Quadratic Equations

Key Topics

- Quadratic Equations: A quadratic equation is an equation with a degree of two, meaning that at least one term in the equation is raised to the second power. The standard form is $a x^{2}+b x+c=0$ where $a \neq 0$.

Solving Quadratic Equations

- Factoring Method: This method uses the zero product property which states that if a product is zero, then at least one of its factors has to be zero.
Example: Solve the equation $x(x+4)=12$.
Step 1: Put the equation in standard form.

$$
x(x+4)=12 \rightarrow x^{2}+4 x=12 \rightarrow x^{2}+4 x-12=0
$$

Step 2: Factor the equation.

$$
x^{2}+4 x-12=0 \rightarrow(x+6)(x-2)=0
$$

Step 3: If a product equals zero, one of its factors is equal to zero.

$$
\begin{gathered}
x+6=0 \text { or } x-2=0 \\
x=-6 \text { or } x=2
\end{gathered}
$$

So the solution set is $\{-6,2\}$.

- Square Root Method: If an expression squared is equal to a constant, then that expression is equal to the positive or negative square root of the constant.
Example: Solve the equation $3(x-1)^{2}-75=0$.
Step 1: Isolate the squared expression.

$$
3(x-1)^{2}-75=0 \rightarrow 3(x-1)^{2}=75 \rightarrow(x-1)^{2}=25
$$

Step 2: Apply the square root property.

$$
(x-1)^{2}=25 \rightarrow \sqrt{(x-1)^{2}}=\sqrt{25} \rightarrow x-1= \pm \sqrt{25} \rightarrow x-1= \pm 5
$$

Step 3: Solve for x.

$$
x-1= \pm 5 \rightarrow x= \pm 5+1
$$

If it is -5 , then $x=-5+1=-4$. If it is 5 , then $x=5+1=6$.
The solution set is $\{-4,6\}$.

- Completing the Square: Not all quadratic equations can use the factoring or square root methods. Completing the square aims to transform a standard quadratic equation $a x^{2}+b x+c=0$ into a perfect square $(x+A)^{2}=B$.
Example: Solve the equation $2 x^{2}-4 x+3=0$.
Step 1: If the leading coefficient is not 1, divide by the leading coefficient.

$$
\frac{1}{2}\left(2 x^{2}-4 x+3\right)=\frac{1}{2}(0) \rightarrow x^{2}-2 x+\frac{3}{2}=0
$$

Step 2: Add the opposite of the constant term to both sides.

$$
x^{2}-2 x+\frac{3}{2}-\frac{3}{2}=0-\frac{3}{2} \rightarrow x^{2}-2 x=-\frac{3}{2}
$$

Step 3: Add $\left(\frac{b}{2}\right)^{2}$ to both sides where b is the coefficient of x.

$$
x^{2}-2 x+\left(\frac{-2}{2}\right)^{2}=-\frac{3}{2}+\left(\frac{-2}{2}\right)^{2} \rightarrow x^{2}-2 x+1=-\frac{1}{2}
$$

Step 4: Write the left side of the equation as a perfect square.

$$
(x-1)^{2}=-\frac{1}{2}
$$

Step 5: Apply the square root method to solve.
$x-1= \pm \sqrt{-\frac{1}{2}} \rightarrow x=1 \pm \sqrt{-\frac{1}{2}} \rightarrow x=1 \pm i \frac{1}{\sqrt{2}} \rightarrow x=1 \pm \frac{i}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}} \rightarrow x=1 \pm \frac{i \sqrt{2}}{2}$
The solution set is $\left\{1-\frac{i \sqrt{2}}{2}, 1+\frac{i \sqrt{2}}{2}\right\}$

Quadratic Formula

- Quadratic Formula: For any equation of the form $a x^{2}+b x+c=0$ (with $a \neq 0$), the solution can be found using the following formula:

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

This formula is called the quadratic formula and can be used to solve any quadratic equation.
Example: Solve the equation $3 x^{2}-2 x+9=0$.
Step 1: Identify a, b, and c.

$$
a=3, \quad b=-2, \quad c=9
$$

Step 2: Substitute the values of a, b, and c into the quadratic equation.

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \rightarrow x=\frac{-(-2) \pm \sqrt{(-2)^{2}-4(3)(9)}}{2(3)}
$$

Step 3: Simplify.

$$
\begin{gathered}
x=\frac{2 \pm \sqrt{4-108}}{6}=\frac{2 \pm \sqrt{-104}}{6}=\frac{2 \pm i \sqrt{4 \cdot 26}}{2 \cdot 3}=\frac{2 \pm 2 i \sqrt{26}}{2 \cdot 3}=\frac{z(1 \pm i \sqrt{26})}{z \cdot 3} \\
=\frac{1 \pm i \sqrt{26}}{3}
\end{gathered}
$$

The solution set is $\left\{\frac{1-i \sqrt{26}}{3}, \frac{1+i \sqrt{26}}{3}\right\}$

- Discriminant: The discriminant is $b^{2}-4 a c$. This is the term found inside the radical of the quadratic equation and gives information about the solutions of any equation of the form $a x^{2}+b x+c=0$ where a, b, and c are real numbers.

$b^{2}-4 a c$	Solutions (Roots)
Positive	Two distinct real roots
0	One real root
Negative	Two complex roots

Example: Check the discriminant of the example above to see if the solution set we found matches the information in the table above.
Step 1: Identify a, b, and c.

$$
a=3, \quad b=-2, \quad c=9
$$

Step 2: Substitute the values of a, b, and c into the discriminant.

$$
b^{2}-4 a c \rightarrow(-2)^{2}-4(3)(9)
$$

Step 3: Simplify.

$$
(-2)^{2}-4(3)(9)=4-12(9)=4-108=-104
$$

Since $b^{2}-4 a c$ simplifies to a negative for $3 x^{2}-2 x+9=0$ the table says it should have two complex roots, and we found that the solutions for $3 x^{2}-2 x+9=0$ are

$$
\left\{\frac{1-i \sqrt{26}}{3}, \frac{1+i \sqrt{26}}{3}\right\}
$$

which are in fact complex.

Other Types of Equations

Radical Equations

- Radical Equation: A radical equation is an equation where the variable is inside a radical (i.e. $\sqrt{3 x-4}=7 ; \sqrt[5]{x^{5}+x^{2}-7}=9 x$).
- Procedure for Solving Radical Equations: The following example shows how to solve radical equations.
Example: Solve the equation $\sqrt{2 x-6}=x-3$

Step 1: Square both sides of the equation.

$$
(\sqrt{2 x-6})^{2}=(x-3)^{2}
$$

Step 2: Simplify.

$$
2 x-6=x^{2}-6 x+9
$$

Step 3: Write the equation in standard form.

$$
\begin{gathered}
x^{2}-6 x+9-2 x+6=0 \\
x^{2}-8 x+15=0
\end{gathered}
$$

Step 4: Factor.

$$
(x-3)(x-5)=0
$$

Step 5: Use the zero product property.

$$
x=3 \text { or } x=5
$$

Step 6: Check the solutions.

$$
\begin{aligned}
& \sqrt{2(3)-6}=3-3 \rightarrow \sqrt{6-6}=0 \rightarrow \sqrt{0}=0 \rightarrow 0=0 \checkmark \\
& \sqrt{2(5)-6}=5-3 \rightarrow \sqrt{10-6}=2 \rightarrow \sqrt{4}=2 \rightarrow 2=2 \sqrt{2}
\end{aligned}
$$

u-Substitution

- Equations that are higher order or that have fractional powers often can be transformed into a quadratic equation through substitution. When this is the case, we say these equations are quadratic in form.
- Procedure for Solving Equation through u-substitution: The following example shows how to solve equations using u-substitution.
Example: Solve $x^{\frac{2}{3}}-3 x^{\frac{1}{3}}-10=0$
Step 1: Identify the substitution.

$$
u=x^{\frac{1}{3}}
$$

Step 2: Transform the equation into a quadratic equation.

$$
\begin{gathered}
\left(x^{\frac{1}{3}}\right)^{2}-3 x^{\frac{1}{3}}-10=0 \\
u^{2}-3 u-10=0
\end{gathered}
$$

Step 3: Solve the quadratic equation.

$$
\begin{gathered}
(u-5)(u+2)=0 \\
u=5 \text { or } u=-2
\end{gathered}
$$

Step 4: Apply the substitution to rewrite the solution in terms of the original variable.

$$
x^{\frac{1}{3}}=5 \text { or } x^{\frac{1}{3}}=-2
$$

Step 5: Solve the resulting equation.

$$
\begin{gathered}
\left(x^{\frac{1}{3}}\right)^{3}=5^{3} \rightarrow x=125 \\
\left(x^{\frac{1}{3}}\right)^{3}=(-2)^{3} \rightarrow x=-8
\end{gathered}
$$

Step 6: Check the solutions in the original equation.

$$
\begin{gathered}
(125)^{\frac{2}{3}}-3(125)^{\frac{1}{3}}-10=0 \rightarrow \sqrt[3]{(125)^{2}}-3 \sqrt[3]{125}-10=0 \rightarrow 25-3(5)-10=0 \\
\rightarrow 25-15-10=0 \rightarrow 0=0 \checkmark \\
(-8)^{\frac{2}{3}}-3(-8)^{\frac{1}{3}}-10=0 \rightarrow \sqrt[3]{(-8)^{2}}-3 \sqrt[3]{-8}-10=0 \rightarrow 4-3(-2)-10=0 \rightarrow 0=0 \checkmark
\end{gathered}
$$

Factorable Equations

- Some equations (both polynomial and with rational exponents) that are factorable can be solved using the zero product property.
- Example with Rational Exponents: Solve $x^{\frac{7}{3}}-3 x^{\frac{4}{3}}-4 x^{\frac{1}{3}}=0$

$$
\begin{gathered}
x^{\frac{1}{3}}\left(x^{2}-3 x-4\right)=0 \rightarrow x^{\frac{1}{3}}(x-4)(x+1)=0 \\
x^{\frac{1}{3}}=0 \rightarrow x=0 \\
x-4=0 \rightarrow x=4
\end{gathered}
$$

- Example of Polynomial: Solve $x^{3}-5 x^{2}-9 x+45=0$

$$
\begin{gathered}
\left(x^{3}-5 x^{2}\right)+(-9 x+45)=0 \rightarrow x^{2}(x-5)+(-9)(x-5)=0 \rightarrow(x-5)\left(x^{2}-9\right)=0 \\
\rightarrow(x-5)(x+3)(x-3)=0 \\
x=5 \text { or } x=-3 \text { or } x=3
\end{gathered}
$$

