Quadrilaterals Test Review

\qquad 1. In parallelogram $D E F G, D H=x+4, H F=3 y, G H=2 x-3$, and $H E=4 y+3$. Find the values of x and y. The diagram is not to scale.

A. $x=8, y=20$
B. $x=7, y=17$
C. $x=17, y=7$
D. $x=20, y=8$
\qquad 2. Find $A M$ in the parallelogram if $P N=14$ and $A O=6$. The diagram is not to scale.

A. 12
B. 6
C. 14
D. 7
\qquad 3. $L M N O$ is a parallelogram. If $N M=x+6$ and $O L=2 x+3$, find the value of x and then find $N M$ and $O L$.

A. $x=5, N M=9, O L=11$
B. $x=3, N M=9, O L=9$
C. $x=5, N M=11, O L=11$
D. $x=3, N M=11, O L=9$
\qquad 4. If $m \angle B=m \angle D=36$, find $m \angle C$ so that quadrilateral $A B C D$ is a parallelogram. The diagram is not to scale.

A. 144
B. 72
C. 36
D. 288
5. Find values of x and y for which $A B C D$ must be a parallelogram. The diagram is not to scale.

A. $x=10, y=13$
B. $x=5, y=10$
C. $x=10, y=21$
D. $x=10, y=5$
6. If $O N=9 x-5, L M=8 x+6, N M=x-5$, and $O L=5 y-4$, find the values of x and y for which $L M N O$ must be a parallelogram. The diagram is not to scale.

A. $x=11, y=\frac{1}{2}$
B. $x=6, y=2$
C. $x=6, y=\frac{1}{2}$
D. $x=11, y=2$
7. Based on the information given, can you determine that the quadrilateral must be a parallelogram? Explain.

Given: $\overline{X Y} \cong \overline{W Z}$ and $\overline{X W} \cong \overline{Y Z}$

A. Yes; opposite sides are congruent.
B. Yes; diagonals of a parallelogram bisect each other.
C. Yes; two opposite sides are both parallel and congruent.
D. No; you cannot determine that the quadrilateral is a parallelogram.
\qquad 8. Which description does NOT guarantee that a quadrilateral is a parallelogram?
A. a quadrilateral with both pairs of opposite sides congruent
B. a quadrilateral with the diagonals bisecting each other
C. a quadrilateral with consecutive angles supplementary
D. quadrilateral with two opposite sides parallel
9. What is the most precise name for quadrilateral $A B C D$ with vertices $A(-4,1), B(-2,3), C(4,3)$, and $D(2,1)$?
A. parallelogram
B. quadrilateral
C. rhombus
D. rectangle
10. Which statement is true?
A. All squares are quadrilaterals.
B. All rectangles are squares.
C. All quadrilaterals are parallelograms.
D. All quadrilaterals are squares.
11. In quadrilateral $A B C D, m \angle A C D=2 x+4$ and $m \angle A C B=5 x-2$. For what value of x is $A B C D$ a rhombus?

A. 1
B. 2
C. 3
D. 4
12. Find the values of a and b. The diagram is not to scale.

A. $a=141, b=64$
B. $a=116, b=39$
C. $a=141, b=39$
D. $a=116, b=64$
13. $\angle J$ and $\angle M$ are base angles of isosceles trapezoid $J K L M$. If $m \angle J=17 x+7$, and $m \angle M=14 x+10$, find $m \angle K$.
A. 1
B. 78
C. 156
D. 24
14. $\overline{L M}$ is the midsegment of $\square A B C D . A B=26$ and $D C=138$. What is $L M$?

A. 82
B. 92
C. 112
D. 164
15. Find $m \angle 1$ and $m \angle 3$ in the kite. The diagram is not to scale.

A. $m \angle 1=16, m \angle 3=74$
B. $m \angle 1=16, m \angle 3=16$
C. $m \angle 1=74, m \angle 3=16$
D. $m \angle 1=74, m \angle 3=74$
16. $m \angle R=110$ and $m \angle S=80$. Find $m \angle T$. The diagram is not to scale.

A. 55
B. 80
C. 90
D. 45
17. Give a convincing argument that quadrilateral $A B C D$ with $A(-5,-3), B(-1,1), C(8,1)$, and $D(4,-3)$ is a parallelogram.
18. In the coordinate plane, draw parallelogram $A B C D$ with $A(-5,0), B(1,-4), C(5,2)$, and $D(-1,6)$.Then demonstrate that $A B C D$ is a rectangle.

Quadrilaterals Test Review

Answer Section

1. C
2. B
3. B
4. A
5. D
6. D
7. A
8. D
9. A
10. A
11. B
12. A
13. C
14. A
15. A
16. C
17. Slope of $\overline{A B}$ is 1 .

Slope of $C D$ is 1 .
Slope of $B C$ is 0 .
Slope of $\overline{A D}$ is 0 .

$$
\overline{A B} \| \overline{C D} \text { and } \overline{B C} \| \overline{A D}
$$

Therefore $A B C D$ is a parallelogram.

Answers may vary. Sample:
slope of $\overline{A B}$ is $-\frac{2}{3}$
slope of $\overline{B C}$ is $\frac{3}{2}$
slope of $\overline{C D}$ is $-\frac{2}{3}$
slope of $\overline{A D}$ is $\frac{3}{2}$
$\overline{A B} \| \overline{C D}$ and $\overline{B C} \| \overline{A D}$, so $A B C D$ is a parallelogram.
$\overline{A B} \perp \overline{B C}, \overline{B C} \perp \overline{C D}, \overline{C D} \perp \overline{A D}$, and $\overline{A B} \perp \overline{A D}$.
$\angle A B C, \angle B C D, \angle C D A, \angle B A D$ are right angles.
$A B C D$ is a rectangle.

