Quantum Convolutional Neural Networks

Iris Cong

Soonwon Choi

Mikhail D. Lukin

arXiv:1810.03787

Berkeley Quantum Information Seminar October 16th, 2018

Why quantum machine learning?

Machine learning: interpret and process large amounts of data

Quantum physics: many-body interactions \rightarrow extremely large complexity

Quantum chemistry

Quantum phases of matter

 $h_{1/J}^{1.5}$

Near-term quantum computers/ quantum simulators

Machine learning Quantum many-body physics Exciting!

Machine Learning and Quantum Physics

- (Classical) Machine learning to study quantum physics
- *Quantum machines* to perform classical or quantum computation
 - Quantum speedup? supremacy?

Farhi and Neven (2018)

Machine Learning and Quantum Physics

- Many open questions:
 - Why/how does quantum machine learning work?
 - Concrete circuit models suitable for near-term implementation?
 - Relationship to quantum many-body physics?
 - Relationship with quantum information theory?

Main Contributions

Concrete and efficient circuit model for quantum classification problems

Good connection to existing ML techniques

Convolution Pooling

Application:

Quantum Phase Recognition

Overview

- Review of (Classical) Convolutional Neural Networks (CNNs)
- Quantum Convolutional Neural Networks
- Application to quantum phase recognition
 - Example: 1D symmetry-protected topological (SPT) phase
 - Theoretical explanation: RG flow using MERA + quantum error correction
- Summary and Outlook

Review of (Classical) CNN

• Particular class of deep, feed-forward neural network

Review of (Classical) CNN

• A structured network – multiple *layers* of image processing

Review of (Classical) CNN

Many ImageNet Competition Winners!

And many others...

Learning Procedure for (Classical) CNN

- Gradient-based supervised learning
- Training data: labeled {(x_i, y_i)}
- Common error functions
- Initialize to random weights
- Update w to w' = w $\eta \nabla_w E$, η = learning rate

$$E(\{(\vec{x_i}, y_i)\}, \mathbf{w}) = \frac{1}{2N} \sum_{i=1}^{N} (y_i - f_{\mathbf{w}}(\vec{x_i}))^2$$
$$KL(\{(\vec{x_i}, y_i)\}, \mathbf{w}) = \sum_{i=1}^{N} y_i \log \frac{y_i}{f_{\mathbf{w}}(x_i)}$$

Overview

- Review of (Classical) Convolutional Neural Networks (CNNs)
- Quantum Convolutional Neural Networks (QCNNs)
- Application to quantum phase recognition
 - Example: 1D symmetry-protected topological (SPT) phase
 - Theoretical explanation: RG flow using MERA + quantum error correction
- Summary and Outlook

Prior Works: Generic Quantum Circuit

- Farhi and Neven, 2018
- Problems:
 - Too many parameters
 - Subject to overfitting
 - Need all-to-all connectivity
 - Lack of physical intuition?

Quantum CNN Architecture

Same types of layers:

- 1. Convolution
 - Local unitaries, trans. inv., 1D, 2D, 3D ...
- 2. Pooling
 - Reduce system size
 - Final unitary depends on meas. outcomes
- 3. Fully connected
 - Non-local measurement
 - E.g. for quantum phase recognition: string operator measurement

Learning Procedure for Quantum CNN

- Parameterize unitaries in convolution, pooling, and fully
 - connected layers
- Initialize to random unitaries
- Similar gradient-based learning

Overview

- Review of (Classical) Convolutional Neural Networks (CNNs)
- Quantum Convolutional Neural Networks
- Application to quantum phase recognition
 - Example: 1D symmetry-protected topological (SPT) phase
 - Theoretical explanation: RG flow using MERA + quantum error correction
- Summary and Outlook

Application: Quantum Phase Recognition

Problem: Given quantum many-body system in (unknown) ground state $|\psi_G\rangle$, does $|\psi_G\rangle$ belong to a particular quantum phase \mathcal{P} ?

Direct analog of image classification, but *intrinsically quantum problem*

Claim: Quantum CNN is very efficient in quantum phase recognition

•
$$H = -J \sum_{i} Z_{i} X_{i+1} Z_{i+2} - h_{1} \sum_{i} X_{i} - h_{2} \sum_{i} X_{i} X_{i+1}$$

• $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ symmetry: $\hat{X}_{e} = \prod_{i \in even} \hat{X}_{i}$, and $\hat{X}_{o} = \prod_{i \in odd} \hat{X}_{i}$

- When $h_1 = h_2 = 0$, g.s. = 1D cluster state (stabilizer code)
- When $h_2 = 0$, exactly solvable by Jordan-Wigner
- Simple example → good analytical guess for QCNN circuit, demonstrate learning later

• Quantum CNN Circuit:

 $= \begin{cases} 1 & \text{if } |\psi_G\rangle \in \text{SPT} \\ 0 & \text{if } |\psi_G\rangle \notin \text{SPT} \end{cases}$

0

-1.5

-1

-0.5

0.5

1.5

0

 h_2/J

* Phase diagram is obtained from iDMRG with bond dimension 150.
Ground states are obtained from DMRG with bond dimension 130.
2D plot: N = 45 spins (depth 2), 1D curves: N = 135 spins

Multiscale Entanglement Renormalization Ansatz (MERA)

+ Quantum Error Correction

Circuit simulation of RG flow

Multiscale Entanglement Renormalization Ansatz (MERA)

- Variational ansatz for many-body wavefunction
- Efficient description of:
 - Gapped ground states
 - Critical systems
 - Many interesting physical systems...
- Quantum CNN has very similar structure!

Key differences:

- Opposite direction
- MERA circuit is only defined for ancillas = |0>
- Measurement does not always give |0>!

Good starting point!

MERA representation of $|\psi_0\rangle \rightarrow QCNN$ circuit to exactly recognize $|\psi_0\rangle$ with deterministic intermediate measurement outcomes.

... but NOT sufficient for quantum phase recognition.

Ideally, a single QCNN should recognize ALL $|\psi\rangle$ in the same phase \mathcal{P} .

Key idea: use quantum error correction to induce "flow."

- Idea: Treat perturbations terms as quantum errors
- Example:

$$H = -J\sum_{i} Z_{i}X_{i+1}Z_{i+2} - h_{1}\sum_{i} X_{i} - h_{2}\sum_{i} X_{i}X_{i+1}$$

RG fixed point
= Quantum code
Error perturbations

• This construction is generic: includes all 1D SPT, 2D string-net models

(cluster state)

• Quantum CNN for $\mathbb{Z}_2 \times \mathbb{Z}_2$ SPT phase = MERA for $|\psi_0\rangle$ + QEC

 $\begin{aligned} |\psi_0^{(L)}\rangle & \longrightarrow \quad |\psi_0^{(L/3)}\rangle \otimes |0000\dots\rangle \\ |\psi^{(L)}\rangle & \longrightarrow \quad |\psi'^{(L/3)}\rangle \otimes |01001\dots\rangle \\ & & & & \\ \downarrow \psi''^{(L/3)}\rangle \otimes |01001\dots\rangle \\ & & & \\ \text{Quantum error correction} \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$

Measure string order parameter for $|\psi_0
angle$

RG flow in our example (N = 135 spins):

(alternative explanation using string order parameters)

• Identifying an SPT phase = Detecting a string order parameter

Example:
$$\mathbb{Z}_2 \times \mathbb{Z}_2$$
 SPT $\langle S_{ij} \rangle = \langle Z_i X_{i+1} X_{i+3} \dots X_{j-1} Z_j \rangle$

• Problem: away from RG fixed point

$$S_{ij} = \mathcal{O}\left(1/\xi a\right)$$

QCNN: use more than one string operator

(alternative explanation using string order parameters)

Training: Example

- Circuit structure:
- *N* = 15 spins (depth 1) for simulations
- Initialize all unitaries to random values
- Train along $h_2 = 0$ (solvable by JW)

• Gradient descent:
$$MSE = \frac{1}{2M} \sum_{\alpha=1}^{M} (y_i - f_{\{U_i, V_j, F\}}(|\psi_{\alpha}\rangle))^2$$

Training: Example

- Observation: training on 1D, JW-solvable set can still produce the correct 2D phase diagram
- Demonstrates how QCNN structure avoids overfitting

Training: General Cases

- More generally: training = expanding
 QEC threshold
- Efficiency: reduced # of parameters
 (O(log(N)) instead of O(exp(N))

General Recipe - QCNN for quantum phase recognition

• Step 1: Given a quantum phase construct a MPS representation of a RG fixed point and its MERA circuit Schuch *et al*, PRB **84**, 165139 (2011)

- Step 2: Construct its parent Hamiltonian $H = \sum_i h_i$ with $[h_i, h_j] = 0$.
- Step 3: Design quantum error correction code based on
 - Stabilizers from h_i .
 - Code space from
- Step 4: Construct QCNN ansatz based on Step 3.
- Step 5: Optimize QCNN via learning procedures.

Generic Construction of QCNN Circuit (High-level outline; in progress)

- Goal: Given quantum phase $\mathcal P$ classified by its RG fixed point, construct quantum CNN circuit to best recognize states in $\mathcal P$
- Step 1: Construct tensor network representation of RG fixed point

(isometric form)

Schuch et al, PRB 84, 165139 (2011)

• Step 2: Construct parent Hamiltonian of this tensor network (nearest-

neighbor commuting terms): $H = \sum_i h_i$ with $[h_i, h_j] = 0$.

Generic Construction of QCNN Circuit (High-level outline; in progress)

- Step 4: Construct quantum CNN circuit based on Step 3
- Step 5: Optimize quantum CNN based on learning procedures

Overview

- Review of (Classical) CNN
- Quantum CNN: Architecture and Learning Procedure
- Application: quantum phase recognition
 - Example: 1D cluster state
 - Theoretical explanation: RG flow using MERA + quantum error correction
- Summary and Outlook

Summary

- Concrete architecture, learning proposal for quantum classification
- Application to quantum phase recognition: 1D SPT phase ($\mathbb{Z}_2 \times \mathbb{Z}_2$)
- Theoretical explanation: QCNN \approx MERA + QEC \approx RG flow

Other Results and Outlook

- 2D Quantum CNN circuit: toric code, string-net
- Efficient training procedures inspired by machine learning
- Gapless phases (e.g. spin liquids), holographic codes
- Application: fault-tolerant computation
- Experimental realizations
 - e.g. trapped ions, Rydberg atoms, superconducting circuits

Thanks!

Backup Slides

Heisenberg Picture: Topological Measurement

Heisenberg Picture: Topological Measurement

Heisenberg Picture: Topological Measurement

- Conclusion:
 - Measured operator is sum of exponentially many string operators
 - Measures probability for all Majorana modes to be "topologically connected"
 - \rightarrow 1 in the SPT phase, 0 in the trivial phase

