopy.

K
(i) Give the number of peaks in the ${ }^{13} \mathrm{C}$ n.m.r. spectrum of \mathbf{K}.
(ii) Use Table 3 on the Data Sheet to suggest a δ value of the peak for the carbon labelled b.
(iii) Give the IUPAC name of \mathbf{K}.
(Total 7 marks)

Q3. The proton n.m.r. spectrum of compound \mathbf{X} is shown below.

Compound $\mathbf{X}, \mathrm{C}_{7} \mathrm{H}_{12} \mathrm{O}_{3}$, contains both a ketone and an ester functional group. The measured integration trace for the peaks in the n.m.r. spectrum of \mathbf{X} gives the ratio shown in the table below.

Chemical shift, δ / ppm	4.13	2.76	2.57	2.20	1.26
Integration ratio	0.8	0.8	0.8	1.2	1.2

Refer to the spectrum, the information given above and the data below the Periodic Table provided to answer the following questions.
(a) How many different types of proton are present in compound \mathbf{X} ?
\qquad
(b) What is the whole-number ratio of each type of proton in compound \mathbf{X} ?
\qquad
(c) Draw the part of the structure of \mathbf{X} which can be deduced from the presence of the peak at $\delta 2.20$.
\qquad
(d) The peaks at $\delta 4.13$ and $\delta 1.26$ arise from the presence of an alkyl group. Identify the group and explain the splitting pattern.

Alkyl group \qquad
Explanation \qquad
\qquad
\qquad
(e) Draw the part of the structure of \mathbf{X} which can be deduced from the splitting of the peaks at $\delta 2.76$ and $\delta 2.57$.
\qquad
(f) Deduce the structure of compound \mathbf{X}.
\qquad

Q4. Compound $\mathbf{X}\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{2}\right)$ was analysed by infrared spectroscopy and by proton nuclear magnetic resonance spectroscopy.
(a) The infrared spectrum of \mathbf{X} is shown below.

Use Table 1 on the Data Sheet to help you answer the question.

Identify the functional group that causes the absorption at $3450 \mathrm{~cm}^{-1}$ in the spectrum.
\qquad
(b) The proton n.m.r. spectrum of \mathbf{X} consists of 4 singlet peaks.

The table below gives the chemical shift for each of these peaks, together with their integration values.

δ / ppm	1.2	2.2	2.6	3.8
Integration value	6	3	2	1

Use Table 2 on the Data Sheet to help you answer the following questions.
Use the chemical shift and the integration data to show what can be deduced about the structure of \mathbf{X} from the presence of the following in its proton n.m.r. spectrum.
(i) The peak at $\delta=2.6$
(ii) The peak at $\delta=2.2$
(iii) The peak at $\delta=1.2$
(iv) Deduce the structure of $\mathbf{X}\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{2}\right)$

Q5. Three sections of the proton n.m.r. spectrum of $\mathrm{CH}_{3} \mathrm{CHClCOOH}$ are shown below.

(a) Name the compound $\mathrm{CH}_{3} \mathrm{CHClCOOH}$
\qquad
(b) Explain the splitting patterns in the peaks at $\delta 1.72$ and $\delta 4.44$
\qquad
\qquad
\qquad
(c) Predict the splitting pattern that would be seen in the proton n.m.r. spectrum of the isomeric compound $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$
\qquad
\qquad
(d) The amino acid alanine is formed by the reaction of $\mathrm{CH}_{3} \mathrm{CHClCOOH}$ with an excess of ammonia. The mechanism is nucleophilic substitution. Outline this mechanism, showing clearly the structure of alanine.
(e) The amino acid lysine has the structure

Draw structures to show the product formed in each case when lysine reacts with
(i) an excess of aqueous HCl ,
(ii) an excess of aqueous NaOH ,
(iii) another molecule of lysine.

Q6. ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and infrared spectroscopy are used in organic chemistry to distinguish between compounds and to identify them.
(a) Give the skeletal formula of the compound that is used as the standard when recording a ${ }^{13} \mathrm{C}$ NMR spectrum.
(b) Four isomers of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{2}, \mathbf{P}, \mathbf{Q}, \mathbf{R}$ and \mathbf{S}, shown in Figure 1, were analysed by ${ }^{13} \mathrm{C}$ NMR spectrometry.

Figure 1

P

R

S

The ${ }^{13} \mathrm{C}$ NMR spectra of three of these isomers are shown in Figure 2.
Use Table C in the Data Booklet to help you to identify which isomer produces each spectrum.

Write the letter of each isomer opposite its spectrum in Figure 2.

Figure 2

\square

\qquad
\square
(c) The infrared spectra shown in Figure 3 are those of three different isomers of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{2}$, isomers \mathbf{T}, \mathbf{U} and \mathbf{V}.

Figure 3

Identify the functional group(s) present in each isomer \mathbf{T}, \mathbf{U} and \mathbf{V} of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{2}$ using Table A in the Data Booklet.

Explain your answer.
(d) The integration values for the peaks in the ${ }^{1} \mathrm{H}$ NMR spectrum of \mathbf{X}, a different isomer of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{2}$, are given in the table below.

Chemical shift, ठ/ppm	3.7	3.5	2.6	2.2	1.1
Integration value	0.6	0.6	0.6	0.9	0.9
Splitting pattern	triplet	quartet	triplet	singlet	triplet

Deduce the simplest ratio of the relative numbers of protons in each environment in compound \mathbf{X}.
\qquad
\qquad
\qquad
(e) Use the data in the table above and Table B in the Data Booklet to help you answer this question.

Deduce the part of the structure of \mathbf{X} that causes the signal at $\delta=3.5$ and the part of the structure at \mathbf{X} that causes the signal at $\delta=2.2$.

Explain the splitting patterns of these peaks.
Signal at $\delta=3.5$ \qquad
\qquad
\qquad
Signal at $\delta=2.2$ \qquad
\qquad
\qquad
\qquad
(f) Deduce the structure of compound $\mathbf{X}, \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{2}$

Use your answer from part (e) to help you.
You are not required to explain how you deduced the structure.

Q7. This question is about some isomers of $\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{O}_{2}$
(a) Compound \mathbf{H} is a cyclic ester that can be prepared as shown.

On the structure of \mathbf{H}, two of the carbon atoms are labelled.

H
(i) Name and outline a mechanism for this reaction.

Use Table C on the Data Sheet to give the ${ }^{13} \mathrm{C}$ n.m.r. δ value for the carbon atom labelled \mathbf{a} and the δ value for the carbon atom labelled \mathbf{b}.
\qquad
(ii) $\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COCl}$ can also react to form a polyester in a mechanism similar to that in part (i).

Draw the repeating unit of the polyester and name the type of polymerisation involved.
\qquad
\qquad
\qquad
\qquad
\qquad
(b) State how you could distinguish between compounds \mathbf{J} and \mathbf{K} by a simple test-tube reaction.

State how you could distinguish between \mathbf{J} and \mathbf{K} by giving the number of peaks in the ${ }^{1} \mathrm{H}$ n.m.r. spectrum of each compound.

J

K
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(c) Draw the structure of each of the following isomers of $\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{O}_{2}$

Label each structure you draw with the correct letter $\mathbf{L}, \mathbf{M}, \mathbf{N}, \mathbf{P}$ or \mathbf{Q}.
\mathbf{L} is methyl 2-methylpropenoate.
\mathbf{M} is an ester that shows $\mathrm{E}-\mathrm{Z}$ stereoisomerism.
\mathbf{N} is a carboxylic acid with a branched carbon chain and does not show stereoisomerism.
\mathbf{P} is an optically active carboxylic acid.
Q is a cyclic compound that contains a ketone group and has only two peaks in its ${ }^{1} \mathrm{H}$ n.m.r. spectrum.

Mark schemes

Q1.
(a) (i) There are three pairs of equivalent carbon atoms
(ii) 75 ppm
(b) (i) 4
(ii) 2
(c) Each structure can represent a pair of cis/Z and trans/E isomers OR
Optical isomers

Q2.
(a) (i) CDCl_{3} or $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ or $\mathrm{C}_{6} \mathrm{D}_{6}$ or CCl_{4}

Not $\mathrm{D}_{2} \mathrm{O}$ Allow $\mathrm{CD}_{3} \mathrm{Cl}$
(ii) 4 or four
(iii) Triplet or 3 or three
(iv) 1,4-dichloro-2,2-dimethylbutane

Do not penalise different or missing punctuation or extra spaces.
Spelling must be exact and order of letters and numbers as here.
(b) (i) 3 or three
(ii) $190-220\left(\mathrm{~cm}^{-1}\right)$

Allow a single number within the range. OR a smaller range entirely within this range.
(iii) hexane-2,5-dione

Do not penalise different or missing punctuation or extra spaces.
Spelling must be exact and order of letters and numbers as here.
NB so must have middle e

Q3.
(a) $5(1)$
(b) 2:2:2:3:3 (1)
any order but not multiples
(d) $\mathrm{CH}_{3} \mathrm{CH}_{2}$ or $\mathrm{C}_{2} \mathrm{H}_{5}$ or ethyl (1)
$\delta 4.13$ (quartet) : CH_{2} peak split by $\mathrm{CH}_{3} /$ next to CH_{3} (1)
$\delta 1.26$ (triplet) : CH_{3} peak split by $\mathrm{CH}_{2} /$ next to CH_{2} (1)
(e) $\mathrm{CH}_{2} \mathrm{CH}_{2}(1)$

	$\mathrm{CH}_{3}-(\mathrm{CO})$	
C		
(f)		
O	$\mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{CO}-\mathrm{C}-\mathrm{OCH}_{2} \mathrm{CH}_{3}$	
		O

allow (1) for $\mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{OCOCH}_{2} \mathrm{CH}_{3}$ or $\mathrm{CH}_{3} \mathrm{COOCH}_{2} \mathrm{CH}_{2} \mathrm{COCH}_{2} \mathrm{CH}_{3}$ Must be $\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{O}_{3}$

Q4.
(a) OH alcohols
(b) (i) 2.6

Ignore any group on RHS
Must clearly indicate relevant two H on a C next to $\mathrm{C}=\mathrm{O}$
On LHS, penalise H or CH or CH_{2} or CH_{3}
Ignore missing trailing bonds or attached R groups
(ii) 2.2

Ignore all groups on RHS

Must clearly indicate relevant three H on C next to $C=O$ Ignore missing trailing bonds or attached R group
(iii) 1.2

Or in words: two equivalent CH_{3} groups
Must clearly indicate two equivalent methyl groups.
Penalise attached H
Ignore missing trailing bonds or attached R groups
(iv)

Q5.

(a) 2-chloropropanoic acid (1)
(b) $\delta 1.72$ Doublet \therefore next to CH (1)
$\delta 4.44$ Quartet \therefore next to $\mathrm{CH}_{3}(1)$
(c) Two triplets (1)
(d)

(e) (i)
$\left(\mathrm{Cl}^{-}\right)$

(ii)

(1)
(iii)

Or anhydride

Q6.
(a)

$1 \times$ AO1
(b) S

R

Q
(c) (Isomer T)
signals due to OH (alcohol) at 3230-3350 and $\mathrm{C}=\mathrm{O}$ at 1680-1750

OH and $\mathrm{C}=\mathrm{O}$ (functional groups) separated in molecule.
Allow not a carboxylic acid.
(Isomer U)
(only) signal for OH (alcohol) at 3230-3350
$2 \times \mathrm{OH}$ groups present / diol / OH \& cyclo(ether) structure.
Allow OH but not $\mathrm{C}=\mathrm{O}$.
(Isomer V)
signals due to OH (acid) at 2500-3000 (and C=O at 1680-1750)
carboxylic acid group / - COOH present.
(d) 2:2:2:3:3

Any order.
(e) (The quartet at $\delta=3.5$ is for a CH_{2} group) next to $-\mathbf{O}-\mathbf{C H}_{2} \mathbf{O R}$ shifted significantly downfield by electronegative O
(is a quartet) because of an adjacent CH_{3} group / couple with 3 adjacent protons
 by electronegative $\mathrm{C}=\mathrm{O}$

1
(f)

Allow 1 mark for:

Q7.
(a) (i) (nucleophilic) addition-elimination

Not electrophilic addition-elimination Ignore esterification

M2

M3 for structure

- If wrong nucleophile used or O-H broken in first step,
can only score M2.
- M2 not allowed independent of M1, but allow M1 for correct attack on C+
- + rather than $\delta+$ on $C=O$ loses $M 2$.
- If Cl lost with $\mathrm{C}=\mathrm{O}$ breaking lose M2.
- M3 for correct structure with charges but lone pair on O is part of M4.
- Only allow M4 after correct / very close M3.
- Ignore HCl shown as a product.
a 20-50 (ppm) or single value or range entirely within this range If values not specified as a or b then assume first is a.
b $\quad 50-90(\mathrm{ppm})$ or single value or range entirely within this range
(ii)

Must have trailing bonds, but ignore n.

OR $-\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}-\quad$ OR $\quad-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COO}_{-}$
Allow

but not $\quad-\mathrm{C}_{4} \mathrm{H}_{8}$ -
one unit only
Condensation
(b)

	Tollens'	Fehling's / Benedicts	Acidified potassium dichromate

Penalise wrong formula for Tollens or missing acid with potassium dichromate but mark on.

\mathbf{J}	No reaction / no (visible) change /	No reaction / no (visible) change no silver mirror / stays blue / no r r ed ppt	No reaction / no (visible) change / stays orange / does not turn green

Ignore 'clear', 'nothing'.
Penalise wrong starting colour for dichromate.

K	Silver mirror / grey ppt	Red ppt (allow brick red or	(orange) turns green

\square

J Two (peaks)
Allow trough, peak, spike.

K Four (peaks)
Ignore details of splitting.
If values not specified as J or K then assume first is J.
(c) If all the structures are unlabelled, assume that the first drawn ester is L, the second ester is M; the first drawn acid is N, the second P. The cyclic compound should be obvious.

L
ester

OR $\mathrm{H}_{2} \mathrm{C}=\mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{COOCH}_{3}$
All $\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{O}_{2} \mathrm{~L}$ to P must have $\mathrm{C}=\mathrm{C}$.
Allow CH_{3}-.
Allow $-\mathrm{CO}_{2} \mathrm{CH}_{3}$ etc.
Allow $\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{COOCH}_{3}$.

M

ester

N
acid

OR

OR

$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{CHCOOH} \quad \mathrm{H}_{2} \mathrm{C}=\mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{COOH}$
$\mathrm{H}_{2} \mathrm{C}=\mathrm{C}(\mathrm{COOH}) \mathrm{CH}_{2}$
CH_{3}
Allow $\mathrm{CH}_{3}-$ or $\mathrm{C}_{2} \mathrm{H}_{5}$ - but not $\mathrm{CH}_{2} \mathrm{CH}_{3}-$.
Allow $-\mathrm{CO}_{2} \mathrm{H}$.
Not cyclic isomers
Not the optically active isomer.

which is P anyway
Allow $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CCHCOOH}$ etc.

P

acid

Q

OR

OR

Not cyclic esters.

