ManageEngine Powering IT ahead

QoS Design and Validation for Enterprise Networks

Cisco and ManageEngine Joint Webinar on designing and validating Quality of Service policies in Enterprise Networks

Ken Briley Technical Lead, Cisco Systems Don Thomas Jacob Technical Marketing Engineer, ManageEngine

1 11 11

CISCO

About ManageEngine

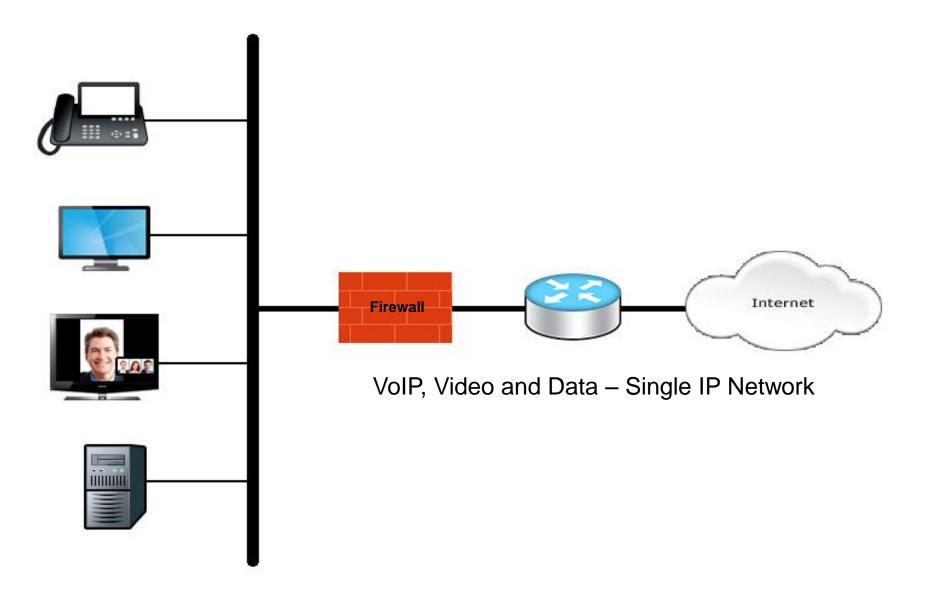
ManageEngine

Network	Servers & Applications	Desktop	ServiceDesk	Windows Infrastructure	Event Log & Compliance	Security
Network Monitoring	Server Monitoring	Desktop Management	Helpdesk	Active Directory	Windows Event Logs	Vulnerability Analysis
NetFlow Analysis	Application Perf Monitoring	Asset Management	ITIL Service Desk	SQL Server	Syslog Management	Patch Management
Network Config Mgmt	End User Experience	Remote Control	Software License Tracking	Exchange Server	Firewall Log Analyzer	Password Management

ManageEngine is an IT management vendor focused on bringing a complete IT management portfolio to all types of enterprises

Webinar Agenda

- Introduction to QoS
 - What is QoS
 - The Need for QoS
- QoS in detail Ken Briley, Technical Lead, Cisco Systems.
- QoS reports in ManageEngine NetFlow Analyzer

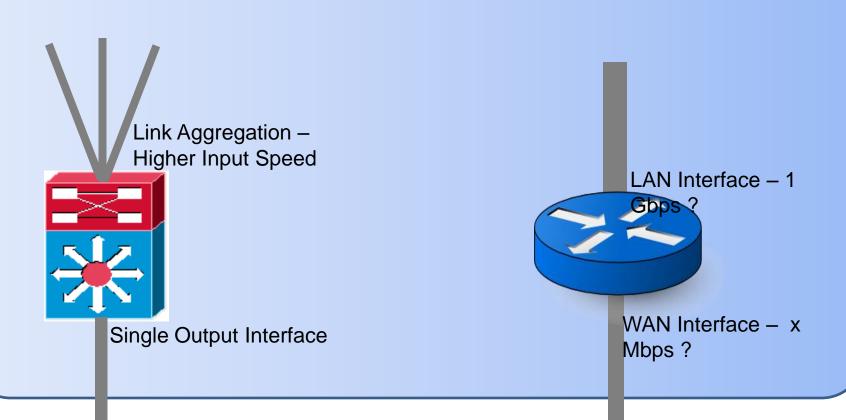

What is QoS

What is QoS

- Variety of traffic traverses the network
- You may have preference for certain type of traffic over the other eg. 'Business Critical' vs 'Other Traffic'
- A method to Optimize and Prioritize traffic on the network based on your key objectives
- Ensures delivery of business critical & delay sensitive applications at all times

ManageEngine

Converged networks

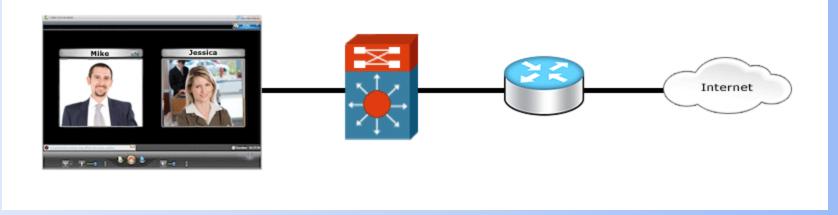


Converged networks

- Different traffic types: Data, Voice, Video Same IP network
- All traffic comes under the Best Effort: Equal chance of being delivered or dropped
- Business Critical Applications fight with applications that should have fallen under lesser priority
- App segregation through QoS for priority treatment

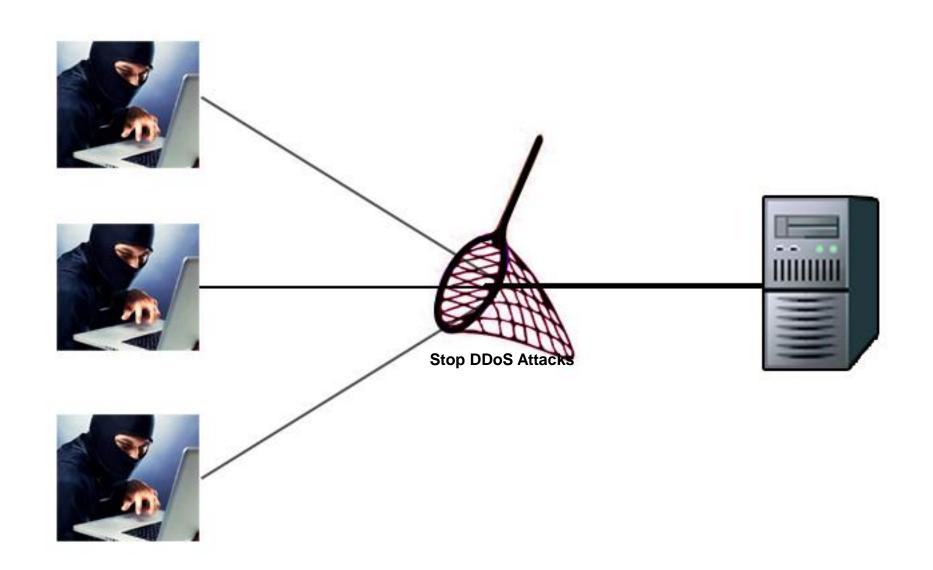
Congestion Points

- IP Networks are bound to have Congestion Points
 - LAN to WAN connections: High Speed to Low Speed
 - Multiple Input Links (Aggregation) to Single Output Link



Congestion Points

- IP Networks are bound to have Congestion Points
 - LAN to WAN connections: High Speed to Low Speed
 - Multiple Input Links (Aggregation) to Single Output Link
- Traffic can get dropped in such scenarios
- Have control on what data is dropped and where and how it is dropped


Delay Sensitive Application Delivery

- Increased usage of IP based Voice and Video for business communication
- IP based Media Traffic: Sensitive to delay and packet loss
- Ensure Delay-Sensitive applications get priority as and when needed

ManageEngine

Mitigate DoS attacks

Mitigate DoS attacks

- DoS Attack Consume resources to deny legitimate service requests
- Resource regulation ensures a resource is not over utilized by a single type of traffic
- Putting non-business applications in Scavenger Class prevents resource utilization in case of actual DoS attack
- Cisco CAT 6500 supports Microflow policing: Police traffic for each port/VLAN on a per flow basis

QoS in Detail

Enterprise QoS Design

Agenda

- Why QoS?
- QoS Design Considerations

 Classification and Marking
 Policing
 Queueing
- Application Control
 - Campus
 - WAN
- Visibility and Monitoring QoS

Why QoS? Business and Technical Drivers

New Applications and Business Requirements

Explosion of Video Apps Impact of HD Blurring of Voice/Video/Data application boundaries

New Standards and RFCs

RFC 4594

 New Platforms and Technologies New Switches, Supervisors, Linecards, features, syntax

http://www.cisco.com/en/US/docs/solutions/Enterprise/WAN_and_MAN/QoS_SRND_40/QoSIntro_40.html#wp60730

New Business Requirements Why Video?

A picture is a thousand words, Video says it all

"In person" experience

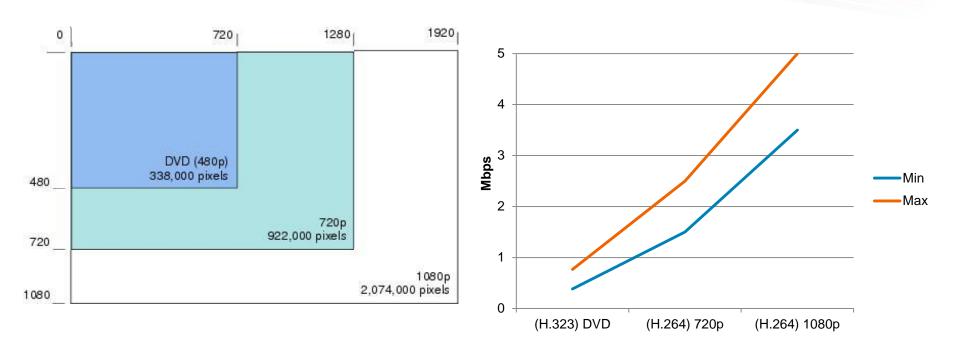
64% of communication is non-verbal¹

One third of the human cortex is dedicated to vision²

¹Kandola, Pearn "*The Psychology of Effective Business Communications in Geographically Dispersed Teams*", Cisco Systems, September 2006

r its affiliates. All rights reserved.

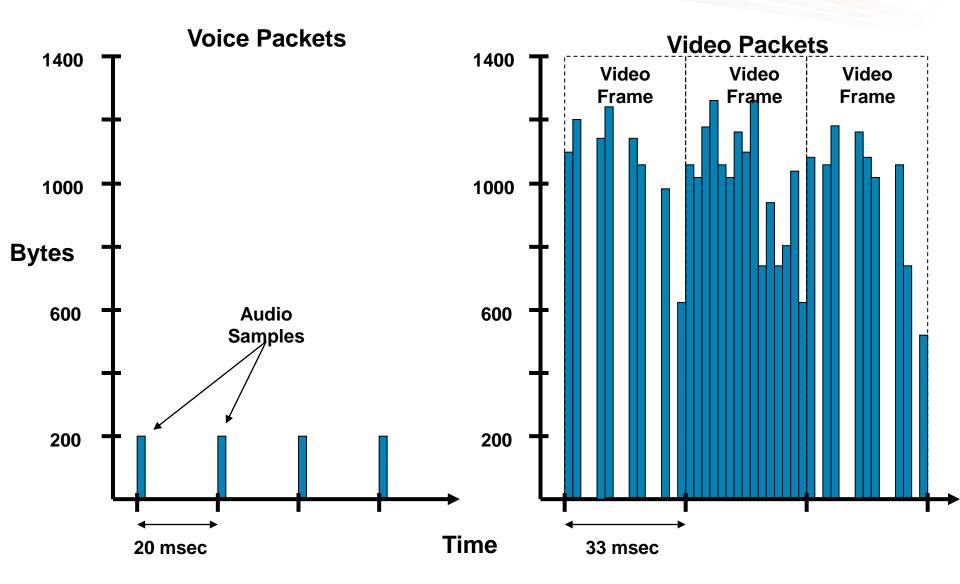
Wision Group Research, FMRIB, University of Oxford, UK

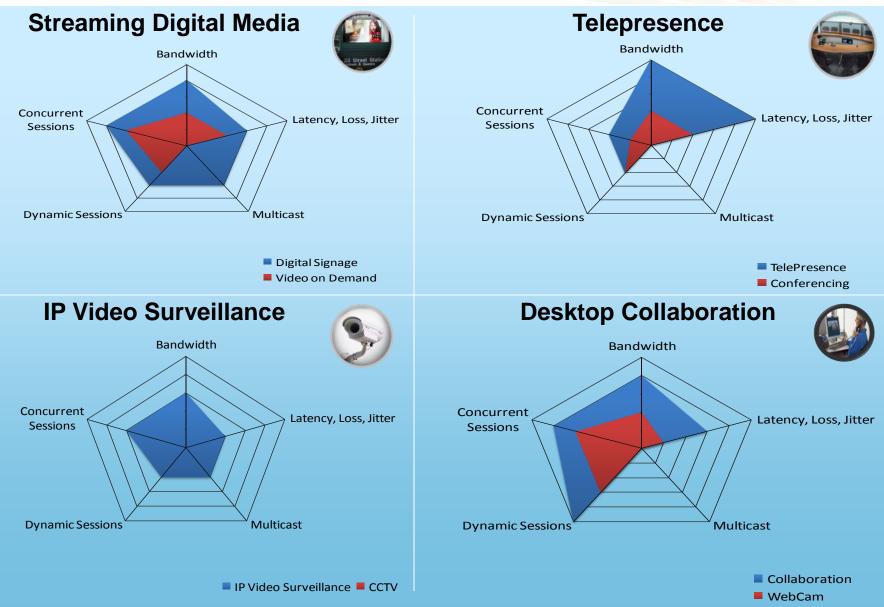

New Business Requirements Cisco Visual Networking Index Findings

- Global IP traffic will quadruple from 2009 to 2014.
- Global Internet video traffic will surpass global peer-to-peer (P2P) traffic by the end of 2010. For the first time since 2000, P2P traffic will not be the largest Internet traffic type.
- The global online video community will surpass 1 billion users by the end of 2010.
- Internet video is now over one-third of all consumer Internet traffic, and will approach 40 percent of consumer Internet traffic by the end of 2010, not including the amount of video exchanged through P2P file sharing.
- The sum of all forms of video (TV, video on demand, Internet, and P2P) will exceed 91 percent of global consumer traffic by 2014
- Advanced Internet video (3D and HD) will increase 23-fold between 2009 and 2014. By 2014, 3D and HD Internet video will comprise 46 percent of consumer Internet video traffic.
- Video communications traffic growth is accelerating. Video communications traffic will increase sevenfold from 2009 to 2014.
- Real-time video is growing in importance. By 2014, Internet TV will be over 8 percent of consumer Internet traffic, and ambient video will be an additional 5 percent of consumer Internet traffic.
- Video-on-demand (VoD) traffic will double every two and a half years through 2014. Consumer IPTV and CATV traffic will grow at a 33 percent CAGR between 2009 and 2014.

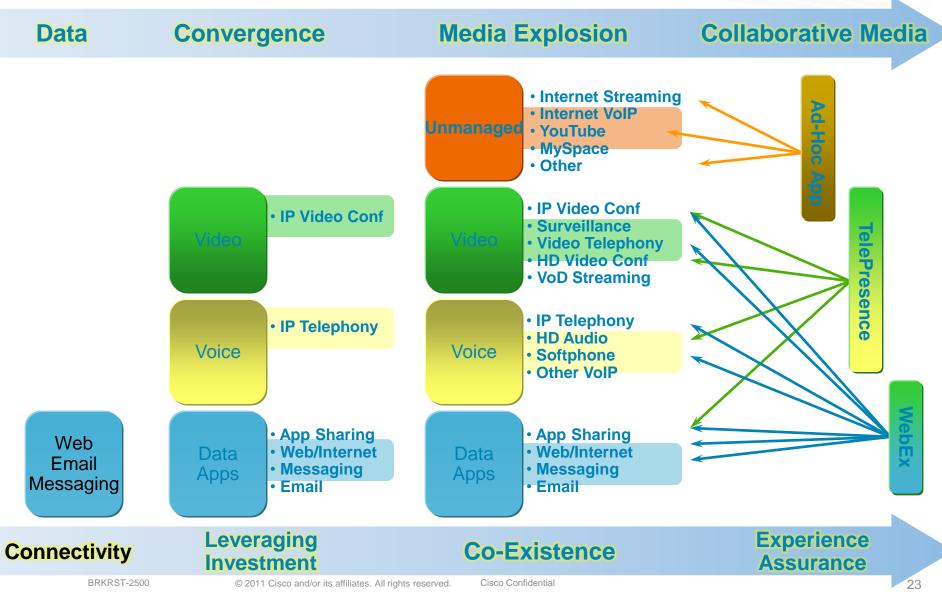
http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-481360.html

BRKRST-2500


New Application Requirements The Impact of HD on the Network

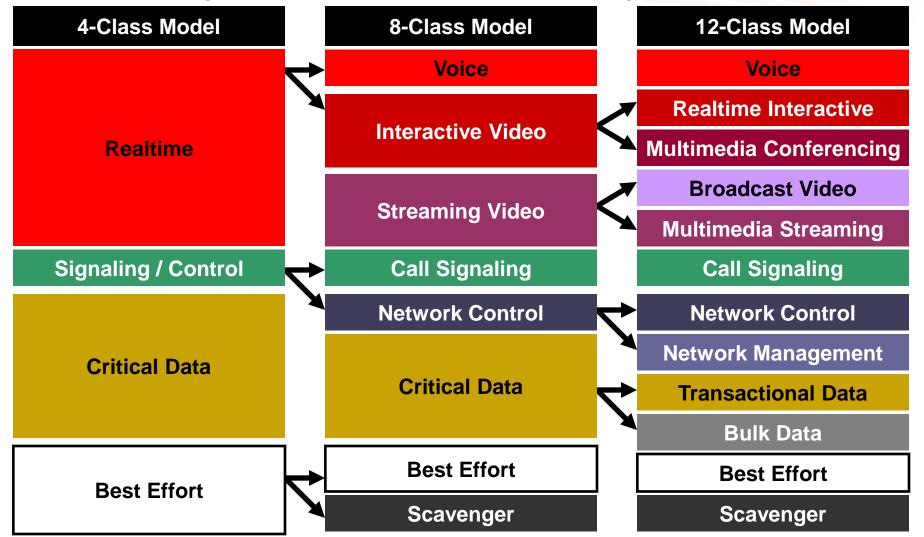

 User demand for HD video has a major impact on the network (H.264) 720p HD video requires twice as much bandwidth as (H.323) DVD (H.264) 1080p HD video requires twice as much bandwidth as (H.264) 720p

BRKRST-2500


New Applications Requirements VoIP vs. HD Video—At the Packet Level

New Application Requirements Provisioning for Video: One Size Does Not Fit All

New Application Requirements Trends in Voice, Video and Data Media Applications


New Standards and RFCs

Cisco Medianet DiffServ QoS Recommendations (RFC 4594-Based)

Application Class	Per-Hop Behavior	Admission Control	Queuing & Dropping	Application Examples
VoIP Telephony	EF	Required	Priority Queue (PQ)	Cisco IP Phones (G.711, G.729)
Broadcast Video	CS5 ┥	Required	(Optional) PQ	Cisco IP Video Surveillance / Cisco Enterprise TV
Realtime Interactive	CS4	Required	(Optional) PQ	Cisco TelePresence
Multimedia Conferencing	AF4	Required	BW Queue + DSCP WRED	Cisco Unified Personal Communicator, WebEx
Multimedia Streaming	AF3	Recommende J	BW Queue + DSCP WRED	Cisco Digital Media System (VoDs)
Network Control	CS6		BW Queue	EIGRP, OSPF, BGP, HSRP, IKE
Call-Signaling	CS3 ┥		BW Queue	SCCP, SIP, H.323
Ops / Admin / Mgmt (OAM)	CS2		BW Queue	SNMP, SSH, Syslog
Transactional Data	AF2		BW Queue + DSCP WRED	ERP Apps, CRM Apps, Database Apps
Bulk Data	AF1		BW Queue + DSCP WRED	E-mail, FTP, Backup Apps, Content Distribution
Best Effort	DF		Default Queue + RED	Default Class
Scavenger	CS1	r ·	Min BW Queue (Deferential)	YouTube, iTunes, BitTorent, Xbox Live

http://www.cisco.com/en/US/docs/solutions/Enterprise/WAN_and_MAN/QoS_SRND_40/QoSIntro_40.html#wp61104

Evolving Business Requirements Business Requirements Will Evolve and Expand over Time

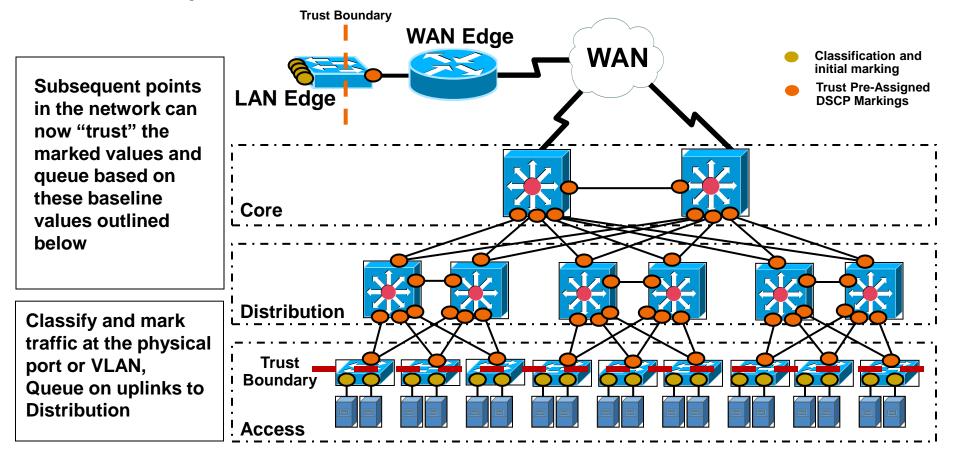
http://www.cisco.com/en/US/docs/solutions/Enterprise/WAN_and_MAN/QoS_SRND_40/QoSIntro_40.html#wp61135

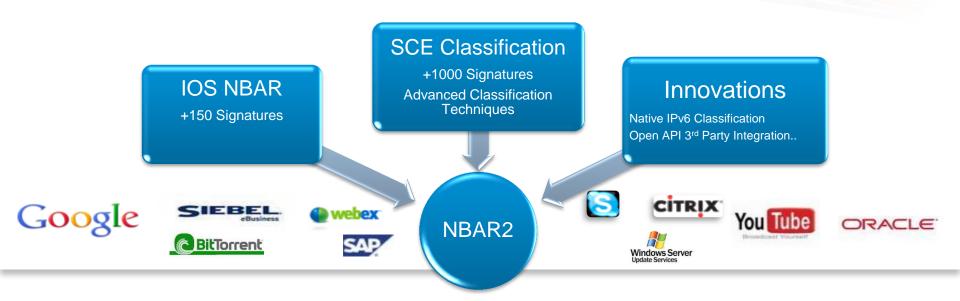
BRKRST-2500

QoS Design Considerations

Classification and Marking How Should It Be Done?

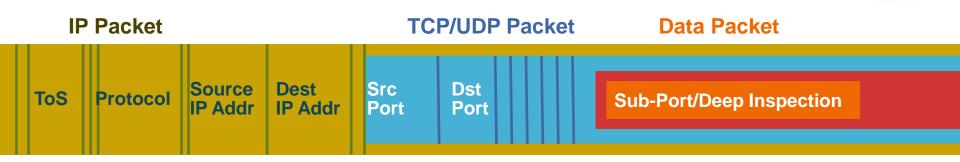
QoS is implemented in Hardware on the Catalyst switching platforms. Depending on the platform, Qos functions may be split across the Supervisor and linecards




QoS features and capabilities could have dependencies on the specific forwarding engine and/or Linecard hardware versions

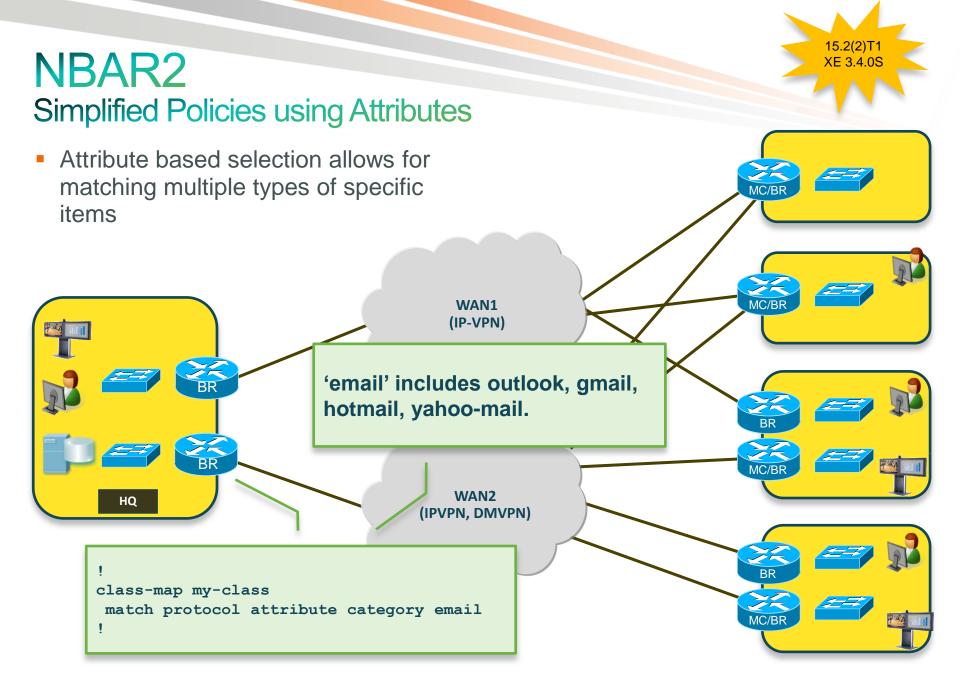
Classification and Marking Where Should It Be Done?

Classification and marking should be performed as close as technically feasible to the sources so that prioritization may be implemented at congestion points throughout the network; DSCP should be used wherever possible...



Next Generation NBAR (NBAR2)

- New DPI component which provide Advanced Application Classification and Field Extraction Capabilities taken from SCE
- Backward compatibility to preserve existing NBAR investments
- In-service field upgradable Protocol Definition no IOS upgrade required


NBAR is the Engine, Still need a Driver

- Multiple methods to use the engine, depending on need.
- Enable NBAR Protocol Discovery at interface level

All traffic is classified based on protocol. Results (packets, bytes, application) are available via CLI and MIB

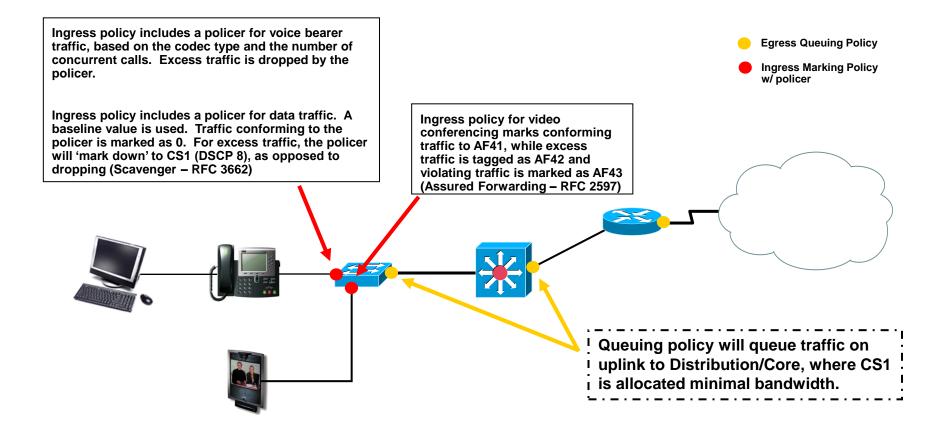
- Invoke 'match protocol' CLI in C3PL/MQC (class-map) CLI Used in a number of different IOS functions (QoS, performance monitor, IOS FW) Results vary depending on IOS function used
- Invoke 'application name/ID' fields in flexible netflow (FNF)
 Application name/ID is included in NetFlow export reports

NBAR2 - Traffic Categorization by attribute

For Your

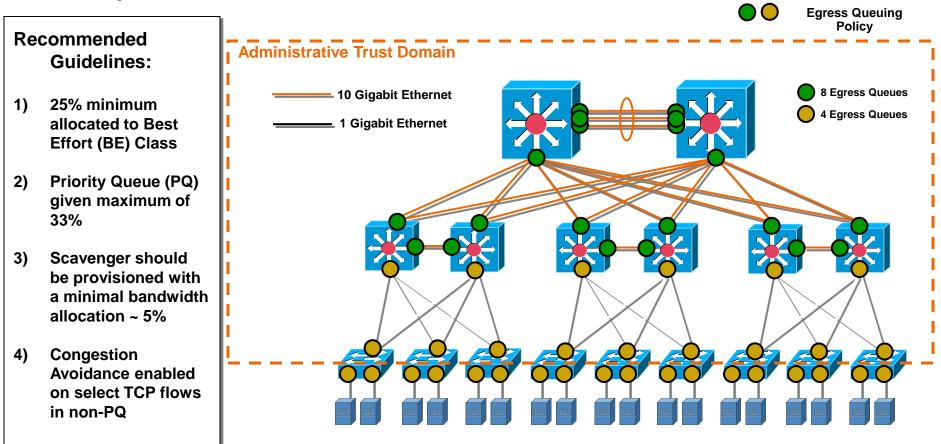
Categorization of protocols into meaningful terms Simplification of control configuration and report aggregation

•		0	1 00	0		
Categories	Sub-Categories	Application-Group	P2P-technology	Tunnel	Encrypted	
file-sharing	client-server	ftp-group	n	n	n	
browsing	other	other	У	У	у	
net-admin	routing-protocol	ipsec-group	unassigned	unassigned	unassigned	
other	tunneling-protocols	imap-group				
internet-privacy	network-management	irc-group				
instant-messaging	voice-video-chat-collaboration	kerberos-group				
email	authentication-services	ldap-group				
newsgroup	database	sqlsvr-group				
voice-and-video	naming-services	netbios-group				
business-and-productivity-tools	terminal	nntp-group				
industrial-protocols	streaming	pop3-group				
gaming	p2p-networking	snmp-group				
obsolete	p2p-file-transfer	tftp-group				
trojan	control-and-signaling	fasttrack-group				
layer3-over-ip	inter-process-rpc	gnutella-group				
location-based-services	remote-access-terminal	skinny-group				
layer2-non-ip	network-protocol	edonkey-emule-group				
	commercial-media-distribution	bittorrent-group				
	rich-media-http-content	smtp-group				
	license-manager	windows-live-messanger-group				
	epayement	yahoo-messenger-group				
	storage	flash-group				
	backup-systems	skype-group				
	one-click-hosting	corba-group				

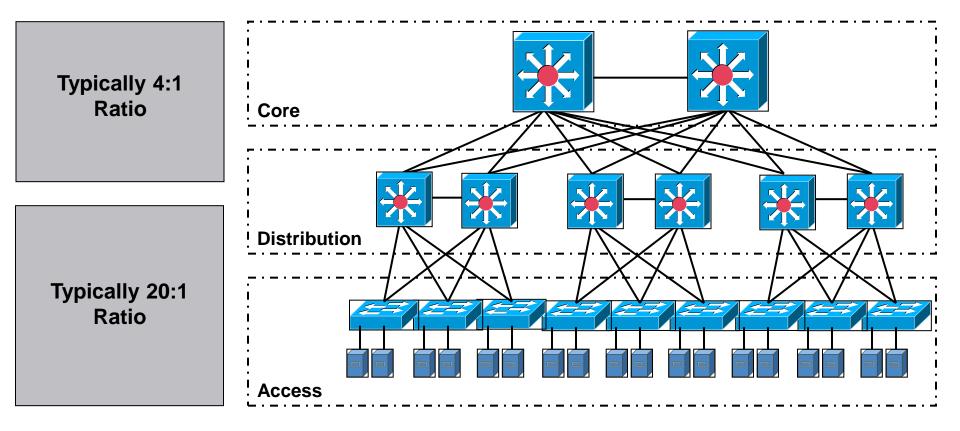

DiffServ QoS Recommendations (RFC 4594-Based)

How Should Traffic Be Marked?

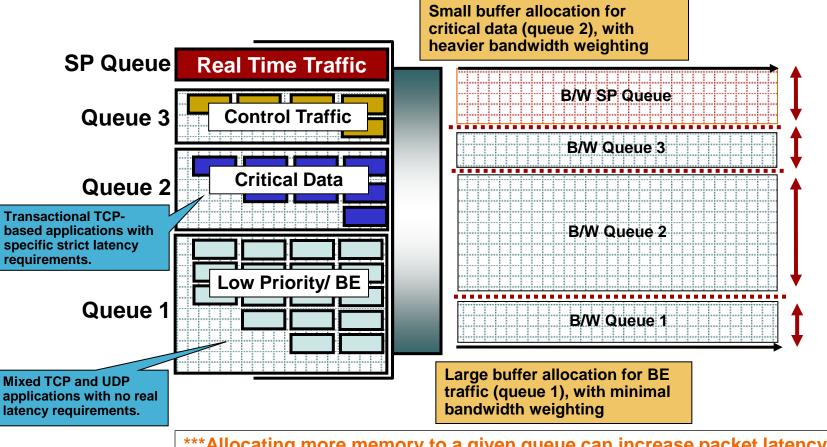
Application Class	Per-Hop Behavior	Admission Control	Queuing & Dropping	Application Examples
VoIP Telephony	EF	Required	Priority Queue (PQ)	Cisco IP Phones (G.711, G.729)
Broadcast Video	CS5	Required	(Optional) PQ	Cisco IP Video Surveillance / Cisco Enterprise TV
Realtime Interactive	CS4	Required	(Optional) PQ	Cisco TelePresence™
Multimedia Conferencing	AF4	Required	BW Queue + DSCP WRED	Cisco Unified Personal Communicator
Multimedia Streaming	AF3	Recommended	BW Queue + DSCP WRED	Cisco Digital Media System (VoDs)
Network Control	CS6		BW Queue	EIGRP, OSPF, BGP, HSRP, IKE
Call-Signaling	CS3		BW Queue	SCCP, SIP, H.323
Ops / Admin / Mgmt (OAM)	CS2		BW Queue	SNMP, SSH, Syslog
Transactional Data	AF2		BW Queue + DSCP WRED	Cisco WebEx ^{®™} / MeetingPlace [®] / ERP Apps
Bulk Data	AF1		BW Queue + DSCP WRED	E-mail, FTP, Backup Apps, Content Distribution
Best Effort	DF		Default Queue + RED	Default Class
Scavenger	CS1	r i	Min BW Queue (Deferential)	YouTube, iTunes, BitTorent, Xbox Live


Policing Design Principles Where and How Should Policing Be Done?

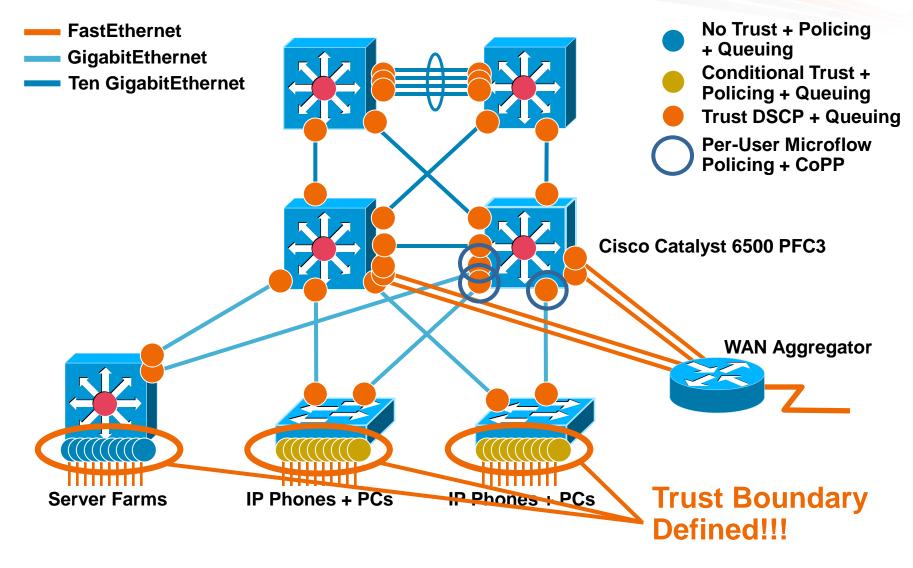
Policing shall be applied as close to the traffic source as possible; in general, policing should be applied at the access layer of the network at the "Trust Boundary" during the initial classification and marking process; policing policies can be configured to drop offending traffic, or they can be configured to mark down excess traffic, specifying a different PHB or method of treatment


Queuing Design Principles Where Should It Be Done?

Queuing should be performed wherever there may be potential for congestion (even if a rare occurrence), ensuring consistency between Campus/WAN/VPN networks...


Campus QoS Considerations Typical Campus Oversubscription Ratios

Campus networks are always designed with oversubscription in mind to take advantage of the bursty nature of traffic and the assumption that not all users are requiring bandwidth simultaneously...


Campus QoS Design Considerations Allocating Buffer Capacity

Each port has a finite amount of memory that is specifically reserved for buffering traffic during times of contention. Although the total amount of buffer capacity for egress traffic may be fixed for a given port, how that memory is distributed amongst the queues is configurable.

***Allocating more memory to a given queue can increase packet latency, which could impact application performance.

Campus QoS Considerations Where Is QoS Required Within the Campus?

Application Control

Application Control for the Campus

ip access-list extended TRANSACTIONAL permit tcp any any eq 443 permit tcp any any eq 1521	Application	Policed	Marked
permit udp any any eq 1521	Transactional	NO	AF21
class-map match-all VVLAN-VOIP match ip dscp ef class-map match-all TRANSACTIONAL match access-group name TRANSACTIONAL	Voice Bearer	128kbps	EF, trusted
policy-map Access-policy class VVLAN-VOIP set dscp ef police 128k bc 8000 conform-action transmit exceed-action drop			
policy-map DVLAN-MARKING class TRANSACTIONAL set dscp af21			
interface range GigabitEthernet 2/1-48 switchport access vlan 10 swtichport voice vlan 110 Vlan config 10 service-policy input DVLAN-MARKING Vlan config 110			
servic-policy input VVLAN-MARKING	Voice Bea	arer policed	

to 128kbps

BRKRST-2500

Application Control for the Campus

class-map match-any PRIORITY match dscp ef match dscp cs5 match dscp cs4 class-map match-all TRANSACTIONAL match dscp af21 af22 af23

policy-map Egress-queueing class PRIORITY priority class CONTROL-MGMT bandwidth remaining percent 10 class MULTIMEDIA-STREAMING bandwidth remaining percent 10 class TRANSACTIONAL bandwidth remaining percent 10 class class-default bandwidth remaining percent 25 dbl

interface range TenGigabitEthernet 1/1-2 service-policy output Egress-queueing

Application	Bandwidth	Priority
Priority	Policer limited	High
Control-MGMT	10 %	Normal
Multimedia-streaming	10%	Normal
Transactional	10%	Normal
Default	25%	Low

Priority traffic limited at edged via policers ~ allocated up to 100%

Class Default 25% remaining

Control, Multimedia and Transactional each receive 10% remaining

Application-aware QoS WAN

class-map match-all business-critical match protocol citrix match access-group 101

class-map match-any browsing match protocol attribute category browsing

class-map match-any internal-browsing match protocol http url "*myserver.com*"

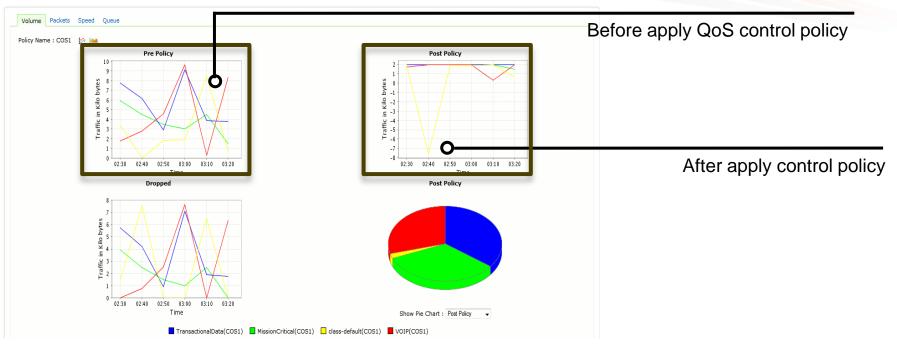
policy-map internal-browsing-policy class internal-browsing bandwidth remaining percent 60

policy-map my-network-policy class business-critical priority percent 50

> class browsing bandwidth remaining percent 30 service-policy internal-browsing-policy

interface Serial0/0/0 service-policy output my-network-policy

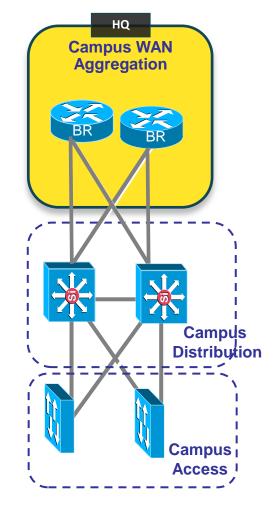
Application	BW	Priority
Business Critical	Committed 50%	High
Browsing	30% (=15% of the line)	Normal
Internal Browsing	60% (Out of Browsing)	
Remaining	70% (=35% of the line)	Normal


Business-Critical: High Priority 50% committed

Internal-Browsing: 60% of Browsing

Remaining: 70% of Excess BW (=35% of line)

Browsing: 30% of Excess BW (=15% of the line)


Control Application Bandwidth Usage with QoS

- NBAR2 is used to identify the application (match protocol in class-map)
- QoS actions include drop, re-prioritization of application in the QoS queue, re-mark DSCP/IP Precendence, police or shape the traffic rate using QoS MQC

Evolving QoS Campus and Wan QoS alignment via MQC

- MLS command set is evolving into MQC
 - 6500/4500 now MQC based
- MQC construct (C3PL) leveraged in Performance Monitoring, IOS FW, eEdge...
- QoS is always on no "mls QoS"
- Trust paradigm is replaced by implicit trust
- Explicit configuration of QoS parameters are required
- Unified CLI and provisioning language provide stronger QoS alignment

Monitoring QoS

Monitor

- Depth and scope of monitoring QoS varies
- Monitoring minimums should include trending link utilizations and packet drops
- Use Neflow to identify mismarked applications
- More powerful tools can collect traffic statistics from the class-based-QoS-MIB
- NBAR protocol discovery can be leveraged by applications to collect statistics and display them graphically
- Collecting lots of data is most useful if there are good backend tools to sort the data and flag issues such as high drop rates

SNMP MIB Cisco-Class-Based-QoS-MIB

Primary accounting mechanism for QoS:

Policing, classification, shaping, queuing, congestion avoidance

Long-term QoS monitoring

Cisco QoS Policy Manager (QPM)

- Provides accounting for configured QoS policies
 Does not inspect all packets for TOS/DSCP
- Provides equivalent statistics to "Show policy-map interface" Counters can not be reset

Flexible Netflow

- Flexible Netflow is an opened standard to export network information and statistics
 - UDP-based transport
 - Flexibility in defining fields and flow record format
 - Opened protocol can be analyzed by Cisco Prime, Insight, and other 3rd party reporting vendors
- Consist of data collection (flow monitor) and data export (flow export)
- Flexibility choosing fields to collect for exporting
- Can be used for collecting application based info and statistics along with other network information
- Can be utilized by other monitoring feature to export information (IOS Performance Agent, Medianet, PfR)

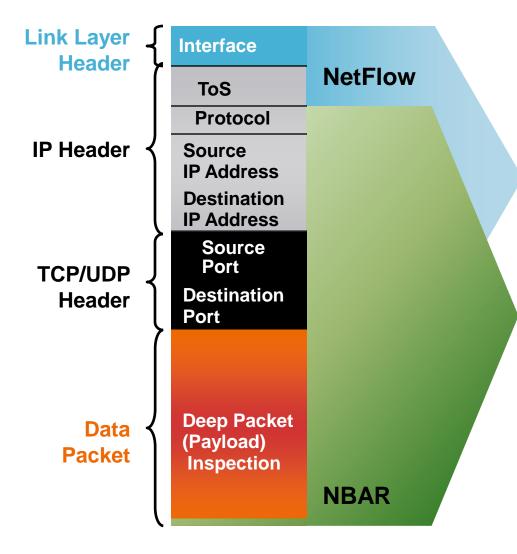
Configure a Flow Monitor

Configure the Exporter

Router(config)#flow exporter my-exporter Router(config-flow-exporter)#destination 1.1.1.1

Configure the Flow Record

Router(config)#flow record my-record Router(config-flow-record)#match ipv4 destination address Router(config-flow-record)#match ipv4 source address Router(config-flow-record)#collect counter bytes


Configure the Flow Monitor

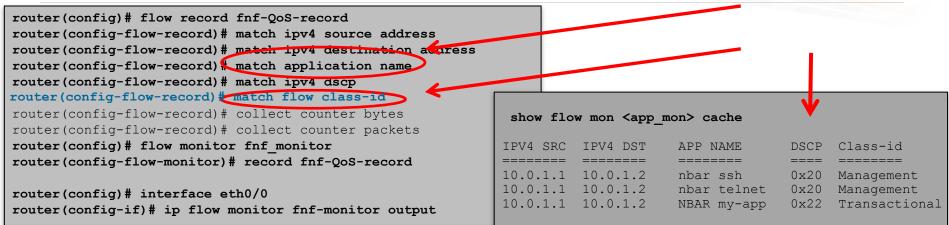
Router(config)#flow monitor my-monitor Router(config-flow-monitor)#exporter my-exporter Router(config-flow-monitor)#record my-record

Configure the Interface

Router(config)#int s3/0 Router(config-if)#ip flow monitor my-monitor input

NetFlow and NBAR Integration

NetFlow


- Monitors data in Layers 2 thru 4
- Determines applications by combination of Port or Port/IP Addressed
- ✓ Flow information who, what, when, where

NBAR

- ✓ Examines data from Layers 3 thru 7
- ✓ Utilizes Layers 3 and 4 plus packet inspection for classification
- ✓ Stateful inspection of dynamic-port traffic
- ✓ Packet and byte counts

Integrated Flexible NetFlow, NBAR and QoS

Trust boundary verification

Traffic Applicat	ion Source Destina	ation QoS Conversa	ation Medianet NBA	R CBQoS			
elect : FNF NBAR 👻	IN OU	T Last 15 Minutes 👻	From: 2012-03-12 17:3	To: 2012-03	-12 17:51		
Resolve DNS Group	o by None 🔻					Showing 1 to 50 D	View per page 50 👻
Src IP	Dst IP	Application	Src Port	Dst Port	Protocol	DSCP	Traffic
172.18.93.211	228.8.47.52	snmp	36511	161	UDP	AF1	2.23 MB
172.18.66.250	228.8.7.9	http	468	80	TCP	CS6	1.77 MB
172.18.78.232	66.8.47.52	Skype	52091	16	UDP	Default	1.06 MB
172.18.2.164	70.8.47.52	BitTorrent	49600	52091	UDP	Default	828.01 KB
172.18.4.62	232.0.1.10	unknown	0	0	UDP	Default	422.83 KB
172.18.2.101	192.168.24.158	netbios	137	137	UDP	CS1	48.12 KB

- Validate Policy configuration
- Troubleshoot incorrect or missing configurations
- · Validate bandwidth allocations
- Isolate Rogue Application traffic

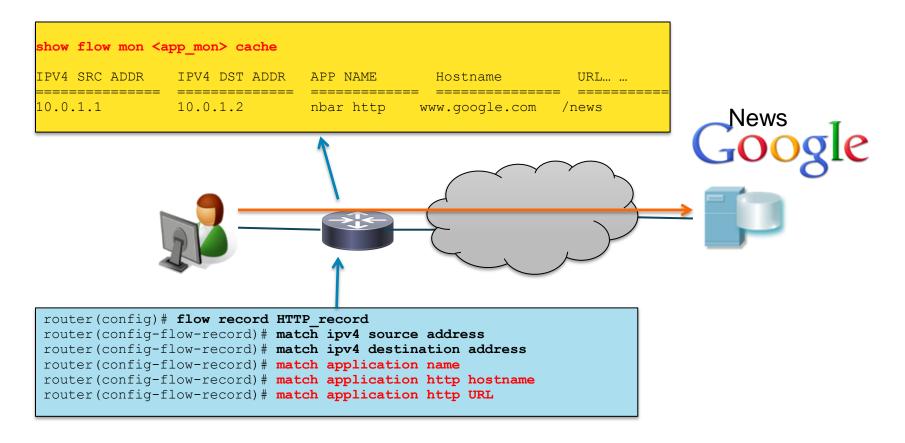
Integrated Flexible NetFlow, NBAR and QoS

Trust boundary verification

router(config) # flow record QoS-Record router(config-flow-record) # match ipv4 source address router (config-flow-record) # match ipv4 destination address router(config-flow-record) # match application name router(config-flow-record)# match ipv4 dscp router(config-flow-record) # match flow class-id show flow mon <fnf mon> cache router(config)# flow monitor Traffic-monitor router(config-flow-monitor) # record QoS-Record IPV4 SRC TPV4 DST APP NAME DSCP Class-ID ____ _____ _____ ____ _____ router(config) #policy-map fnf-NBAR-QoS 10.0.1.1 10.0.1.2 0x12 Critical nbar sglnet router(config-pmap)#class Critical 10.0.1.1 10.0.1.2 nbar citrix 0x12 Critical router(config-pmap-c)#flow Traffic-monitor 10.0.1.1 10.0.1.2 nbar FTP 0xA Critical router(config) # interface eth0/0 router(config-if) # service-policy out fnf-NBAR-QoS Traffic Application Source Destination QoS Conversation Medianet NBAR CBOoS Last 15 Minutes + From: 2012-03-12 17:36

Select : FNF NBAR +

O IN O OUT


- Validate Policy configuration
- Troubleshoot incorrect or missing configurations
- Validate bandwidth allocations
- Isolate Rogue Application traffic

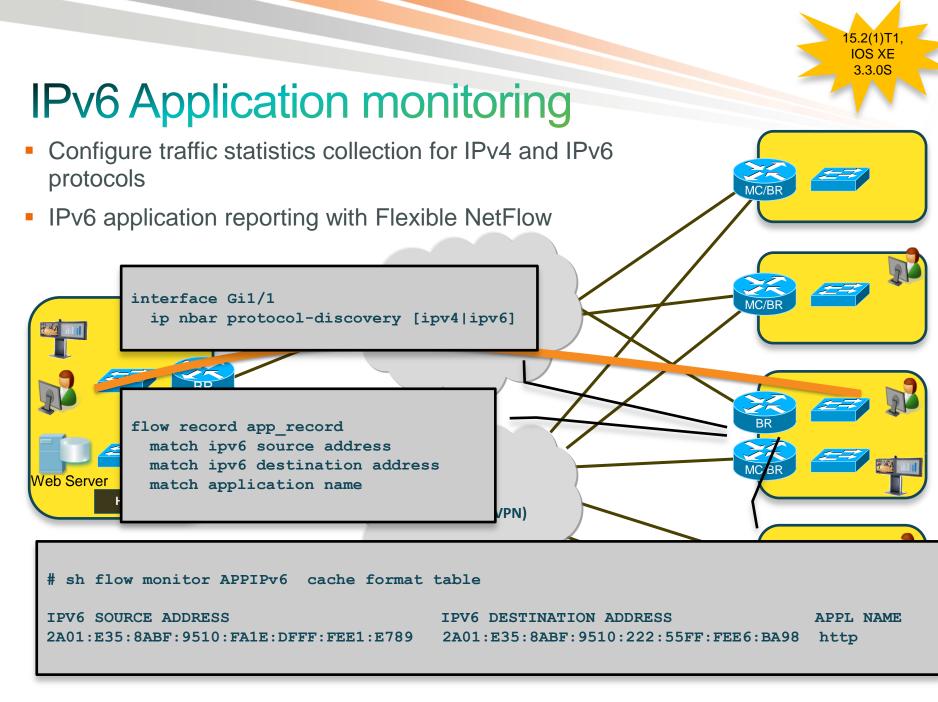
Resolve DNS Grou	p by None 🔹					C Showing 1 to 50 D	View per page 50 🔹
Src IP	Dst IP	Application	Src Port	Dst Port	Protocol	DSCP	Traffic
172.18.93.211	228.8.47.52	snmp	36511	161	UDP	AF1	2.23 MB
172.18.66.250	228.8.7.9	http	468	80	TCP	CS6	1.77 MB
172.18.78.232	66.8.47.52	Skype	52091	16	UDP	Default	1.06 MB
172.18.2.164	70.8.47.52	BitTorrent	4 9600	52091	UDP	Default	828.01 KB
172.18.4.62	232.0.1.10	unknown	0	0	UDP	Default	422.83 KB
172.18.2.101	192.168.24.158	netbios	137	137	UDP	CS1	48.12 KB

To: 2012-03-12 17:51

Flexible NetFlow NBAR2 Integration – Field Extraction

- NBAR extracts fields from flows and exposes it into Flexible NetFlow
- HTTP Fields (Hostname and URL) planned in 15.3(1)M and IOS XE 3.7.0S

IOS XE


3705

Integrated Flexible NetFlow, NBAR and QoS

3845-Pagent#sh flow Cache type: Cache size:	monitor fnf-mon	itor cache Normal 4096
Current entries:		2
		2
High Watermark:		6
Flows added:		926
Flows aged:		924
- Active timeout	(1800 secs)	0
- Inactive timeout	` '	924
- Event aged	(0
- Watermark aged		0
		-
- Emergency aged		0

IPV4 DESTINATION ADDRESS:10IP TOS:02IP DSCP:02APPLICATION NAME:nlCLASS-ID:ml	0.27.37.2 0.27.37.9 x70 x1C bar telnet
counter bytes:24counter packets:5	nanagement 49
IPV4 DESTINATION ADDRESS:10IP TOS:02IP DSCP:02APPLICATION NAME:niCLASS-IDcl	x00 x00 bar tftp lass-default l868

NOTE: TOS of 0x70 equates to 112 decimal DSCP of 0x1C equates to 28 decimal lp telnet tos70

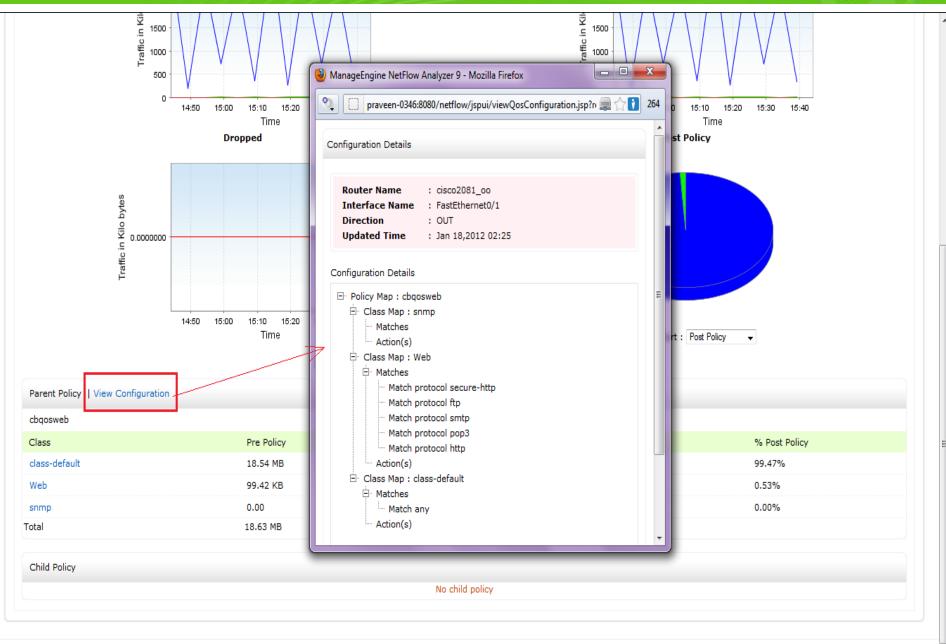
BRKRST-2500

QoS Reports using ManageEngine NetFlow Analyzer

CISCO-CLASS-BASED-QOS-MIB

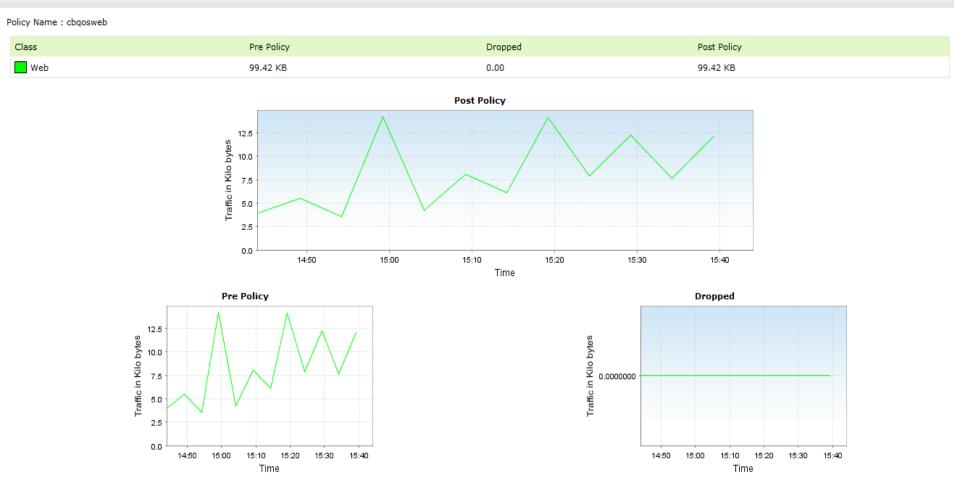
- SNMP query of CISCO-CLASS-BASED-QOS-MIB
 - Reports on Policy, Child-Policy and Class
 - Pre and Post Policy statistics
 - Volume, speed and utilization based drop value information
 - Match statement statistics for each class
 - View configuration of policies from product GUI

ManageEngine NetFlow Analyzer Professi	ional Plus			
Dashboards Devices CBQ	OS/NBAR IPSLA Cisco WAAS	Medianet Security Analytics	Billing Reports Admin	
Device Groups 📲 IP Groups	Alert Profiles 🛛 🛗 Schedule Reports	Application / QoS Maps	User Management 🛛 👂 License Management	
Admin Operations> CBQoS Configura	ation More Information Add Devi	ce		
QOS Configuration NBAR Configur	ration			
Policy Available interfaces Che	eck Status			
Router Name	Interface names	IN Policy	OUT Policy	
cisco2081_oo	FastEthernet0/1	cbqospolicy	Not Available	
Polling for CBQoS data Modify In	iterfaces			
Polling is not being done on any inter	faces. Please Click here. to add interfac	BS		


Manage Engine

class-default(cbqosweb) Web(cbqosweb) snmp(cbqosweb)

Parent Policy | View Configuration


cbgosweb

Class	Pre Policy	Dropped	% Dropped	Post Policy 🔺	% Post Policy
class-default	18.54 MB	0.00	0.00%	18.54 MB	99.47%
Web	99.42 KB	0.00	0.00%	99.42 KB	0.53%
snmp	0.00	0.00	0.00%	0.00	0.00%
Total	18.63 MB	0.00		18.63 MB	

cisco2081_oo [FastEthernet0/1] --> qosOUT

Start Time: Jan 18,2012 14:44 End Time: Jan 18,2012 15:44

NetFlow

- NetFlow reports on Interface, IP Address, Application (Protocol & Port), DSCP, ToS, NextHop, TCP Flag, etc.
- Check if application conversations have the assigned DSCP markings
- NetFlow shows DSCP markings for each conversation Reporting can be done for INGRESS or EGRESS

🚧 172.18.95.215	172.18.255.255	netbios-dgm	138	138	UDP	CS1	207.05 KB
🚵 172.18.117.147	172.18.255.255	netbios-ns	137	137	UDP	Default	201.63 KB
172.18.95.239	172.18.255.255	netbios-ns	137	137	UDP	Default	201.31 KB
🚵 172.18.78.232	172.18.255.255	netbios-ns	137	137	UDP	Default	190.02 KB
172.18.97.44	224.0.0.251	mdns	5353	5353	UDP	Default	184.4 KB
172.18.181.20	224.0.0.251	mdns	5353	5353	UDP	Default	182.01 KB
🕍 172.18.83.253	172.18.255.255	netbios-ns	137	137	UDP	CS1	169.49 KB
🕍 172.18.99.193	172.18.255.255	netbios-ns	137	137	UDP	CS1	168.64 KB
🕍 172.18.78.223	224.0.0.251	mdns	5353	5353	UDP	Default	161.37 KB
🕍 172.18.98.192	224.0.0.251	mdns	5353	5353	UDP	Default	158.22 KB
🕍 172.18.99.17	224.0.0.252	llmnr	57754	5355	UDP	Default	155.91 KB
🕍 172.18.95.96	224.0.0.251	mdns	5353	5353	UDP	Default	154.65 KB
🚧 172.18.149.90	172.18.2.101	http	49849	80	ТСР	Default	154.64 KB
🚧 172.18.2.185	172.18.255.255	netbios-ns	137	137	UDP	CS1	154.12 KB
📥 172.18.99.134	172.18.255.255	netbios-ns	137	137	UDP	CS1	152.38 KB
🕍 172.18.2.183	172.18.255.255	netbios-ns	137	137	UDP	CS1	146.97 KB
🕍 172.18.2.182	172.18.255.255	netbios-ns	137	137	UDP	CS1	142.07 KB
📥 172.18.0.1	224.0.0.18	VRRP_App	0	0	VRRP	Default	131.15 KB
🚧 172.18.97.229	239.255.255.250	ws-discovery	64402	3702	UDP	Default	123.15 KB
📥 172.18.99.96	239.255.255.250	ws-discovery	64402	3702	UDP	Default	123.15 KB
📥 172.18.158.66	224.0.0.251	mdns	5353	5353	UDP	Default	116.81 KB
🕍 172.18.8.12	172.18.255.255	netbios-ns	137	137	UDP	CS1	115.52 KB
🕍 172.18.96.242	224.0.0.251	mdns	5353	5353	UDP	Default	114.62 KB
🚧 172.18.98.99	224.0.0.251	mdns	5353	5353	UDP	Default	114.25 KB
🚧 172.18.97.236	224.0.0.251	mdns	5353	5353	UDP	Default	110.11 KB
🕍 172.18.51.3	172.18.255.255	netbios-ns	137	137	UDP	CS1	106.19 KB
🚧 172.18.99.24	172.18.255.255	netbios-ns	59359	137	UDP	CS1	104.75 KB
🚧 172.18.2.186	172.18.255.255	netbios-ns	137	137	UDP	CS1	102.57 KB
172.18.39.193	239.255.255.250	ssdp	1900	1900	UDP	Default	101.32 KB

4				
	CS1	3.44 MB		7%
		Application distribution for CS1		
		Application	Traffic	% Utilization
		netbios-ns	2.41 MB	70%
		netbios-dgm	1.02 MB	30%
	CS6	103.81 KB		<1%
		Application distribution for CS6		
		Application	Traffic	% Utilization
		mdns	63.47 KB	61%
		icmp	22.43 KB	22%
		IGMP_App	17.78 KB	17%
		telnet	120.00 Bytes	<1%
	000010	91.61 KB		<1%
		Application distribution for 000010		
		Application	Traffic	% Utilization
		Unknown_App	91.61 KB	100%
	000111	10.08 KB		<1%
		Application distribution for 000111		
			Traffic	% Utilization
		Application	10.08 KB	% Otilization 100%
		icmp	10.00 KB	100%
	000100	3.31 KB		<1%
		Application distribution for 000100		
		Application	Traffic	% Utilization
		bootps	2.65 KB	80%
		telnet	654.00 Bytes	20%

Traffic	Application	Source	Destination	QoS	Conversation	Multicast	Medianet	NBAR	CBQoS	Security Events	

Top DSCP IN Report - AF11 From: 2012-03-12 13:05 To: 2012-04-11 13:05 Back

Resolve DNS Group by None -						Showing 1 to 43 🖸	View per page 100 🗸
Src IP	Dst IP	Application	Port	Protocol	DSCP	Traffic(16.34 GB)	Percent
🚨 72.5 JN0.76	121. 9.182.67	ssh	22	TCP	AF11	9.29 GB	57%
📫 11/ 🕸 (05 .210	121.1 182.67	ESP_App	*	ESP	AF11	5.83 GB	36%
📥 12.110275.24	123.256 182.67	TCP_App	*	TCP	AF11	501.9 MB	3% [
📥 744.51 15NJ8	123.5	pop3s	995	TCP	AF11	279.06 MB	2%
🕍 173. TV:37 . 252	1.3.2411-2.112	https	443	ТСР	AF11	76.49 MB	<1%
215 0.99	0.21.200.002.67	imaps	993	TCP	AF11	67.19 MB	<1%
<u>ല</u> 204 – 2.384 .7 3	12-5,240-35 2,67	TCP_App	*	TCP	AF11	56.47 MB	<1%
08-1. 0177,136	121-24	TCP_App	*	TCP	AF11	55.86 MB	<1%
24.400.164.102	123-2 ³⁻¹ 38 2.67	ssh	22	TCP	AF11	30.56 MB	<1%
199 - 148.201	123.295 (82.77	http	80	TCP	AF11	16.57 MB	<1%
199.: /) 43,201	15.1.7° + 182 .76	http	80	TCP	AF11	15.76 MB	<1%
223.2 3.155.56	121-200 (3 2.67	ТСР_Арр	*	TCP	AF11	14.99 MB	<1%
🚧 1994) - 1994)	921.2 ···. (82.76	https	443	TCP	AF11	12.34 MB	<1%
🔐 199.5×1.50 .9	19142 (Mr8 2.67	https	443	TCP	AF11	12.1 MB	<1%
🔐 33955 J48 .20	121.140.\8 2.67	https	443	TCP	AF11	11.7 MB	<1%
🛻 19° 31 (48.20	121.3463.28 2.76	https	443	TCP	AF11	11.52 MB	<1%
🛻 19. ³ .148.20	301.2 M.182.77	https	443	TCP	AF11	11.38 MB	<1%
19	1112***48 2.77	https	443	TCP	AF11	11.31 MB	<1%
🛻 14a 360 .98.3 1	1214/04182.111	https	443	TCP	AF11	5.03 MB	<1%
🚧 22 / ///.110.157	121.1 × / 182.67	TCP_App	*	TCP	AF11	4.42 MB	<1%
🚧 223 J 0.4 5.15 2	171.2 - 182.67	TCP_App	*	TCP	AF11	3.11 MB	<1%
🚧 124 . 0.138.74	123 Pays 182,112	https	443	TCP	AF11	2.88 MB	<1%
🔐 1:00 C 5 .111.122	127	https	443	TCP	AF11	2.18 MB	<1%
🛀 199: 148.201	121.144.182.67	http	80	TCP	AF11	1.8 MB	<1%

Questions?

Over 4000 enterprises worldwide uses ManageEngine NetFlow Analyzer for traffic analytics

NetFlow Analyzer: <u>www.netflowanalyzer.com</u>

TAC Team: netflowanalyzer-support@manageengine.com

Sales: sales@manageengine.com

NetFlow Analyzer Blogs: <u>https://blogs.netflowanalyzer.com</u>

User Forums: <u>http://forums.netflowanalyzer.com</u>

Thank you.

IIIII CISCO