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1 Orientation

These lecture notes were written for QFT II in the Particles, Strings and Cosmology MSc course at Durham
University. They are a basic introduction to the path integral approach to quantum field theory. Most of the
material follows the exposition in the well-known textbooks [2–4]. Please send all typos to nabil.iqbal@durham.ac.uk.

It’s assumed the reader has some exposure to quantum field theory in canonical quantization, and also knows
how to apply path integrals to quantum mechanics.

1.1 Motivation

I want to begin with some philosophical words about quantum field theory. Why do we study quantum field
theory? What is it that makes us struggle through this confusing, technically difficult, at times seemingly1

ill-defined sea of ideas?

Presumably this question has many answers, but perhaps I’ll start making an extremely incomplete list of a
few things that QFT is good for:

1. Particle physics and the Standard Model: this is the main focus of this course (both the QFT
course and the larger MSc course of which it is a part). The Standard Model is a wildly successful
physical theory, it is perhaps the most precise microscopic description of nature ever, and quantum
field theory is really at its very core.

Most textbooks lean heavily on this point of view, but it gives you the idea that QFT is only important if
you care about high-energy physics, and that you need to build a giant particle accelerator to appreciate
it. This is not true.

2. Metals and superconductors: this is maybe not obvious, but both metals and superconductors –
real-life low-energy objects that you can find in your home (or, well, nearby physics lab) – are described
by quantum field theories; they are just not relativistic. The low energy fluctuations of electrons
in metals are described by something called Fermi liquid theory, and superconductors are actually
described by an analogue of the Higgs mechanism that you will study in the SM part of this course.

3. Boiling water: the phase diagram of water looks like picture on board. The critical point at 374 C is
actually described by a three-dimensional quantum field theory called the 3d Ising model. I don’t have
time to explain why this is, but in general continuous phase transitions (...of any sort) are described
by quantum field theories.

4. Quantum gravity: if you don’t care about boiling water, perhaps you like quantum gravity. The so-
called AdS/CFT correspondence tells us that quantum gravity in D dimensions is precisely equivalent
to a quantum field theory in D−1 dimensions (in its most well-studied incarnation it is dual to SU(N)
gauge theory). By the end of this course you will know what SU(N) gauge theory is.

One may ask what all of these phenomena have in common that makes them describable by quantum field
theory. In essence, if you ever have a situation where there are both fluctuations – thermal, quantum, etc.
and locality – in space, in time, etc. – in some sense, it is likely that some sort of quantum field theory
describes your system.

Having said all of that, in this course we will describe only relativistic quantum field theory; as always, extra
symmetries (such as those associated with relativistic invariance) simplify our lives.

1But only seemingly.
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1.2 Conventions

In agreement with most (but not all) books on quantum field theory, I will use the “mostly-minus” metric:

ηµν = ηµν = diag(1,−1,−1,−1) (1.1)

Sadly this is the opposite convention to the one that I’m familiar with; thus everyone will need to be vigilant
for sign errors. We will mostly work in four spacetime dimensions (the “physical” value), but it is nice to
keep the spacetime dimension d arbitrary where possible.

Note that Greek indices µ, ν will run over time and space both, whereas i, j will run only over the three
spatial coordinates, and thus

xµ = (x0, xi) (1.2)

I will sometimes use x0 to denote the time component and sometimes xt, depending on what I feel looks
better in that particular formula.

I will always set ~ = c = 1.2 They can be restored if required from dimensional analysis.

1.3 Quantum mechanics review

In QFT I so far, you have understood in great detail how to compute things in quantum mechanics using the
path-integral; in other words you studied quantum mechanical systems with a classical real-time Lagrangian

L(q, q̇) =
1

2
q̇2 − V (q) S =

∫
dtL(q, q̇) (1.3)

You then inserted this into a path-integral to define the generating functional, which was

Z[J ] ≡ N
∫

[Dq] exp

(
iS[q] + i

∫
dtJ(t)q(t)

)
(1.4)

where
∫

[Dq] denotes the philosophically soothing but mathematically somewhat distressing “integral over all
functions”. In the previous QFT1 course, you learned that to compute the time-ordered Green’s function,
you simply had to bring down factors of q(t) when doing the average, i.e.

〈0|q̂(tN )q̂(tN−1) · · · q̂(t1)|0〉 = N
∫

[Dq]q(tN )q(tN−1) · · · q(t1) exp (iS[q]) tN > tN−1 > · · · t1 (1.5)

Note it is absolutely crucial here that on the left-hand side tN > tN−1 > · · · t1. On the right-hand side
it doesn’t seem to matter; on the left-hand side it does, because these are quantum operators that do not
commute. It was explained in QFT I that path integrals only give you correlation functions that are time-
ordered; to emphasize this, I will often put a T around the correlation function, i.e. I may write the left-hand
side as

〈0|T (q̂(tN )q̂(tN−1) · · · q̂(t1))|0〉 (1.6)

In fact, this quantity was typically somewhat ill-defined, even by physicist standards. However you could
make it better by Wick-rotating, i.e. you wrote

t = −iτ (1.7)

where τ is real. This is sometimes called “Euclidean time”; note that the metric becomes

ds2 = dt2 − d~x2 = −(dτ2 + d~x2). (1.8)

2kB makes an appearance in a homework problem (or rather it would, if I hadn’t set it to 1).
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The overall minus sign here is of no importance; we are working in a spacetime with Euclidean signature.
Note that the action also becomes

iS = −
∫
dτ

(
1

2

(
dq

dτ

)2

+ V (q)

)
≡ −SE (1.9)

where SE is positive-definite (if the potential is positive-definite). This Wick-rotated path integral is

Z[J ] ≡ N
∫

[Dq] exp

(
−SE +

∫
dτJ(τ)q(τ)

)
(1.10)

Note that the object in the exponential is now real rather than imaginary, and this makes the integral
convergent3. In general, many confusions about path integrals can be made to go away by imagining a
Wick-rotation to Euclidean signature. As explained in the first part, this prescription also guarantees that
you are in the vacuum of the theory by suppressing the contribution of all states with energy E by a factor
of exp(−Eτ).

2 Path Integrals in Free Quantum Field Theory

With this under our belt, we will now move on to quantum field theory. You have studied the basic ideas in
IFT; let me just remind you. We will begin with a study of the free real scalar field φ. This has action

S[φ] =
1

2

∫
d4x

(
(∂φ(x))2 −m2φ(x)2

)
=

1

2

∫
d4x φ(x)(−∂2 −m2)φ(x) (2.1)

The classical equations of motion arising from the variation of this action are

(∂2 +m2)φ(x) = 0 (2.2)

This is philosophically the same as the quantum mechanics problem studied earlier. To make the transition
imagine going from the single quantum-mechanical variable q to a large vector qa where a runs (say) from 1
to N . Now imagine formally that a runs over all the sites of a lattice that is a discretization of space, and
now qa(t) is basically the same thing as φ(xi; t) which is exactly the system we are studying above.

Now we would like to study the quantum theory. First, I point out that we can define a path integral in
precisely the same way as before, i.e. we can consider the following path-integral:

Z ≡
∫

[Dφ] exp (iS[φ]) (2.3)

Where S[φ] is the action written down above, and [Dφ] now represents the functional integral over all fields
and not just particle trajectories.

There are two main things that are nice about doing quantum field theory from path integrals the way
discussed above. One of them is honest, the other is a bit “secret”.

1. The honest one: all of the symmetries of the problem are manifest. The action S is Lorentz-invariant,
and it is fairly easy to see how these symmetries manifest themselves in a particular computation.
Compare this to the Hamiltonian methods used in IFT, where you have to pick a time-slice and it
always seems like a miracle when final answers are Lorentz-invariant.

2. The secret one: the path integral allows one to be quite cavalier about subtle issues like “what is the
structure of the Hilbert space exactly”. This is very convenient when we get to gauge fields, where
there are subtle constraints in the Hilbert space (google “Dirac bracket”) that you can more or less not
worry about when using the path integral (i.e. one can go quite far in life without knowing exactly
what a “Dirac bracket” is).

3Well, more convergent than before, at least.
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2.1 The generating functional

Now that the philosophy is out of the way, let us do a computation. We will begin by computing the following
two-point function:

〈0|T (φ(x)φ(y))|0〉 (2.4)

This object is called the Feynman propagator. It is quite important for many reasons; I will discuss them
later, for now let’s just calculate it. By arguments identical to those leading to (1.5), we see that we want

〈0|T (φ(x)φ(y))|0〉 = Z−1
0

∫
[Dφ]φ(x)φ(y) exp (iS[φ]) (2.5)

To calculate this, it is convenient to define the same generating functional as we used for quantum mechanics

Z[J ] ≡
∫

[Dφ] exp

(
iS[φ] + i

∫
d4xJ(x)φ(x)

)
(2.6)

And we then see from functional differentiation that the two-point function is

〈0|T (φ(x)φ(y))|0〉 =
1

Z0

(
−i δ

δJ(x)

)(
−i δ

δJ(y)

)
Z[J ]

∣∣∣∣
J=0

(2.7)

Each functional derivative brings down a φ(x). Now we will evaluate this function. We first note the identity
derived in QFT I for doing Gaussian integrals in Section 7.1 of [1], which I have embellished with a few i’s
here and there:∫

dx1dx2 · · · dxN exp

(
−1

2
xaAabx

b + iJax
a

)
=

√
(2π)

N

detA
exp

(
−1

2
Ja(A−1)abJb

)
(2.8)

We note from the form of the action (2.1) that the path integral Z[J ] we want to do is of precisely this form,
where we do our usual “many integrals” limit and where a labels points in space and the operator A is

A = i
(
∂2 +m2

)
(2.9)

We conclude that the answer for Z[J ] is

Z[J ] = det

(
∂2 +m2

−2πi

)− 1
2

exp

(
−1

2

∫
d4xd4yJ(x)DF (x, y)J(y)

)
(2.10)

where I have given the object playing the role of A−1 a prescient name DF . It is the inverse of the differential
operator defined in (2.9) and thus satisfies

i
(
∂2 +m2

)
DF (x, y) = δ(4)(x− y) (2.11)

This is an important result. Let us first note that the path integral is asking us to compute the functional
determinant of a differential operator. This is a product over infinitely many eigenvalues; it is quite a beautiful
thing but we will not really need it here, so we will return to it later.

The next thing to note is that the dependence on J is quite simple; the exponential of a quadratic. Indeed,
inserting this into (2.7) we get

〈0|T (φ(x)φ(y))|0〉 = DF (x, y) (2.12)

Thus, we have derived that the time-ordered correlation function of φ(x) is given by the inverse of i(∂2 +m2).
You have already encountered this phenomenon in IFT.

6



2.2 Calculating the Feynman propagator: poles, analytic continuation and iε

Let us now actually calculate this object. I note that you have performed a similar computation in IFT, but
I will repeat some elements of it to explain what the path integral is doing for us. We first go to Fourier
space:

DF (x, y) =

∫
d4p

(2π)4
e−ip·(x−y)D̃F (p) (2.13)

Inserting this into (2.11) we find∫
d4p

(2π)4

(
−p2 +m2

)
e−ip·(x−y)D̃F (p) = −iδ(4)(x− y) (2.14)

We now see that we want the object in momentum space D̃F (p) to be proportional to p2 −m2 so that we
can use the identity

∫
d4peip·x = (2π)4δ(4)(x). Getting the factors right, we find the following expression for

the propagator in Fourier space:

D̃F (p) =
i

p2 −m2
(2.15)

This looks nice, but actually, this expression is not yet complete, in that specifying this Fourier transform
does not yet completely specify a function DF (x, y) in position space. To understand this, let us actually
attempt to Fourier transform this thing back. We break the integral into time p0 and spatial ~p and do the
time integral first. Let me define ω~p ≡ +

√
~p2 +m2:

DF (x, y) =

∫
dp0

2π

∫
d3p

(2π)3

i

p2
0 − p2 −m2

e−ip0(x0−y0)+i~p·(~x−~y) (2.16)

= i

∫
dp0

2π

∫
d3p

(2π)3

1

p0 + ω~p

1

p0 − ω~p
e−ip0(x0−y0)+i~p·(~x−~y) (2.17)

Now if we look at the integral, we see that there are poles when p0 = ±ω~p. The correct way to think about
this is to imagine it as an integral in the complex p0 plane, and we then have a pole. To actually perform the
integral, we need to specify how we go around the poles; different ways of going around the poles will give us
different answers.

There are two steps; first let’s say that x0 − y0 > 0; in the case we must complete the contour below for
the integral to converge. We are not done yet; to get the second bit of information, we should recall that
path integrals only make since if we formulate them in Euclidean signature. This helps; let’s imagine that we
formulated the whole thing in Euclidean time all along. Recall from (1.7) that the Wick rotation to Euclidean
time and frequency is

t = −iτ p0 = ipE0 (2.18)

This means that if we were working in Euclidean time all along, we would have done the p0 integral up and
down the imaginary axis. This tells us which way to complete the integral, as only one pole prescription (one
up, one down) is compatible with this.

Now we can do the integral. We pick up the contribution from the +ω~p when x0 − y0 > 0, and the answer is

DF (x, y) =
(−2πi)i

2π

∫
d3p

(2π)3

1

2ω~p
e−iω~p(x0−y0)+i~p·(~x−~y) x0 > y0 (2.19)

Similarly, if x0 < y0 we close the integral the other way and find

DF (x, y) =
(2πi)i

2π

∫
d3p

(2π)3

1

−2ω~p
e+iω~p(x0−y0)+i~p·(~x−~y) x0 < y0 (2.20)
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Figure 1: Circling poles in the complex frequency plane.

This is it: we have done the hard work in calculating the time-ordered correlation function, also called the
Feynman propagator. The spatial integral can be done, but it involves a bit of work with Bessel functions
and I may assign it as a homework.

A convenient way to summarize this business with the pole is to write the Green’s function in momentum
space as

D̃F (p) =
i

p2 −m2 + iε
(2.21)

where ε is a tiny number that tips the contour slightly upwards. This is called the Feynman prescription.

To summarize: path integrals give us time-ordered correlation functions. If ever we are confused about how
to go around poles, then we should remember that the path integral secretly only makes sense in Euclidean
signature; this typically helps.

2.3 Higher-point functions in the free theory

We just computed the two-point functions. However, one can of course compute higher point functions using
just the same idea: e.g. say you want

〈0|Tφ(x1)φ(x2)φ(x3)φ(x4)|0〉 (2.22)

Just as in (2.7), we determine this by taking functional derivatives of Z[J ]:

〈0|Tφ(x1)φ(x2)φ(x3)φ(x4)|0〉 = (−i)4 1

Z0

4∏
i=1

δ

δJ(xi)
Z[J ] (2.23)

However, because Z[J ] is Gaussian, the resulting answer is just different combinations of DF (x, y), e.g. you
can work out:

〈0|Tφ(x1)φ(x2)φ(x3)φ(x4)|0〉 = (−i)4 (DF (x1, x2)DF (x3, x4) +DF (x1, x3)DF (x2, x4) +DF (x1, x4)DF (x2, x3))
(2.24)
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Figure 2: Different ways to draw propagators in Wick’s theorem.

In other words, you draw propagators between all possible pairs of points. It should be clear that this works
for any number of insertions; this is called Wick’s theorem.
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Figure 3: Schematic plots of the spectral representation in interacting theories.

3 Interacting theories

Next, we would like to study interacting quantum field theories. You have encountered an example of one
such already, the λφ4 theory:

S[φ] =

∫
d4x

(
−1

2
(∂φ)2 − m2

2
φ2 − λ

4!
φ4

)
(3.1)

This describes a field theory where the particles that are captured by φ can interact or scatter off of each
other, and where roughly speaking the probability for this scattering to occur is given by λ.

The first thing to note is that in general we simply cannot solve interacting field theories. In this course we
will instead use the fact that we can solve free quantum field theories and try to solve interacting quantum
field theories order by order in the interaction strength (i.e. in λ above). This is called perturbation theory.
Sometimes it is a good guide to the physics, and sometimes it isn’t.

Before plunging in, let us understand the sorts of things that can happen in interacting quantum field theory
by considering again our friend 〈Tφ(x)φ(y)〉. Denote by DF (x, y;M2) the Feynman propagator for a free
scalar field of mass M ; then it turns out (see Chapter 7.1 of [2]) that in any Lorentz-invariant theory we can
write the 2-point function in the Kallen-Lehmann spectral representation as:

〈Tφ(x)φ(y)〉 =

∫ ∞
0

dM2

2π
ρ(M2)DF (x, y;M2) (3.2)

ρ(M2) is called the “spectral density” and roughly tells you “what are the masses of states that φ is creating
from the vacuum?” For example, if we were doing a free scalar field, then we would find that

ρfree(M2) = 2πδ(m2 −M2) (3.3)

i.e. we create just a single massive state, which is the single particle state of a single φ particle. On the other
hand, imagine that you study an interacting theory, e.g. the λφ4 theory above: we then get something much
more interesting, e.g. as below: This takes the form

ρinteracting(M2) = 2πZδ(m2 −M2) + other things (3.4)

Note that the weight of the delta function has changed: as you now have some other probability to make
other things, the probability to create the single-particle state has been reduced.
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Note that whenever Z is finite, it is at least true that we still create a particle. What if Z drops to zero?
Then there is no probability that the φ field will create a physical particle. This is what happens in QCD
due to confinement, as you will see in due course.

3.1 LSZ Reduction Formula

From now on we assume that the Z appearing in the formula above is finite. We would now like to understand
how to compute scattering amplitudes: e.g. we would like to understand the question: if you smash together
two protons very hard, then what is the probability that a Higgs boson comes out? To do this we need to
make a connection between matrix elements of “single-particle states” (e.g. 2 protons, 1 Higgs, etc.) and
things that we know how to compute (i.e. time-ordered correlation functions). This connection happens
through the LSZ Reduction Formula. My treatment follows that in Chapter 5 of [3].

I will work everything out in an example from the theory above, and we will consider doing 2− 2 scattering.
So we need to prepare an initial and a final state. As we are discussing states, let me now return to the
canonical formalism, where we have in the Heisenberg picture:

φ(~x, t) =

∫
d3p

(2π)3

1

2ω~p

(
a~pe
−ip·x + a†~pe

+ip·x
)

pµ = (ω~p, ~p) (3.5)

It is easy enough to solve this for a~p to get:

a~p =

∫
d3xeip·x (i∂tφ(x) + ω~pφ(x)) (3.6)

= i

∫
d3xeip·x

←→
∂t φ(x) (3.7)

where this two-headed arrow represents f
←→
∂ g = f∂g − (∂f)g. Note that in an interacting theory this a

depends on time.

For technical reasons, we will want to have wave-packets, i.e. we imagine some momentum envelope

f1(~k) ∼ exp

(
− (~k − ~k1)2

4σ2

)
(3.8)

and we then construct an operator that is a momentum-smeared version of the usual creation operator:

a†1 ≡
∫
d3kf1(~k)a†~k

(3.9)

Now in the free theory, we know that we create an initial state by acting with the creation operators. We will
simply assume that in the interacting theory we create an initial state by acting with the creation operator
in the distant past, and that this does what we want up to a renormalization factor Z: i.e. to make an initial
state of one particle in a wave-packet around ~k1, we write

|initial packet;~k1〉 =
1√
Z

lim
t→−∞

a†1|0〉 (3.10)

It may not be clear, but this factor Z is the same as the one that I introduced earlier. We will be interested
in an initial state of say two particles:

|i〉 = lim
t→−∞

1

Z
a†1a
†
2|0〉 (3.11)

Similarly, the final state is made out of operators that are defined at t = +∞:

|f〉 = lim
t→+∞

1

Z
a†1′a

†
2′ |0〉 (3.12)
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The amplitude that we are looking for is 〈f |i〉, i.e.

〈f |i〉 =

(
1√
Z

)4

〈0|Ta1′(+∞)a2′(+∞)a†1(−∞)a†2(−∞)|0〉 (3.13)

Note that everything is time-ordered anyway; thus we can stick a “T” for time-ordering in there with no
issues.

I now want to express this amplitude in terms of the field φ(x). To do this, let us first derive an equation
relating a1(t = +∞) to a1(t = −∞). We write

a†1(+∞)− a†1(−∞) =

∫ +∞

−∞
dt∂ta

†
1(t) (3.14)

=

∫
d3kf1(~k)

∫
d4x∂t

(
e−ik·x

(
−i∂tφ(x) + ω~kφ(x)

))
(3.15)

= −i
∫
d3kf1(~k)

∫
d4xe−ik·x

(
∂2
t + ω2

~k

)
φ(x) (3.16)

= −i
∫
d3kf1(~k)

∫
d4xe−ik·x

(
∂2
t + ~k2 +m2

)
φ(x) (3.17)

= −i
∫
d3kf1(~k)

∫
d4xe−ik·x

(
∂2
t −
←−
∇2 +m2

)
φ(x) (3.18)

= −i
∫
d3kf1(~k)

∫
d4xe−ik·x

(
∂2 +m2

)
φ(x) (3.19)

Here we use the definition of the creation operator from the field; then we use the Fourier transform to trade
the momentum for a spatial gradient, and then use the fact that the wave-packets are localized to integrate
by parts with impunity. We end with the wave operator acting on the field. Note that for a free field this is
zero by the equations of motion; for an interacting field it is not. We conclude with the following formula

a†1(−∞) = a†1(+∞) + i

∫
d3kf1(~k)

∫
d4xe−ik·x(∂2 +m2)φ(x) (3.20)

There is a corresponding expression for the annihilation operator:

a1(+∞) = a1(−∞) + i

∫
d3kf1(~k)

∫
d4xe+ik·x(∂2 +m2)φ(x) (3.21)

Now insert these expressions into (3.13): here we see the magic of time-ordering: every a(−∞) is sent to
the right and annihilated against the vacuum ket. Similarly every a†(+∞) is sent to the left and annihilated
against the vacuum bra. The wave packets have done their magic; we now set them all equal to delta functions
f1(~k) = δ(3)(~k− ~k1). Thus the full answer for the amplitude (where I generalize now to n in-particles and n′

out-particles) becomes

〈f |i〉 = in+n′
∫
d4x1Z

− 1
2 e−ik1·x1(∂2

1 +m2) · · · d4x1′e
+ik1′ ·x1′Z−

1
2 (∂2

1′ +m2) · · · 〈0|T (φ(x1)φ(x2) · · ·φ(x′1)φ(x′2) · · · |0〉

(3.22)
This is the LSZ reduction formula, relating matrix elements to time-ordered n-point functions. Let’s express
it in momentum space, where it is:

n∏
i=1

i
√
Z

k2
i −m2

n′∏
i=1

i
√
Z

k2
i′ −m2

〈f |i〉 = 〈0|φ(k1)φ(k2) · · ·φ(k′n)|0〉 (3.23)

where the right-hand side is understood to be the Fourier transform of the time-ordered correlation function.
In words: to calculate the transition amplitude (which is the physical thing), you should Fourier transform
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the correlation function, and then put all the momentum close to their “on-shell values” (i.e k2
i ∼ m2). In

that kinematic regime the correlation function should develop a pole so that it looks like the left-hand side;
the coefficient of that pole is the transition amplitude you are looking for.

Whew. We now move on to actually calculating the multi-point function.

3.2 Perturbation theory and Feynman diagrams

We now understand that to calculate transition amplitudes, we should compute correlation functions in
interacting field theories, e.g. this one:

S[φ] =

∫
d4x

(
−1

2
(∂φ)2 − m2

2
φ2 − λ

4!
φ4

)
(3.24)

From the previous section, we understand that if we can compute the generating functional Z[J ]

Z[J ] ≡
∫

[Dφ] exp

(
iS[φ] + i

∫
d4xJ(x)φ(x)

)
(3.25)

and take functional derivatives then we will obtain the required correlation functions. There is no hope of
doing this exactly for all λ; instead we will expand order by order in λ. The first thing to do is to expand
the action as

S[φ] = S0[φ] +

∫
d4xL1(φ(x)) (3.26)

with S0 the free action and L1 the interacting part: in our case L1(φ) = λ
4!φ

4. Now we will do a trick; notice
that every time you have a φ, you can replace it with a functional derivative with respect to J . Thus we can
write

Z[J ] =

∫
[Dφ] exp

(
iS0[φ] + i

∫
d4x (L1(φ(x)) + J(x)φ(x))

)
(3.27)

=

∫
[Dφ] exp

(
i

∫
d4xL1

(
−i δ

δJ(x)

))
exp (iS0[φ] + iJ(x)φ(x)) (3.28)

= exp

(
i

∫
d4xL1

(
−i δ

δJ(x)

))
Z0[J ] (3.29)

where Z0[J ] is the generating functional for the free quantum field theory. We calculated this before. We
find then

Z[J ] = Z0[0] exp

(
i

∫
d4xL1

(
−i δ

δJ(x)

))
exp

(
−1

2

∫
d4xd4yJ(x)DF (x, y)J(y)

)
(3.30)

Here I have absorbed the functional determinant into the object Z0[0].

In particular, if we specialize to the λφ4 theory, then we can write L1 explicitly as

Z[J ] ∝ exp

(
i

∫
d4x

λ

4!

(
−i δ

δJ(x)

)4
)

exp

(
−1

2

∫
d4xd4yJ(x)DF (x, y)J(y)

)
(3.31)

We can now work out Z[J ] by taking many many functional derivatives. This turns out to organize itself
into the delightful structure of Feynman diagrams. To understand this, we basically just expand everything:
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Figure 4: Picture of how functional derivatives act and representation in terms of Feynman diagram.

expand L1 in powers of the coupling λ and expand the free partition function in powers of the source J :

exp

(
−i
∫
d4x

λ

4!

(
−iδ
δJ(x)

)4
)

= 1− i
∫
d4x

λ

4!

(
−iδ
δJ(x)

)4

+
1

2

(
i

∫
d4x

λ

4!

(
−iδ
δJ(x)

)4
)2

+ · · · (3.32)

exp

(
−1

2
J ·D · J

)
= 1− 1

2
J ·D · J +

1

2

(
−1

2
J ·D · J

)2

+ · · · (3.33)

where for a shorthand I am denoting

J ·D · J ≡
∫
d4xd4yJ(x)DF (x, y)J(y) (3.34)

Now we work out the product. I first work out an example to demonstrate the structure, and I then describe
the systematic rules for doing this. Examine the first non-trivial term:

− i
∫
d4x

λ

4!

(
−iδ
δJ(x)

)4
1

2

(
−1

2
J ·D · J

)(
−1

2
J ·D · J

)
(3.35)

Now each of the functional derivatives acts on one of the J ’s, and the DF ’s tie together the two J ’s that it
is attached to. We end up with something that looks like

− N

4!
iλ

∫
d4xDF (x, x)DF (x, x) (3.36)

Where it is convenient to capture this with a picture, called a Feynman diagram, where a line indicates a
propagator from x to y and a vertex indicates an insertion of the interaction λ. In a second we will discuss
the numerical prefactor N . First let’s try to understand how this works for the next term,

i

∫
d4xd4y

λ

4!

(
−iδ
δJ(x)

)4
λ

4!

(
−iδ
δJ(y)

)4
1

4!

(
−1

2
J ·D · J

)4

(3.37)

The rules should be clear: assemble four propagators and two vertices however you can. There are three
topologically distinct terms that appear, and they look like this:
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Figure 5: Three different diagrams that contribute at order λ2.

Finally, I should stress that there are of course diagrams that have J ’s left over, e.g.

− i
∫
d4x

λ

4!

(
−iδ
δJ(x)

)4
1

4!

(
−1

2
J ·D · J

)4

(3.38)

Figure 6: Diagram with external J ’s.

Intuitively, you should imagine these pictures as representing movements of particles in space and time; they
can annihilate and recombine at vertices. Feynman diagrams are the basic tool in particle physics. By now
it should be clear that there are rules that give you the amplitude associated with each Feynman diagram.
In position space they are very simple:

• Each vertex comes with a factor of −i
∫
d4xλ.

• Each propagator comes with a factor of DF (x, y).

• Each external J comes with a
∫
d4xJ(x).
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We will shortly rewrite them in momentum space, as they are slightly nicer in that form.

3.2.1 Combinatorics and symmetry factors

Now let’s examine the combinatorics more carefully. From the double expansion in (3.31), we see that a
particular term takes the form

∞∑
V,P=0

1

V !

[(∫
d4x
−iλ
4!

(
−i δ

δJ(x)

)4
)]V

1

P !

[
−1

2
J ·D · J

]P
(3.39)

where V is the number of vertices and P the number of propagators. Now when you draw a picture, e.g. two
kissing bubbles, this represents several different ways of contracting functional derivatives against sources:
in other words, the same term appears a number of different times. How many? Well, there are 4! different
ways to rearrange the derivatives coming out of a vertex, there are P ! ways to rearrange the P propagators
amongst themselves, there are 2 ways to pick the two sides of a propagator, and there V ! ways to rearrange
the vertices. These factors precisely cancel all the factors in the denominator – and thus one might naively
think that there is thus no combinatorics to do at all. (Note this is why the funny 4! is in the definition of
the interaction vertex as λ

4! )

However this is not true, because we have actually overcounted. In doing that counting, we assumed that
every rearrangement of propagators and vertices would give a distinct contribution: in reality this is not true,
as they can “cancel” each other. For example, in two-kissing bubbles, note that if we switch the two sides
of the propagator and also switch the two corresponding functional derivatives at the vertex, then we get the
same contribution again. Similarly for the other side, and also for the two propagators themselves. Thus we
have overcounted by a factor of 2 · 2 · 2 = 8, and we must divide by this: thus the full diagram in this case is

iλ

8

∫
d4xDF (x, x)DF (x, x) (3.40)

This factor of 8 is called the symmetry factor S of the diagram, as it always has to do with some operation
that leaves the diagram invariant.

It is a fun exercise in pure thought to figure out the symmetry factor; I recommend doing it for several other
diagrams to get the hang of it. You will do this in a homework problem. But, to summarize: to determine
the right prefactor, figure out the correct symmetry factor and divide by it.

3.3 Connected diagrams

We now study a way to re-organize this sum over diagrams. Note that the generic contribution to Z[J ] is a
sum over several disconnected diagrams (where “disconnected” is the intuitively obvious “I can draw a line
through it and separate it into two pieces”). If I label each connected diagram by I, call the value of the
diagram CI , then the generic disconnected diagram gives a contribution

D =
1

SD

∏
I

(CI)
nI (3.41)

where nI is the number of times each connected diagram appears and SD now being a new symmetry
factor associated with rearranging the connected diagrams themselves. As we have already dealt with the
rearrangements inside each connected diagram, SD discusses rearrangements of each connected diagram as
a whole, and so is always

SD =
∏
I

nI ! (3.42)
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Thus we have

Z[J ] =
∑
{nI}

∏
I

1

nI !
(CI)

nI

=
∏
I

∞∑
nI=0

1

nI !
(CI)

nI

=
∏
I

exp(CI)

= exp

(∑
I

CI

)
(3.43)

This is very nice – it says that the total Z[J ] is the exponential of the sum over only connected diagrams.
It’s convenient to define the logarithm of the generating functional W [J ] as this sum.

iW [J ] =
∑
I

CI Z[J ] = exp (iW [J ]) (3.44)
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Figure 7: Wick’s theorem figure, repeated here to illustrate λ0 contribution to 2-2 scattering: replace 3 with
1′ and 4 with 2′.

3.4 Scattering amplitudes

Now that we have all of this technology, let’s finally use it. Imagine in this λφ4 theory we want to calculate
the 2− 2 scattering of two particles. In other words, we want to compute the amplitude:

〈f |i〉 = 〈k′1, k′2; out|k1, k2; in〉 (3.45)

From the LSZ formula we see that this is equal to:

〈i|f〉 =

(
i√
Z

)n+n′ ∫
d4x1e

−ik1·x1 · · · d4x1′e
+ik1′ ·x1′ · · · 〈0|Tφ(x1)φ(x2)φ(x′1)φ(x′2)|0〉(k2

1 −m2) · · · (k′21 −m2)

(3.46)
So now we need to calculate the four point function, which I will abbreviate as G(4)({xi}). If I also further
abbreviate

δi ≡ −i
δ

δJ(xi)
(3.47)

Then the four-point function is given by

G(4)({xi}) =
1

Z[J ]
δ1δ2δ1′δ2′Z[J ]

∣∣
J=0

(3.48)

As there are four functional derivatives acting on Z[J ], we should write down the terms in the diagrammatic
expansion of Z[J ] that contain four external J ’s, and then taking the functional derivative simply associates
each external J with an external insertion. We do this order by order: at order λ0 we find the terms in
Figure 7.

Let’s examine the Fourier transform of one of these terms, e.g. the first one is∫
d4x1e

−ik1·x1 · · · d4x1′e
+ik1′ ·x1′DF (x1, x

′
1)DF (x2, x

′
2) (3.49)

But by translational invariance, the propagator only cares about the difference between the two points, so
this can be rewritten as ∫

d4x1e
−ik1·x1 · · · d4x1′e

+ik1′ ·x1′DF (x1 − x′1)DF (x2 − x′2) (3.50)

Now notice that the sum x1 + x′1 does not enter in the expression with the propagators. I can rearrange the
thing in the exponent of the Fourier transform to read

k1′x1′ − k1x1 =
1

2
(k1 − k1′)(x1 + x′1) +

1

2
(k1 + k1′)(x1 − x′1) (3.51)
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Now the integral over the combination x1 + x′1 is easy to do, as it does not enter into the integrand. This
integral makes the whole thing proportional to a delta function

δ(4)(k1 − k′1) (3.52)

But this means that the incoming momentum is equal to the outgoing momentum: so there is no scattering!
This should make intuitive sense from the picture: the particle 1 is becoming the 1′ without doing anything.
Similar considerations apply to the other disconnected diagrams.

In general, scattering will only occur from connected diagrams; from the discussion above, this means that in
the LSZ formula we should actually use only derivatives of iW [J ], i.e.

G(4)({xi})C = δ1δ2δ1′δ2′iW [J ]
∣∣
J=0

(3.53)

W [J ] is trivial to lowest order in λ: so we see that there is no scattering at order λ0, which makes sense.

We now go to the next order in λ. Here we find one contribution that goes like picture of cross diagram.
This will contribute non-trivially to scattering: in position space, this turns out to be

G(4)({xi})C = −iλ
∫
d4yDF (x1 − y)DF (x2 − y)DF (x′1 − y)DF (x′2 − y) (3.54)

It is very useful to go to momentum space. We Fourier tranform everything using the Fourier representation
of the propagator:

DF (x− y) =

∫
d4p

(2π)4
e±ip·(x−y) i

p2 −m2
(3.55)

In this expression it is up to us how to pick the momentum in the exponent: to line up with the inverse
Fourier transform in the LSZ formula it is convenient to pick the positive exponent for the in states and
negative one for the out states. Thus I find

G(4)({xi})C = −iλ
∫
d4y

4∏
i=1

d4pi
(2π)4

expip1(x1−y)+ip2(x2−y)−ip′1(x′1−y)−p′2(x′2−y) i

p2
1 −m2

· · · i

p′22 −m2
(3.56)

There is momentum pi flowing in each leg. The integral over d4y in the vertex creates a delta function that
looks like (2π)4δ(4)(p′1 + p′2 − p1 − p2). We also see that each propagator gives us a factor of i

p2−m2 .

Now when we insert this into the LSZ formula, the integral over the x’s give more delta functions that tie the
momentum in each leg to the external momentum. Furthermore the LSZ formula provides a compensating
factor of p2 −m2 that cancels the propagator: we find at the end for the amplitude:

〈k′1, k′2; out|k1, k2; in〉 = −(2π)4δ(4)(k′1 + k′2 − k1 − k2)iλ (3.57)

I have set the factor Z in the LSZ formula to 1: it turns out there is the possibility of correcting it at O(λ2)
but we will get there in the next section. Whew. That’s it. We’ve done it. At the end of the day, the matrix
element simply goes like λ. It’s really kind of a miracle: if you built a particle accelerator and smashed
together these particles, this is actually the probability that the particles would scatter.

This was semi-excruciating, and from now on I will be far more schematic, but I wanted you to understand
how the structure works. For future reference, let me define the invariant matrix element iM as follows:

〈ki′ ; out|ki; in〉 = (2π)4δ(4)

(∑
i

ki −
∑
i′

k′i

)
iM(k) (3.58)

The point of this is just to strip off all the boring kinematic factors and extract the bit where the physics is.
In the above example we would have

iM = −iλ (3.59)

From here, hopefully it is clear how the momentum space Feynman rules work:
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• For each amplitude you want, draw some external legs. Put an arrow on each one to indicate which
way the momentum goes: have it go inwards for in states and outwards for out states.

• Draw all possible vertices that connect together four lines. Each vertex comes with a factor −iλ.

• Put a momentum on each line. If the line is external, this is the momentum of the ingoing particle.

• For each internal line, associate a factor i
p2−m2 . For each external line, associate a factor i√

Z
. This is

given the graphic name “amputating the propagator”.

• Make sure momentum is conserved at each vertex. This will fix many of the momenta, but not neces-
sarily all of them – it will leave some momenta unfixed if you have loops. Integrate over any unfixed
momenta. (We will see an example shortly).

This is it. You can now just draw pictures and multiply together factors, and not go through all of this
excruciating work again.
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Figure 8: Loops contributing to 2-2 scattering in λφ4 theory.

4 Loops and Renormalization

We now move on to one of the most fascinating and intrinsically quantum-mechanical aspects of quantum
field theory: loops. Let’s imagine calculating the scattering amplitude to the next order in λ.

4.1 Loops in λφ4 theory

At order λ2 there are three diagrams that contribute. They look like Figure 8. I may assign them as an
exercise: in lecture we will not calculate them in detail, but let us understand what form the diagrams
take. Let’s remember the definition of the Mandelstam variables: if we have 2 − 2 scattering of momenta
(p1, p2)→ (p′1, p

′
2), then these variables are defined as

s = (p1 + p2)2 (4.1)

t = (p′1 − p1)2 (4.2)

u = (p′2 − p1)2 (4.3)
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Now the first loop diagram is

D1 =
(−iλ)

2

2

∫
d4k

(2π)4

i

k2 −m2

i

(k + p1 + p2)2 −m2
(4.4)

Now: we are integrating over all k. Thus the integrand is a Lorentz-invariant function of the only other thing
that appears in the diagram, i.e. the of the momentum (p1 + p2)2 = s, and we may then write it as

D1 = (−iλ)
2
iV (s) (4.5)

What can we conclude about V (s)? Let us first revisit an awkward fact: the integral over k is over all
momenta – does the integral even converge? At large k it is determined by the following integral:

I ≡
∫

d4k

(2π)4

1

k4
(4.6)

If I denote the upper range of the momentum integral by Λ (where I will define precisely what I mean by
this in a second), we conclude that actually this diagram does not converge – it instead goes like

D1 ∼ λ2 log(Λ) (4.7)

Wow. This seems bad. Actually, it is not “bad”: like many confusing things, this divergence is secretly at
the heart of all that is fun in quantum field theory. For the next few lectures, we will try to come to terms
with this fact. Many discussions of this fact are a bit clouded by the fact that the expressions are actually
quite complicated: thus I will make a series of simplifying assumptions to capture the relevant physics, and
then you will relax these assumptions in your homework problem. First I will assume that we are scattering
these particles so hard that the Mandelstam variables s, t, u� m, are far larger than m, and we may simply
disregard the existence of m in these formulas.

Now let us carefully calculate the divergent part of V . This comes from calculating I. To do all such loop
integrals, we always follow the following procedures:

1. Wick-rotate. Note the integral is over Lorentzian four-momenta. It is simpler to rotate the time
coordinate of the momentum as:

k0 = ikE0 (4.8)

in which case a Lorentzian k2 becomes

(k2)Lorentzian = −((kE)2)Euclidean (4.9)

and the integration measure transforms as∫
d4k = i

∫
d4kE (4.10)

The integral is now

I = i

∫
d4kE
(2π)4

1

(kE)4
(4.11)

But now it is a spherically symmetric integral with respect to SO(4) rotations in four-dimensional
Euclidean space! Thus I can use the 4d Euclidean analog of polar coordinates. The key point here is
that for a spherically symmetric integrand, the integration measure becomes:∫

d4kE = Vol(S3)

∫ ∞
0

d|kE ||kE |3 (4.12)

where by |kE | I denote the magnitude of the Euclidean 4-vector kE , and where Vol(S3) is the 3d surface
area of a unit 3-sphere, which turns out to be 2π2. (See p193 of [2]) for more discussion of this.) Thus
the integral simply becomes

I =
i

8π2

∫ ∞
0

d|kE |
1

|kE |
(4.13)
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2. Regulate. This integral is divergent. We must thus cut it off at some high momenta. We will discuss
the physical significance of this procedure in a moment.

There are many ways to cut off the integral; in lectures we will simply use what is called a “hard cut-off”
and say the maximum Euclidean momenta that I will allow is that with |kE | = Λ. The divergent part
of the integral is then

Idiv =
i

8π2

∫ Λ

d|kE |
1

|kE |
=

i

8π2
log Λ (4.14)

and where this expression does not capture any other information. Thus, as claimed, the integral is
log divergent, and now we know the precise pre-factor of this divergence. This sort of cutoff is not
gauge-invariant, so you get into trouble if using it in gauge theories. Let’s keep that in mind for later.

Now let’s return: we have computed the divergent part of V (s) as defined in (4.5). But now we note that
V (s) is a dimensionless function, and in the limit where we can neglect the mass m, the only dimensionful

things entering into it are Λ and s: thus I see that V (s) = f(Λ2

s ). But we know the dependence on Λ! Thus
we see that V (s) is

V (s) = − 1

32π2
log

(
Λ2

s

)
+ const (4.15)

where the extra constant must be independent of s: for illustrative purposes, I will simply ignore it from now
on, as we are working in the large s limit and this is the sort of thing we are neglecting. Now the other two
diagrams are precisely the same with s replaced by the other Mandelstam variables t and u. We conclude
that the full set of the 1-loop diagrams is this limit is:

Done−loop = i
λ2

32π2

[
log

(
Λ2

s

)
+ log

(
Λ2

t

)
+ log

(
Λ2

u

)]
(4.16)

Ok, now that we have calculated this, let us remember the physical interpretation. To get the full matrix
element for 2− 2 scattering, we should add this to the previous “tree-level” bit. Thus we conclude that

iM(s, t, u) = −iλ+ i
λ2

32π2

[
log

(
Λ2

s

)
+ log

(
Λ2

t

)
+ log

(
Λ2

u

)]
(4.17)

Now we need to interpret this.

4.2 Coming to terms with divergences

At first glance, this is an epic disaster! We have just calculated that the scattering amplitude depends on
a parameter Λ! This is a “cut-off”, which means that we should take it to infinity, which means that the
probability for scattering together two φ particles is ∞! This is problematic. In this section I will follow the
treatment of [4].

Once we finish panicking, let us discuss a few features of this computation:

1. Something interesting has happened: while trying to solve a physics problem, the problem insisted that
you do an integral over arbitrarily high momenta. But things might happen at small scales to invalidate
the calculation: note the hubris of quantum field theory: it seems to be suggesting that you need to
know physics all the way down to arbitrarily small scales just to scatter together two φ particles? One
should not need string theory to scatter two particles – surely something is wrong.

2. Relatedly, normally physics relates one observable quantity to another observable quantity. E.g. the
ideal gas law:

PV = NkT (4.18)
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You know the temperature of a gas, and you measure how much the pressure changes when you heat
it up: two observables. However, in this case, the formula above relates an observable (the scattering
amplitude) to λ. Is λ an observable?

It is not. λ is a parameter in a Lagrangian, not something you can measure. I will thus call it the “bare
coupling” for a little while. The infinity above appeared when relating an unobservable parameter in a
Lagrangian to an observable: thus the infinity itself is not observable, and at the moment we are safe. Let’s
try to rearrange this calculation to relate one observable quantity to another, and see what we can do.

So: what is observable? Really we are trying to give λ some kind of physical meaning. Presumably in real
life if you wanted to measure λ, you would go out and scatter some particles and get some number. Let’s use
this idea to define a new physical λ, which I will call λP . In other words, go to your lab and smash together
some particles at a given energy (s0, t0, u0). Measure M at that value, and use that to define λP :

iM(s0, t0, u0) ≡ −iλP (4.19)

This is a definition! It is called a renormalization condition. Now from the theoretical calculation of the
observable M, this relates λP to our bare coupling λ:

− iλP = −iλ+ i
λ2

32π2

[
log

(
Λ2

s0

)
+ log

(
Λ2

t0

)
+ log

(
Λ2

u0

)]
(4.20)

Now we can solve this for λ in terms of λP . This is totally trivial: note that as a perturbation theory, we
assume that λP and λ are at the same order in perturbation theory, and we only work only to quadratic
order in λ and thus λP , which means it makes no difference which one we use in the second term.

λ = λP +
λ2
P

32π2

[
log

(
Λ2

s0

)
+ log

(
Λ2

t0

)
+ log

(
Λ2

u0

)]
+O(λ3

P ) (4.21)

This is totally okay to lowest order, though you may want to go home and check this for yourself. Now we
use this expression to get rid of the non-physical λ in the scattering amplitude (4.17), to find:

iM(s, t, u) = −iλP + i
λ2
P

32π2

[
log
(s0

s

)
+ log

(
t0
t

)
+ log

(u0

u

)]
(4.22)

Look! The amplitude is now finite.

This process – what we just did – is called renormalization. It should really be called the far less impressive
sounding “writing things in terms of observable quantities”.

Let’s discuss what happened:

1. We expressed our scattering amplitude in terms of only observable quantities; in the process of doing
this, the divergence vanished all by itself. Note that we did not “add anything to make it go away”: it
is simply not there in the actual observable answer. This makes sense.

2. The relationship between the unobservable λ and the physical λP involves a divergence. There is thus
a sense in which the divergence is there in a parameter in the Lagrangian, but not in any observable
quantity.

3. This did come at a small cost: we had to pick a point (s0, t0, u0) and use that point to define our
physical coupling λP . This is, in a sense, a loss of information: now we can only discuss physics relative
to that point. Reflecting on this, we will need to do this for (more or less) every divergence that appears
in our calculation.

4. Finally, this is a small cost, because once you specify this one bit of information, you can measure the
momentum dependence of the scattering amplitude, which is a non-trivial function of the momenta:
thus, there is plenty of predictive power in the theory.
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Figure 9: Feynman rules for renormalized perturbation theory (i.e. using Lagrangian (4.23))

4.3 Renormalized perturbation theory

The above is the main idea of renormalization: if you understand carefully what we did, then the conceptual
part is done. What is not yet obvious is precisely how this might work systematically (or indeed if it does
for all theories). In the rest of this section I will sketch out the framework to do this systematically for λφ4

theory, and in the next section we will learn whether or not this is always possible.

4.3.1 Counterterms and renormalization conditions

First, I note that I am going to drop the λP notation that I used above. I will instead take λ to be the
physical coupling; similarly I assume that m2 is the physical mass, and I also take Z (from LSZ) to be Z = 1
“on-mass-shell”. These statements mean nothing at the moment: I need to put mathematical meaning to
them with renormalization conditions.

However, to make the above statements work, I will instead write the Lagrangian of λφ4 theory as

L =
1

2
(∂φ)2 − 1

2
m2φ2 − λ

4!
φ4 +

1

2
δZ(∂φ)2 − 1

2
δmφ

2 − δλ
4!
φ4 (4.23)

Is this a different theory from the first one? Well, not really: what I have done is things like redefine
λ → λ + δλ, φ → φ

√
1 + δZ , etc. A better way to think about this is that I split each term into two parts,

and then I want to imagine that the second part – the “counterterm part” is something that I adjust order
by order in perturbation theory.

This theory comes with different Feynman rules: in addition to those that we know and love, we have extra
ones from the counterterms. These are shown in Figure 9.

Next, we need to establish these renormalization conditions. This is done by imagining experiments that fix
the values of several things. First, we demand that the exact two-point function of the field φ have a pole at
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Figure 10: The renormalization conditions

p2 = m2 with residue 1: ∫
d4xeip·x〈0|Tφ(x)φ(0)|0〉 =

i

p2 −m2
+ regular at p2 = m2 (4.24)

This is actually two conditions: one on the location of the pole (“weighing the particle”) and one on the
residue (...I have no pithy analogy for this condition). This condition means that we are taking the Z in the
LSZ formula to be

Z = 1 (4.25)

This should be viewed as a choice of the normalization of the scalar field φ, so its often called wave-function
renormalization.

Next, we need a renormalization condition on the coupling. We will follow what we did, and demand that
the scattering amplitude (i.e. the four-point-function with the kinematic factors stripped off, as in (3.58)) at
some kinematic region (s0, t0, u0) is equal to λ, i.e.

iM(s0, t0, u0) = −iλ (4.26)

This condition clearly depends on the choice of (s0, t0, u0). It is customary to pick this to be, say (s0, t0, u0) =
(m2, 0, 0): we actually can’t do this because we are assuming that all of these things are very large. I will
simply keep them arbitrary to keep manifest how everything enters into the calculation.

4.3.2 Determining the counterterms

Now we use the renormalization conditions to determine what the counterterms are. Let’s do the four-point
interaction first. We calculate the four-point function using the new Feynman rules. To order λ1 we find

iM(s, t, u) = −iλ− iδλ (4.27)

Now: to satisfy the renormalization condition we conclude that

δλ = 0 +O(λ2) (4.28)

26



Figure 11: Diagrams contributing to renormalization of coupling λ:

Figure 12: Diagrams contributing to renormalization of propagator

This is consistent with our intuition so far. Now we go to second order in λ: We now find:

iM(s, t, u) = −iλ+ i
λ2

32π2

[
log

(
Λ2

s

)
+ log

(
Λ2

t

)
+ log

(
Λ2

u

)]
− iδλ (4.29)

(Recall this is only correct at very large s, t, u: we will keep working in this limit for pedagogical simplic-
ity). Now we have something to do. We now impose the renormalization condition (4.26), which fixes the
counterterm, telling us that

iδλ = i
λ2

32π2

[
log

(
Λ2

s0

)
+ log

(
Λ2

t0

)
+ log

(
Λ2

u0

)]
(4.30)

This is the point of the analysis. Note that if we now use these together the amplitude becomes:

iM(s, t, u) = −iλ+ i
λ2

32π2

[
log
(s0

s

)
+ log

(
t0
t

)
+ log

(u0

u

)]
(4.31)

i.e. it is manifestly finite in terms of the renormalized (“physical”) coupling. This is of course the same
expression I wrote earlier (with the λP ), but this way of doing it should make it more obvious how to go to
higher order in perturbation theory: δλ will be corrected order by order, but it will always work.

Now we should do the same for the two-point function. This actually involves an interesting wrinkle: we
seek to keep track of how the pole shifts in perturbation theory. To do this, we need to sum an infinite set of
Feynman diagrams. Let’s try to understand the structure of corrections to the two point function. To order
λ0, we have the free result: ∫

d4xeip·x〈0|Tφ(x)φ(0)|0〉 = DF (p) (4.32)

To order λ1 we have the following corrections, whose amputated form I denote by −iΣ(p) (factor of −i for
later convenience)
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Figure 13: Infinite geometric sum contributing to corrected propagator.

At this point I should mention that there is a better definition of −iΣ(p): to extend the definition of −iΣ(p)
to all orders in perturbation theory, one should define it to be −iΣ(p) to be the sum of all 1PI diagrams,
where 1PI stands for ”one-particle-irreducible”, and where a diagram is 1PI if you cannot break it into two
by cutting a single line. See Problem Sheet 2 for further development of this.

Here we do not amputate the propagators (as we’re not doing LSZ), so the sum of these two terms is
DF (p) + DF (p)(−iΣ(p))DF (p). However we can also now consider summing up all the contributions, as
shown in Figure 13:

This is an infinite sum! Luckily it is a geometric sum:

DF (p)

∞∑
n=0

(−iΣ(p)DF (p))n = DF (p)
1

1 + iΣ(p)DF (p)
=

i

p2 −m2 − Σ(p)
(4.33)

Thus we see that actually Σ(p) (evaluated at p2 = m2) is the shift in the mass. Similarly, it is possible to

show that dΣ(p)
dp2 |p2=m2 is the shift in the residue (see Problem Sheet 2).

Thus in terms of Σ(p), the renormalization conditions (4.24) that we want to satisfy are:

Σ(p2 = m2) = 0
dΣ(p)

dp2

∣∣∣∣
p2=m2

= 0 (4.34)

Now, let’s evaluate the diagram. We find

− iΣ(p2) = −iλ1

2

∫
d4k

i

k2 −m2
+ i(p2δZ − δm) (4.35)

This loop part of the diagram doesn’t depend on p2 (the momentum in!). This this makes it quite easy to
satisfy the renormalization condition: we have

δZ = 0 δm = −λ1

2

∫
d4k

i

k2 −m2
(4.36)

I won’t carefully evaluate δm, as it depends crucially on which form of cutoff we use. If we use a hard cutoff
Λ like before, we find something like

δm ∼ λΛ2 (4.37)

With these choices, we see that we have
Σ(p2) = 0 (4.38)

to first order in λ. This is the analog of (4.31); it’s just a coincidence that it became exactly zero, if we go
to higher orders in perturbation theory like Figure 14. These diagrams give us a non-trivial dependence on
the ingoing momentum p that becomes finite after renormalization. Take a look at problem 10.3 on p345 of
Peskin if you want to see how this works in practice.

As you can see, in this example renormalization is simply bookkeeping. Is this always the case?
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Figure 14: “Sunset” diagram that contributes to δZ at O(λ2).

4.4 What theories are renormalizable and what does this mean?

We now turn to a systematic study of which theories are renormalizable. Roughly speaking, what happened
above was that for every possible divergence we added a counterterm. For every counterterm we needed a
renormalization condition; thus if we have only finitely many divergences we will need only finitely many
renormalization conditions and everything is okay: we say the theory is renormalizable. However if we have
infinitely many divergences, then we need infinitely many renormalization conditions, and then the theory
will end up with no predictive power: we would say it is non-renormalizable.

Let us now try to figure out a rule for what diagrams are divergent. Let’s generalize away from the λφ4 in 4
dimensions and consider instead the φn theory in d dimensions:

S[φ] =

∫
ddx

(
1

2
(∂φ)2 − 1

2
m2φ2 − λ

n!
φn
)

(4.39)

Now: we are first going to do some dimensional analysis. Note that we normally have

E = ~ω x = ct E = mc2 (4.40)

etc. But as we have set ~ = c = 1, energies have the same units as mass which have the same units of inverse
length. Thus any quantity has dimensions of mass raised to some power: e.g. an energy has units of [mass]

1

and a length has units of [mass]
−1

. From now on the “dimension” of a quantity denotes this power: e.g. I
might say “length has dimension −1”. Square brackets around a quantity denote its dimension.

Now the action must be dimensionless, as it appears in the exponential eiS in the path integral. As S =∫
ddxL, this means that the Lagrangian density has dimension d. We may thus figure out the dimension of

the field itself and the coupling λ:

[L] = d [φ] =
d− 2

2
[λ] = d− n

(
d− 2

2

)
(4.41)

Now let me define the “superficial degree of divergence” D of a diagram: the superficial degree of divergence
is how badly a diagram looks like it diverges, i.e. if the cutoff is Λ then the diagram looks like ΛD.

If a diagram has L loops and P propagators, then every propagator contributes a p2 in the denominator and
every loop contributes a ddp in the numerator: thus we have

D = dL− 2P (4.42)

The more loops, the worse the divergence: the more propagators, the better. In practice, the actual degree
of divergence may differ from the superficial degree: we will return to these technicalities shortly, but for now
we assume that this definition of D is a good handle on the actual divergences.

First we will derive an expression for D from dimensional analysis. Consider a diagram S with N external
legs and V vertices. What is the dimension [S] of this diagram? The dimension actually only depends on N :
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one way to understand this is to imagine that we are considering a field theory with an interaction term ηφN

in it. (Note we are not adding this term to our theory: it is just a fictitious device for dimension-counting).
The diagram might then receive a contribution that goes like η (with no extra dimensionful factors), and
thus we must have [S] = [η]. But from the dimension counting in (4.41), we conclude that

[η] = d−N
(
d− 2

2

)
(4.43)

However, another way to construct the diagram is by sewing together many propagators and vertices etc. in
the actual theory. If there are V vertices, then the most divergent part of the diagram must go (by definition)
as λV ΛD; note that any other dimensionful scales (e.g. external momenta, etc.) will only decrease the degree
of divergence. By equating the two ways of computing the dimension, we conclude that

d−N
(
d− 2

2

)
= [λV ΛD] = V [λ] +D = V

(
d− n

(
d− 2

2

))
+D (4.44)

We solve this for D to find

D = d+ V

(
n

(
d− 2

2

)
− d
)
−N

(
d− 2

2

)
(4.45)

The last term is always negative or 0 for all reasonable dimensions 4. Now we can understand that the
physics depends crucially on the sign of the thing multiplying V , which we note is simply the (inverse) mass
dimension of λ. There are three possibilities:

1. [λ] > 0, or Super-renormalizable: in this case, increasing V makes every diagram less divergent:
thus there are only finitely many divergent diagrams, period. These theories can then definitely be
renormalized for with a finite number of counterterms, and new divergences will stop happening at
sufficiently high order in perturbation theory (i.e. in V ). This tends to happen in low dimension: e.g
φ4 theory in d = 3 falls into this class.

2. [λ] = 0, or Renormalizable: in this case, the bit proportional to V vanishes. Now there are still only
finitely many divergent amplitudes, as for sufficiently large N , D is still 0. Nevertheless, we will find
more and more divergences as we go to higher orders in perturbation theory. We thus need to continue
adjusting the counterterms to arbitrarily high order.

3. [λ] < 0, or Non-renormalizable: in this case, we cannot renormalize: as we increase V , we have a
larger and larger window of N where we can have a D > 0. Thus there are infinitely many divergences,
and we cannot absorb them into finitely many counterterms.

This closes the classification of field theories; what we just did is called “power-counting renormalization”.
The key thing here is that everything is controlled by the mass dimension of the coupling: if ever it has
negative mass dimension, then the theory will be non-renormalizable. For example, if we just add a ηφ6

term to our beloved φ4 theory in four dimensions, it will not be renormalizable any more. I will discuss the
physical significance of this in the next section.

There is a last worry: does the superficial degree of divergence adequately describe the degree of divergence
of the diagram? It actually does not, for two distinct reasons:

4What, you ask, of the case d = 1, i.e. quantum mechanics? This actually confuses me: it appears that by increasing the
number of insertions N the superficial degree of divergence grows rapidly in quantum mechanics. This is against my naive
understanding, which is that quantum mechanics is actually always simple in the UV (and complicated in the IR; that’s why
the spectrum is different for every sort of potential). Thus, we have a extra credit homework assignment: explain why the
term proportional to N has a different sign for d = 1.
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Figure 15: This contains a quadratically divergent subdiagram though its superficial degree of divergence D
is 0.

1. It might overstate the divergence: this could happen if some more sophisticated effect (e.g. a symmetry)
sets the diagram to zero or reduces the divergence level. This happens in QED, for example.

2. It might understate the divergence: this happens if there is a badly divergent subdiagram, e.g. as in
Figure 15, which from the formula has D = 0 but actually has a clearly quadratically divergent bit.
This turns out to not upset the reasoning above, because it is not a “new” divergence: the counterterm
does its magic in the subdiagram.

Despite these subtleties, for most purposes the conclusions of “power-counting renormalization” give a good
physical picture as to what is happening in the actual theory, though proving it can be difficult.

4.5 A few non-renormalizable theories

Here we will try to understand what it really means to be non-renormalizable. First, let’s try to understand
what the dimension of the coupling means. More discussion of this in language very similar to that which I
use here can be found in Chapter III.2 of [4]. Let’s consider adding a non-renormalizable term like φ6 to our
usual 4d action. In 4d, [φ] = 1 and so we have:

L6 =

∫
d4x

c

M2
φ6 (4.46)

where M has dimensions of mass and c is dimensionless. The claim is that adding this term makes the theory
non-renormalizable, which means that we can no longer take the cutoff to infinity and retain predictive power.
Why is this? A clue is given by the following question: let’s imagine computing some sort of an observable –
say a scattering amplitude at energy E – and asking how it depends on on E to first order in in c. Scattering
amplitudes are (at the end of the day), probabilities, and are thus dimensionless. Thus we see that the
contribution from the φ6 term must, from dimensional analysis, take the form

iM6 ∼
c

M2
E2 (4.47)

The E2 must appear in the numerator to soak up the factor of M2 from the denominator. Thus, no matter
what, this contribution is unimportant at low-energies: but we also see that no matter what, eventually when
E ∼M perturbation theory in c will break down. Thus this theory seems to become strongly coupled in the
UV: crudely speaking, this is what non-renormalizability hints at, it says that we do not know about what is
happening in the UV: this is why we cannot extend the cutoff to infinity.

So what should one do, then, if one is handed a non-renormalizable theory? Since you cannot take the cutoff
Λ to infinity, you should take the idea of the cutoff seriously: have it hanging around your calculation, and
just try to ask questions at energies E � Λ: hopefully then the cutoff will not affect your life too much.
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This is the idea behind effective field theory, and will be more correctly developed in V. Niarchos’s course on
renormalization next term, which I encourage everyone to take.

In the meantime, however, I will introduce two of my favorite non-renormalizable theories to explain how
these ideas affect low-energy physics:

4.5.1 Pions

Pions are real-life particles that you have probably heard of: they have a mass of roughly 135 MeV, and
there are three kinds of them. We can represent them by a triplet of real scalar fields ~π(x). In a particular
limit (massless quarks), we can choose to ignore their mass and their action looks like

S =

∫
d4x

(
1

2
(∂µ~π · ∂µ~π) +

1

2F 2
π

∂µ~π · π∂µ~π · ~π + · · ·
)

(4.48)

From here we see that Fπ has dimensions of mass: it is called the pion decay constant, and in real life it is
93 MeV. Note that this coupling thus has negative mass dimension, and so the theory is non-renormalizable.
You can, however, use this theory at low energies: e.g. if you try to scatter together pions at energy E then
from here their scattering amplitude will go like

iM∼ E2

F 2
π

(4.49)

This is okay at low energies, but perturbation theory seems to break down at E ∼ Fπ, and thus from the
pion Lagrangian alone we do not know what to do.

I note, however, that in real life, we do actually know what happens: pions are actually made of quarks that
are held together by the strong interactions. At high energies, they come loose: this “coming loose” is what
made the pion theory break down, and then we need to use the full theory of the strong interactions, which
is called QCD and is renormalizable.

4.5.2 Gravity

Everyone knows about gravity. From A. Donos’s course you even know the gravitational action. It is

S =
1

16πGN

∫
d4x
√
−gR (4.50)

Let’s do something bold and reckless: let’s treat gravity as a quantum field theory. We will do this by
expanding around flat space, i.e. write

gµν = ηµν + hµν (4.51)

and then treating hµν as a quantum field. If we plug this ansatz into the action above, we find schematically
that R ∼ (∂h)2, and so we get (very schematically) something like:

S =
1

16πGN

∫
d4x(∂h)2

(
1 + h2 + h4 + · · ·

)
(4.52)

where there are actually arbitrarily many terms in h (coming, e.g., from inverting the metric, the square-root
of the determinant, etc.) and I am suppressing all indices as they are really quite bad.

Note from (4.51) that h is dimensionless, and thus GN must have mass dimension of −2: the resulting
dimensionful scale is called the Planck scale, and is 1019 GeV.

1

16πGN
≡ m2

Pl (4.53)
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To make this look more like a normal quantum field theory, let’s rescale:

ĥ = mPlh (4.54)

and we now find

S =

∫
d4x(∂ĥ)2

(
1 +

1

m2
Pl

ĥ2 +
1

m4
Pl

ĥ4 + · · ·
)

(4.55)

There is a coupling constant with negative mass dimension in the Lagrangian. Thus, gravity – viewed as a
quantum field theory – is non-renormalizable. You have probably heard that there are some difficulties with
quantizing gravity: this is what people mean. Having said that, everything is fine at low energies: it is only
at high energies (i.e. around the Planck scale) that things get difficult. Unlike in the pion case, here we do
not know what to do, due to a pesky lack of experiments, but string theory is a candidate for a quantum
theory of gravity works perfectly fine at high energies. A nice review of the effective field theory of gravity
is [5].
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5 Global symmetries in the functional formalism

Here we will briefly discuss how global symmetries work in the path integral. Recall that an example of a
theory with a global symmetry is the complex scalar field, whose action is

S[φ, φ†] =

∫
d4x

(
(∂φ)†(∂φ)−m2φ†φ

)
(5.1)

which is clearly invariant under phase rotations of the scalar field

φ→ eiαφ δφ = iαφ (5.2)

where the second equality is the infinitesimal action of the symmetry operation.

In this lecture, we will be instead more general, though maybe it is helpful to keep the complex scalar field
in mind: consider a field theory with a bunch of fields φa with an action that is invariant under a general
global symmetry, i.e. under

φa(x)→ φa(x) + εδφa(x) (5.3)

that leaves the action invariant:
S[φa + εδφa] = S[φa] (5.4)

5.1 Classical Noether’s theorem

As you are well aware, such global symmetries lead to conserved currents via Noether’s theorem. Let’s review
the classical version of this theorem (possibly in a slightly different form than you are used to). First, we
perform a trick: let us consider the variation (5.3) with a symmetry parameter that depends on x:

φa(x)→ φa(x) + ε(x)δφa(x) (5.5)

(Note: no matter what it looks like, this has nothing to do with gauge symmetry, as we have not yet discussed
gauge symmetry. This is just a trick). Now the action is not invariant under this transformation; however it is
invariant if the parameter ε is constant, which means that its variation must be proportional to a derivative.
By locality of the action5, this means:

δεS[φa] =

∫
d4xjµ(x)∂µε(x) = −

∫
d4x∂µj

µ(x)ε(x) (5.6)

where I have defined jµ to be the “thing that multiplies ∂µε”, and in the second equality I have integrated
by parts. This is, in general, not zero (why would it be?).

However, let us now imagine that the field φa obeys the equations of motion, i.e. that we are “on-shell”. In
that case the variation of the action under all variations of the field φ is zero:

δφS[φa] = 0 (5.7)

and in particular under the specific variation (5.4). This means that the right hand-side of (5.6) is zero, and
thus that

∂µj
µ(x) = 0 on− shell (5.8)

In other words, we have shown that we have a current jµ, and that the current is conserved classically, when
the fields obey the classical equations of motion. We used both the invariance of the action and the fact that
we were on-shell. This also gives you a way to compute jµ, and it is instructive to verify that it gives you
what you expect in the usual case.

5i.e. using the fact that the action is an integral of a local Lagrangian density.
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5.2 Quantum Ward identities

Now let us study this phenomenon in the quantum theory, i.e. we study the path integral

Z =

∫
[Dφa] exp (iS[φa]) (5.9)

and perform a similar operation. We consider the symmetry transformation given by (5.4) as defining a
change of variables in the path integral:

φa(x)→ φ′a(x) = φa(x) + ε(x)δφa(x) (5.10)

The first thing to note is that this is a change of variables, and thus does not alter the numerical value of
the functional integral: ∫

[Dφa] exp (iS[φa]) =

∫
[Dφ′a] exp (iS[φ′a]) (5.11)

This is always true for any change of variables, whether a symmetry operation or not. Now, because this is
a symmetry operation, you can convince yourself by discretizing the measure that the measure of the path
integral (usually) does not change6, and we have

[Dφa] = [Dφ′a] (5.12)

The action however does change a little bit: we see that we have (to first order in ε(x))

S[φ′a] = S[φa]−
∫
d4x∂µj

µ(x)ε(x) (5.13)

Putting all these things on the right-hand side, we see that we have:∫
[Dφa] exp (iS[φa]) =

∫
[Dφa]

(
1− i

∫
d4x∂µj

µ(x)ε(x) +O(ε2)

)
exp (iS[φa]) (5.14)

The 1 bit cancels: but the bit involving ∂µj
µ is precisely what we use to calculate the expectation value of

∂µj
µ from the path integral! As this must hold for any ε(x), we conclude that we must have:

〈0|∂µjµ(x)|0〉 = 0 (5.15)

In other words, the expectation value of the current in the vacuum is zero! This is part of the quantum
version of Noether’s theorem. From this, and from our classical intuition might be tempted to conclude that
∂µj

µ = 0 as an operator, i.e. it will vanish in all states. This is actually not quite true. To understand this,
let’s apply this not to the generating functional itself, but instead to the expectation value of

〈0|Tφb(x1)φc(x2)|0〉 =
1

Z[0]

∫
[Dφa]φb(x1)φc(x2) exp (iS[φa]) (5.16)

But by the arguments above, this quantity is also numerically equal to

1

Z[0]

∫
[Dφ′a]φ′b(x1)φ′c(x2) exp (iS[φ′a]) (5.17)

Where we have followed the time-honored practice of “putting primes everywhere”. Now we connect every-
thing to the unprimed variables using the symmetry transformation. We find

1

Z[0]

∫
[Dφa](φb(x1) + ε(x1)δφb(x1))(φc(x2) + ε(x2)δφb(x2))

(
1− i

∫
d4x∂µj

µ(x)ε(x) +O(ε2)

)
exp (iS[φa])

(5.18)

6A somewhat surprisingly beautiful exception to this fact arises in the case of anomalies, which happen precisely when this
statement is wrong and the measure does transform under the symmetry. It turns out that the possible ways it can transform
are very restricted. Look at Chapter 19 of Peskin.
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Setting this equal to its unprimed version, we see that everything multiplying an ε must vanish. Those terms
are

ε(x1)δφb(x1)φx(x2) + ε(x2)φb(x1)δφc(x2)− iφb(x1)φc(x2)

∫
d4xε(x)∂µj

µ(x) (5.19)

where it is all multiplied by
∫

[Dφa] exp(iS[φa]), and thus we are computing the vev of these quantities. In
other words, we have just shown that

i〈φb(x1)φc(x2)∂µj
µ(x)〉 = 〈δφb(x1)φc(x2)〉δ(4)(x− x1) + 〈φb(x1)δφc(x2)〉δ(4)(x− x2) (5.20)

(where all expectation values are time-ordered). Compare this to the case when ∂µj
µ was by itself, in (5.15):

we see that it is no longer quite conserved. In other words, if we look at correlation functions of ∂µj
µ with

other operators that are charged under the symmetry associated with jµ, then it vanishes up to delta function
terms where those operators are inserted. It should be easy to understand how this works if you insert more
operators.

This is called the Ward identity associated with the symmetry: it is the quantum manifestation of the classical
Noether’s theorem. I believe you have encountered similar things in QED, associated with the conservation
of electric charge.

Our discussion has been very abstract, so I leave to you to work out the details of how this works for a
specific symmetry (e.g. the U(1) phase rotations of the complex scalar in (5.1)).
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6 Fermions

We will now finally move beyond scalar fields. In this section we will discuss fermions from the point of
view of the path integral – to be more precise, we will only discuss Dirac fermions. Let us first review a few
aspects of Dirac fermions from the canonical point of view.

6.1 Fermions in canonical quantization

Recall from IFT that there is such a thing as a Dirac field ψ(x), whose canonical commutation results in
fermions. More precisely, one can write down the Dirac Lagrangian:

S[ψ, ψ̄] =

∫
d4xψ̄

(
i/∂ −m

)
ψ, (6.1)

the variation of which gives you the celebrated Dirac equation:(
i/∂ −m

)
ψ = 0 /∂ ≡ γµ∂µ (6.2)

In IFT ψ was then promoted to an operator that acted on the Hilbert space.

There are two things that are different about the Dirac field relative to the scalar field that we have studied:

1. ψ is actually a four-component object called a spinor, which means that under a Lorentz transformation
Λ ∈ SO(3, 1), we have an expression that looks like this:

U(Λ)†ψa(x)U(Λ) = M(Λ)abψb(x) (6.3)

where a, b run over 4 spinor indices, U(Λ) is the operator that represents the Lorentz transformation
on the QFT Hilbert space, and M(Λ) is the matrix that acts on spinor indices that is in the spin- 1

2
representation of the Lorentz group (which one can construct out of gamma matrices, see e.g. Chapter
3 of [2] if this is not familiar). Thus the Dirac field has spin 1

2 .

2. The Dirac field obeys anti-commutation relations rather than commutation relations. In other words,
the analog of the canonical commutator for the scalar field φ is the following canonical anticommutator:

{ψa(~x), ψ†b(~y)} = δ(3)(~x− ~y)δab {ψa(~x), ψb(~y)} = {ψ†a(~x), ψ†b(~y)} = 0 (6.4)

This is an important fact: it means that fermions obey Fermi-Dirac statistics. In usual quantum
mechanics this means that the wavefunction is antisymmetric as a function of fermion coordinates. In
QFT this information is encoded in the following way: if we write the Dirac field in terms of creation
and annihilation operators:

ψ(x) =

∫
d3p

(2π)3

1

2Ep

∑
s

(
as~pu

s(~p)e−ip·x + bs†~p v
s(~p)e+ip·x

)
(6.5)

Then we find that the a and b’s obey these relations:

{ar~p, as~q} = {br~p, bs~q} = (2π)3(2E~p)δ
(3)(~p− ~q)δrs (6.6)

with all other anticommutators 0. In particular, we have

{ar†~p , a
r†
~p } = 2(ar†~p )2 = 0 (6.7)

which means that we can never put two fermions with the same momentum ~p and spin r in the same
state! (This is important, as it is the only reason that all the electrons in all the atoms in the periodic
table do not all simply collapse into the lowest 1S orbital. This would probably make chemistry easier
but I feel it would be bad for the existence of complex structures).
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It turns out that these two facts that are a priori unrelated – the fact that the Dirac field has spin 1
2

and the fact that it obeys anticommmutation statistics – are actually related by the spin-statistics theorem,
which tells you that to have a Lorentz-invariant and unitary theory you must quantize spin 1

2 fields with
anticommutation relations. It is instructive to go through quantizing it the wrong way to see what happens,
as I imagine you did in IFT.

One final thing that I discuss from the canonical formalism is the form of the Hamiltonian, which turns out
to be

H =
∑
s

∫
d3p

(2π)32E~p
E~p

(
as†~p a

s
~p + bs†~p b

s
~p − 2

(
1

2

))
(6.8)

The thing of interest here is the vacuum energy bit, i.e. the last term: note that it appears with a minus
sign.

6.2 Grassman variables

Now that we have reviewed everything that we know about fermions, we now turn to what we did for scalars
in the first half of this course: we seek to get the fermion physics from the path integral. How can we do
this? It should be clear that we will need some new ingredients, as we previously did:

Integral over ordinary numbers = Commuting fields in quantum theory (6.9)

Now we need
Integral over something = Anti-commuting fields in quantum theory (6.10)

The question is: what is the something? It turns out that we will need to develop a new sort of number
called a Grassman variable. My treatment follows Section 9.5 of [2] and Chapter 44 of [3]; in particular, I
refer you to the latter for a more detailed discussion.

6.2.1 Anticommuting numbers

As in the quantum theory the resulting operators should anticommute, it seems reasonable to demand that
we want a sort of ordinary number that also anticommutes. So let us just start defining things and see how
far we can go. I define a Grassman number as an objects η, θ that anticommute, so:

θη = −ηθ (6.11)

This means that the square of any Grassman number vanishes:

θθ = −θθ = 0 (6.12)

This fact makes algebra refeshingly easy. We can multiply any Grassman numbers by normal numbers a, b in
the usual way, with all the normal rules. Note that the product of two Grassman numbers θη anti-commutes
with any other Grassman numbers: thus, for purposes of manipulation we can imagine θη to be a normal
number.

Let’s now consider a function of a single Grassman numbers f(θ). We can always Taylor expand in powers
of θ: the most general function is

f(θ) = A+Bθ (6.13)

where all the other possible terms in the Taylor expansion are zero due to Grassman-ness. This is nice and
simple. A brief aside: we are typically going to be interested in commuting functions of anticommuting
numbers: if this is the case for f , then we see that A is commuting and B is anticommuting.
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Let’s now do calculus: how do we take a derivative with respect to a Grassman number? There is a little bit
of ambiguity in whether we take the derivative from the left or the right. From the right we define

f(θ)
←−
∂θ = B (6.14)

and thus from the left we thus have
∂θf(θ) = −B, (6.15)

where we anticommuted B and θ before taking the derivative. Great, derivatives were easy. Now let’s do
integrals! Our ultimate goal is to do path integrals, so we will need to perform the analogue of

∫ +∞
−∞ dx for

an ordinary integral. So what is ∫
dθf(θ) =

∫
dθ(A+Bθ) (6.16)

The integral should be linear in f , so it should be a linear function of A and B. Its value can be fixed by
appealing to another property: in our derivation of Ward identities, Gaussian integrals, etc. we made heavy
use of shifting the integration variable, so it would be nice if we could define Grassman integration to be
invariant under this property. In other words, we want∫

dθf(θ) ≡
∫
dθf(θ + η) =

∫
dθ(A+Bη +Bθ) (6.17)

As a function of θ, the shift changes the constant term, but leaves the linear term in θ unchanged. Thus
the only possible integral that is shift-invariant is a constant times the coefficient of the linear term. For
convenience we take this constant to be 1, and so we define∫

dθ(A+Bθ) ≡ B (6.18)

Above I quietly assumed that B was commuting as I didn’t worry about the ordering of B, θ. If we instead
integrate multiple Grassman variables there is a sign ambiguity, and we will thus use the convention∫

dθ

∫
dη(ηθ) = +1 (6.19)

(i.e. we do the innermost integral first).

As the Dirac field is complex, we will also need complex Grassman numbers: as we already have access to i,
we can define complex numbers in terms of their real and imaginary parts like we do for ordinary numbers:

θ =
1√
2

(θ1 + iθ2) θ∗ ≡ 1√
2

(θ1 − iθ2) (6.20)

It’s also convenient to define complex conjugation to reverse the order of products, as for Hermitian conju-
gation of operators

(θη)∗ ≡ η∗θ∗ = −θ∗η∗ (6.21)

We may now verify that∫
dθdθ∗(θ∗θ) =

1

2

∫
(dθ1 + idθ2)(dθ1 − idθ2)

(θ1 − iθ2)(θ1 + iθ2)

2
=

∫
dθ1dθ2(θ2θ1) = 1, (6.22)

where in the last equality we used (6.19). In other words, we treat θ and θ∗ as independent variables, just as
we do for normal complex numbers.

39



Let’s now do our first Gaussian Grassman integral (where b is commuting):∫
dθ∗dθe−θ

∗bθ =

∫
dθ∗dθ (1− θ∗bθ) (6.23)

=

∫
dθ∗dθ (1 + θθ∗b) (6.24)

= b (6.25)

Now, if θ had been an ordinary complex number, this integral would have instead come out to be(∫
dθ∗dθe−θ

∗bθ

)
commuting

=
2π

b
(6.26)

The 2π doesn’t mean much – the crucial difference here is that the factor of b is in the denominator in the
normal case, rather than in the numerator as for Grassman variables. This will turn out to be of physical
significance.

6.2.2 Integrating many anticommuting numbers

We now move to having multiple Grassman variables θi, where i ∈ 1 · · ·n. We now want to understand how
changes of variables work in integration. Consider having θi and a unitary matrix Uij such that θ′i = Uijθj .
Then consider the product: ∏

i

θ′i =
1

n!
εi1i2···inθ′i1θ

′
i2 · · · θ

′
in (6.27)

=
1

n!
εi1i2···inUi1j1θj1Ui2j2θj2 · · ·Uinjnθjn (6.28)

=
1

n!
εi1i2···inUi1j1Ui2j2 · · ·Uinjnεj1j2···jn

∏
j

θj (6.29)

= (detU)
∏
i

θi (6.30)

In other words, the product of many θ’s transforms as a power of the determinant. Let us now understand
what this means for integration: consider a general integral∫

dnθ′f(θi) (6.31)

The only term that can possibly survive this integral is one which has a product of all possible θi, i.e. the
term in the expansion of f(θi) ⊃

∏
i θi. We can now write this as a product over the primed θi’s using the

expression above. We can then simply evaluate the integral; however the factor of detU−1 that we obtain
remains, leaving us with the expression:∫

dnθ′f(θi) = (detU)−1

∫
dnθf(θi) (6.32)

One way to interpret this is that the measure for Grassman integration transforms in the opposite way than
we are used to for normal commuting integration (note the factor of detU would have been in the numerator
then).

Note in particular that thisimplies that if U is unitary, then an integral of the form∫
dnθdnθ∗f(θ, θ∗) = (detU)(detU)∗

∫
dnθ′dnθ′∗f(θ, θ∗) =

∫
dnθ′dnθ′∗f(θ, θ∗) (6.33)
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and thus Grassman integration is invariant under unitary changes of variables, which is perhaps something
of a relief. Finally, consider a Hermitian matrix Bij and consider the integral∫

dnθdnθ∗ exp (−θ∗iBijθj) (6.34)

As it is Hermitian, we can diagonalize it with a unitary transformation. Call its eigenvalues bi: we then find∫
dnθdnθ∗ exp (−θ∗iBijθj) =

∫
dnθ′dnθ′∗ exp

(
−
∑
i

θ′∗i biθ
′
i

)
=
∏
i

bi (6.35)

= detB (6.36)

Again, in normal integration this determinant would have been in the denominator. We almost have every-
thing we need: the final thing that we require is a Gaussian integral in the presence of a linear term, i.e.
something of the form

I[η, η†] =

∫
dnθdnθ∗ exp

(
−θ† ·B · θ + η†θ + θ†η

)
(6.37)

where η is an external vector of Grassman numbers, and where I am moving to an obvious matrix notation
for θ. We can shift the integration variables θ → θ − B−1η, θ† → θ† − η†(B−1) to find that this simply
becomes

I[η, η†] = (detB) exp
(
+η†B−1η

)
(6.38)

This is perhaps the Fundamental Theorem of Quantum Field Theory With Fermions: it is the basic building
block for constructing Feynman rules for fermions from path integration over Grassman numbers. It is exactly
the same as for commuting numbers, except that the determinant is in the numerator rather than in the
denominator.

6.3 Fermions in the path integral

We can now use this central identity to do a path integral over fermions. The basic idea is exactly the same
as for scalars. Let us begin by considering the free theory of the Dirac fermion:

S[ψ, ψ̄] =

∫
d4xψ̄

(
i/∂ −m

)
ψ (6.39)

We now understand a bit better what ψ(x) is: it is a Grassman-valued function of spacetime. Another way
to say this is the following: pick some set of functions fn(x) that provide a complete basis of functions over
spacetime (e.g. plane waves are fine). Then we have

ψ(x) =
∑
n

ψnfn(x) (6.40)

where each ψn is a Grassman number but the fn(x) are normal commuting functions.

Now that we understand this, we can formally construct the generating functional for the free Dirac theory:

Z0[η, η̄] =

∫
[DψDψ̄] exp

(
iS[ψ, ψ̄] + i

∫
d4x

(
η̄(x)ψ(x) + ψ̄(x)η(x)

))
(6.41)

Here η and η̄ are anticommuting sources for the Dirac field. Note that there are some extra minus signs to
stress about: if we differentiate from the left (which is a convention that we will use), then we have

δ

δη(x)

∫
d4y

(
η̄(y)ψ(y) + ψ̄(y)η(y)

)
= −ψ̄(x) (6.42)

δ

δη̄(x)

∫
d4y

(
η̄(y)ψ(y) + ψ̄(y)η(y)

)
= +ψ(x) (6.43)

(6.44)
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where the minus sign in the first one comes from anticommuting the two fields to put to η on the left before
taking the derivative. By arguments that are precisely the same as in the scalar field case, we may now
conclude that the time-ordered correlation function for the fermion field is

〈0|Tψ(x1)ψ̄(x2)|0〉 = Z0[0]−1

(
−i δ

δη̄(x1)

)(
+i

δ

δη(x2)

)
Z0[η, η̄]

∣∣∣∣
η,η̄=0

(6.45)

Let us now evaluate the free theory partition function. From using the identity (6.38) and the quadratic free
fermion action, we find

Z0[η, η̄] =
(
det(i/∂ −m)

)
exp

(
−
∫
d4xd4y η̄(x)SF (x, y)η(y)

)
(6.46)

where SF is formally defined as the index of the Dirac operator:

(i/∂ −m)SF (x, y) = iδ(4)(x− y) · 14×4 (6.47)

Of course this expression is better written in Fourier space, where we have(
/p−m

)
SF (p) = i SF (p) =

i

/p−m
(6.48)

where the matrix in the denominator just means “matrix inverse” as usual. From this expression we can
now construct the two-point function of the fermion field. Plugging this expression into (6.45) and taking
derivatives, we see that we bring down a factor of SF : being very careful about the signs, we find

〈0|Tψ(x1)ψ̄(x2)|0〉 = SF (x1, x2) =

∫
d4p

(2π)4

i exp−ip·(x1−x2)

/p−m+ iε
(6.49)

where I have put back the iε for the same reason that it was there previously. This is an expression with
which you are familiar; again, we have now computed it from the path integral.

I will now take a second to discuss the business of the determinant being in the numerator in (6.46). Recall
way at the beginning that I pointed out that the zero-point energy for the Dirac field had the opposite sign
as for a scalar? This zero-point energy can actually be computed from the determinant, and the fact that it
has the opposite sign is captured (in the path integral) by the fact that the determinant is in the numerator
rather than the denominator. See Chapter II.5 of [4] for more about this.

6.4 Feynman rules for fermions: an example

I would now like to work out the Feynman rules in an example involving fermions. For simplicity let’s revisit
the scalar Yukawa theory, with a fermion of mass m, a scalar of mass M , and an interaction vertex:

S[ψ, ψ̄, φ] =

∫
d4x

(
ψ̄(i/∂ −m)ψ +

1

2
(∂φ)2 − M2

2
φ2 + gψ̄φψ

)
(6.50)

As usual, we do this by expanding the interacting partition function in powers of g in terms of the free theory
partition function:

Z[η, η̄, J ] = Z0[0] exp

(
+ig

∫
d4x

(
−i δ

δJ(x)

)(
+i

δ

δηa(x)

)(
−i δ

δη̄a(x)

))
Z0[η, η̄, J ] (6.51)

where we sum over the spinor indices a (which I have briefly restored) and where Z0 is the sum over both
the scalar and the fermion part of the free theory partition function:

Z0[η, η̄, J ] = exp

(
−
∫
d4xd4y η̄(x)SF (x, y)η(y)

)
exp

(
−1

2

∫
d4xd4yJ(x)DF (x, y)J(y)

)
(6.52)
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Figure 16: Sample diagram involving fermions

Figure 17: Sample diagram to illustrate minus signs in closed loops of fermions

It should be fairly clear that this works pretty much as you would expect: you just expand everything and
can associate a picture with term in the perturbation expansion. For example, one term arising from the
perturbation expansion is

D1 = (ig)

∫
d4xd4yd4zd4w (η̄(x)SF (x, y)SF (y, z)η(z))DF (y, w)J(w) (6.53)

which corresponds to Figure 16, where we draw a solid line to indicate a fermion and a dotted line to indicate
a scalar.

I am not going to go into much detail here, as I believe the mechanics have been worked out in your QED
course. Everything about LSZ, etc. goes through as before, where you just have to worry about all the spinor
indices and be careful with signs, but all else is as you expect. There are only two real wrinkles here.

1. Fermion lines are oriented: they have arrows on them. This is not because they are fermions, but
because they are complex fields, and so the particles are different from anti-particles: thus we must
establish a convention for them. The convention I use is that the arrow points towards the source η̄,
which you recall is the source for the field ψ. It is also important that the interaction vertex has one
arrow pointing towards the interaction and one pointing away.

2. Closed fermion loops come with a minus sign. There are various ways to see this: one way is to
realize that the determinant basically captures the physics of closed fermion loops, and its logarithm
contributes with the opposite sign as in the commuting case. A more pedestrian way is through direct
brutal evaluation of the signs involved. Consider the diagram in Figure 17:

This has a fermion loop: let’s evaluate the sign structure of (6.51), doing the abbreviation

δi ≡
δ

δη(xi)
δ̄i ≡

δ

δη̄(xi)
(6.54)

43



we have a term of the form ∫
dx1dx2δ1δ̄1δ2δ̄2 (η̄ · S · η) (η̄ · S · η) (6.55)

Now let us look at the pattern of contractions of derivatives: if we insist that the pattern be such that
the propagators form a closed loop, we always need to move an odd number of Grassman derivatives
through each other. This gives us a minus sign (and is the same physics behind the determinant).

Let me then summarize with the new physics for the Feynman rules in momentum space for fermions. I have
not dotted all the i’s7 and crossed all the t’s in deriving them, but I leave that to you as an exercise.

• Every fermion propagator comes with a factor of i
/p−m . Each propagator has an arrow on it that denotes

the flow of charge.

• For the Yukawa theory, every vertex comes with a factor of ig (for more general theories, it is easy to
figure out what the right vertex factor should be by staring at the interaction term).

• Every closed fermion loop comes with a minus sign.

I close the section on fermions with a final remark: the difficulty of doing quantum field theory really comes
from the loops. However the fact that boson and fermion loops contribute with the opposite sign suggests
a tantalizing possibility: could we make them perhaps cancel each other out? If we could argue that they
always canceled, then maybe we wouldn’t need to calculate them at all, and we could have stopped this
course after the first week. This would be a ridiculous coincidence, unless you could argue that there was a
symmetry that enforces it. This symmetry would seem to require the bosons and fermions to have all the
same masses and charges and basically the same couplings. Indeed, this is the idea behind supersymmetry,
which is a beautiful and important idea that Nature does not seem to be exploiting as much as it could be.
S. Cremonesi will teach a course on this next term.

7Ha ha.
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7 Abelian Gauge Theories

Now that we have understood fermions, we will move on to gauge theories. We warm up with Abelian gauge
theories before moving on to the full glory and beauty of non-Abelian gauge theories for the final part of the
course.

7.1 Gauge invariance

We will now first understand what a gauge symmetry is, starting from the simplest example. First consider
a theory with a global U(1) symmetry: it is nice to consider the Dirac theory to start,

S[ψ, ψ̄] =

∫
d4x ψ̄(x)(i/∂ −m)ψ(x) (7.1)

This theory is clearly invariant under a global U(1) phase rotation, which is

ψ(x)→ ψ′(x) = eiΛψ(x) ψ̄(x)→ e−iΛψ̄(x) (7.2)

I emphasize that the symmetry parameter Λ here is a constant in spacetime, which is why we call it a global
symmetry. I also want to emphasize that two field configurations that are related by the symmetry are both
physical field configurations. If ψ represents something that we integrate over in the path integral, then so
does ψ′.

Now here is an idea, which I simply state without a huge amount of motivation: let’s do something different.
Let us instead demand that we have a theory that is invariant under a symmetry where the symmetry
parameter varies in spacetime:

ψ(x)→ ψ′(x) = eiΛ(x)ψ(x) (7.3)

This is called a local symmetry, or a gauge symmetry. As I will explain later, it should probably really be
called a gauge redundancy, but I will not use that language in this course and continue to call it a gauge
symmetry. Things that are invariant under this symmetry are called gauge-invariant.

Now, let’s understand what is and is not gauge-invariant. For example: ψ(x) itself is not gauge invariant,
but it transforms under gauge transformations in a simple way (by an overall rotation).

The mass term
mψ̄′(x)ψ′(x) = mψ̄(x)e−iΛ(x)e+iΛ(x)ψ(x)→ mψ̄(x)ψ(x) (7.4)

clearly is gauge invariant. Note that it would not have been if the field and its conjugate were evaluated at
different points, as then the gauge parameter would not have canceled.

Now how about the derivative term in the action? Now we run into an issue that has to do with the local
character of the gauge transformation: note that if we try to take a derivative we find

∂µψ
′(x) = ∂µ

(
eiΛ(x)ψ(x)

)
= eiΛ(x) (i∂µΛ + ∂µ)ψ(x) (7.5)

Something very bad has happened because Λ(x) depends on space, we have picked up an extra term ∂µΛ.
There is no obvious way to get rid of this, and thus we conclude that the Dirac action as written (7.12) is
not gauge invariant.

How do we fix this? A useful analogy for GR-educated students such as yourselves is to remember that we
had a similar problem when we tried to take a derivative of a tensor and found that the resulting object
wasn’t a tensor any more, in that it had a lousy transformation under coordinate changes. To fix that, we
had to invent a new kind of derivative, the covariant derivative.
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This is a similar problem: the derivative of ψ no longer has nice gauge transformation properties. To fix it,we
will do the same thing that we did previously: we define a new object, called the gauge covariant derivative:

Dµψ ≡ (∂µ + ieAµ)ψ (7.6)

where I have introduced a new field Aµ, called the gauge field or the gauge connection. (GR students may be
tempted to compare it to the Christoffel connection: this analogy will get even closer when we do non-Abelian
gauge theories soon). I have also chosen to take out a factor e for later convenience.

We will demand that the gauge-covariant derivative of ψ has a nice gauge transformation property, i.e. for
invariance purposes let us demand:

Dµψ → D′µψ
′ = eiΛ(x)Dµψ, (7.7)

without any awkward inhomogenous piece. Let’s see what we require A′µ to do to make this happen. Ex-
panding out we have

D′µψ
′ =

(
∂µ + ieA′µ

)
eiΛ(x)ψ(x) = eiΛ(x)

(
i∂µΛ + ieA′µ + ∂µ

)
ψ(x) (7.8)

= eiΛ(x) (∂µ + ieAµ)ψ(x) (7.9)

where the last equality is our demand. We see that this will work out if and only if:

A′µ = Aµ −
1

e
∂µΛ(x) ψ′(x) = eiΛ(x)ψ(x) , (7.10)

where I have also written down the transformation property of ψ, as the two are related. This is the gauge-
transformation of Aµ: if it transforms in this way, then our gauge-covariant derivative does indeed do what
we want it to do. Note that now the following term:

ψ̄(x)γµDµψ(x)→ ψ̄′(x)γµD′µψ
′(x) = ψ̄(x)e−iΛ(x)γµe+iΛ(x)Dµψ(x) = ψ̄(x)γµDµψ(x) (7.11)

is gauge-invariant, and thus we have succeeded in taking a derivative in a gauge-invariant way. With this,
we see that we can write a fully gauge-invariantized-Dirac-action:

S[ψ, ψ̄, A]Dirac =

∫
d4x ψ̄(x)(i /D −m)ψ(x) (7.12)

where we just promote the partial to a gauge-covariant derivative. To do this, we had to invent another field
called Aµ. This is the price of gauge-invariance.

But now that we have this field Aµ, we may ask what more we can do with it. To see this, let’s first note that
Dµψ has a nice gauge-transformation property, and thus so will DµDνψ. It thus makes sense to consider the
commutator of the two derivatives:

[Dµ, Dν ]ψ = [∂µ, ∂ν ]ψ + ie([∂µ, Aν ]− [∂ν , Aµ])ψ (7.13)

= ie (pµAν − ∂νAµ)ψ (7.14)

Notice that this commutator of derivatives is (when acting on ψ) actually not a derivative at all: it is just a
number multiplying ψ. Let’s call this number ieFµν , i.e.

Fµν ≡ ∂µAν − ∂νAµ (7.15)

Fµν is called the field-strength of the gauge field. Now, purely abstractly, we know that Fµν must be gauge-
invariant. That’s because we have

[Dµ, Dν ] = ieFµν (7.16)
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Now consider acting this equation on ψ and then doing a gauge-transformation on both sides: we know how
both sides transform

eiΛ(x)[Dµ, Dν ]ψ = ieFµνe
iΛ(x)ψ (7.17)

and we can now cancel the eiΛ(x), which immediately implies that Fµν is gauge invariant. Of course we
could also simply directly use the gauge transformation property of Aµ (7.10) directly, but this more abstract
viewpoint will be useful when we get to non-Abelian gauge theories.

It is not hard to convince yourself that random derivatives of Aµ, i.e ∂µAν by itself, are actually not gauge-
invariant. So let us now try to write down the most general renormalizable gauge-invariant action involving
our new friend Aµ and ψ(x). It turns out the most general such action is

S[ψ, ψ̄] =

∫
d4x

(
−1

4
FµνFµν + ψ̄(x)(i /D −m)ψ(x) + θεαβµνFαβFµν

)
(7.18)

The first term is gauge-invariant since Fµν is gauge invariant. We have discussed the second term extensively.
The third term looks weird, perhaps – it is weird for two distinct reasons: 1. It has an ε symbol, which means
that it breaks parity and time reversal, and 2. It is a total derivative, and so does not seem to obviously
contribute to the equations of motion – but see The Uses of Instantons in S. Coleman’s Aspects of Symmetry.
We can, however, set θ to 0 if we demand that our theory be parity-invariant8 and from now on we will not
worry about it.

How about a mass term for the gauge field, e.g.

M2AµA
µ (7.19)

It is easy to see that this is not gauge-invariant, and thus one says that gauge-invariance forbids bare mass
terms for gauge fields. Thus we conclude that the most general gauge-invariant and P -invariant action with
a gauge field and a single fermion is just

S[ψ, ψ̄, A]QED =

∫
d4x

(
−1

4
FµνFµν + ψ̄(x)(i /D −m)ψ(x)

)
(7.20)

This is the action of QED. Note that we have been led to it purely from symmetry principles: there is nothing
else that we could have written down.

7.2 Some classical aspects of Abelian gauge theory

For a little while, let us focus on the theory given by just the first part of the action above. This turns out
to be ordinary Maxwell electrodynamics:

S[A]Maxwell =

∫
d4x

(
−1

4
FµνFµν

)
(7.21)

Let’s figure out the classical equations of motion: varying this action with respect to Aµ we find that these
equations of motion are just

∂µF
µν = 0 (7.22)

If we pick a time direction and write this down in Lorentz-non-invariant notation F 0i = Ei, Bi = 1
2ε
ijkFjk

then these are simply Maxwell’s equations, and thus this is the Lagrangian for free EM with no matter.

8Ok, this is not strictly true: more formally, P flips θ → −θ; however it turns out that when θ is correctly normalized it is a
periodic variable with periodicity 2π, which means that there is are two P -invariant points, one with θ = 0 and one with with
θ = π, as −π + 2π = π. This seems like a ridiculous technicality that nobody should ever worry about, except that actually a
lot of beautiful physics associated with something called a “topological insulator” arises from the θ = π point.
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Now, we should note an interesting fact: recall the Klein-Gordon equation of motion for a free scalar field

∂2φ = 0 (7.23)

This defines what is called a well-defined Cauchy problem, which means that if you pick a time t = 0 and
specify initial data φ(t = 0, ~x) as well as ∂tφ(t = 0, ~x), then you can use the equations of motion to propagate
φ forwards in time unambiguiously. This is nice.

The fundamental degree of freedom for the Maxwell equation is Aµ(x), so this is the analog of φ(x). The
above nice time evolution properties of the Klein-Gordon equation are not satisfied by the Maxwell equation.
This can be understood from staring at the components of the equation, but there is an indirect route: note
that if Aµ is a solution to the equations of motion, then so is Aµ− 1

e∂µΛ(x), where Λ is any arbitrary function
of spacetime. If we pick Λ(t, ~x) to be a function that vanishes near t = 0 but is different at late t, it is clear
that the same initial data at t = 0 can lead to two completely different Aµ’s at late time, where they differ
by a gauge transformation.

What do we do with this? It looks like our theory has no predictive power, in that knowing what happens at
t = 0 does not fix what happens at late t. We can save our classical theory by making the following assertion:

Things that are not gauge-invariant are not physical.

So it is okay that we cannot unambiguously solve for their time evolution. It is only things that are gauge-
invariant – in this case, the components of Fµν – that are physical, and you know from your elementary EM
course that there is absolutely no issue solving for their time evolution.

Let’s be a bit more explicit. Writing Fµν = ∂µAν − ∂νAµ, we find

∂µ (∂µAν − ∂νAµ) = 0 (7.24)

As mentioned earlier, this is not a well-defined problem for time evolution of Aµ. We need to fix a gauge:
one choice is Lorenz gauge:

∂µA
µ = 0 (7.25)

(You can show that any Aµ can be placed in this form by a gauge transformation). If we do this, then we
find the equation

∂µ∂
µAν = 0, (7.26)

which is now a perfectly nice wave equation that propagates all components of Aµ in time. It is also a wave
equation with no mass term: in Fourier space, we get an equation that looks like:

(ω2 − k2)Aν = 0 (7.27)

and thus the on-shell energy of a single photon is ωk = k: the photon is massless.

However, it is still not true that all components are physical, as there is a residual gauge invariance in Lorenz
gauge. I will not review here how this works, but you recall from elementary EM that for a plane wave with
momentum kµ it is the transverse components of Aµ to the momentum that are physical, and thus there are
two physical polarizations. (One way to check this is to note that only those contribute to the field strength
tensor; more formally you can find a way to fix the residual gauge invariance in Lorenz gauge).

With this classical understanding under control, we now turn to the quantum theory, where all these subtleties
turn out to play a crucial role.
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7.3 Quantizing QED

We turn now to the quantum theory. The new thing to do is to quantize the Maxwell action, i.e. we want to
perform the following path integral:

Z =

∫
[DA] exp

(
i

∫
d4x

(
−1

4
FµνF

µν

))
(7.28)

We will ultimately be interested in quantizing the theory with the fermions also included, but first we will
focus on this. As we understand in detail by now, the propagator is always equal to the inverse of the operator
appearing in the quadratic part of the Lagrangian: let us thus write this in a useful way:

S[A] =

∫
d4x

(
−1

4
(∂µAν − ∂νAµ)(∂µAν − ∂νAµ)

)
(7.29)

=

∫
d4x

1

2
(Aν∂µ∂

µAν −Aν∂ν∂µAµ) (7.30)

=

∫
d4x

1

2

(
Aµ
(
∂2ηµν − ∂µ∂ν

)
Aν
)

(7.31)

Now whenever we do a functional integral, we want to invert the differential operator that appears in the
quadratic part of the action. Thus we seek to find a photon Feynman propagator DF

µν that satisfies:(
∂2ηµν − ∂µ∂ν

)
DF
νρ(x, y) = iδµρ δ

(4)(x− y) (7.32)

There is just one problem with this: no such DF
νρ exists, because the differential operator has no inverse.

This is perhaps clear if we go to momentum space, when this equation becomes

(p2ηµν − pµpν)DF
µν(p) = −iδµν (7.33)

But the matrix on the left-hand side has many zero eigenvalues: in fact, consider acting with it on any test
function of the form pµα(p):

(p2ηµν − pµpν)pµα(p) =
(
p2pν − p2pν

)
α(p) = 0 (7.34)

Thus the operator has a non-trivial kernel and cannot be inverted.

Physically, it should be clear that the issue is arising from the gauge transformations. The point is that any
field configuration that is pure gauge

Aµ =
1

e
∂µΛ (7.35)

has field strength Fµν = 0, and thus has vanishing action. Thus when performing the path integral over
functions in this “pure gauge” direction, the action does not oscillate and nothing suppresses their contribution
to the path integral, which thus ends up diverges badly. This divergence is manifesting itself in the non-
invertibility of the differential operator.

Clearly we are doing something wrong. Recall that things that are not gauge-invariant are not physical: thus
somehow we are integrating over a bunch of non-physical stuff. Somehow we need to rearrange the integral
so that we integrate over only the physical stuff.

We do this with a trick called the Fadeev-Popov procedure, which is basically the correct quantum analog
of the gauge-fixing we did in the classical theory. Let G(A) be a function that we want to set to zero as a
gauge-fixing: e.g. if we were doing Lorenz gauge we would have

G(A) = ∂µA
µ Lorenz gauge (7.36)
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Let us now introduce the concept of a functional delta function: this is just what it sounds like, it is a map
from functions to numbers that satisfies the properties:

δ[φ] = 0, , φ(x) 6= 0 (7.37)∫
[Dφ]δ[φ] = 1 (7.38)

You can think of a functional delta function as being an infinite product of delta functions, one at each point
in space. We want to somehow stick a functional delta function, a factor of δ(G(A)), inside the functional
integral. We do this by first defining the gauge transformed field AΛ:

AΛ
µ(x) ≡ Aµ(x)− 1

e
∂µΛ (7.39)

and then considering the following very fancy way to write the number 1:

1 =

∫
[DΛ]δ

(
G(AΛ)

)
det

(
δG(AΛ)

δΛ

)
(7.40)

Note the factor of the functional determinant: this is just the Jacobian factor that you find when changing
variables in normal integrals, i.e. recall in one dimension we have the identity:

1 =

∫
dyδ(y) =

∫
dxδ(y(x))

dy

dx
(7.41)

This is the same idea.

In any case, we now insert 1 in this fancy form into the functional integral, to obtain:

Z =

∫
[DA][DΛ]δ

(
G(AΛ)

)
det

(
δG(AΛ)

δΛ

)
eiS[A] (7.42)

We now need to pick a convenient gauge-fixing function: we will pick the following:

Gω(A) = ∂µA
µ − ω(x) (7.43)

where ω is some function. It does not matter what function it is: this picking of a gauge should not affect
anything at all. However something nice about this choice is that we see that

δG(AΛ)

δΛ
=

δ

δΛ

(
∂µ

(
Aµ +

1

e
∂µΛ

)
− ω

)
=

1

e
∂2 (7.44)

And thus this determinant is independent of everything! Thus we can take it outside the functional integral
(and basically forget about it, at least in the Abelian case). We now find

Zω = det

(
1

e
∂2

)∫
[DΛ]

∫
[DA]δ

(
Gω(AΛ)

)
eiS[A] (7.45)

where I have put some ω’s in places to remind us that various things depend on ω. Now note that the action
is invariant, so we can write S[A] = S[AΛ]. Similarly, the integration measure is invariant (as it is just a
shift), and we can thus write [DA] = [DAΛ]. But now A by itself doesn’t appear anywhere in the integral!
So let us just rename AΛ → A, which we are clearly free to do, as its just a name. We then find

Zω = det

(
1

e
∂2

)∫
[DΛ]

∫
[DA]δ (Gω(A)) eiS[A] (7.46)
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Now all of the integrals over Λ have completely factored out – they just contribute an overall prefactor that
we will just call N . So we thus have

Zω = N
∫

[DA]δ (∂µA
µ − ω(x)) eiS[A] (7.47)

Now we will do one last thing – note that my notation makes it seem that Zω depends on ω, but actually
it does not, as this is just a gauge-fixing condition. It it thus completely fine to average over all ω with a
Gaussian weight with width ξ. (Why not?). We then arrive at the following form of the partition function:

Z = N ′
∫

[Dω][DA] exp

(
−i
∫
d4x

1

2ξ
ω2

)
δ (∂µA

µ − ω(x)) eiS[A] (7.48)

The point of doing this possibly rather Baroque step is to make it possible to solve the delta function
constraint in a simple way. Now that we integrate over all ω, we can interchange the order of integration and
see that actually the delta function sets ω = ∂µA

µ. Thus we find the following gauge-fixed form for the path
integral:

Z = N ′
∫

[DA] exp

(
iS[A]−

∫
d4x

1

2ξ
(∂µA

µ)2

)
(7.49)

The point of all of this was to modify the effective form of the Maxwell action to the following:

SFP[A] =

∫
d4x

(
−1

4
FµνF

µν − 1

2ξ
(∂µA

µ)2

)
(7.50)

In other words, we have simply added a gauge-fixing term to the action. Note that the slick way in which
we did it guarantees that everything is okay in the quantum theory. If we integrate by parts as before this
action becomes:

SFP[A] =

∫
d4x

1

2

(
Aµ

(
∂2ηµν −

(
1− 1

ξ

)
∂µ∂ν

)
Aν

)
(7.51)

Thus the kinetic term has been modified, and of course now we can now invert the propagator. We go to
Fourier space, and the equation to solve is then:(

−p2ηµν +

(
1− 1

ξ

)
pµpν

)
Dνρ
F (p) = iδρµ (7.52)

This sort of computation comes up again and again in field theory, so in this case I will work it out: consider
the most general form of DF . It is a tensor, and the only two tensor structures are ηµν and pµpν , so we the
answer must be of the form

Dνρ
F (p) = A(p)ηνρ +B(p)

pνpρ

p2
(7.53)

where I have taken out some factors of p to make the final thing look nicer. Now we plug this ansatz into
the equation and expand. We find

− p2A(p)δρµ + pµp
ρ

(
A(p)

(
1− 1

ξ

)
− B(p)

ξ

)
= iδρµ (7.54)

(Note taking away the gauge-fixing term corresponds to ξ → ∞, in which case there is clearly no solution).
We find that A = − i

p2 , B = − i
p2 (ξ − 1), and thus:

Dνρ
F (p) = − i

p2

(
ηµν − (1− ξ)p

µpν

p2

)
(7.55)

This is the Feynman propagator for photons, carefully derived.
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Figure 18: New Feynman rules involving photons

What is ξ? The truth is: it is a gauge-fixing parameter, and so it does not matter. You can set it to any
value you like, and you have to get the same answer for any calculation. This turns out to be guaranteed by
the Ward identity in QED – basically dotting kµ into any amplitude has to annihilate it. Thus people with
truly formidable calculational powers will keep it arbitrary, and its cancellation at the end is a good check
on the computation.

People (like me) with less formidable calculational powers will often find it convenient to set it to 1 (this is
called Feynman gauge) as this makes the photon propagator have fewer terms in it.

This is it! Now you have carefully derived the photon propagator. This is the only tricky thing: from here
we can rederive the full machinery of the Feynman rules. If we don’t have the fermion then the theory is
free; if we do have the fermion then the action is

S[ψ, ψ̄, A]QED =

∫
d4x

(
−1

4
FµνFµν + ψ̄(x)(iγµ(∂µ + ieAµ)−m)ψ(x)

)
(7.56)

and thus we have the fermion Feynman rules that we wrote down last time and the following new rules for
the photon:

• The photon propagator is − i
p2

(
ηµν − (1− ξ)p

µpν

p2

)
• The photon-electron vertex is −ieγµ.

(If you like, you can carefully derive the interaction vertex by doing the usual business with the sources, etc
– no new effects enter from the gauge field).

It is important to note that the interaction vertex came from the covariant derivative, and thus we were not
free to fix its form. This is an underlying principle: gauge symmetry fixes the possible interactions that can
happen.

In the QED course you have extensively calculated things with these Feynman rules, and now you know
where they come from.

7.4 Things that I did not do: canonical quantization and LSZ

In the interests of time, we are now going to press on to non-Abelian gauge theory. Having said that, there
are a few things that I simply omitted. The most glaring omission is that I did not carefully discuss canonical
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quantization for the photon fields. Let me say a few brief words, and you can find more details in Srednicki
chapters 54-57, and in Chapter 6 of D. Tong’s lecture notes.

You might be tempted to canonically quantize the photon field as follows:

Aµ(x) =
∑
λ

∫
d3k

(2π)32ωk

(
ελµ(~k)aλ,~ke

−ik·x + ε∗λµ (~k)a†
λ,~k
e+ik·x

)
(7.57)

where the λ runs over photon polarizations, the ελµ are polarization vectors, and the a and a† are creation
and annihilation operators, one for each photon polarization. The only issue is that not all of the states here
are physical, and we have to deal with this – all ways of doing it cut out two polariiations, leaving us with 2
physical photon polarization. I will not go into this here and refer you to Srednicki, who explains the problem
in Coulumb gauge:

∂iA
i = 0 (7.58)

which is different from Lorenz gauge in that it is not Lorentz-invariant. The end effect is that the sum over
λ only includes two spatial polarizations that are always perpendicular to ~k. I will say that the Hamiltonian
formulation of this theory can get a bit tricky, and that we really sidestepped a lot of these complications by
going through the path integral.

Once you accept this, it is not hard to go through LSZ for photons – everything goes through as before as in
(3.23), except that there are some factors of εµ floating around:

n∏
i=1

i

k2
i

n′∏
i=1

i

k2
i′
〈f |i〉 = εµ1 ε

µ
2 · · · ε

∗µ
n′ 〈0|Aµ(k1)Aµ(k2) · · ·Aµ(k′n)|0〉 (7.59)

which tells us the rule for external photon lines: which is that you simply amputate the propagator, and
in-states come with a factor of εµ(k) while out-states come with a factor of ε∗µ(k).
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8 Non-Abelian gauge theories

Now that we understand Abelian gauge theories, we are going to move on to the next and final part of this
course: non-Abelian gauge theories. They are a powerful and nontrivial generalization of the same basic idea,
and play a very important role in the Standard Model.

8.1 Non-Abelian gauge invariance

An abstract way of formulating the discussion above was the following: a gauge transformation in the Abelian
case was a map from spacetime to the group U(1), i.e. something like eiΛ(x). To be completely concrete, for
any field ψ we should specify its charge q, and then the gauge transformation acts on the field like

ψ(x)→ eiqΛ(x)ψ(x) (8.1)

(We actually only discussed things with charge q = 1, but it should be clear that you could imagine other
values for the charge of a field).

Now we will generalize the whole thing to non-Abelian gauge theory. Consider a (compact, simple) non-
Abelian group G: the construction will work for any G, but for concreteness let’s take G to be SU(N).
(In the back of my mind, I will always be imagining G = SU(2), but if your favorite group is SU(19) or
something like that don’t let me stop you). We will now try to formulate a theory that is invariant under
non-Abelian gauge transformations, which are maps U(x) from spacetime to the group G.

Let’s review a little bit of group theory: I denote an abstract set of generators of the group by T a, where the
index a runs over the Lie algebra of the group. Let me denote the dimension of the algebra by d(G) (e.g.
d(SU(N)) = N2 − 1). The T a satisfy the following equation:

[T a, T b] = ifabcT c (8.2)

where the fabc are the structure constants. Note that there is the Bianchi identity that all operations obey:

[T a, [T b, T c]] + [T b, [T c, T a]] + [T c, [T a, T b]] = 0 (8.3)

This identity together with the definition of the structure constants implies that they obey:

fadef bcd + f bdef cad + f cdefabd = 0 (8.4)

This is called the Jacobi identity.

Now there are many different representations for the group, i.e. the abstract T a can be represented by
concrete matrices. Let me denote the actual matrices in the fundamental representation of the group by little
ta. It is of course also true that

[ta, tb] = ifabctc (8.5)

e.g. for the group SU(2) we have three generators and the ti = 1
2σ

i where the σi are the Pauli matrices.

Now let us imagine having a fermion ψ that transforms in the fundamental of our SU(N) gauge group: i.e.
if U(x) ∈ SU(N), we want to have the symmetry property:

ψ(x)→ ψ′(x) = U(x)ψ(x), (8.6)

where ψ is now an N -component complex vector, as well as a spinor (so technically it has 4N components;
we are suppressing all of that information here).
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Again, we can imagine writing down the Dirac Lagrangian:

S[ψ, ψ̄] =

∫
d4xψ̄

(
i/∂ −m

)
ψ (8.7)

It is clear that this is invariant under ψ(x) → Uψ(x), ψ̄(x) → ψ̄(x)U† if U is constant; however, if U(x)
depends on space, then clearly the derivatives will not work out. The solution is clear: we now need to
construct a non-Abelian gauge-covariant derivative.

We will do this as follows: the property that we want for the non-Abelian covariant derivative is

Dµψ(x)→ D′µψ
′(x) = U(x)Dµψ(x) (8.8)

in other words, we want the whole thing to transform homogenously. From the U(1) case, it should be clear
that we will need a new object to do this: our new object is going to be the non-Abelian gauge field:

Aaµ(x) (8.9)

where a runs over the Lie algebra of the group. The covariant derivative acting on ψ is taken to be

Dµψ(x) ≡
(
∂µ − igAaµta

)
ψ(x) (8.10)

where g is a number called the gauge-coupling, and is analogous to the e that we defined in the U(1) case.
The ta are the group representation matrices in the fundamental: they are in the fundamental because I have
taken ψ to be in the fundamental. Now let us see what property we require Aaµ to have for (8.8) to work out:

D′µψ
′(x) =

(
∂µ − igA

′a
µ t

a
)
U(x)ψ(x) (8.11)

= (∂µU)ψ + U(x)∂µψ − igA
′a
µ t

aU(x)ψ(x) (8.12)

≡ U(x)
(
∂µ − igAaµta

)
ψ(x), (8.13)

where the last equality is what we want to be true. There is an interesting wrinkle here, because on the last
line U(x) is all the way on the left, whereas on the previous line it is always on the right, and because of the
non-Abelian-ness we cannot commute it through. Nevertheless, we can still solve for A

′a
µ to find

∂µU − igA
′a
µ t

aU = U(−igAaµta) → A
′a
µ (x)ta = U(x)

(
Aaµ(x)ta +

i

g
∂µ

)
U†(x) (8.14)

This is the transformation of the non-Abelian gauge field under a finite gauge transformation parametrized
by U(x). Before discussing what it means, it is instructive to also work out the infinitesimal version of the
gauge transformation. To do this we parametrize U(x) as

U(x) = exp(iαa(x)ta) (8.15)

and then work to first order in αa. The fermion transformation law (8.6) is simply

ψ′(x) = (1 + iαa(x)ta)ψ(x) (8.16)

whereas the gauge field one is slightly more intricate:

A
′a
µ (x)ta = exp

(
iαb(x)tb

)(
Aaµ(x)ta +

i

g
∂µ

)
exp (−iαc(x)tc) (8.17)

= Aaµ(x)ta + i[αb(x)tb, Aaµt
a] +

1

g
∂µα

ctc (8.18)

= Aaµ(x)ta − αbf bactcAaµ +
1

g
∂µα

ctc (8.19)
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Relabeling some indices and equating terms we find that the individual components of the gauge field trans-
form as transform as

A
′a
µ (x) = fabcAbµα

c +
1

g
∂µα

a (8.20)

So, what is going on? Here are a few important points:

1. The last term looks like the transformation of an Abelian gauge field.

2. The first term is different: what it means is that the non-Abelian gauge field points in a direction in
group space (i.e. it has an a index), and the non-Abelian transformation rotates the direction that it
points in. Let us be a bit more precise about this: Aaµ is trying to be in the adjoint. Recall that the
adjoint is a special representation. In a sense it tells us how elements of the Lie algebra themselves
transform – i.e. they are a special representation where the dimension is the same as that of the Lie
algebra itself, so if Φ is in the adjoint it has N2 − 1 components and I can write Φa. The way in which
something in the adjoint transforms is:

Φata → Φ′ata = UΦataU† (8.21)

This can be understood as a linear transformation on the components Φa.

Note from (8.14) now that the gauge field almost transforms like this, but not quite because of the
inhomogenous bit.

3. Finally, this form should make clear that the transformation of the gauge field has nothing to do with
the representation of the field it is acting on. (e.g. our ψ was in the fundamental, but that was just
for my notational convenience – it is not important). In general you will have many different fields
in different representations of a given group, but you only have one non-Abelian gauge field for all of
them.

To emphasize this, let’s compute the covariant derivative of a field Φa that is in the adjoint. In
particular, if we denote the representation matrices in the adjoint as T aG, then from (8.21) we can
deduce that the components of these matrices are themselves the structure constants

(T aG)bc = if bac (8.22)

Let me explain the notation: a tells me which element of the algebra I am talking about, whereas b
and c denote the row and column of the matrix itself. Using this expression, the covariant derivative
of a field in the adjoint is then

DµΦa = ∂µΦa − igAbµ(T bG)acΦ
c (8.23)

= ∂µΦa + gfabcAbµΦc (8.24)

where in the last equality we used the definition of the representation matrix in the adjoint. In the
same way you can construct the covariant derivative of a field in any representation of the gauge group
G. (It is interesting to note that actually the action depends only on the Lie algebra, not on the global
properties of the group).

4. As a brief aside: I will sometimes write Aµ with no superscript to mean Aµ ≡ Aaµt
a, i.e. it is a

matrix-valued (more properly, a Lie-algebra valued) vector field (more properly, a one-form) .

8.2 The Yang-Mills field-strength and action

So we have understood how to take non-Abelian covariant derivatives, and we have seen that this requires
us to introduce a non-Abelian gauge field Aaµ. We would now like to build an action out of these gauge
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fields. We will do this in pretty much the same way as in the Abelian case: in particular, let’s consider the
commutator of two covariant derivatives acting on ψ. From the above discussion, we know that under a
gauge transformation:

[Dµ, Dν ]ψ(x)→ U(x)[Dµ, Dν ]ψ(x) ≡ U(x)
(
−igF aµνta

)
ψ(x) (8.25)

i.e. there are no pesky derivative terms. Thus this object has nice transformation properties and is a natural
thing to think about. We will call it the field-strength tensor, and as the notation suggests, it is only a
multiplicative operator acting on ψ(x), not a differential one. Let’s work it out:

[∂µ − igAaµta, ∂ν − igAbνtb]ψ =
(
−ig

(
∂µA

a
ν − ∂νAaµ

)
ta − g2AaµA

b
ν [ta, tb]

)
ψ (8.26)

=
(
−ig

(
∂µA

a
ν − ∂νAaµ

)
ta − ig2AbµA

c
νf

bcata
)
ψ (8.27)

Comparing this to the definition, we see that in components the field-strength is

F aµν =
(
∂µA

a
ν − ∂νAaµ

)
+ gAbµA

c
νf

abc (8.28)

Importantly, from our previous study we know that under a gauge transformation we have

Fµν = F
′a
µνt

a = U(x)F aµνt
aU†(x) . (8.29)

Thus Fµν transforms in the adjoint. As explained above, the infinitesimal version of this transformation is

F
′a
µν = F aµν − fabcαbF cµν +O(α2) (8.30)

It is possible to check these properties explicitly by directly transforming the quantities in (8.28); there is a
non-trivial cancellation between the terms that makes this possible, and thus the precise factors of g etc. are
important. (The GR-savvy student will recall that the construction here is pretty much how we construct
the Riemann tensor in GR).

However, now that we have this object, we can construct a non-Abelian-gauge-invariant action for the gauge
field. This is essentially completely unique – just consider taking the trace of the matrix-valued field strength
squared.

SYM[A] =

∫
d4x

(
−1

2
tr (FµνF

µν)

)
(8.31)

This is the celebrated Yang-Mills action. Let’s check its properties: due to (8.29), under a gauge transfor-
mation we have

tr(F ′µνF
′µν) = tr

(
U(x)FµνU

†(x)U(x)FµνU†(x)
)

= tr(FµνF
µν) (8.32)

and so it is clearly invariant. It’s also convenient to work it out in components: we have

− 1

2
tr
(
F aµνt

aF bµνtb
)

= −1

2
F aµνF

bµνtr
(
tatb

)
(8.33)

From your group theory course, it is always possible to pick the generators of SU(N) so that we have

tr
(
tatb

)
=

1

2
δab (8.34)

which is a convention we will use – we then have that the action is

SYM[A] =

∫
d4x

(
−1

4
F aµνF

aµν

)
(8.35)

where we sum over all the indices of the gauge field. This is it. Note that since F aµν is non-linear in the field
Aµ, this is a non-trivial interacting theory already. In the next section we will study the quantum theory –
but first, let’s study a few classical aspects.
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Consider varying this action: we have

δSYM[A] =

∫
d4x

(
−1

2
F aµνδF aµν

)
(8.36)

=

∫
d4x

(
−1

2
F aµν(∂µδA

a
ν − ∂νδAaµ + g(δAbµA

c
ν +AbµδA

c
νf

abc))

)
(8.37)

=

∫
d4x

(
∂µF

aµν + gfabcAbµF
cµν
)
δAaν (8.38)

From here we can read off that the equations of motion are

∂µF
aµν + gfabcAbµF

cµν = 0 (8.39)

Note that this equation is actually quite elegant – we are trying to take the derivative of an object F aµν that
transforms in the adjoint, so this is actually the gauge-covariant divergence F aµν :

DµF
aµν = 0 (8.40)

This is the classical Yang-Mills equation. Despite the deceptive notation, it’s a very nonlinear and messy
equation.

We can of course also couple matter to these gauge fields. Let’s then recap the rules for making a gauge
theory: pick a gauge group G. Pick some matter content (e.g. some fermions ψ). Pick a representation for
the fermions to transform in. Then write down the action:

S[A,ψ, ψ̄] =

∫
d4x

(
−1

2
tr(F 2) + ψ̄

(
i /D −m

)
ψ

)
(8.41)

where the gauge covariant derivative for the fermions is

Dµψ = ∂µψ − igAaµT aψ (8.42)

and you pick the matrices T a depending on which representation you’re in. That’s it! Note that again this
is the most general renormalizable action, and it depends on only a single parameter g, the gauge coupling
(which is hidden in the covariant derivatives).

The classical equations of motion following from (8.41) are

DµF
aµν = −g

(
ψ̄γνT aψ

) (
i /D −m

)
ψ = 0 (8.43)

The new term on the right-hand side of the gauge field equation of motion can be understood as the Noether
current that you would have gotten if you had treated the gauge symmetry as a global symmetry.

Let’s just discuss a few properties of this classical theory. Note that it appears that we have N2 − 1 types of
massless gauge boson, or gluon, one for each Lie algebra element.

Next, we note that the action above is exactly the action for QCD, with N = 3 and with a sum over a bunch
of fermions called quarks. In this context we call the non-Abelian gauge fields “gluons”.

SQCD[q̄, q, A] =

∫
d4x

(
−1

2
tr(F 2) +

∑
i

q̄i
(
i /D −mi

)
qi

)
(8.44)

where in this equation i runs over the different types of quarks (up, down, charm, strange, top, bottom),
they all have different masses mi that you can look up, N = 3, and each quark is in the fundamental, i.e. qai ,
where a ∈ 1 · · · 3.
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Finally, let us study some simple solutions to the Yang-Mills equation. As the quarks are in the fundamental
they come in 3 types called color: pick a direction in this SU(3) space and call it red. Now imagine (classically)
getting one of the quarks to sit still at a point x. In that case the time-component of the current on the
right-hand side of (8.43) is a delta function, and to lowest order in g, we find something that looks like

DµF
aµt = g(ta)11δ

(3)(~x) (8.45)

The right-hand side is proportional to a particular component of the representation matrix. There are all
kinds on non-linear terms on the LHS proportional to gfabcA2, but you can show that they do not contribute
and you end up with just getting a Maxwell-type equation, which should have an inverse-square solution:

∂µF
aµt = g(ta)11δ

(3)(~x) F art ∼ 1

r2
(8.46)

This suggests that a quark should make a color electric field that falls off as 1/r2.

Physically, however, this is completely incorrect. In real life the gluons are not massless, and it is impossible
to even find an isolated quark, let alone observe that it creates a color electric field that goes like 1/r2. Note
the difference with EM: there we get more or less the right answer in the full quantum theory from just
looking at the classical equations of motion. For QCD we get completely the wrong answer: apparently the
classical theory is a terrible approximation to the quantum theory.

8.3 Quantizing non-Abelian gauge theories

Thus motivated, we turn now to the quantum theory. We will temporarily throw out the quarks and work
out the Feynman rules for pure Yang-Mills theory, i.e.

S[A] =

∫
d4x

(
−1

4
F aµνF

aµν

)
(8.47)

We turn back to a general gauge group G.

We first recall that since we have

F aµν =
(
∂µA

a
ν − ∂νAaµ

)
+ gAbµA

c
νf

abc (8.48)

this theory is no longer quadratic, and thus even before we add any matter it is already interacting. Again,
the interaction structure is completely fixed by gauge-invariance. Expanding out the action we see that we
have

S[A] =

∫
d4x

(
−1

4

(
∂µA

a
ν − ∂νAaµ + gAbµA

c
νf

abc
) (
∂µA

a
ν − ∂νAaµ + gAdµA

e
νf

ade
))

(8.49)

Thus there will be an interaction vertex that couples three A’s and one that couples four of them.

We can work out the vertices through the usual techniques, which I will not go through in detail on the board
as it is just bookkeeping. Note that this the first example we have seen of an interaction term that involves a
derivative of the field, and this means that the Feynman rule will explicitly involve the momentum in the line
connected to the vertex. I encourage you to work through the details at home (see, in particular, Exercise 2
from Week 4 for a simpler example with the same idea).

This structure is highly constrained – if you just wrote out the most general interaction there would be many
other possible terms. In particular, note that it all depends on a single parameter g.

Now that we have all the vertices worked out, we should perform manipulations similar to those that we did
for the Abelian case to derive the propagator for the gauge field. We will do precisely the same thing as we
did there: we will define a gauge-fixing function

Gaω(A) ≡ ∂µAaµ − ωa(x) (8.50)
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Figure 19: Interaction vertices for non-Abelian gauge fields
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Note that this is actually one gauge fixing function for each gluon. We further define a general gauge
transformation by exp (iαa(x)ta) and denote the gauge transform of A by α by Aα, whose components are:

(Aα)aµt
a ≡ eiα

a(x)ta
(
Aaµ(x)ta +

i

g
∂µ

)
e−iα

a(x)ta (8.51)

It is helpful to work out the infinitesimal version of this transformation, which is

(Aα)aµ = Aaµ +
1

g
∂µα

a + fabcAbµα
c = Aaµ +

1

g
Dµα

a (8.52)

where in the last term we used the formula previously derived for the covariant derivative of a field in the
adjoint (the field in this case is the gauge-transformation parameter αa). Note the difference from the Abelian
case is in the term with the fabc (relatedly, the fact that the gauge-transformation parameter αa itself has a
Lie algebra index). Just as before, we write:

1 =

∫
[Dα]δ [Gω(Aα)] det

(
δGω(Aα)

δα

)
(8.53)

and plug this whole thing into the path integral to find:

Z =

∫
[DADα]δ [Gω(Aα)] det

(
δGω(Aα)

δα

)
exp (iS[A]) (8.54)

Now we will encounter a difference. Consider the operator in the functional determinant:

δGω(Aα)

δα
=

δ

δα
(∂µ(Aα)µ − ω) (8.55)

=
δ

δα

(
∂µ

(
Aµ +

1

g
Dµα

)
− ω

)
(8.56)

=
1

g
∂µD

µ (8.57)

Recall that Dµ is the covariant derivative of a field acting on the adjoint – thus there is an A in it! In other
words, this time the determinant depends on Aµ, and so we cannot take it outside the functional integral.

However everything else goes on exactly as in the Abelian case – we integrate over all ω with a Gaussian
weighting, etc. etc. Thus we find at the end of the day

Z =

∫
[DA]det

(
1

g
∂µD

µ

)
exp

(
iS[A]− i

∫
d4x

1

2ξ
(∂µA

µ)

)
(8.58)

What about the determinant? We would like to have a useful way to represent it. Think back to two lectures
ago when we first studied Grassman integrals – then we learned that if we do an integral over a Grassman
variable, we get a determinant in the numerator. In other words, we are free to write

det (∂µD
µ) =

∫
[dcdc̄] exp

(
i

∫
d4xc̄ (−∂µDµ) c

)
(8.59)

where ca is a Grassman field that is a scalar in spacetime but is in the adjoint with respect to gauge
transformations. Note that its Grassman (so its anticommuting) but it is not a spinor. Such excitations are
called Fadeev-Popov ghosts. I will say a lot more about them in a second.

But first let’s recap: our final functional integral takes the form

Z =

∫
[DADcDc̄] exp

(
i

∫
d4x

(
1

2
tr(F 2)− 1

2ξ
(∂µA

µ)
2 − c̄(∂µDµ)c

))
(8.60)
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Figure 20: Propagator for non-Abelian gauge fields

Figure 21: Feynman rules for the ghosts

where the action is completely gauge fixed, at the costs of introducing mysterious new particles called ghosts.

So first the good news – the quadratic part of the action is just like d(G) free Maxwell actions, and the
new gauge-fixing term is diagonal in this space. So we can simply repeat the previous analysis to find the
non-Abelian gauge field propagator:

Dab
µν(p) = − i

p2

(
ηµν − (1− ξ)pµpν

p2

)
δab (8.61)

exactly the same as the Abelian one, except with an extra δab making it diagonal in color space. In this case
the choice of gauge parameter ξ = 1 is called Feynman-t’Hooft gauge.

Now we turn to the ghosts. Writing out their Lagrangian explicitly we find

Sghost[c, c̄] =

∫
d4xc̄a

(
−∂2δac − g∂µfabcAbµ

)
cc (8.62)

This is a completely normal Lagrangian – we can easily work out the ghost propagator and the interaction
vertex. The Feynman rules are shown in Figure 21.
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The ghost propagator is

Dab
ghost(p) =

i

p2
δab (8.63)

Apparently to calculate things we have to include these ghosts. Let me stress that they actually quantitatively
change things: for example, the vacuum polarization diagram for a gluon receives a contribution from a ghost
loop, which is calculable Figure.

Having said that, this is the complete set of Feynman rules. Now you can calculate anything you like in
perturbation theory: gluon-gluon scattering, etc. Unfortunately the course is almost over, so we won’t really
get to, though I hope to say some qualitative things.

Now let’s return to these ghosts. Here are some questions you may have:

1. Q. Can I make them in a particle physics experiment?

A. No, they are just fictitious objects that we made up to represent a functional determinant. Of course
they run in loops and can affect Feynman diagrams, but the construction does not permit an “external
ghost line”, so you need never worry about making a ghost at the LHC.

2. Q. Shouldn’t I be worried that they are scalar particles that are anticommuting? You mumbled something
about spin and statistics earlier.

A. Indeed, they violate the spin-statistics theorem. This is okay, because as I said earlier, they can
never be external particles.

3. Q. What are they the ghosts of?

A. Interestingly enough, this question has an answer. Recall that the gauge field has 4 components but
only 2 actual physical polarizations, meaning that 2 polarizations are spurious. Now imagine a loop –
naively these 2 spurious components want to run in the loop, but we shouldn’t let them (remember,
they are unphysical). One way to interpret the ghosts is that due to the anticommuting minus signs,
they cancel the two spurious polarizations. This is the reason the ghosts exist.

Finally, we can put back the quarks. If we do this the quark part of the action

Squark[q̄, q, A] =

∫
d4xq̄i

(
iγµ(∂µ − igAaµta)ijq

j
)

(8.64)

where I have temporarily put back the color indices i ∈ 1, · · ·N on the quarks. From here, we can read off
the quark propagator and the interaction of the quark with the gauge field:

• The propagator is the usual one, but is now diagonal in color space: Dij
F (p) = iδij

/p−m

• The interaction vertex is −igγµtaij . Note the representation matrix plays the role of tying together all
of the indices.

From these we can now calculate anything that we like.

8.4 Qualitative discussion: Non-Abelian gauge theory at long distances

These are the Feynman rules – we can now use them to calculate things. In practice, we are almost out of
time, so we will not do much quantitatively, but I will try to vaguely argue for what can happen. This ends
the precise part of the course, from now on I will be hand-wavy.
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Figure 22: Propagator for fermion transforming in fundamental

Let’s remember when we first calculated the one-loop correction to the amplitude for 2-2 scattering in λφ4

theory. We calculated the diagrams in Section 4 and found that at high energies the amplitude as a function
of s (and t,u). At large s� m it went like

iM = −iλ− i λ
2

32π2

(
log

(
s

s0

)
+ · · ·

)
(8.65)

where s0 was a renormalization point and I’ve not written down the dependence on t and u (but it is similar).
Now from staring at this, you can conclude that the interaction λ gets stronger at high energies, as increasing
s acts in the same direction as increasing λ. Also note this depends crucially on the sign of the prefactor of
the one-loop term: if it had the other sign, then increasing s would have decreased the interaction strength.
You can do a similar calculation in QED and arrive at a similar answer, QED also gets strongly interacting
in the UV.

Now let’s imagine doing a similar calculation in non-Abelian gauge theory: the goal is to understand whether
it gets stronger or weaker as we go to high energies. We need to pick some interaction process: there are many
different processes that we could pick, they should all give the same result because they are all controlled
by the same number g. So we pick the quark-quark-gluon coupling and calculate. We look at the diagrams.
There is only one at tree level, but there are several at one loop.

So now we calculate them all (see Chapter 16.5 of Peskin), then we get a result that looks like (very very
schematically)

iM = −ig + i
g3

(4π)2

(
11

3
N − 2

3
nq

)(
log

(
E

E0

)
+ · · ·

)
(8.66)

where nq is the number of quark fields, and where E is the energy flowing into the vertex. I say this is
schematic because I am being deliberately vague about what I mean by “energy flowing into the vertex”: it is
clear that there are several different energies you could pick. So actually the correct way to parametrize this
energy is to not do what I described, but to instead compute the beta function of the coupling g (again, to
be done in the course on renormalization). However this is gives you a reasonable idea of what is happening.

The crucial thing to note here is the sign! For a small enough number of quark fields nq, it looks like this
thing has the opposite sign as the φ4 theory, and so this means that the theory becomes weakly coupled – in
fact, a free theory – in the UV. This property is called asymptotic freedom: in the context of QCD, it was
first discovered by Gross, Politzer and Wilczek, for which they won the Nobel Prize in 2006. To appreciate
its importance, we should think not in the UV, but in the IR – if the interaction is weak in the UV, then it
seems to be getting stronger and stronger at low energies. So what happens?

There are a few possibilities – one thing that could happen is that the theory ends up getting Higgsed. This
happens for the SU(2) × U(1) part of the Standard Model; you have studied this in that course, so I will
discuss it no further here. I stress that you can often still understand that within perturbation theory – you
just expand around the new vacuum.

But let us assume this does not happen, and the interaction just gets stronger and stronger. Now you have
to take my work on what happens – from a renormalization group analysis it turns out that the strength of
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the interaction diverges and goes to infinity at a scale that is

ΛQCD = E0 exp

(
− 8π2

b0g2

)
(8.67)

where E0 is the renormalization point (recall our definition of the renormalized coupling g depends on this
choice of renormalization point), and b0 =

(
11
3 N −

2
3nq
)
. This is the strong-coupling scale of non-Abelian

gauge theory: at this scale we lose all hope of doing perturbation theory. This is why our classical intuition
does not work well for non-Abelian gauge theory. It is thus scale at which bound states are expected to form
– a bound state is a very non-perturbative thing.

So now we have a picture of what is happening for QCD. In the UV, we have a theory of quarks and gluons.
They interact and run around in a manner that can be understood in perturbation theory. However, if you go
to long distances, the theory becomes more and more strongly interacting. Eventually we don’t understand
perturbation theory any more, but it looks like all the quarks and gluons are bound up into bound states
that are all singlets under the gauge transformations. (If they were not singlets, they would interact with the
gauge field, which is strongly interacting, and that would be bad – therefore all bound states are singlets).
This phenomenon – where in the IR you have only gauge-singlet bound states, and no massless gauge bosons
– is called confinement.

How do we make gauge-singlets out of quarks? Schematically, there are two ways to combine fundamental
degrees of freedom into gauge singlets. We can imagine having q̄q – these are called mesons, and examples
are the pions. Or we could have εijkqiqjqk, which are gauge singlets since the determinant of an SU(3)
matrix is 1. These are called baryons, and two examples that we know and love are the proton and neutron.
I stress that these expressions are schematic things designed to capture the quantum numbers – the fields
that create mesons are not actually simple products of the quark fields, but rather products of the quark
fields surrounded by a gluon cloud.

Note that we expect all the masses of these bound states to be around ΛQCD, which is roughly 200 MeV.
Indeed the proton and neutron have masses around 938 MeV, while the pions have masses of around 135
MeV (this relative low-ness has to do with chiral symmetry breaking, which I will not discuss).

8.4.1 What are the gauge fields doing in a confined phase?

Now I will go even more qualitative. I would like to try to explain what the gauge fields are doing in the
confined phase.

Let’s first get oriented by going back to normal U(1) gauge theory, i.e. electromagnetism. Imagine having an
electron and a positron separated by a distance R. The positron makes electric field lines that come out and
go into the electron – because EM is weakly coupled, we can solve for their shape, and it is an elementary
problem in EM to show that the Coulomb energy from the interaction between the two particles goes like

E(R) ∼ e2

R
(8.68)

Now this is not what happens in non-Abelian gauge theory. Imagine pinning down a quark and an anti-quark
separated by a distance R. They make color electric fields – but what we expect to happen is that the color
electric fields do not spread out in all directions like they do in free EM. Instead they remain focused into a
tight tube called a flux tube that attaches the quark to the antiquark. This tube actually has a tension, and
so the energy is

E(R) ∼ α′R (8.69)

where I have called the tension of the flux tube α′ for some reason. But now note that you cannot separate
two quarks – if you try to pull them apart, then you pull on this flux tube and this costs infinite energy. It is
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like the two quarks are attached by a string. This is the idea of confinement. In this picture you can imagine
that a meson is a quark and an antiquark attached by a bit of string – the different vibrational modes of the
bound state are the different mesons that exist in real life.

This is pretty much as far we we will go. There are a few things you could try to do now: one promising idea
was to try to take the flux tube as the starting point: in other words, try to build a theory out of quantizing
the dynamics of flux tubes. The problem with this approach is that it always resulted in a spin-2 massless
particle, which is really annoying because if you look at the QCD spectrum there is no such particle.

Of course eventually it was realized that this theory of strings was really solving an entirely different problem,
and this is how string theory as a theory of quantum gravity was discovered. This spin-2 particle is the
graviton.
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